U™ N I X
USER’S MANUAL - -

Reference Guide

-

Sam Gasoisuan
AAD -Gl

Printed by the USENIX Association as a service to the UNIX
Community. This material is copyrighted by The Regents of the
University of California and/or Bell Telephone Laboratories, and
is reprinted by permission. Permission for the publication or
other use of these materials may be granted only by the Licen-
sors and copyright holders.

Cover design by John Lassetter, Lucasfilm, Ltd.

First Printing July 1984
Second Printing December 1984

UNIX USER’S MANUAL

Reference Guide

4.2 Berkeley Software Distribution
Virtual VAX—11 Version

March, 1984

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

Copyright 1979, Bell Telephone Laboratories, Incorporated.
Holders of a UNIX™/32V software license are permitted to
copy this document, or any portion of it, as necessary for
licensed use of the software, provided this copyright notice and
statement of permission are included.

PREFACE

This manual is part of a five volume set intended for use with the 4.2 Berkeley Software Distribution for
the VAX-11 computer. While the five volumes together contain virtually the same material presented in
the four volume UNIX Programmer’s Manual distributed with 4.2BSD, the manuals reflect a revised
organization necessitated by the large quantity of information. The documentation is divided into three
logically distinct manuals:

e UNIX User’s Manual,
® UNIX Programmer’s Manual, and
® UNIX System Manager’s Manual.

Each of the User and Programmer manuals are two volumes: a Reference Guide, containing relevant sec-
tions from Volume 1 of the old UNIX Programmer’s Manual, and a volume of Supplementary Docu-
ments, containing pertinent material from Volume 2 of the old UNIX Programmer’s Manual. The Sys-
tem Manager’s manual consists of a single volume containing information from both Volumes 1 and 2.
We acknowledge those who have assisted us in putting together these manuals. In particular, we thank
Tom Ferrin for pursuing the printing particulars.

M. J. Karels
S. J. Leffler

Preface to the 4.2 Berkeley distribution

This update to the 4.1 distribution of June 1981 provides support for the VAX 11/730, full networking
and interprocess communication support, an entirely new file system, and many other new features. It is
certainly the most ambitious release of software ever prepared here and represents many man-years of
work. Bill Shannon (both at DEC and at Sun Microsystems) and Robert Elz of the University of Mel-
bourne contributed greatly to this distribution through new device drivers and painful debugging episodes.
Rob Gurwitz of BBN wrote the initial version of the code upon which the current networking support is
based. Eric Allman of Britton-Lee donated countless hours to the mail system. Bill Croft (both at SRI
and Sun Microsystems) aided in the debugging and development of the networking facilities. Dennis
Ritchie of Bell Laboratories also contributed greatly to this distribution, providing valuable advise and
guidance. Helge Skrivervik worked on the device drivers which enabled the distribution to be delivered
with a TUS58 console cassette and RX01 console flopppy disk, and rewrote major portions of the stan-
dalone i/0 system to support formatting of non-DEC peripherals.

Numerous others contributed their time and energy in organizing the user software for release, while
many groups of people on campus suffered patiently through the low spots of development. As always,
we are grateful to the UNIX user community for encouragement and support.

Once again, the financial support of the Defense Advanced Research Projects Agency is gratefully ack-
nowledged.

S. J. Leffler
W. N. Joy
M. K. McKusick

s 3 il -
i T
vk
=L X
LN, I —_':
N e Wl
s
= anil

PREFACE

This update to the 4.1 distribution of June 1981 provides support for the VAX 11/730, full networking
and interprocess communication support, an entirely new file system, and many other new features. It is
certainly the most ambitious release of software ever prepared here and represents many man-years of
work. Bill Shannon (both at DEC and at Sun Microsystems) and Robert Elz of the University of Mel-
bourne contributed greatly to this distribution through new device drivers and painful debugging episodes.
Rob Gurwitz of BBN wrote the initial version of the code upon which the current networking support is
based. Eric Allman of Britton-Lee donated countless hours to the mail system. Bill Croft (both at SRI
and Sun Microsystems) aided in the debugging and development of the networking facilities. Dennis
Ritchie of Bell Laboratories also contributed greatly to this distribution, providing valuable advise and
guidance. Helge Skrivervik worked on the device drivers which enabled the distribution to be delivered
with a TUS58 console cassette and RX01 console flopppy disk, and rewrote major portions of the stan-
dalone i/0 system to support formatting of non-DEC peripherals.

Numerous others contributed their time and energy in organizing the user software for release, while
many groups of peuple on campus suffered patiently through the low spots of development. As always,
we are grateful to the UNIX user community for encouragement and support.

Once again, the financial support of the Defense Advanced Research Projects Agency is gratefully ack-
nowledged.

S. 1. Leffler
W. N. Joy
M. K. McKusick

Preface to the 4.1 Berkeley distribution

This update to the fourth distribution of November 1980 provides support for the VAX 11/750 and for
the full interconnect architecture of the VAX 11/780. Robert Elz of the University of Melbourne contri-
buted greatly to this distribution especially in the boot-time system configuration code; Bill Shannon of
DEC supplied us with the implementation of DEC standard bad block handling. The research group at
Bell Laboratories and DEC Merrimack provided us with access to 11/750’s in order to debug its support.

Other individuals too numerous to mention provided us with bug reports, fixes and other enhancements
which are reflected in the system. We are grateful to the UNIX user community for encouragement and
support.

The financial support of the Defence Advanced Research Projects Agency in support of this work is
gratefully acknowledged.

W. N. Joy
R. S. Fabry
K. Sklower

Preface to the Fourth Berkeley distribution

This manual reflects the Berkeley system mid-October, 1980. A large amount of tuning has been done in
the system since the last release; we hope this provides as noticeable an improvement for you as it did for
us. This release finds the system in transition; a number of facilities have been added in experimental
versions (job control, resource limits) and the implementation of others is imminent (shared-segments,
higher performance from the file system, etc.). Applications which use facilities that are in transition
should be aware that some of the system calls and library routines will change in the near future. We

-jv -

have tried to be conscientious and make it very clear where this is likely.

A new group has been formed at Berkeley, to assume responsibility for the future development and sup-
port of a version of UNIX on the VAX. The group has received funding from the Defense Advanced
Research Projects Agency (DARPA) to supply a standard version of the system to DARPA contractors.
The same version of the system will be made available to other licensees of UNIX on the VAX for a
duplication charge. We gratefully acknowledge the support of this contract.

We wish to acknowledge the contribution of a number of individuals to the the system.

We would especially like to thank Jim Kulp of IIASA, Laxenburg Austria and his colleagues, who first
put job control facilities into UNIX; Eric Allman, Robert Henry, Peter Kessler and Kirk McKusick, who
contributed major new pieces of software; Mark Horton, who contributed to the improvement of facilities
and substantially improved the quality of our bit-mapped fonts, our hardware support staff: Bob Kridle,
Anita Hirsch, Len Edmondson and Fred Archibald, who helped us to debug a number of new peri-
pherals; Ken Arnold who did much of the leg-work in getting this version of the manual prepared, and
did the final editing of sections 2-6, some special individuals within Bell Laboratories: Greg Chesson,
Stuart Feldman, Dick Haight, Howard Katseff, Brian Kernighan, Tom London, John Reiser, Dennis
Ritchie, Ken Thompson, and Peter Weinberger who helped out by answering questions; our excellent
local DEC field service people, Kevin Althaus and Frank Chargois who kept our machine running virtu-
ally all the time, and fixed it quickly when things broke; and, Mike Accetta of Carnegie-Mellon Univer-
sity, Robert Elz of the University of Melbourne, George Goble of Purdue University, and David Kashtan
of the Stanford Research Institute for their technical advice and support.

Special thanks to Bill Munson of DEC who helped by augmenting our computing facility and to Eric All-
man for carefully proofreading the “‘last’” draft of the manual and finding the bugs which we knew were
there but couldn’t see.

We dedicate this to the memory of David Sakrison, late chairman of our department, who gave his sup-
port to the establishment of our VAX computing facility, and to our department as a whole.

W. N. Joy
O. Babaoglu
R. S. Fabry
K. Sklower

Preface to the Third Berkeley distribution

This manual reflects the state of the Berkeley system, December 1979. We would like to thank all the
people at Berkeley who have contributed to the system, and particularly thank Prof. Richard Fateman for
creating and administrating a hospitable environment, Mark Horton who helped prepare this manual, and
Eric Allman, Bob Kridle, Juan Porcar and Richard Tuck for their contributions to the kernel.

The cooperation of Bell Laboratories in providing us with an early version of UNIX/32V is greatly appreci-
ated. We would especially like to thank Dr. Charles Roberts of Bell Laboratories for helping us obtain
this release, and acknowledge T. B. London, J. F. Reiser, K. Thompson, D. M. Ritchie, G. Chesson and
H. P. KatsefT for their advice and support.

W. N. Joy
O. Babaoglu

Preface to the UNIX/32V distribution

The UNIXY operating system for the VAX*-11 provides substantially the same facilities as the UNIX sys-
tem for the PDP*-11.

We acknowledge the work of many who came before us, and particularly thank G. K. Swanson, W. M.
Cardoza, D. K. Sharma, and J. F. Jarvis for assistance with the implementation for the VAX-11/780.

T. B. London
J. F. Reiser

Preface to the Seventh Edition

Although this Seventh Edition no longer bears their byline, Ken Thompson and Dennis Ritchie remain
the fathers and preceptors of the UNIX time-sharing system. Many of the improvements here described
bear their mark. Among many, many other people who have contributed to the further flowering of
UNIX, we wish especially to acknowledge the contributions of A. V. Aho, S. R. Bourne, L. L. Cherry, G.
L. Chesson, S. I. Feldman, C. B. Haley, R. C. Haight, S. C. Johnson, M. E. Lesk, T. L. Lyon, L. E.
McMahon, R. Morris, R. Muha, D. A. Nowitz, L. Wehr, and P. J. Weinberger. We appreciate also the
effective advice and criticism of T. A. Dolotta, A. G. Fraser, J. F. Maranzano, and J. R. Mashey; and we
remember the important work of the late Joseph F. Ossanna.

W. Kernighan
D.

B.
M. Mcllroy

1 UNIX is a trademark of Bell Laboratories.
*VAX and PDP are Trademarks of Digital Equipment Corporation.

- vii -

INTRODUCTION TO VOLUME 1

This volume gives descriptions of the publicly available features of the UNIX/32vt system, as
extended to provide a virtual memory environment and other enhancements at U. C. Berkeley.
It does not attempt to provide perspective or tutorial information upon the UNIX operating sys-
tem, its facilities, or its implementation. Various documents on those topics are contained in
Volume 2. In particular, for an overview see ‘The UNIX Time-Sharing System’ by Ritchie and
Thompson; for a tutorial see ‘UNIX for Beginners’ by Kernighan, and for an guide to the new
features of this virtual version, see ‘Getting started with Berkeley Software for UNIX on the
vAX’ in volume 2C.

Within the area it surveys, this volume attempts to be timely, complete and concise. Where
the latter two objectives conflict, the obvious is often left unsaid in favor of brevity. It is
intended that each program be described as it is, not as it should be. Inevitably, this means
that various sections will soon be out of date.

The volume is divided into eight sections:

Commands

System calls

Subroutines

Special files

File formats and conventions

Games

Macro packages and language conventions
Maintenance commands and procedures

9013 (O W LRI 1=

Commands are programs intended to be invoked directly by the user, in contradistinction to
subroutines, which are intended to be called by the user’s programs. Commands generally
reside in directory /bin (for binary programs). Some programs also reside in /usr/bin, or in
Jusr/uch, to save space in /bin. These directories are searched automatically by the command
interpreters.

System calls are entries into the UNIX supervisor. The system call interface is identical to a C
language procedure call; the equivalent C procedures are described in Section 2.

An assortment of subroutines is available; they are described in section 3. The primary
libraries in which they are kept are described in intro(3). The functions are described in terms
of C, but most will work with Fortran as well.

The special files section 4 discusses the characteristics of each system ‘file’ that actually refers
to an I/0 device. The names in this section refer to the DEC device names for the hardware,
instead of the names of the special files themselves.

The file formats and conventions section 5 documents the structure of particular kinds of files;
for example, the form of the output of the loader and assembler is given. Excluded are files
used by only one command, for example the assembler’s intermediate files.

Garr_les have been relegated to section 6 to keep them from contaminating the more staid infor-
mation of section 1.

¥ UNIN is a trademark of Bell Laboratories.

- viii -

Section 7 is a miscellaneous collection of information necessary to writing in various specialized
languages: character codes, macro packages for typesetting, etc.

The maintenance section 8 discusses commands and procedures not intended for use by the
ordinary user. The commands and files described here are almost all kept in the directory /etc.

Each section consists of a number of independent entries of a page or so each. The name of
the entry is in the upper corners of its pages, together with the section number, and sometimes
a letter characteristic of a subcategory, e.g. graphics is 1G, and the math library is 3M. Entries
within each section are alphabetized. The page numbers of each entry start at 1; it is infeasible
to number consecutively the pages of a document like this that is republished in many variant
forms.

All entries are based on a common format, not all of whose subsections will always appear.

The name subsection lists the exact names of the commands and subroutines covered
under the entry and gives a very short description of their purpose.

The synopsis summarizes the use of the program being described. A few conventions are
used, particularly in the Commands subsection:

Boldface words are considered literals, and are typed just as they appear.

Square brackets [] around an argument indicate that the argument is optional.
When an argument is given as ‘name’, it always refers to a file name.

are used to show that the previous argument-prototype may be

[

Ellipses
repeated.

A final convention is used by the commands themselves. An argument beginning
with a minus sign ‘—’ is often taken to mean some sort of option-specifying argu-
ment even if it appears in a position where a file name could appear. Therefore, it is
unwise to have files whose names begin with ‘—°.

The description subsection discusses in detail the subject at hand.
The files subsection gives the names of files which are built into the program.
A see also subsection gives pointers to related information.

A diagnostics subsection discusses the diagnostic indications which may be produced.
Messages which are intended to be self-explanatory are not listed.

The bugs subsection gives known bugs and sometimes deficiencies. Occasionally also the
suggested fix is described.

At the beginning of the volume is a table of contents, organized by section and alphabetically
within each section. There is also a permuted index derived from the table of contents. Within
each index entry, the title of the writeup to which it refers is followed by the appropriate sec-
tion number in parentheses. This fact is important because there is considerable name duplica-
tion among the sections, arising principally from commands which exist only to exercise a par-
ticular system call.

HOW TO GET STARTED

This section sketches the basic information you need to get started on UNIX how to log in and
log out, how to communicate through your terminal, and how to run a program. See ‘UNIX for
Beginners’ in Volume 2 for a more complete introduction to the system.

Logging in. You must call UNIX from an appropriate terminal. ‘Almost any ASCII terminal
capable of full duplex operation and generating the entire character set can be used. You must
also have a valid user name, which may be obtained, together with necessary telephone
numbers, from the system administration. After a data connection is established, the login pro-
cedure depends on what kind of terminal you are using and local system conventions. The fol-
lowing examples are typical.

X -

300-baud terminals: Such terminals include the GE Terminet 300, and most display terminals
run with popular modems. These terminals generally have a speed switch which should be set
at *300° (or ‘30’ for 30 characters per second) and a half/full duplex switch which should be set
at full-duplex. (This switch will often have to be changed since many other systems require
half-duplex). When a connection is established, the system types ‘login:’; you type your user
name, followed by the ‘return’ key. If you have a password, the system asks for it and turns
off the printer on the terminal so the password will not appear. After you have logged in, the
‘return’, ‘new line’, or ‘linefeed’ keys will give exactly the same results.

1200- and 150-baud terminals: If there is a half/full duplex switch, set it at full-duplex. When
you have established a data connection, the system types out a few garbage characters (the
‘login:* message at the wrong speed). Depress the ‘break’ (or ‘interrupt’) key; this is a speed-
independent signal to UNIX that a different speed terminal is in use. The system then will type
‘login:,’ this time at another speed. Continue depressing the break key until ‘login:’ appears in
clear, then respond with your user name. From the TTY 37 terminal, and any other which has
the ‘newline’ function (combined carriage return and linefeed), terminate each line you type
with the ‘new line’ key, otherwise use the ‘return’ key.

Hard-wired terminals. Hard-wired terminals usually begin at the right speed, up to 9600 baud;
otherwise the preceding instructions apply.

For all these terminals, it is important that you type your name in lower-case if possible; if you
type upper-case letters, UNIX will assume that your terminal cannot generate lower-case letters
and will translate all subsequent upper-case letters to lower case.

The evidence that you have successfully logged in is that a shell program will type a prompt (‘$’
or ‘%) to you. (The shells are described below under ‘How to run a program.’)

For more information, consult fset(1), and stty(1), which tell how to adjust terminal behavior,
getty(8), which discusses the login sequence in more detail, and nty(4), which discusses termi-
nal /0.

Logging out. There are three ways to log out:

By typing an end-of-file indication (EOT character, control-d) to the Shell. The Shell will
terminate and the ‘login: > message will appear again.

You can log in directly as another user by giving a login(1) command.

If worse comes to worse, you can simply hang up the phone; but beware — some
machines may lack the necessary hardware to detect that the phone has been hung up.
Ask your system administrator if this is a problem on your machine.

How to communicate through your terminal. When you type characters, a gnome deep in the sys-
tem gathers your characters and saves them in a secret place. The characters will not be given
to a program until you type a return (or newline), as described above in Logging in.

UNIX terminal I/0 is full-duplex. It has full read-ahead, which means that you can type at any
time, even while a program is typing at you. Of course, if you type during output, the printed
output will have the input characters interspersed. However, whatever you type will be saved
up and interpreted in correct sequence. There is a limit to the amount of read-ahead, but it is
generous and not likely to be exceeded unless the system is in trouble. When the read-ahead
limit is exceeded, the system throws away all the saved characters (or beeps, if your prompt was
a %).

The character ‘@’ in typed input kills all the preceding characters in the line, so typing mistakes
can be repaired on a single line. Also, the character ‘#’ erases the last character typed. (Most
users prefer to use a backspace rather than ‘#’, and many prefer control-U instead of ‘@’
tset(1) or sty(1) can be used to arrange this.) Successive uses of ‘#’ erase characters back to,
but not beyond, the beginning of the line. ‘@’ and ‘#’ can be transmitted to a program by
preceding them with \’. (So, to erase ‘\’, you need two ‘#’s).

The ‘break’ or ‘interrupt’ key causes an inferrupt signal, as does the AscIl ‘delete’ (or ‘rubout’)
character, which is not passed to programs. This signal generally causes whatever program you

are running to terminate. It is typically used to stop a long printout that you don’t want. How-
ever, programs can arrange either to ignore this signal altogether, or to be notified when it hap-
pens (instead of being terminated). The editor, for example, catches interrupts and stops what
it is doing, instead of terminating, so that an interrupt can be used to halt an editor printout
without losing the file being edited. Many users change this interrupt character to be “C
(control-C) using sty(1).

It is also possible to suspend output temporarily using "S (control-s) and later resume output
with "Q. In a newer terminal driver, it is possible to cause output to be thrown away without
interrupting the program by typing "O; see rty(4).

The quit signal is generated by typing the Ascl FS character. (FS appears many places on
different terminals, most commonly as control-\ or control-|.) It not only causes a running pro-
gram to terminate but also generates a file with the core image of the terminated process. Quit
is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you
have a terminal with the newline function or whether it must be simulated with carriage-return
and line-feed. In the latter case, all input carriage returns are turned to newline characters (the
standard line delimiter) and both a carriage return and a line feed are echoed to the terminal.
If you get into the wrong mode, the reser(1) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have them turned into spaces during output, and echoed as spaces
during input. The system assumes that tabs are set every eight columns. Again, the rser(1) or
stty(1) gommand will set or reset this mode. Tser(1) can be used to set the tab stops automati-
cally when necessary.

How to run a program; the shells. When you have successfully logged in, a program called a
shell is listening to your terminal. The shell reads typed-in lines, splits them up into a com-
mand name and arguments, and executes the command. A command is simply an executable
program. The Shell looks in several system directories to find the command. You can also
place commands in your own directory and have the shell find them there. There is nothing
special about system-provided commands except that they are kept in a directory where the
shell can find them.

The command name is always the first word on an input line; it and its arguments are separated
from one another by spaces.

When a program terminates, the shell will ordinarily regain control and type a prompt at you to
indicate that it is ready for another command.

The shells have many other capabilities, which are described in detail in sections sh(1) and
csh(1). If the shell prompts you with ‘$’, then it is an instance of sh(1) the standard Bell-labs
provided shell. If it prompts with ‘%’ then it is an instance of csh(1), a shell written at Berke-
ley. The shells are different for all but the most simple terminal usage. Most users at Berkeley
choose c¢sh(1) because of the history mechanism and the alias feature, which greatly enhance
its power when used interactively. Csh also supports the job-control facilities; see csh(1) or the
Csh introduction in volume 2C for details.

You can change from one shell to the other by using the chsh (1) comménd, which takes effect
at your next login.

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he also created a directory for you (ordinarily with
the same name as your user name). When you log in, any file name you type is by default in
this directory. Since you are the gwner of this directory, you have full permission to read,
write, alter, or destrcy its contents. Permissions to have your will with other directories and
files will have been granted or denied to you by their owners. As a matter of observed fact,
few UNIX users protect their files from perusal by other users.

- xi-

To change the current directory (but not the set of permissions you were endowed with at
login) use cd(1).

Path names. To refer to files not in the current directory, you must use a path name. Full
path names begin with */°, the name of the root directory of the whole file system. After the
slash comes the name of each directory containing the next sub-directory (followed by a ‘/°)
until finally the file name is reached. For example, /usr/lem/filex refers to the file filex in the
directory lem; lem is itself a subdirectory of usr; usr springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name
of the subdirectory with no prefixed /.

A path name may be used anywhere a file name is required.

Important commands which modify the contents of files are ¢p(1), mv(1), and rm(1), which
respectively copy, move (i.e. rename) and remove files. To find out the status of files or direc-
tories, use Is(1). See mkdir(1) for making directories and rmdir (in rm(1)) for destroying
them.

For a fuller discussion of the file system, see ‘The UNIX Time-Sharing System,” by Ken
Thompson and Dennis Ritchie. It may also be useful to glance through section 2 of this
manual, which discusses, system calls, even if you don’t intend to deal with the system at that
level. \

Writing a program. ‘To enter the text of a source program into a UNIX file, use the editor ex(1)
or its display editing alias vi(1). (The old standard editor ed(1) is also available.) The principal
languages in UNIX are provided by the C compiler cc(1), the Fortran compiler f7 7(1), the Pas-
cal compiler pc(1), and interpreter pi(1) and px(1), and the Lisp system lisp(1). User contri-
buted software in the latest release of the system supports APL, the Functional Programming
language, and Icon. Refer to ap/(1), fp(1), and icon(1), respectively for more information
about each. After the program text has been entered through the editor and written on a file,
you can give the file to the appropriate language processor as an argument. The output of the
language processor will be left on a file in the current directory named ‘a.out’. (If the output is
precious, use mv to move it to a less exposed name soon.)

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the shell in response to the shell (‘$’ or ‘%)
prompt.

Your programs can receive arguments from the command line just as system programs do, see
execve(2).

Text processing. Almost all text is entered through the editor ex(1) (often entered via vi(1)).
The commands most often used to write text on a terminal are: cat, pr, more and nroff, all in
section 1.

The car command simply dumps ASCII text on the terminal, with no processing at all. The pr
command paginates the text, supplies headings, and has a facility for multi-column output.
Nroff'is an elaborate text formatting program. Used naked, it requires careful forethought, but
for ordinary documents it has been tamed; see me(7) and ms(7).

Troff’ prepares documents for a Graphics Systems phototypesetter or a Versatec Plotter; it is
very similar to nroff, and often works from exactly the same source text. It was used to pro-
duce this manual.

Script(1) lets you keep a record of your session in a file, which can then be printed, mailed, etc.
It provides the advantages of a hard-copy terminal even when using a display terminal.

More(1) is useful for preventing the output of a command from zipping off the top of your
screen. It is also well suited to perusing files.

Status inquiries. Various commands exist to provide you with useful information. w(1) prints
a list of users presently logged in, and what they are doing. date(1) prints the current time and
date. Is(1) will list the files in your directory or give summary information about particular

- xii -

files.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to
use them, it would be well to learn something about them, because someone else may aim
them at you.

To communicate with another user currently logged in, write(1) is used; mail(1) will leave a
message whose presence will be announced to another user when he next logs in. The write-
ups in the manual also suggest how to respond to the two commands if you are a target.

If you use csh(1) the key "Z (control-Z) will cause jobs to “‘stop”. If this happens before you
learn about it, you can simply continue by saying “‘fg* (for foreground) to bring the job back.

When you log in, a message-of-the-day may greet you before the first prompt.

CONVERTING FROM THE 6TH EDITION

There follows a catalogue of significant, mostly incompatible, changes that will affect old users
converting from the sixth edition on a PDP-11. No attempt is made to list all new facilities, or
even all minor, but easily spotted changes, just the bare essentials without which it will be
almost impossible to do anything.

Addressing files. Byte addresses in files are now long (32-bit) integers. Accordingly seek has
been replaced by Iseek(2). Every program that contains a seek must be modified. Stat and
JSstat(2) have been affected similarly, since file lengths are now 32- rather than 24-bit quantities.

Assembly language. This language is dead. Necromancy will be severely punnished.
Stty and gry. These system calls have been extensively altered, see ioct/(2) and ty(4).

C language, lint. The syntax for initialization requires an equal sign = before an initializer,
and brackets { } around compound initial values; arrays and structures are now initialized
honestly. Assignment operators such as =+ and =— are now written in the reverse order:
+=, —=. This removes the possibility of ambiguity in constructs such as x=—2, y=*p, and
a=/*b. You will also certainly want to learn about

long integers

type definitions

casts (for type conversion)

unions (for more honest storage sharing)

#include <filename> (which searches in standard places)

The program /lint(1) checks for obsolete syntax and does strong type checking of C programs,
singly or in groups that are expected to be loaded together. It is indispensable for conversion
work.

Fortran. The old fc is replaced by f77, a true compiler for Fortran 77, compatible with C.
There are substantial changes in the language; see ‘A Portable Fortran 77 Compiler’ in Volume

2.

Stream editor. The program sed(1) is adapted to massive, repetitive editing jobs of the sort
encountered in converting to the new system. It is well worth learning.

Standard 1/0. The old fopen, getc, putc complex and the old —Ip package are both dead, and
even geitchar has changed. All have been replaced by the clean, highly efficient, stdio package,
intro(38). The first things to know are that getchar(3) returns the integer EOF (—1) (which is
not a possible byte value) on end of file, that 518-byte buffers are out, and that there is a
defined FILE data type.

Make. The program make(1) handles the recompilation and loading of software in an orderly
way from a ‘makefile’ recipe given for each piece of software. It remakes only as much as the
modification dates of the input files show is necessary. The makefiles will guide you in building
your new system.

- xiii -

Shell, chdir. F. L. Bauer once said Algol 68 is the Everest that must be climbed by every com-
puter scientist because it is there. So it is with the shell for UNIX users. Everything beyond
simple command invocation from a terminal is different. Even chdir is naw spelled cd. If you
wish to use sk (as opposed to csh) then you will want to study s#(1) long and hard.

C shell. Csh(1), developed at Berkeley, has features comparible to sh. It includes a history
mechanism that saves you from retyping all or part of previous commands, as well as an
efficient aliasing (macro) mechanism. The job control facilities of the system, which make the
system much more pleasant to use, are currently available only with csh. See csh(1) for a
description. These features make csh pleasant to use interactively. Csh programs have a syn-
tax reminiscent of C, while sh command programs have a syntax reminiscent of ALGOL-68.

Debugging. Sdb is a far more capable replacement for the debugger cdb, and debugs C and
Fortran at the source level. For machine language debugging, adb replaces db. The first-time
user should be especially careful about distinguishing / and ? in adb commands, and watching
to make sure that the x whose value he asked for is the real x, and not just some absolute loca-
tion equal to the stack offset of some automatic x. You can always use the ‘true’ name, _x, to
pin down a C external variable.

Dsw. This little-known, but indispensable facility has been taken over by rm —ri.

Boot procedures. Needless to say, these are all different. See section 8 of this volume, and the
other documentation you should have received with your tape.

CONVERTING FROM THE DECEMBER, 1979 BERKELEY DISTRIBUTION

There have been a number of significant changes and improvements in the system. This
list just gives the bare essentials:

C language changes. The C compiler now accepts and checks essentially arbitrary length
identifiers and preprocessor names. There is a new type available in type casts: void which
signifies that a value is to be ignored. It is useful in keeping lint happy about values which are
not used (especially values returned from procedures). Finally, the language has been changed
so that field names need not be unique to structures; on the other hand, the compiler insists
that you be more honest about types involved in pointer constructs or it will warn you.

Object file format. The object file format has been changed to include a string table, so that
language compilers may have names longer than 8 characters in their resulting a.out files. Old
.0 files must be recreated. A.out files will still run on both this and the December 1979 version
of the system; only the symbol tables are incompatible.

Archive format and table of contents. The archive format has been changed to one which is port-
able between the VAX and other machines (e.g. the PDP-11). Old vAX archives should be
converted with arcv(8); loader archives should just be recreated since the object files are also
obsolete. Loader archives should have table-of-contents added by ranlib(1); if they dont the
loader will gripe when they are used.

New tty driver, job control faciliiies and csh. Hand in hand are new job control facilities, a new
tty driver and a new version of the C shell which supports and uses all of this. See #y(4) and
csh(1) for a quick introduction.

Pascal compiler. There is a true Pascal compiler, pc(1) which allows separate compilation as
well as mixing in of FORTRAN and C code.

Error analyzer. There is an error analyzer program error(1), which takes a set of error message
and merges them back into the source files at the point of error. It can be used interactively to
avoid inserting errors which are uninteresting. This program eliminates once and for all making
lists of errors on small scraps of paper.

Mail forwarding. The system now provides mail forwarding and distribution facilities. Group
and aliases are defined in the file /usr/lib/aliases see aliases(5). If you change this file you will
have to rerun newaliases(1). For any particular system a table in the source of the delivermail
postman program may have to be changed so. that it knows about the gateways on the local

- xiv -

machine.

System bootstrap procedures. These are totally changed; the system performs automatic reboots
and preens the disks automatically at reboot. You should reread the appropriate pages in sec-
tion 8 if you deal with system reboots.

CONVERTING FROM THE JUNE, 1981 BERKELEY DISTRIBUTION

Many many changes have been made. This list indicates those which are most visible to
users.

Directory format. Directory entries are no longer fixed length. This forces user programs
which read directories to be modified to use the directory(3) package.

Signals. A new signal package has replaced the previous signal mechanism as well as the “‘jobs
library”. When using the compatible signa/(3C) interface routine, the two most important
changes are: signal handlers are not reset to SIG_DFL when a process receives a signal, and
while a signal handler is processing a signal, that signal is blocked until the handler returns.
This has implications, in particular, for programs which process the suspend character typed at
the terminal. Refer to sigvec, sighlock, sigpause, sigstack, and sigsetmask (2) for information
about the new signal facilities.

File and path names. File names may now be up to 255 characters in length. Path names are
restricted to be at most 1024 characters. These two constants are provides as MAXNAMLEN
and MAXPATHLEN in <sys/dir.h> and <syslparam.h>, respectively.

System time. System time is provided in microsecond precision with 10 millisecond accuracy.
The new system call gettimeofday(2) supplants the old fime(3) call which is now a library rou-
tine. The major impact of this change is that programs are now written in a fashion which is
independent of the line clock frequency.

Groups. A user may now be in many groups simultaneously. This has obviated the need for
the newgrp command. See gergroups(2) for more information.

Stat and fitat return value. The structure returned by the stat and fstat system calls is now
larger. This is due to inode numbers growing to 32-bits, time stamps expanding to 64-bits and
other information being included in the return value. Consult staf(2) for more information.
Mail forwarding. The system now provides general internetwork mail forwarding and distribu-
tion facilities. The sendmail(8) program replaces the old delivermail facility.

Debuggers. The previous C source language debugger, sdb, has been replaced by a new one,
dbx(1). Adb(1) has been extended to simplify debugging of the operating system.

Networking support. Many new user programs provide access to the networking facilities. The
rlogin(1C) and rsh(1C) programs are intended for communicating between UNIX systems. The
telnet(1C) and fip(1C) programs support the DARPA Internet standard protocols. The
netstat(1) program is useful in watching network activity.

TABLE OF CONTENTS

1. Commands and Application Programs

301 oo e introduction to commands
A6 6 ¢ v o o s s § e E B 8 m s S s B m R S S W E W s s e W ow s e debugger
addbib . . e e e ek e TR e oA s create or extend bibliographic database
applyo e e v e +ee....¢ applyacommand toa setof arguments
APTOPOS ¢ & o o s o o o s 8 e s e e e 4 e e e e e locate commands by keyword lookup
ar R R R AR R WM R e archive and library maintainer
BS o % 5 ¢ 8w ® w8 6w ow e e ow e s e e e e e e . VAX-11 assembler
| S A R S A ey v m e A execute commands at a later time
AWK b s s s w e e s s 8 e s s pattern scanning and processing language
basename oo R T strip filename affixes
be w5 s e I R I Y arbitrary-precision arithmetic language
bif e e e e e e be notified if mail arrives and who it is from
binmaill : s % « 53 85 & 83 58 & % 5 & 6 & 5 .. . send or receive mail among users
= S print calendar
calendar s : 6 S s s s m s E s s B s § 8 B R B & @ ¥ 8 reminder service
= A T T e e e e e e e e e e e . catenate and print
1, N SR s AR N E N IR LR C program beautifier
CC o o & s 6 8 & § 8§ & 8 & 81 5 88 © 5 § § 8 © 5 % 5 &% % ©8 & % @ C compiler
57 P change working directory
checknr R N B I R . check nroff/troff files
chfn S W e e W e e e e e e e v e e s e e « « « .« . change finger entry
ChEIP w5 s G m m b 6 8 3 $ 5 I A B FE W BB B S T8 B e EEE s change group
chmod 5 s s s o w5 e m s e B e W o s 8 e e e w8 . . . change mode
(5 11 CI WP change default login shell
L A L E e I T Ty clear terminal screen
cmp P compare two files
eol & 5@ m s Y R T T T Y filter reverse line feeds
170 5 o 7 filter nroff output for CRT previewing
COIM o s s w s 55 s @ & 3 § 6@ % & & ¢ § @ 5 & § @5 remove columns from a file
COMM & o o o v o o oW e e e e W select or reject lines common to two sorted files
COMPACE & & o o o o o o« o o o o o o o o » compress and uncompress files, and cat them
CD 555 s % m @ % 8w o W w % s N W S 6 8 E W W P s e m W S E ¥ W E e w e copy
CEUDE v mr o o se o o v o aw o 5 o aw sl e on B o e R B R e e s 6 encode/decode
Sh, w3 s m @ 9 s R W s § 8 M E ® a shell (command interpreter) with C-like syntax
ClAZS v o v v o e create a tags file
date o & 55 5 @ @ B B F F B B B F ¥ G ® N e ¥ EE @ § s ® s print and set the date
Lo 5 R R S debugger
de¢ @ % 0 o5 N Y PR L A R R R desk calculator
dd T R Y .+« convertandcopy a file
deroff 000 . . remove nroff, troff, tbl and egn constructs
df a5 s s E s oo Y B R E B E E S § W W W ¥ E e N @ w e disk free
diction e e e e e e e e e e e e e e e e print wordy sentences; thesaurus for diction
diff o ess5@mmes i@ .+ differential file and directory comparator
diff3 . . . e s e e e e e e e e e e e e e e e e e e 3-way differential file comparison
(|| S E R e T T T summarize disk usage
@CHO! & o m i &% 5 % 3 W W 8 5w E R E e M S WS 8w e ¢ e e echo arguments
.=« O T I TR I S I T S P I T S R I text editor
efl TR R AR I Y Y EE R Extended Fortran Language
[=10) o RN e e e e e e e s e e s e e e e s e e s o« o typeset mathematics
CITOr s s o i w8 @ ™ 1 © & § & B BB 8 analyze and disperse compiler error messages
BX e o w6 e i e s s e e W e e te de Wi e Gw e e eY s 6 e e e e s . . . texteditor
expatid & s s @ @ @ 35 8 6 W e WS @ e E s 5 & expand tabs to spaces, and vice versa
explain explain, diction— print wordy sentences; thesaurus for diction

Fourth Berkeley Distribution - XV - August 1983

Table of Contents

expr evaluate arguments as an expression
eyacc XEEE R Y . . . modified yacc allowing much improved error recovery
f77 o o e e e e e R RN Fortran 77 compiler
false & o 5 o s 6 5 5 5 & = SR B S § B m e s om e « + « « « . . provide truth values
fed . . e font editor
i1 - TR T L T EE E T I . . . determine file type
find e e e e e e e e e e e e Cw W E SR E W B s YL Y find files
1100 o user information lookup program
Ft v v w6 swwss 5638 538055 I IR . . simple text formatter
fod e e e e e e e fold long lines for finite width output device
I s v s s swmes s @ . Functional Programming language compiler/interpreter
for N e . . print Fortran file
from G B B S 8 BB B E F e e om e e e s w . « . . who is my mail from?
fsplit R Y R split a multi-routine Fortran file into individual files
fID i@ 5 5 s s e [N o e st w e e W W R 6 W g file transfer program
BCOTE & s & 5 @ W 5/ 5 & @& % 8 5 & & 8 5 & @ 0 o get core images of running processes
gprof e s e 4 s s e e s s e e s e e e e display call graph profile data
-1} S T R T E R T L . + . draw a graph
Blep . v o . . . T R Y search a file for a pattern
groups R FUE S B 8§ AR e b s e e o om e e show group memberships
head e e e e e e e e e e e e e T PR give first few lines
hostid S5 8 W e B EE R e e set or print identifier of current host system
hostname o v e W e a s W W W ¢« « .+« . . . setor print name of current host system
indent S b E R B 6w o « e+« ... indentand format C program source
install o s o0 6w v s m o B s W s § s R . . . install binaries
jostat e o owow e & oW ow s 8§ . « « . report I/O statistics
join R AR F G e e e o relational database operator
<) terminate a process with extreme prejudice
last 6 o s ws s 85 95 ¢« e+« s« indicate last logins of users and teletypes
lastcomm e e e s s s e e e ... showlast commands executed in reverse order
Id § e e s s s s 4 s s e s e s s s s s s s s e s s e s e e e e e e . linkeditor
1+ T EEEE computer aided instruction about UNIX
leave bR e e o Eom s e W e s W remind you when you have to leave
fex: . ww o s R R R I I . generator of lexical analysis programs
lint C et e e e e e e e e e e L TR . « . aC program verifier
LSP: 5 o 0 905 % 8 3 8 8 § 8 5 8 5 568 B 8 5 b o oom ow s « « « « « « o lisp interpreter
liszt . . . 0 v v v v v v e v ow s e W E s comp11eaFranz Lisp program
In W@ s W W EEE R B omoe o e e e e « « « . . make links
lock wowoe e e m Wb W M S R B F e & W B § e reserve a terminal
JORID 6 5 s % 5 60 @ B %5 5 6 i m omom e e o e e e e e w e e U W 8w U W sign on
look v o oo v ws s ww w s s e E s s 8w s ﬁnd lines in a sorted list
lookbib buﬂd inverted mdex for a bibliography, find references in a bibliography
lorder: & wwwmsewess s5@%5 869 . find ordering relation for an object library
Ipq e I spool queue examination program
Ipr IR R LR E s e e e e « « « .« o Off line print
Ipom 0L e . remove jobs from the line printer spooling queue
B i c@ 5535 588 5 boaieom oo e e e e e e e e e e e e list contents of directory
Ixref e ey W e wE § A lisp cross reference program
mé ..., .. T S macro processor
mail EEE L L R R T N LY send and receive mail
make 0. 0. e e e e e e e e e e e e . . mmaintain program groups
Man o s s s 6 6 9 & s @ & @ find manual mformatlon by keywords; print out the manual
mesg S i m e e o om w e e o wwe 6w w8 8 W . . . permit or deny messages
mkdir s Wi E@E B O Bd E e om ome e ok owom we e e make a directory
mkstr B o8 s ie @ @ createanerror message file by massaging C source
MOTE & & 5 & » B R E R T . file perusal filter for crt viewing
August 1983 - XVi - Fourth Berkeley Distribution

Table of Contents

msgs W e e e e e e e e e e e e e e . system messagesand junk mail program
magnetic tape manipulating program
MV v v o o o o o o s o o o o o o s v s v o s s eeasas.. . moveorrename files
NEtStal o v & « 4 4 o 4 e e e e e e s e s s e s e s e s« .. shownetwork status
newaliases W e e e e e e e e rebuildthe data base for the mail aliases file
MCE = + o « o + + s ¢ v e e s e s s v runacommand atlow priority (sh only)
OM & ¢ o o o o « o o o o o o e v o o o o o o s s a s o oo s« . printname list
AIOME .t o s w5 s 6w s 6w s e s s w w5 ow o« textformatting
00 & v v 4 v e 4 s e s e e e e e e e e e e ... octal, decimal, hex, ascii dump
pagesize W e e e e v e e e e e e e e e e e e e e e e .. . printsystem page size
PasSWd . .« ¢ 4 4 4 4 4 e s e s e e s e s e s s s e« s« .. changelogin password
PC 4 4 e e 4 e e e e e e e e e e s s e e e e e e e e ... Pascal compiler
pdx i i e W s e s e e m i e e e swe e s swowms ws s« s« pascalidebugger
i Pascal interpreter code translator
pix W 4 e e e e 4 e e e e e e e e e s e e . Pascalinterpreter and executor
DIOt & s s s @ % % & s /¢ G 5 § & % & m s s ww s 80w w we sow o graphicsfilters
PIMETEE « « « « o o v o o o « s o o o s o s o s s o s+ oo« oo pascalfile merger
B s 6w ns s v me s s mmms st wss iwmess «ws s sww prntfile
print W 4 e e e e s e e e e e e e e e e e e prtotheline printer
printenv W e e e e e e s e e e e e s e e e ... printoutthe environment
prmail . . v« 4 4 e e 4 e e 4 e e e e e e« . . printoutmailin the post office
PIOf v v i e i i e e e e e e e e e e e e e e e e e s .. . display profile data
DS e W s 8§ @ s 8 8 e B B 8 s i w s sie s w e os 8w ow e s o Process:status
phototypesetter interpreter
ptx e e s B w W s s sw e w s isw e s sowow e v oww o ‘permutedindex
pwd W e e e e e 4 e e e e e e e e e e e e e e working directory name
PK . %05 s s & 5 % 5 5@ % s § W 8 9w swm s e e s s e s Pascal interpreter
pXp W e e 4 e i e e e e e e e e e e e . Pascalexecution profiler
PXref . v v v 4 e e e e e e e e e e e s e e . Pascalcross-reference program
QUOMA + « « « o o o s s s s s s s s s e s s e s« o . display disc usage and limits
ranib 4 e e e e e e ... convertarchivestorandom libraries
ratfor e s o s s s s s v s e s e s s wmae s wwwssssww s TrationalFortran dialect
Icp I (<311 (o1 (8 i1 (R 0)5) 4
refer W e e e e e e e e e e .. findandinsert literature references in documents
TESEL + « « « 4 4 o & o o « .« o .« « « .« . . resetthe teletype bits to a sensible state
FEV o v e o s s e w6 s 5w s e s s s w s s §w @ ws e o Teverselinesof a file
rlogin 6 5 B ' W B S 6 fm w6 b s v e e s e s e« e wow s s e w (TOINOLE JOEIR
M+ 4 4 o v e o o v o s o e s v e e weee... remove (unlink) files or directories
Mmail . . « « s v v s o e e oo e handleremote mail received via uucp
rmdir i e e e e ettt remove (unlink) directories or files
TOffBiD « & « ¢« & v 4 4 ¢ 4 o e s o e e e e e+« o . runoffbibliographic database
ISh v i v e e i e ... remoteshell
TUPtime . « « v « ¢ ¢ v e o s s e o s+« o« .« . showhost status of local machines
rwho W e e e e e e et e e e e es. who'sloggedin on local machines
SCHPt « v v o & ¢ o o o s o o « s s o s« o+« .. maketypescript of terminal session
sed S m e 5 e S w4 58 W s s g w m s e ww e s sowww v s Streamieditor
sendbug 4 4 s e e e e s s+« .« o« . . mailasystem bugreport to 4bsd-bugs
command language
size e e e e e e s e e e e e e e e e e e .. sizeofan object file
sleep W e 4 e e et e e e e e e e . suspendexecution for an interval
SOEM « « o « o« o ¢« o s o« o o o o o s « « o « o« .+ o eliminate.so’sfrom nroff input
SOTL + & & o ¢ ¢ o o o o t o o o s e e s s s e s o e e . sortormerge files
SOTtBID « v « v 4« s o ¢ 4 e e s s s o s s s e« o« oo sortbibliographic database
spell e e e i e e i i e e e e e e findspelling errors
SPINE & + v v 4 4 4 4 s s s s s s e e e e e e interpolate smooth curve
split a file into pieces

split

Fourth Berkeley Distribution - Xvii - August 1983

Table of Contents

strings ¢« e+ e e+ findthe printable strings in a object, or other binary, file
Stipttt et e... .. removesymbolsand relocation bits
structttt .. structure Fortran programs
stty © e e e e s e e s s s s e s e e e e e e s s e e setterminal options
style analyzesurface characteristics of a document
SU . . s ¢ et v et ettt e e e e e e . . substitute userid temporarily
sum s e s s s s s s s e s e e e e e e es e .. sumandcountblocksin a file
SYmorder 4t et e e 4 4 et e s e Tearrange name list
sysine displaysystem status on status line of a terminal
tabst ittt ittt e e e e et e e .. setterminaltabs
tail 0. e deliver the last part of a file
talk s e s s s s 4 s e s s s e e s e e s s e s e e ... talktoanother user
lr . . . e e e e e e e e e e e e e e e e e s e e e tapearchiver
th00ttt eeo... formattablesfor nroff or troff
tt it ittt .. photoypesetter simulator
e . . . i i e e ittt e e e e e e pipefitting
telnet userinterface.tothe TELNET protocol
test © e s s s e s 4 4 e s s s e e e e s e s s e e e e ees.. conditioncommand
time e e e s 4 e e e e e e e e s e e s s e e s e e e timeacommand
tip St e e e e s e et e e a4 e e e e connecttoaremote system
tk © e s s e e e s e e e e e e s e . paginator for the Tektronix 4014
touch e e s s s s s s s e s s e s e e« . update date last modified of a file
B .. ittt manipulate tape archive
tr e s e s s 4 4 4 s e s s 4 s e e e s e e s e s s e e« ... translate characters
trman translate version 6 manual macros to version 7 macros
) | S text formatting and typesetting
U & o v i s e i i e e et et u e et et e e e provide truth values
tset0.0ete.... . terminal dependent initialization
TSOIE 5 s o 5 % 505 @ 8 5 5 & 8 5 5 5 o 10 0 o o 0w oo 5 e v s topological sort
tty S 4 e e e e e e e s e st e e e e e s e e ... getterminal name
ul St s et e et e s et ettt ettt e . dounderlining
10 11« report repeated lines in a file
UIIES & 4 o o 4 6 5 o o o o o 0 o o o @ s o o c s 6 o s 4 ais v s conversion program
UDHME i o w5 5 6 5 6 518 5 & @ 6 5 6 05 5 o o o o show how long system has been up
USEIS « « &« 4 o v o o o o o o s+« « « . . compactlist of users who are on the system
UUCP o o e v o v o o v o v v ot o o s s s s oo v e oo . . uUNXtounix copy
uuencode encode/decode a binary file for transmission via mail
uusend e e 4 e s s 4 s s e s e e e e e e e . senda filetoaremote host
UUX & 4 o o s o o e o o o o o s s o o+ s o+« .« . UNixtounix command execution
vfontinfo ¢ e e s e e e inspectand print outinformation about UNIX fonts
vgrind t+ e e s 4 e e e e e e et e e grind nice listings of programs
vi © s e e+ e screenoriented (visual) display editor based on ex
vp FormatLispprograms to be printed with nroff, vtroff, or troff
vmstat Treportvirtual memory statistics
vpr S s s s s s e e e e et e e .. e Crasterprinter/plotter spooler
vtroff e e s e e s e et ettt et e e e trofftoaraster plotter
vwidth © e s s s e 4 e e e s e e e ... maketroff width table for a font
W ettt it e it s ... whoison and what they are doing
WHIE & 6 5 65 5 5 8 8 a0 6 o 0 o o o o e w8 e a A await completion of process
wall ... e e e i e i e e e e e e et e . writetoall users
WC o e o e o o s e e e e e e et e e e et e s e e e e e e s e . wordcount
what show what versions of object modules were used to construct a file
whatis © 4 s s 4 e 4 4 e s s e s e e s s e s e ... describewhatacommand is
whereis ¢ e e s+ e ... locate source, binary, and or manual for program
which locatea program file including aliases and paths (csh only)
who t e s e e s e ettt sttt e e e whoison the system

August 1983 - Xviii - Fourth Berkeley Distribution

Table of Contents

whoami W e e e e e s e s e e e e e e e e e e printeffective current user id

write G % s B @l W B 5§ s W se s s W m m s o8 om o os e e ow e WELE 10 aNOLhET USer
xsend W e e e e e e e e e e e e e e e e e e e a e e e s e e e ... secretmail
XStr « + . « « .+ .« extract strings from C programs to implement shared strings
yacc W e e s e s 4 e e e e e e e e e e e e e . yetanother compiler-compiler
FES v e e e e e e e e e e e e e e e e e e e Dberepetitively affirmative

2. System Calls

N0+ « « « e o o o« s s e+« introduction to system calls and error numbers

BCCEPL « = = = « « = o o+« s+ 4 s s s s s« .« . . . acceptaconnection on a socket
BCCESS « » « o o o o o s s o s s e e o e e e« .. determine accessibility of file
BCCL « o o & o o e e e s e s 4t s s e e s e e e e e« .. turnaccounting on or off
bind

e e e e e et e e e e e e e e bindaname toasocket

BIK + & e 4 ¢ ¢ ¢ s e s e o s s s e s e e e e e e . changedatasegment size
chdir . .+ ¢« v v v ¢ v v e e v eeeaeseess. . changecurrent working directory
ChMOd + « « 4 ¢ + 4 s e e s s s e s e s e e e s e s changemode of file
chown W e e e e e et e e et e e e e e changeownerand group of afile
chroot W e e e e e e e et e e e e e e e e ... changeroot directory
close W e e e e s e e e e e e e e e e e e e e s e e s s« . deletea descriptor
connect

W e 4 e e e e e e e e e e e e e . Iinitiate a connection on a socket
creat e e e e e e e e e e e e e e e et e e e e . createanew file
dUP . . . v 4 e e e e e e e e e e s e e e e e . duplicatea descriptor
EXEOVE & 5 5 o s & & &/ s § @ w8 s s 8 @ » w s ¢ % w we sw s s o executeafile

exit W e e s e s e s e e e e e e e e e e e e e e e e s . . terminatea process
FONtl o o o w w3 s 6@ @ 8 s s s s s e e m e awm s s 5w w s e s dlecontrel
flock + .+ ++veeeeeoo.... applyorremovean advisory lock on an open file
fork

W e e e e s e e e e e e e e e e e e e e e ae e e .. . createanew process
fsync W e s e e e s e e e s+« synchronize a file’s in-core state with that on disk
getdtablesizeé . . « . ¢ . e . 4 4 s e e e e . e . o getdescriptor table size
getgid P s i E E e s W Ae® Y F@mE s s e e s ¢ew e Eetgroupidentity

BEIETOUPS « ¢ o o ¢ o o o o o o o s o s o o s s o o o o o s 0 0. get group access list
gethostid . . .« o+« v oo+ o« .o get/setunique identifier of current host
gethostname W e e e s e s e e s e e e e e e e+ get/set name of current host
getitimer e e e e e e e e e e e e e e e e e . get/setvalue of interval timer
EEIPAZESIZE « « « « 4 4 4 4 4 e s e 4 e e s e e s e getsystem page size
getpeername

W 4 e e e e 4 e e e e e e e e e pgetname of connected peer
BEIPEID « o o o o « & & & 4 4 s s e e e s e s e s e s e e e s .« . Betprocessgroup
getpid. & o v e e e e e e e e e e e e e 8 e get process identification
getpriority W e e s e e e e s e e e e e e ... get/setprogram scheduling priority
getrlimit e v e e e e e... control maximum system resource consumption
QEITUSAZE « « « « o o o « o + o « o « + » « o getinformation about resource utilization
getSOCKNAME « « o « + « o o« « o o o o o o o s o o o o o+ oo+« . getsocket name
getSOCKOPt « « + « = « o 4 o+ s & e e s o« getandsetoptions on sockets
gettimeofday s e s e s s s b e swe we s s e s s s s get/setdate and time
getuid e getuseridentity
HOCHL & 4 o @ o o o o o s o s s o s 6w a s s i s oo s sswes s controldevice

Kl v v v v o e o o o o o o o o o o o o o o o e o+ sendsignaltoa process
KillPE « « « v e « e s o e e v s e s oo e s ... sendsignaltoaprocessgroup
HOK » @ o o o ¢ « ¢ ¢ ¢ v o o o o s o o o o s s e+ .. makea hardlink to a file
listen W e s o e e e e e e e e e e e e e a. . listen for connections on a socket
ISBEK @ « ¢« « o o o ¢ o o s st e e s s e e e e e . moveread/write pointer
MKAIT & « o + ¢ o o o o « o o o o o v s o s e e s+ e« ... makeadirectory file
mknod e s i & W e s s mm e s owow s s makeaspecial file
MOUAL + + « « « + o o o = = « o o o+ o+ o s s+ o . . mountorremove file system
OPEN . + « s + e v e+ s« openafie for reading or writing, or create a new file

pipe W e e o s e e s e e e e e ... createan interprocess communication channel

Fourth Berkeley Distribution - Xix - August 1983

Table of Contents

1175) 11 N L execution time profile
ptrace S e e e e e e e e e e e s s e e e e s e e e e e e e s DIOCESS trace
quotat s e e e ee manipulatedisk quotas
read S e s e e e e e e e et e et e e e e e e e s e s s e .. . readinput
readlink © e e s e e e e e et e e e . . readvalue of a symbolic link
TEDOOL v v i i e e e e e e e e e e e e e e e e e e reboot system or halt processor
recv s s s s e e s s e e e s s e s e e Teceive a message from a socket
TENAME v v 4 v 4 o o s v s s s s s s o s+« ... changethe name of afile
rmdir S et s e e e e e e e e e e s a e e e Temovea directory file
select S+ s s 4 s e e et et et synchronousi/o multiplexing
send St e s e e e e e e s e s e s e sendamessage from a socket
setgroups

S e e e s e e e e s st e e s e e e s e e setgroup access list
SePErP .+ e . i e e et e it e e e e e setprocessgroup

setquota enable/disable quotason a file system
SereRid o v i o w ws R e e e E S E o e s set real and effective group ID
setreuid @ e e s s s e 4 s s s e s e e s s« . . setrealand effective user ID’s
shutdown « e st e e e oo .. shutdown partofafuil-duplex connection
sigblock C e e e e e e e e et s et e e 4 e e e e e e Dblocksignals
sigpause ¢ e s+ s e« atomically release blocked signals and wait for interrupt
SIBSEIMASK. o ¢ o o w omi v 5 i W B 8 5 B e WS s e e e e e set current signal mask
sigstack¢..¢..0..u..... setand/or get signal stack context
sigvec St s e e e e e et ettt e e e e .. e software signal facilities
SOCKEL v v e e e e e e e e e e e e e e . create an endpoint for communication
socketpair t e s s s s e s e e e e o Createa pair of connected sockets
stat St e e e et e e e et ettt e e e e e s e e s e getfile status
swapon

s e+ s+ e addaswap device for interleaved paging/swapping
© s e e e e e e ettt et makesymbolic link to a file
St s e s s e st e s et e et e e s s e update super-block

symlink
sync

syscall Sttt s e e e e e e e et et e e indirectsystem cali
fruncate%....... truncateafile to a specified length
UMASK o o 5 o0 5 6 8 % % 5 5 6 5 5 5 o o 0w s set file creation mode mask
unlink

St e s e s e ettt e e e et removedirectory entry
LT set file times
vfork e e . Spawn new process in a virtual memory efficient way

vhangup virtualy “‘hangup”’ the current control terminal
wait S e e e st e e e 4t et e e e ee waitfor process to terminate
write

© s s o o s e

4 e e e s e s e s e e e e s e e e writeonafile

3. C Library Subroutines

intro © et e e et e et Iintroduction to library functions
abort St e e s s e e e et i e ettt e e e e e generatea fault
abs Tttt e e e e e e e et e e et e e s e 0. integer absolute value
atof

e s s e s e s e e e convert ASCII to numbers
¢+ s e e e e e e bitand byte string operations
et e s ettt DESencryption

bstring
crypt

ctime © e s s s s 4 st e s e e e e . convertdateandtimeto ASCII
ctype S e st 4 s e s e s e s e s e e e e e .. . Ccharacter classification macros
direCtory v v v s i e s e e e e e e e e e e e e e e e directory operations
L R T L T N e output conversion
end S te s s e e s ettt et ettt lastlocationsin program
-1« execute a file
exit t e+ s+ e terminatea process after flushing any pending output
frexp t o+ s s e e e et e et e et e s splitinto mantissaand exponent
getenv.t . . valueforenvironment name
BOLEIENL . . s oo o s 6 % B 5 5 e B e e e e o e e e o s get group file entry
getlogin

St e e e e e et e et ettt e e e e e e ... getlogin name

August 1983 - XX - Fourth Berkeley Distribution

Table of Contents

BEIPASS o o e e b e e e s e e e e sy e o ow s R e mow e & . read a password
BEIDWENL & & o o &6 & @ 5 % & s & & 8 o 8 8 s T get password file entry
getwd o i s s e e s s o s 5w e . . get current working directory pathname
INSQUE & & 5 5 & 5 5 % & 5 § 5 % @ % 5 & o5 0w e insert/remove element from a queue
malloc s s s e s s e ow s § e e s s s s s e e s e s« . . memoryallocator
MKIEMP v v o o o o o o o 0 o o o o & « e+ e s+ s« . makea unique file name
MONItOT & v ¢ & o o o o o o o o o o & R I S prepare execution profile
nlist T F . « . . getentries from name list
PEITOT ¢ v o ¢ & + o & & T N Ssystem error messages
popen e e s e s s s s« . o o initiate I/O to/from a process
psignal I system signal messages
Lo Y s w88 8 N PR O « « ¢ s s s« s . Quicker sort
random e e e e e better random number generator; routines for changing generators
TEEEX o ¢ o o 0 o0 AR R LR T R A E LN regular expression handler
scandir & & v v v e e e e e e e e e e e sk o e s s E R scan a directory
setjmp EEEEE R R R R A T « « .+« ... non-local goto
setiid o o v . e e e e v w e s E R I R set user and group ID
BIEBD w5 5 6 W % 5 5 6 B B 5 B o6 o5 b0 s e o oo m . . suspend execution for interval
SNG4 v v v v o o v e e e e R R B . . string operations
SWab . . . e e e e e e e e © s e e s s s s s s s s s s s s s e s s . . Swapbytes
SYSIOE v v w v s 6w w s s m e s s s e s e « « + .« . . control system log
3 £ v o « e e s s s s s+ oo issueashell command
Hyname .« o w o5 5 9 5 5 s v e e e s e s e e s e . . findname ofaterminal
valloc e s s s s s e s e e e e e .. o aligned memory allocator
VarargsS s s s v w w e 6 & @ W s s e 4 s s s e s e s s« . . o Vvariable argument list

3F. Fortran Library
intro introductionto FORTRAN library functions

abort T IR A . terminate abruptly with memory image
access PR R R R o o om e o e« ¢« e+« . . determine accessability of a file
alarm § oW oW E § R EE . . execute a subroutine after a specified time
bessel W W B s e e e ow e s e e w e s e . « . . of two kinds for integer orders
Bit o o v s s s w o s s v e ow . « « . and, or, xor, not, rshift, Ishift bitwise functions
chdir ¢ v v v v v T change default directory
chmod © e s e s e e s e s e e e e s« changemode of afile
etime e e e e e e e e e e e e e s . « . . return elapsed execution time
exit R R R R T e terminate process with status
fdate wowoew e ¢ ¢« s s« ... returndate and time in an ASCII string
111111 S Y E e e e e « « « « o o return extreme values

flush0cc00uee.u...... flushoutputtoa logical unit
fork S e s s s e s s s e s s e s e e e e s s e s s s . createacopy of this process

fseek s wwws s BT iE @ BH s W@ reposition a file on a logical unit
getarg . . . v e o 0 . W © o e e s e s s e s s s . o returncommand line arguments
BEIC Wi s 5 & % o 5 % & 8 @ B B b e om e e e e e . . get a character from a logical unit
getewd . s v e w oo s « s o+ o« ... getpathname of current working directory
getenv e o s s s e s e s s« . getvalue of environment variables
getlog oW oW s s © o 4 s s s e s s s e s e s e s e s e .« o getuser’slogin name
getpid a e en e e e W W e s i B § 8 W & & § .« « o getprocess id
getuid R EYE e s s s s s s s s s e s s s o getuserorgroup ID of the caller
hostnom oo 8w . « .« . get name of current host
fdate o s :swm oo w6 8 oo « ¢« « « . . . returndate or time in numerical form
index B 5 e e om w e de o e e oo E « « « « « o« tell about character objects
foinit . « v s AR R T Y . « « . change f77 1/0 initialization
kill .o 0 e e e e D send a signal to a process
linki . 6o w s S W W R E W s ¢« « + s« ... makealink to an existing file
loc & . e e e e e e e e e e e e e e return the address of an object

Fourth Berkeley Distribution - XXi - August 1983

Table of Contents

long v i o i st e e s e v e e ..o integer objectconversion
perror © o s s s s e s s s s s s s s e s s s s o s e s » o Betsystem error messages
PUC ¢ ¢ v . s e s e e s s s .« o . writea character to a fortran logical unit
gsort V% B S M W B R E T W B § S W W W 8 W @ B s s em e & ome w e s QUckSOrt
rand e s e s 4 e e s s s s s s e e s s s s s s e s s« s o returnrandom values
TENAME 5 o s s = & s v & s % @ W & & 6w w s e s W e s s ww e s s« Tenameafile
signal © + s s s s s s e s s s s o e s s e s o« changethe action for a signal
sleep o o o c s s s s s s s e s e e e .« o« suspendexecution for an interval
stat s e e w e w s v e W owe e ww ws s ww s e s owowwms sowwww getfilestatus
SYSEEIM . & ¢ ¢ ¢ ¢ 4 s s 6 6 6 s s s e s s s s s s s« o o executea UNIX command
time o e e s R T W m B 8 e W W e 8 4T Wesi a8 e @ ow s e @ e (TEHUIN system time
BODBII o o o 4 o 6 w2 5 s s o @ o ¢ « o o o 2 o 0 o o « o w0 oo oo F17tapel/O
HAPEL' o o o w s @ o o w5 & @ w8 § o6 s w s 8w s w5 & s o« traparithmetic errors
If8POV. . v & v v s « o ¢ ¢ o o o s s o s s « o o trap and repair floating point overflow
trpfpe e s e 4 e e s s s e e s e s s e« o . trapand repair floating point faults
BMynam ¢ ¢ s s 6 s s« e s s s e e s o e o« o findname of aterminal port
unlink i et e st s s oo ... removeadirectory entry
wait t e e s s s s s s s s s s e s s s e s e e« . waitfora process to terminate

3M. Math Library

N0 . o v o o+« ¢ o s« o ¢« « « « « o introduction to mathematical library functions
EXP + + s« s e s s s s s s s s . s s s o . e€xponential, logarithm, power, square root
floor c e e e s s s s e s e s e e s e . o absolute value, floor, ceiling functions
BAMINA . o ¢ « o o o o o o s o o » s o s o o s s o « « o o » « » loggamma function
hypot o . ¢ 6w o s 60 w o w5 s 5 05 s 5599w s s« PBuclidean distance
O . e e e e et e e e e e bessel functions
trigonometric functions

hyperbolic functions

3N. Internet Network Library

intro e s 4 s s s+ s s s s e e e ... introduction to network library functions
byteorder s s s s s o s e« s« o« convertvalues between host and network byte order
gethostent ¢ ¢ o ¢ v 4 4 v 6 e 4w . e e getnetwork host entry
GENEIENT & o & o o o s s o @ 5 o s 5 6 & 2 4 s 4 s 0 0 s s s s « Getnetwork entry
BOIPIOOBNL. © & v w ¢ « w w s s s s w e w s 6w ow v s s owow e s s getprotocol entry
BEISEIVENT . o & & & & o o « o o + s o o o« s s s o s s o s« o« .« o getservice entry
Internet address manipulation routines

INet ¢ v o w w5 s oo s w S e w e

3S. C Standard 1/0 Library Subroutines

introo standard buffered input/output package
fclose e 6 4 s s e s s s s s s e s s s s s e s s e s e e« Ccloseorflush astream
ferror © s s s s s s s s s s s e s e s s s e e e s s s s« . Stream status inquiries
fopen i i i e e i e e e s e s e e e e e e e oOpenastream
freado eoeecoeoesess.s . bufferedbinaryinput/output
fSEEK ¢ o« o v v s e s e s e w e s 5w s e s e s w TEpOSition a stream
BEIC . . . ¢ ¢t 4 s 4 s s s s e s s s s s s s« . getcharacter or word from stream
gets o w e s ww e s s &8 e 8 s e we w e s oew e w s s s getastring from a stream
printf © s s s s s s s s s e s s e s s s e s« . . Cformattedoutput conversion
PUIC . & « & = o = s ¢ o s s s s« s s s s s s« » o putcharacter or word on a stream
puts © e e i s e s s s s e s s s s s e s e s s s s s s« .. putastringon astream
scanf e e s e s s s s s s s s s s s s e s s s e e o formatted input conversion
setbuf assignbuffering to a stream
ungetc ¢ . . ¢ e s e e e e« .+« . pushcharacter back into input stream

August 1983 - xxii - Fourth Berkeley Distribution

Table of Contents

3X. Other Libraries

intro c e e e e e e introduction to miscellaneous library functions
assert s RE ® E 8§ ST E N O T program verification
CUISES v « o & & o e w de e W e 8 e @ screen functions with ‘‘optimal’® cursor motion
dbm I I T e B I S S R . . data base subroutines
getdisk R s s e e s s s s« o . . getdisk description by its name
getfsent ¢ e e s e e e« getfile system descriptor file entry
initgroups B R IR T initialize group access list
lib2648 0T Ol 0 oo A subroutmes for the HP 2648 graphics terminal
plot Y L T T T G o om e e om w graphics interface
remd ¢« e e e s e r1outines for returning a stream to a remote command
TEXEC o5 % 6 % 5 § 8 5 B 8§ 5 6 A %5 4 h e e a return stream to a remote command

termcap e s s s s s s e s s e terminalindependent operation routines

3C. Compatibi

lity Library Subroutines

intro . am e s W e e introduction to compatibility library functions
AlaTM & v 5 i v 8 s b e e e e e e e e e s . . schedule signal after specified time
BEIDW' o o ¢ o o w w8 s e W M § R @ R R s e B S R get name from uid
nice O B B R I + e e« o « o s . . Setprogram priority
PAUSE .+ o e @ % 5 & W § R R R s . . stop until signal
Lo P IR . « « « . random number generator
Signal o w s s f @ m s 5w s E s § e e e e e simplified software signal facilities
stty eI S R T e« « s« .. setandgetterminal state (defunct)
time i e et e e e e e e getdateand time
times e wow e E e e W W § e N s 4 e e s o« « s« o« . getprocess times
utime e e e e T e R set file times
vlimit o .« » . control maximum system resource consumption
vtimes IR R e« «.+ ... getinformation about resource utilization

4. Special Files

intro introduction to special files and hardware support
HCC & e mow m s s e b e SR AR B F e e .+ « « . . ACCLH/DH IMP interface
ad T R s o w s e Em # s s Data Translation A/D converter
ap s ow e e s S E B E e W R E ® « + « » « Address Resolution Protocol
autoconf S oD o s v v s s e w dxagnostlcs from the autoconfiguration code
L Y E line discipline for machine-machine communication (obsolete)
cons R G oW s s & W O R S P VAX-11 console interface
css ~ © s e+ e e e e ... DECIMP-11A LH/DH IMP interface
B s w w s s 8@ m B EE LI NEE EEEEEE . . phototypesetter interface
G e D G T e g A DH- 11/DM 11 communications multiplexer
(1111 P R I ol T DEC DMC-11/DMR-11 point-to-point communications device
amf . e s ow s os e R E E DMF-32, terminal muitiplexor
A0 5 5 5 @ i sl m s w e e e e e e e et e e e e e s DN-11 autocall unit interface
drum R BB B N B B % e ge e e e e paging device
+ A T © e et e DZI11 communications multiplexer
ec R R N L e . . 3Com 10 Mb/s Ethernet interface
T R Y o s ow TR Xerox 3 Mb/s Ethernet interface
fl S % % E L S W BB F B W BB E ok B e s e e e e e e e i e console floppy interface
e . RK6 11/RK06 and RK07 moving head disk
HD! i i % 5 5 5 6 5 5 5 5 6 e e e a m e a e w e e s s MASSBUS disk interface
L o TM 03/TE-16,TU-45,TU-77 MASSBUS magtape interface
hy e s s 4 s e e e s e e e« Network Systems Hyperchannel interface
ik s 5w om s R E R Ikonas frame buffer, graphics device interface
il ¢ e s s e s 4 e s e e s s e s s s . Interlan 10 Mb/s Ethernet interface
mp: s s 9w % WEE R R L T T N 1822 network interface

Fourth Berkele:

y Distribution - Xxiii - August 1983

Table of Contents

35012 S IMP raw socket interface
L s w8 5 8 & & 85 Lo E B8 Y@ e s E S Internet protocol family
ip 200D O 0O DT e e s s e 4 s e s s e s e e .. Internet Protocol
BE 4 6 o6 0 @ % s &% & % 5 § 5 € 43 5 &5 m b s 0w @@ 8 KL-ll/DL 11W line clock
10 & ¢ v e v e v v vt e et e e e ... softwareloopback network interface
I s @ w55 8@ 9§ 86 & @ 6 84 T A S I . line printer
MEM & 5 s s o @ & & 6 & (6 % o0 ¢ s i & @ 5 § 6 % § $ 5 & @ % 6§ & . main memory
M 7 6 @ % 5 8 8 e B ¥ 8 d e s e TM78/TU 78 MASSBUS magtape interface
MUG e oo s 8 & 08 B 5 5 @ M W § § & e B E S 8B 5 6 UNIX magtape interface
null A e e R o e e R e A eI = W e data sink
. e T e I Y DEC CSS PCL-11 B Network Interface
PS ¢ ¢ . « + + « .« . Evansand Sutherland Picture System 2 graphics device interface
DY s e womios & oo o6 8 e O W AR B W e @R F W m BB pseudo terminal driver
pup S A v v e e s W @ Xerox PUP-I protocol family
PUD & w % 6 & @ @ % & & @ @ I I S SRS S . . . raw PUP socket interface
X T E EE E EE R Y DEC RXO02 floppy disk interface
1P+ o v e e « ¢ e s e s s e e s s s+ Internet Transmission Control Protocol
M s s swmema 33w ® o s I T TM-11/TE-10 magtape interface
7 © e e e e 4 s e s s s e e e e e TS-11 magtape interface
HY o ea s A E L SEEE R T R A ' general terminal interface
tu e e e e e e e VAX-11/730 and VAX-11/750 TUS8 console cassette interface
uda R R A LN UDA-50 disk controller interface
udp A S m 0 o DG T T B G o# e e W o Internet User Datagram Protocol
MO 5 & 4 5 & @ T ARG S AR F A TR B s s e Ungermann-Bass interface
DI« v o o s 8 % & % 5 § & @ & & 85 & & & ¥ @ 8 unibus storage module controller/drives
|1 P I I N T S S UNIBUS TU4S5 tri-density tape drive interface
uu P N R R . TUS8/DECtape II UNIBUS cassette interface
7 R . . . Benson-Varian interface
VB a5 s § % & 55 § 8 8 9 5§ 588 65 #9555 5 4 . . Versatec interface
7 T Y P Proteon proNET 10 Megabit ring

BOUE o o e oo mios e e o w s e e B S s e W W s assembler and link editor output
acct s e v i i @ os SR e R W EE f e A § execution accounting file
aliases I I s W m e 58w @ aliases file for sendmail
A @ 5 5 8 0 3 % 5 5% W G E 5 B R B Kk om w s w o m e archive (library) file format
COTE v w o35 s ' & s s 3 6 % & § o0 @ & & § 8 & & & & format of memory image file
dir ST T T R 500 Lo RO D e format of directories
disktab & v ¢ 5 w0 6 6 65 55 & e T e « « « « . disk description file
dump & . .t e incremental dump format
I8 a5 s g m™sn @6 618 £0/8 8 & 55 88 % 54 86 format of file system volume
fstab TR L R static information about the filesystems
gettytab o s v i s o e o ow s @ @ W e d s « « « terminal configuration data base
BIOUD: o s o (o i o & ie (6 % &1 8 & (6 5 @ & 8 & @ & B § o 8 @ B 5 8 @@ R NS group file
hosts e R e e host name data base
mtabi . s s v s wis s w s s s E e s F e RS § W e mounted file system table
NEtWOTKS & v v v vt v i e e e e e e e e e e e e . « « . network name data base
passwd . . . v e e e e e e e W m R E EW S R R N A password file
DhOMES v . v e w e o 6 @ a0 o o9 0w v 8 8w remote host phone number data base
plot I P " P W graphics interface
printcap I I I TN printer capability data base
PIOTOCOIE & s s & 5 % 50 5 5 G & % 8.5 § ¥ 5 55 5 40 o wm s = protocol name data base
TEMOIE: i o v v 5 6 8w & § ‘6 6 ® & & 5 W R remote host description file
SEIVACES v 5 50 5 6 @ in o o0 = @ sm o e e e e o e e e e w e service name data base
stab . i v e s s e e e s e T L AL . « « . . symbol table types
tar A C e e e e e e e e e e e tape archive file format

August 1983 - XXiv - Fourth Berkeley Distribution

Table of Contents

TEIMNCAD. v o oo o0 0 1o 0 i w1 6 s 0 @ & 3.0 6 & & & 8 @ @ . . terminal capability data base
tp T i AR T R T e ¢ o s e s e e s s+ DEC/magtape formats
ttys s s s s s s s s s s e s e e e o s e s s s s e .« . terminal initialization data

tiytype o o e s s s s s s s s s s s s s e s s . o databaseof terminal types by port
types R N S Y EEE LY primitive system data types
UMD & & 5 5 5 5 5 8 o o e e o e s e o e e e @ s e W ® 6 login records
uuencode R P E Y « e+ +«o. . formatofanencoded uuencode file
vifont fontformatsforthe Benson-Varian or Versatec

vgrindefs vgrind’slanguage definition data base

6. Games

aardvark yetanother exploration game

adventure P T R « ¢« .« ... anexploration game
arithmetic e s s s s o s s s s s s s e e s s s e« . provide drillin number facts
Dackgamimon: o o o ¢ w w w o s v © % 5 5 @ 6 B S § K S E s 5 6@ E . . the game
Danfer . . ¢ ¢ v o v e s e ¢ v e et e printlarge banner on printer
bed i .ttt . . converttoantique media
boggle © s e s s s s s e e e e s s e s e e playthe game of boggle
canfield © e s s e s s s e e s s e s s e o thesolitaire card game canfield
chess S 4 e s s e e 4 s s et e s e e e e e e e e e« . . thegame of chess
ching o o s e § % om s s e M @ e s & e o om e [HE book of changes and other cookies
Crbbaget e e e e e e e e e e e e e e e e e e e the card game cribbage
doctor St s e e s e e et e .. e e e e Iinteractwitha psychoanalyst
fish S e e s s e e ettt e s s e e e eaeess s ... play“Go Fish”
FOrtUNE & w o 5 & % 5 & 5.5 % o m o 0 o o o print a random, hopefully interesting, adage
hangman e e+ e e ... Computer version of the game hangman
mille .o e e e e e e e e e e e e e e e e e play Mille Bournes
monop S s et s et s st e ettt e Monopolygame
number e L ey convert Arabic numerals to English
QUIZ o v s e w o s s s e b e © e e s e e s s e e testyour knowledge
rain “wow e v e A s W e © e+ e s e animated raindrops display
rogue I R N Explormg The Dungeons of Doom
snake S s s e e s e e et e e e s e a0 0. ... displaychase game
trek Sttt s et s et s st e s et s e e s e a trekkie game
worm © e e e e e e e e . Playthe growing worm game
worms B S « + « s . . animate worms on a display terminal
wump © e e s e e e st e e s e s e e thegame of hunt-the-wumpus
zork v e e e s & RS EE S G E e E e e e . the game of dungeon

7. Miscellanesus

intre miscellaneous useful information pages
ascii © e s e s s e e e e s s s e e e e mapofASCI character set
environ R R R T T T e e« s o« s« . . . USerenvironment
eqnchar Ol BTN O specxal character definitions for eqn
HIEE v w6 s 6 i 915 5 5 8 80 5 5@ 5 & % s va o o« o o« . . file system hierarchy
mailaddr © e s s s s et et s e v mailaddressing description
man o« owow e s o @ 4 s e s s s s et e e e e e .. . macrosto typeset manual
me St st s e e et e e e s s e macros for formatting papers
ms S e st e et s e e e s et e e e e s e e textformatting macros
term .

S s s s s s s s s s s s s s s conventional names for terminals

8. System Maintenance

intro
ac .
adduser

-« .+« ... introduction to system maintenance and operation commands
....... St s e s s e e et e s e e e . loginaccounting
. . . procedure for adding new users

Fourth Berkeley Distribution - XXV - August 1983

Table of Contents

analyze ¢ . T . Virtual UNIX postmortem crash analyzer
BICV 5 i @ % o T R .« « convertarchives to new format
Y i archiver and copier for floppy
badl44 read/write dec standard 144 bad sector information
Dadseet o « s o v 6 v 6 5 6w ow H s v e ow e s e e s create files to contain bad sectors
bugfiler S R file bug reports in folders automatically
catman . s s o 6 5 6 8 5 6w TEEE Y create the cat files for the manual
72) 7)., 1 O e L R T . . . change owner
(< 1y R L L G W B F E W WA § @ w W ey e w e W s clear i-node
comsat R e R I N - e+« Dbiffserver
config G R B E G W W3 &8 W e . . build system configuration files
crash e e e e e e e e e e e e e+« .+« ... whathappens when the system crashes
GION & o v s & 5 5 s 68 G 8 5 % G R & W 5 FE BB 5 8 8w B 5 s o9 clock daemon
doheck & 6 w5 o 5 @ 5 s & @ e e e e e e file system directory consistency check
diskpart R R R e Vo .« . . o calculate default disk partition sizes
dmesg « w5 ¢ ¢ @ e % 5w omwom s e collect system diagnostic messages to form error log
drtest 0 000 .. e e e e« e s s s standalone disk test program
(1111201 PR IR R T R P incremental file system dump
dumpfs TR TR dump file system information
edquota e e e e e e e G wE S A B E FEED . . . edit user quotas
fastboot« reboot/halt the system without checking the disks
format T N B A I VI P I T T W R . how to format disk packs
fsck o v o4 5 0 s R A ﬁle system consistency check and interactive repair
ftpd ... 0000 e e e .+« ... DARPA Internet File Transfer Protocol server
geftable v w v ¢ s 0 m w8 e @ s § 8w W e get NIC format host tables from a host
getty 0D S 0D a0 a0 o e e e e e e e e e set terminal mode
halt & a6 s a1 w6 200 @ o 5 3 s s e s e s s s s s e e e e o« o -Stopthe processor
htable« «.«... convertNIC standard format host tables
fcheck « 5 o s ¢ 5 5 5.5 s © & « « .+« ... filesystem storage consistency check
ifconfig¢¢¢¢¢...... configurenetwork interface parameters
implog T B T S i i T N NPT I S R O VI P IMP log interpreter
IMPIogd & s o 6 @ 5 8 3 & @ W W s 8w E e 8w e s+« o o o IMP logger process
L R T Tl e T e S RS process control initialization
kgmon0 generate a dump of the operating system’s profile buffers
IPC ¢ v v ¢ e i i e i e e s e s e s s e s s s s e« o lineprinter control program
Ipd a5 s 659 535 i G W % B R R W E B RN e« « « « o « line printer daemon
MAKEACV .« & o o o 6 @ w wow ow e e e s ke e s & e e make system special files
makekey EF B3PS E R e E R N I BT g generate encryption key
mkfS & o o w5 5 & G W § e ® @ @ Gy @ W w e N % @ ‘e e w8 § construct a file system
mklost+found R e .« ... makealost+found directory for fsck
mknod O N W W B E @ W m B E S W W w8 E W build special file
mkproto o s e e e e s e e e e s s+ s s construct a prototype file system
mount G W s o o8 w @ s R . . . mount and dismount file system
ncheck ¥ o8 W W e e e e m el e le e w e ‘. generate names from i-numbers
Newfs s s n s e m @ s W s Y R construct a new file system
pac R TR L T T Y Y printer/p]oter accounting information
pstat print system facts
(1171 o) QU R O summarlze file system ownership
quotacheck e e e e e e e e e e e s s« filesystem quota consistency checker
quotaon R I BT I I T R R R R R I turn file system quotas on and off
Ic f e e s e e e s e« .+« .. command script for auto-reboot and daemons
rdump A L TN ' E R R file system dump across the network
reboot . o . .o D « « « « oo« . UNIX bootstrapping procedures
TENICE v % o wo s o8 e w e s W e SW R s BUm W s F o4 alter priority of running processes
repquota B I I A summarize quotas for a file system
TESIOTE & v v v ¢ ¢ o o o o o o o o o o » “ s o8 3 incremental file system restore

August 1983 - XXvi - Fourth Berkeley Distribution

Table of Contents

rexeed A . . remote execution server
flogind et .. remotelogin server
ITME o s 5 o @ w8 5 W mom e 8 e W e B E e W E remote magtape protocol module
TOULE o o 6. 6 o o s o0 5 @ o i w0 o .« « . . . manually manipulate the routing tables
routed & o6 oW ow w5 5w oW s T E R R Y network routing daemon
rrestore e e e e e e e e e e restore a file system dump across the network
rshd T Rl L L Y L A TR R R . . remote shell server
rwhod L e e e e e e e e 4 « s & . o . . System status server
rxformat N O B TR R e+ e s s e e formatfloppy disks
R T O W e EEERE . . . System accounting
savecore © + e e e s s e e e saveacoredump of the operating system
sendmail e ¢« s s+ o« . . sendmail over the internet

shutdown © e e s s s s s e s s e e e closedown the system at a given time
sticky © e e e e s s e e e s e e executable files with persistent text
swapon s E W Ew W s specnfy additional device for paging and swapping
SYNE o o % % 4 % % 65 § & 5 % BF o om o e e e e e e e e e update the super block
syslog © s s s s e s e s s e e e e s e e s e e e e s . logsystems messages
telnetd © s s s s s s s s e e e+« DARPA TELNET protocol server
tftpd o o e s 8w AR LY DARPA Trivial File Transfer Protocol server
trpt SRR R RN e e e e e e e e e e e e . . transliterate protocol trace
tunefs © e e s e s 4 e 4 s s e e e s e e tuneupan existing file system
update © e e e e s s s s e e e e e . periodically update the super block
uuclean St e s s e s e s e e e s s e e . . Uucpspool directory clean-up
uusnap 5% W Be e e e e m e o wowow s e W show snapshot of the UUCP system
vipw e T Y e+« « o+« o o editthe password file

Fourth Berkeley Distribution - Xxvii - August 1983

PERMUTED INDEX

imp:

1ib2648: subroutines for the HP

ec:

diff3:

sendbug: mail a system bug report to

abort: terminate

abs: integer
fabs, floor, ceil:

acc:
accept:

getgroups: get group
initgroups: initialize group
setgroups: set group
access: determine

access: determine

ac: login

sa, accton: system

acct: execution

pac: printer/ploter

acct: turn

sa,
sin, cos, tan, asin,
signal: change the
ad: Data Translation

fortune: print a random, hopefully interesting,
swapon:

adduser: procedure for

swapon: specify

inet_makeaddr, inet_Inaof, inet_netof: Internet
loc: return the

arp:

mailaddr: mail

flock: apply or remove an
yes: be repetitively
basename: strip filename
learn: computer

unalias: remove

which: locate a program file including
newaliases: rebuild the data base for the mail
aliases:

valloc:

malloc, free, realloc, calloc,

malloc, free, realloc, calloc, alloca: memory
valloc: aligned memory

eyacc: modified yacc

limit:

renice:

else:

lex: generator of lexical

error:

style:

Fourth Berkeley Distribution

@: arithmetic on shell variables.
1822 network interface.
2648 graphics terminal.
3Com 10 Mb/s Ethernet interface.
3-way differential file comparison.
4bsd-bugs.
aardvark: yet another exploration game.
abort: generate a fault.
abort: terminate abruptly with memory image.
abruptly with memory image.
abs: integer absolute value.
absolute value.
absolute value, floor, ceiling functions.
ac: login accounting.
acc: ACC LH/DH IMP interface.
ACC LH/DH IMP interface.
accept a connection on a socket. .
accept: accept a connection on a socket.
access: determine accessability of a file.
access: determine accessibility of file.
access list.
access list.
access list.
accessability of a file. . . .
accessibility of file.
accounting.
accounting.
accounting file.
accounting information.
accounting on or off.
acct: execution accounting file.
acct: turn accounting on or off.
accton: system accounting. . .
acos, atan, atan2: trigonometric funcuons
action for a signal.
A/D converter.
ad: Data Translation A/D convener
adage.
adb: debugger.
add a swap device for interleaved paging/swapping.
addbib: create or extend bibliographic database.
adding new users.
additional device for paging and swappmg
address manipulation routines. /inet_ntoa,
address of an object.
Address Resolution Protocol.
addressing description.
adduser: procedure for adding new users.
adventure: an exploration game.
advisory lock on an open file.
affirmative. . .
affixes.
aided instruction about UNlX
alarm: execute a subroutine after a specified time.

alarm: schedule signal after specified time.
alias: shell macros.
aliases.
aliases: aliases file for sendmail.
aliases and paths (csh only).
aliases file.
aliases file for sendmail.
aligned memory allocator.
alloca: memory allocator.
allocator.
allocator.
allowing much improved error recovery.
alter per-process resource limitations.
alter priority of running processes.
alternative commands.
analysis programs.
analyze and disperse compiler error messages.
analyze surface characteristics of a document.

- Xxix -

csh(1)
imp(4)
1ib2648(3X)
ec(4)
diff3(1)
sendbug (1)
aardvark (6)
abort(3)
abort(3F)
abort(3F)
abs(3)
abs(3)

floor (3M)
ac(8)

acc(4)
acc(4)
accept(2)
accept(2)
access(3F)
access(2)
getgroups(2)
initgroups(3X)
setgroups(2)
access(3F)
access(2)
ac(8)

sa(8)
acct(5)
pac(8)
acct(2)
acct(5)
acct(2)
sa(8)
sin(3M)
signal (3F)
ad(4)

ad(4)
fortune(6)
adb(1)
swapon(2)
addbib(1)
adduser(8)
swapon (8)
inet(3n)
loc(3F)
arp(4P)
mailaddr(7)
adduser(8)
adventure(6)
flock (2)
yes(1)
basename(1)
learn(1)
alarm (3F)
alarm (3C)
csh(1)
csh(1)
aliases(5)
which(1)
newaliases(1)
aliases(5)
valloc(3)
malloc(3)
malloc(3)
valloc(3)

style(1)

August 1983

Permuted Index

analyze: Virtual UNIX postmortem crash
sigstack: set

worms:

rain:

bed: convert to

apply:

flock:

number: convert
be:

graphics/ plot: openpl, erase, label, line, circle,
tp: manipulate tape
ar:

tar: tape

ar:

tar: tape

arff, flcopy:

arcv: convert
ranlib: convert

glob: filename expand

shift: manipulate

varargs: variable

apply: apply a command to a set of
echo: echo

echo: echo

getarg, iargc: return command line
expr: evaluate

traper: trap

bc: arbitrary-precision

biff: be notified if mail
expr: evaluate arguments

gmtime, asctime, timezone: convert date and time to
ascii: map of
od: octal, decimal, hex,

fdate: return date and time in an
atof, atoi, atol: convert

ctime, localtime, gmtime,

sin, cos, tan,

as: VAX-11

a.out:

setbuf, setbuffer, setlinebuf:
shutdown: close down the system
at: execute commands

nice, nohup: run a command
sin, cos, tan, asin, acos,
sin, cos, tan, asin, acos, atan,

atof,

atof, atoi,

interrupt. sigpause:

dn: DN-11

code.

autoconf: diagnostics from the
bugfiler: file bug reports in folders
rc: command script for

wait:

bg: place job in

wait: wait for

bad144: read/write dec standard 144
badsect: create files to contain
information.

August 1983

analyze: Virtual UNIX postmortem crash analyzer. .
analyzer. ‘
and/or get signal stack context.
animate worms on a display terminal.
animated raindrops display.
antique media.
apply a command to a set of arguments.
apply: apply a command to a set of arguments.
apply or remove an advisory lock on an open file. . . .
apropos: locate commands by keyword lookup.

ar: archive and library maintainer.
ar: archive (library) file format. i
Arabic numerals to English. GGooadnD
arbitrary-precision arithmetic language.

arc, move, cont, point, linemod, space, closepl:
archive.
archive and library mamtamer
archive file format.
archive (library) file format.
archiver.
archiver and copier for floppy. . . .
archives to new format.
archives to random libraries.
arcv: convert archives to new format.
arff, flcopy: archiver and copier for floppy.
argument list.
argument list.
argument list.
arguments.
arguments.
arguments.
arguments.
arguments as an expression.
arithmetic errors.

arithmetic language. ¥
arithmetic on shell vanables
arithmetic: provide drill in number facts.
arp: Address Resolution Protocol.
arrives and who it is from.
as an expression.
as: VAX-11 assembler.
ASCII. ctime, localtime,
ASCII character set.
ascii dump.
ascii: map of ASCII character set.
ASCII string.
ASCII to numbers. . .
asctime, timezone: convert date and time to ASCII o i
asin, acos, atan, atan2: trigonometric functions. .
assembler. ‘.
assembler and link editor output. . .
assert: program verification.
assign buffering to a stream.
at a given time.
at a later time.
at: execute commands at a later time.
at low priority (sh only).
atan, atan2: trigonometric functions.
atan2: trigonometric functions.
atof, atoi, atol: convert ASCII to numbers.
atoi, atol: convert ASCII to numbers.
atol: convert ASCII to numbers. . . . i g
atomically release blocked signals and walt for

autocall unit interface.
autoconf: diagnostics from the autoconfiguration
autoconfiguration code.
automatically.
auto-reboot and daemons.
await completion of process.
awk: pattern scanning and processing language.
backgammon: the game.
background.
background processes to complete.
bad sector information.
bad sectors.
bad144: read/write dec standard 144 bad sector

- XXX -

analyze(8)
analyze(8)
sigstack (2)
worms(6)
rain(6)

bed (6)
apply(1)
apply(1)
flock (2)
apropos(1)
ar(1)
ar(5)
number(6)
be(1)
plot(3X)
tp(1)

ar(1)
tar(5)
ar(5)
tar(1)
arff(8V)
arcv(8)
ranlib(1)
arcv(8)
arff(8V)
csh(1)
csh(1)
varargs(3)
apply(1)
csh(1)
echo(1)
getarg(3F)
expr(1)
traper (3F)
be(1)
csh(1)
arithmetic(6)
arp(4P)
biff(1)
expr(1)
as(1)
ctime(3)
ascii(7)
od(1)
ascii(7)
fdate(3F)
atof (3)
ctime(3)
sin(3M)
as(1)
a.out(5)
assert(3X)
setbuf(3S)
shutdown (8)
at(1)

at(1)
nice(1)
sin(3M)
sin(3M)
atof(3)
atof (3)
atof (3)
sigpause (2)
dn(4)
autoconf(4)
autoconf(4)
bugfiler(8)
rc(8)
wait(1)
awk (1)
backgammon(6)
csh(1)
csh(1)
bad144(8)
badsect(8)
bad144(8)

Fourth Berkeley Distribution

banner: print large

gettytab: terminal configuration data
hosts: host name data

networks: network name data

phones: remote host phone number data
printcap: printer capability data

protocols: protocol name data

services: service name data

termcap: terminal capability data
vgrindefs: vgrind’s language definition data
newaliases: rebuild the data

ttytype: data

fetch, store, delete, firstkey, nextkey: data
vi: screen oriented (visual) display editor

beopy,
operations.
cb: C program

va:
vfont: font formats for the
i0, j1, jn, y0, y1, yn:

changing/ random, srandom, initstate, setstate:

addbib: create or extend

roffbib: run off

sortbib: sort

index for a bibliography, find references in a
indxbib, lookbib: buiid inverted index for a
from.

comsat:

install: install

whereis: locate source,

find the printable strings in a object, or other
uuencode,uudecode: encode/decode a

fread, fwrite: buffered

bind:

bcopy, bcmp, bzero, fis:

functions.

bit: and, or, xor, not, rshift, Ishift
communication (obsolete).

sync: update the super

update: periodically update the super
sigblock:

sigpause: atomically release

sum: sum and count

boggle: play the game of

ching: the

reboot: UNIX

mille: play Mille

switch: multi-way command

login,/ sh, for, case, if, while, :, .,

fg:

ik: Ikonas frame

fread, fwrite:

stdio: standard

setbuf, setbuffer, setlinebuf: assign

generate a dump of the operating system’s profile
sendbug: mail a system

bugfiler: file

automatically.

references in a bibliography. indxbib. lookbib:
mknod:

config:

ntohs: convert values between host and network
bcopy, bemp, bzero, ffs: bit and

Fourth Berkeley Distribution

Permuted Index

badsect: create files to contain bad sectors. badsect(8)
banner on printer. O B § 8 & B E banner(6)
banner: print large banner on printer. v e e v % e . banner(6)
HaSe N e L e T T e gettytab(5)
BHSE. & s 5 v s i i S EE SRR e o e n . hosts(5)
base. v e e e 668 networks(5)
DBSE:. v v v v s 4 3 @5 VB EHEE RS . phones(5)
DUSEL 5 2 & 5 6 8 5 5 5 B % mnom iet o5 o iwy cut omt et 0 o printcap(5)
base y - 5 5w T . . protocols(5)
base. $ ¥ T TR PR S S services(5)
e O A R R L . termcap(5)
DasEl. wiw o v @ e 5 4 5 535 mEe 2 rivrre vgrindefs(5)
base for the mail aliases file. newaliases(1)
base of terminal types by port. s ttytype(5)
base subroutines. dbminit, dbm(3X)
based omeX. v v v v v v s v s u s s w B G s . vi(l)
basename: strip filename affixes. basename(1)
be: arbitrary-precision arithmetic language. be(1)
bed: convert to antique media. bed(6)
bemp, bzero, ffs: bit and byte string operations. bstring(3)
beopy, bemp, bzero, ffs: bit and byte string bstring(3)
BEAULACE: v s o w705 4 € 4 o o 0 8 2 » s wime cb(1)
Benson-Varian interface. va(4)
Benson-Varian or Versatec. vfont(5)
bessel functions. jOGM)
bessel functions: of two kinds for integer orders. bessel (3F)
better random number generator; routines for random (3)
bg: place job in background. csh(l)
bibliographic database. addbib(1)
bibliographic database. roffbib(1)
bibliographic database. sortbib(1)
bibliography. indxbib, lookbib: build inverted « + .« . lookbib(1)
bibliography, find references in a bibliography. lookbib(1)
biff: be notified if mail arrives and whoitis biff(1)
biffserver. oo comsat(8C)
binaries: o s s ¢ w5 5 @i CECECE R ST FC R B I S install(1)
binary, and or manual for program. v e 8o w6 whereis(1)
binary, file. strings: I TERER strings(1)
binary file for transmission viamail. uuencode(1C)
binary input/output: . . 4 sosw e e @ 6 & s fread (3S)
bind a name toasocket. bind(2)
bind: bind anametoasocket. bind(2)
binmail: send or receive mail among users. binmail(1)
bit and byte string operations. bstring(3)
bit: and, or, xor, not, rshift, Ishift bitwise bit(3F)
bitwise functions. bit(3F)
bk: line discipline for machine-machine bk(4)
DloCk:. s mwndiow & € & % 8 5 8 5 8 © 555 S sync(8)
BIOOK: 415 % i B85 6 o o 8 # & 8 » w0 0 e 5 50 update(8)
block signals. e sigblock (2)
blocked signals and wait for interrupt. sigpause(2)
blocksinafile. >N e s N W G sum(1)
bogle: wowmmi mmin s 55 55 0 8 s 5 B s e boggle (6)
boggle: play the game of boggle. boggle(6)
book of changes and other cookies. ching(6)
bootstrapping procedures.4 00 reboot(8)
BOUMNES) wisesor e s wrsscsr 2 5 % ¥ & & % § & %) 80605 mille(6)
braich, s vs s mems s s 50 A a0 o T csh(1)
break, continue, cd, eval, exec, exit, export, sh(1)
break: exit while/foreach loop. csh(1)
breaksw: exit from switch. csh(1)
bring job into foreground. csh(l)
brk, sbrk: change data segment size. brk(2)
buffer, graphics device interface. ik(4)
buffered binary input/output. fread(3S)
buffered input/output package. intro(3S)
buffering toastream. setbuf(3S)
buffers. kgmon: kgmon(8)
bug report to dbsd-bugs. sendbug(1)
bug reports in folders automatically. bugfiler(8)
bugfiler: file bug reports in folders bugfiler(8)
build inverted index for a bibliography, find lookbib(1)
build special file. mknod(8)
build system configuration files. config(8)
byte order. htonl, htons, ntohl, byteorder(3n)
byte string operations. 400 . .. bstring(3)

- XXXi - August 1983

Permuted Index

swab: swap
beopy, bemp,
cc:

cb:

indent: indent and format

lint: a

xstr: extract strings from

mkstr: create an error message file by massaging
hypot,

diskpart:
dc: desk
cal: print

syscall: indirect system

gprof: display

getuid, getgid: get user or group ID of the
malloc, free, realloc,

intro: introduction to system

canfield, cfscores: the solitaire card game
canfield.

printcap: printer

termcap: terminal

canfield, cfscores: the solitaire

cribbage: the

cd, eval, exec, exit, export, login,/ sh, for,

tu: VAX-11/730 and VAX-11/750 TUS58 console
uu: TUS8/DECtape 11 UNIBUS

catman: create the

uncompact, ccat: compress and uncompress files, and
default:

cat:

compact, uncompact,

case, if, while, :, ., break, continue,
fabs, floor,
fabs, floor, ceil: absolute value, floor,
canfield,

chdir:

brk, sbrk:

chdir:

chsh:

cd:

chdir:

ioinit:

chfn:

chgrp:

passwd:

chmod:

chmod:

chmod:

umask:

chown:

chown:

chroot:

signal:

rename:

set:

cd:

ching: the book of

better random number generator; routines for
pipe: create an interprocess communication
ungetc: push

isspace, ispunct, isprint, iscntrl, isascii:
eqnchar: special

getc, fgetc: get a

index, rindex, Inbink, len: tell about

getc, getchar, fgetc, getw: get

putc, putchar, fputc, putw: put

ascii: map of ASCII

August 1983

bytes. .
bzero, ffs: bit and byte string operations.
C compiler.
C program beautifier.
C program source.

C program verifier.
C programs to implement shared strings.
C source.
cabs: Euclidean distance. .
cal: print calendar. . .
calculate default disk partmon sizes.
calculator.
calendar.

call.
call graph profile data. . .
caller.
calloc, alloca: memory allocator.
calls and error numbers.
canfield.
canfield, cfscores: the solnalre card game
capability data base.
capability data base.
card game canfield.
card game cribbage.
case, if, while, :, ., break, continue,
case: selector in switch.
cassette interface.
cassette interface.
cat: catenate and print.
cat files for the manual.
cat them. compact,
catchall clause in switch.
catenate and print.
catman: create the cat files for the manual.
cb: C program beautifier.
cc: C compiler.
ccat: compress and uncompress files, and cat 1hem « o
cd: change directory.
cd: change working directory. . “ e e
cd, eval, exec, exit, export, login, read,/ /for,
ceil: absolute value, floor, ceiling functions.
ceiling functions. . .
cfscores: the solitaire card game canﬁeld .
change current working directory.
change data segment size.
change default directory.
change default login shell.
change directory.
change directory.
change f77 1/0 initialization.
change finger entry.
change group.
change login password.
change mode.
change mode of a file.
change mode of file. » «i e v
change or display file creation mask W1 o e e
change owner.
change owner and group of a file.
change root directory.
change the action for a signal.
change the name of a file. o
change value of shell variable.
change working directory.
changes and other cookies.
changing generators. /srandom, initstate, setstate: % @
channel. ¥ .
character back into mput stream
character classification macros. /isdigit, isalnum,
character definitions for egn.
character from a logical unit.
character objects.
character or word from stream.
character or word on a stream.
character set.

- xxxii -

swab(3)
bstring(3)
ce(1)
cb(1)
indent(1)
lint(1)
xstr(1)
mkstr(1)

diskpart(8)
de(1)
cal(1)
calendar(1)
syscall(2)
gprof(1)
getuid 3F)
malloc(3)
intro(2)
canfield (6)
canfield (6)
printcap(5)
termcap(5)
canfield (6)
cribbage (6)
sh(1)
csh(1)
tu(4)
uu(4)
cat(1)
catman (8)
compact(1)
csh(1)
cat(1)
catman (8)
cb(1)

cc(1)
compact (1)
csh(1)
cd(1)

sh(1)
floor(3M)
floor (3M)
canfield (6)
chdir(2)
brk(2)
chdir(3F)
chsh(1)
csh(1)
csh(1)
ioinit(3F)
chfn(1)
chgrp(1)
passwd (1)
chmod(1)
chmod (3F)
chmed(2)
csh(1)
chown(8)
chown(2)
chroot(2)
signal (3F)
rename (2)
csh(1)
cd(1)
ching(6)
random (3)
pipe(2)
ungetc(3S)
ctype(3)

Fourth Berkeley Distribution

putc, fputc: write a
style: analyze surface
tr: translate

snake, snscore: display

dcheck: file system directory consistency

icheck: file system storage consistency

fsck: file system consistency

checknr:

eqn, neqn,

quotacheck: file system quota consistency
fastboot, fasthalt: reboot/halt the system without

chess: the game of

closepl:/ plot: openpl, erase, label, line,
ispunct, isprint, iscntrl, isascii: character
default: catchall

uuclean: uucp spool directory

clri:

clear:

ferror, feof,

csh: a shell (command interpreter) with
kg: KL-11/DL-11W line

cron:

shutdown:

fclose, fflush:

opendir, readdir, telldir, seekdir, rewinddir,
syslog, openlog,

circle, arc, move, cont, point, linemod, space,

autoconf: diagnostics from the autoconfiguration
pi: Pascal interpreter

log. dmesg:

colrm: remove

files.

exec: overlay shell with specified
time: time

routines for returning a stream to a remote
rexec: return stream to a remote
system: issue a shell

system: execute a UNIX

test: condition

time: time a

nice, nohup: run a

switch: multi-way

uux: unix to unix

rehash: recompute

unhash: discard

hashstat: print

nohup: run

csh: a shell

whatis: describe what a

readonly, set, shift, times, trap, umask, wait:
getarg, iargc: return

repeat: execute

fc:

onintr: process interrupts in

Fourth Berkeley Distribution

Fermuted Index

character to a fortran logical unit.
characteristics of a document.
characters.
chase game.
chdir: change current working directory.
chdir: change default directory.
chdir: change directory.
check.
check.
check and interactive repair.
check nroff/troff files.
checkeq: typeset mathematics.
checker.
checking the disks.
checknr: check nroff/troff files.
chess.
chess: the game of chess.
chfn: change finger entry.
chgrp: change group.
ching: the book of changes and other cookies.
chmod: change mode.
chmod: change mode of a file.
chmod: change mode of file.
chown: change owner. . v s
chown: change owner and group of a ﬁle
chroot: change root directory.
chsh: change default login shell.
circle, arc, move, cont, point, linemod, space,
classification macros. /isdigit, isalnum, isspace,
clause in switch.
clean-up.
clear: clear terminal screen.
clear i-node.
clear terminal screen.
clearerr, fileno: stream status inquiries.
C-like syntax.
clock.
clock daemon.
close: delete a descriptor.
close down the system at a given time.
close or flush a stream.
closedir: directory operations.
closelog: control system log.
closepl: graphics interface. /erase label, line,
clri: clear i-node.
cmp: compare two files.
code.
code translator.
col: filter reverse line feeds.
colcrt: filter nroff output for CRT previewing.
collect system diagnostic messages to form error
colrm: remove columns from a file.
columns from a file.
comm: select or reject lines common to two sorted
command.
command.
command.
command.
command.
command.
command.
command.
command at low priority (sh only).
command branch.
command execution.
command hash table.
command hash table.
command hashing statistics.
command immune to hangups.
(command interpreter) with C-like syntax.
command is.
command language. /exec, exit, export, login, read,
command line arguments.
command repeatedly.
command script for auto-reboot and daemons.
command scripts. .

- XXXiii -

putc(3F)
style(1)
tr(1)

chdir(2)

chdir (3F)
csh(1)
dcheck (8)
icheck(8)
fsck (8)
checknr(1)
eqn(1)
quotacheck (8)
fastboot (8)
checknr(1)
chess(6)

chmod (3F)
chmod(2)
chown(8)
chown(2)
chroot(2)
chsh(1)

uuclean (8C)
clear(1)
clri(8)
clear(1)
ferror (3S)
csh(1)
kg(4)
cron(8)
close(2)
shutdown(8)
fclose (3S)
directory(3)
syslog(3)
plot(3X)
clri(8)
cmp(1)
autoconf(4)
pi(1)

col(1)
colert(1)
dmesg(8)
colrm(1)
colrm(1)
comm(1)
csh(1)
csh(1)

remd (3X)
rexec(3X)
system(3)
system (3F)
test(1)

getarg(3F)
csh(1)
rc(8)
csh(1)

August 1983

Permuted Index

apply: apply a

goto:

else: alternative

intro: introduction to

introduction to system maintenance and operation
at: execute

apropos: locate

while: repeat

lastcomm: show last

source: read

comm: select or reject lines

socket: create an endpoint for

pipe: create an interprocess

bk: line discipline for machine-machine
dmc: DEC DMC-11/DMR-11 point-to-point
dh: DH-11/DM-11

dz: DZ-11

users:

files, and cat them.

diff: differential file and directory

cmp:

diff3: 3-way differential file

intro: introduction to

liszt:

cc: C

f77: Fortran 77

pc: Pascal

error: analyze and disperse

yacc: yet another

fp: Functional Programming language
wait: wait for background processes to
wait: await

compact, uncompact, ccat:

learn:

hangman:

test:

endif: terminate

if:

while: repeat commands

gettytab: terminal
config: build system
ifconfig:

tip, cu:

getpeername: get name of

socketpair: create a pair of

shutdown: shut down part of a full-duplex
accept: accept a

connect: initiate a

listen: listen for

dcheck: file system directory

icheck: file system storage

fsck: file system

quotacheck: file system quota

tu: VAX-11/730 and VAX-11/750 TUS8
f1:

cons: VAX-11

show what versions of object modules were used to
mkfs:

newfs:

mkproto:

deroff: remove nroff, troff, tbl and eqn
setrlimit: control maximum system resource
vlimit: control maximum system resource
/openpl, erase, label, line, circle, arc, move,
badsect: create files to

Is: list

sigstack: set and/or get signal stack

sh, for, case, if, while, :, ., break,

fentl: file

ioctl:
init: process

August 1983

command to a set of arguments.
command transfer.
commands.
commands.
commands. intro:
commands at a later time.
commands by keyword lookup.

commands conditionally. . . .
commands executed in reverse order.
commands from file.
common to two sorted files.
communication.
communication channel.

communication (obsolete).
communications device.

communications multiplexer.
communications multiplexer. .
compact list of users who are on the system.
compact, uncompact, ccat: compress and uncompress
comparator. . . . v

comparetwofiles.,
comparison.
compatibility library functions. 3
compile a Franz Lisp program. e e e e e e -
compiler. o e e e e s s e s e)
compiler. L 0L, -
compiler. e e e ¥ ¥ 8 8§ .
compiler error messages.« . . . 4400 0. .
compiler-compiler. 00w e .. 5 %
compiler/interpreter. (KRR R
complete. . . . i i i e e e e e e e e e e e .
completion of process. e s
compress and uncompress files, and cat them.
computer aided instruction about UNIX.

Computer version of the game hangman.
comsat: biff server.

condition command.
conditional.
conditional statement.
conditionally.
config: build system configuration files.
configuration data base.
configuration files.
configure network interface parameters.
connect: initiate a connection on a socket. & 08 e e
connect to a remote system.
connected PEET. .+ ¢« « v 4 0 . . .
connected sockets.
connection.
connection onasockel. 4 v 4w e e . e ...
connection on a socket. . . .

connections on a socket. . .

cons: VAX-11 console interface.
consistency check. . .
consistency check.
consistency check and interactive repair.
consistency checker.
console cassette interface.
console floppy interface.

console interface.
construct a file. what: . . .
construct a file system.
construct a new file system.
construct a prototype file system. . . .
constructs.
consumption. getrlimit,
consumption.
cont, point, linemod, space, closepl: graphics,
contain bad sectors. .
contents of directory. . .

continue: cycle in loop.
control. . .. L. . e e e e e e e e e e e

- XXXiv -

apply(1)
csh(l)
csh(1)
intro(1)
intro(8)
at(1)
apropos(1)
csh(1)
lastcomm(1)
csh(1)
comm(1)
socket (2)
pipe(2)
bk(4)
dmc(4)
dh(4)
dz(4)
users(1)
compact(1)
diff (1)
cmp(1)
diff3(1)
intro(3C)
liszt (1)

compact (1)
learn(1)
hangman(6)
comsat(8C)
test(1)
csh(1)
csh(1)
csh(1)
config(8)
gettytab(5)
config(8)
ifconfig (8C)
connect(2)
tip(1C)
getpeername (2)
socketpair(2)
shutdown (2)
accept(2)
connect(2)
listen(2)
cons(4)
dcheck(8)
icheck(8)
fsck (8)
quotacheck (8)
tu(4)

1(4)

cons(4)
what(1)
mkfs(8)
newfs(8)
mkproto(8)
deroff(1)
getrlimit(2)
vlimit (3C)
plot(3X)
badsect(8)

joctl(2)

Fourth Berkeley Distribution

getriimit, setrlimit:

vlimit:

Ipc: line printer

tep: Internet Transmission

syslog, openlog, closelog:

vhangup: virtually ‘‘hangup’’ the current
uda: UDA-50 disk

up: unibus storage module

term:

ecvt, fevt, gevt: output

long, short: integer object

printf, fprintf, sprintf: formatted output
scanf, fscanf, sscanf: formatted input
units:

dd:

number:

arcv:

ranlib:

atof, atoi, atol:

ctime, localtime, gmtime, asctime, timezone:
htable:

bed:

htonl, htons, ntohl, ntohs:

ad: Data Translation A/D

ching: the book of changes and other
arff, flcopy: archiver and

cp:

rep: remote file

uucp, uulog: unix to unix

dd: convert and

fork: create a

savecore: save a

geore: get
functions. sin,
sinh,

wc: word

sum: sum and

analyze: Virtual UNIX postmortem
crash: what happens when the system

fork:

creat:

open: open a file for reading or writing, or
fork:

socketpair:

ctags:

socket:

mkstr:

pipe:

badsect:

addbib:

catman:

umask: change or display file
umask: set file

cribbage: the card game

Ixref: lisp

pxref: Pascal

colcrt: filter nroff output for
more, page: file perusal filter for

syntax.

pcl: DEC

convert date and time to ASCII.
time,

tip,

vhangup: virtually-“hangup" the
gethostid, sethostid: get/set unique identifier of

Fourth Berkeley Distribution

Permuted Index

control maximum system resource consumption. getrlimit(2)
control maximum system resource consumption. . . . vlimit(3C)
control program. % FE S B . . Ipc(8)
Control Protocol. ¢ v it e . tcp(4P)
control system 1og. + v v ¢ v v v 4 . v 4. e .. . syslog(3)
control terminal. « « . . vhangup(2)
controller interface.+ 4 4. 44w 0. .. . uda(4)
controller/drives. . .+ v v v i e e e e e e e . up(4)
conventional names for terminals. o oo term(7)
CONVETSION: s sim s s wim e 65 5% 53 3w . .o.oecvt(3)
COMVETSION. « + o 4 & o o o o o & T long (3F)
CONVErSION. & v w w wwwim s & s ¢ 5 & % & .« . . printf(3S)
CONVETSION. v v v v v v v v o o v v o v o s o s o scanf(3S)
CONVESSiON Program. « o o & « » % units(1)
convertandcopyafile. dd(1)
convert Arabic numerals to English. number(6)
convert archives to new format. arcv(8)
convert archives to random libraries. ranlib(1)
convert ASCIItonumbers.o o ... atof(3)
convert date and timeto ASCIL. " ctime(3)
convert NIC standard format host tables. htable(8)
convert to antique media. bed(6)
convert values between host and network byte order. . byteorder(3n)
CONVEFIEr: & o 5 6 4 s S EB @ s WS 8 5 & 5 8 5 % ad(4)
COOKIES. . + v v v v v v o v v v v v w o ching(6)
copier for floPPY. « « v ¢ v 4 @ b e b e e e e e .. arff(8V)
COPY. o o o o o o+ A e .. ocp(l)
COPY. o o v & 8 5 & & 5 % % % @ & & 6 TR Y rcp(1C)
DY, s s ¢:scizmmnin G e w m e on . uucp(1C)
copyafilee ... s 50n N LY dd(1)
copy Of thiS Process. « o ¢ o o o o o v o s s o o & « fork 3F)
core dump of the operating system. « <% savecore(8)
core: format of memory image file. e core(5)
core images of running processes. geore(1)
cos, tan, asin, acos, atan, atan2: trigonometric .« . . sin{3M)
cosh, tanh: hyperbolic functions. sinh(3M)
COUNL. v v v v v e e e e e e e e e we(l)
count blocksinafile. T EEE sum(1)
CPICODPY. o v o o o e e e e e e e e e e e e e e, cp(1)
CrASHANAIVEEE. « v o v ¢ s 5 53 3 PO e ™S & & & analyze(8)
crash: what happens when the system crashes. .+ .. crash(8V)
CASHES. & v s v v o v 8 v % W o W % crash(8V)
creat:createanewfile. creat(2)
create a copy of this process. fork (3F)
create anew file. id s s EEEE A 2 creat(2)
createanewfile. open(2)
credte aNEw ProcesS. « « s » & o % & o & @ 5 86 b fork(2)
create a pair of connected sockets. socketpair(2)
create adags file. v w oo v v 6 v o8 s owow e e e w e ctags(1)
create an endpoint for communication. socket(2)
create an error message file by massaging C source. mkstr(1)
create an interprocess commaunication channel. pipe(2)
create files to contain bad sectors. badsect(8)
create or extend bibliographic database. addbib(1)
create the cat files for the manual. catman (8)
Creation mask. v v sw v 5 5 8 v o8 s v e s oW oe e csh(1)
creation mode mask. 4w e w40 .. . umask(2)
cribbage. . . . ot i e e e e e e e e cribbage(6)
cribbage: the card game cribbage. cribbage (6)
cron:clock daemon. 0. ... cron(8)
cross reference program. 4 4 4 4 o4 o4 . . Ixref(1)
cross-reference program. 4 44 0 4 .. . pxref(1)
CRTpreviewing. . . « ¢ v v v v v v v v v v v w v colert(1)
CIUVIEWINE: & vwwmn wwm s s 58 5% 5 5 mma more(1)
crypt: encode/decode.o . u . e ... crypt(1)
crypf, setkey, encrypt: DES encryption. crypt(3)
csh: a shell (command interpreter) with C-like csh(1)
css: DEC IMP-11A LH/DH IMP interface. css(4)
CSS PCL-11 B Network Interface. pel(4)
ct: phototypesetter interface. ct(4)
ctags:createatagsfile. ctags(1)
ctime, localtime, gmtime, asctime, timezone: ctime(3)
ctime, Itime, gmtime: return system time. time (3F)
cu: connect to a remote SyStemM. tip(1C)
current control terminal. vhangup(2)
GUITENt HoSt, 5 4 5 s s s s @ .5 ¢ 8 5 8 5 4 = gethostid (2)
- XXXV - August 1983

Permuted Index

gethostname, sethostname: get/set name of
hostnm: get name of

hostid: set or print identifier of
hostname: set or print name of

jobs: print

sigsetmask: set

whoami: print effective

chdir: change

getewd: get pathname of

getwd: get

motion.

curses: screen functions with “‘optimal”
spline: interpolate smooth

continue:

cron: clock

Ipd: line printer

routed: network routing

rc: command script for auto-reboot and
fipd:

telnetd:

tftpd:

eval: re-evaluate shell

gprof: display call graph profile

prof: display profile

ttys: terminal initialization

gettytab: terminal configuration

hosts: host name

networks: network name

phones: remote host phone number
printcap: printer capability

protocols: protocol name

services: service name

termcap: terminal capability

vgrindefs: vgrind’s language definition
newaliases: rebuild the

ttytype:

dbminit, fetch, store, delete, firstkey, nextkey:
brk, sbrk: change

null:

ad:

types: primitive system

addbib: create or extend bibliographic
roffbib: run off bibliographic

sortbib: sort bibliographic

join: relational

udp: Internet User

date: print and set the

gettimeofday, settimeofday: get/set
time, ftime: get

fdate: return

localtime, gmtime, asctime, timezone: convert
touch: update

idate, itime: return

data base subroutines.

adb:

dbx:

pdx: pascal
pel:

device. dmc:
css:

x:
bad144: read/write
cd: octal,

tp:

chdir: change

diskpart: calculate

chsh: change

vgrindefs: vgrind’s language
eqnchar: special character

stty, gtty: set and get terminal state

August 1983

curreéitiosl: & s i s s s e PP NG S @ E ¥ 8§ § gethostname(2)
current host. .+ v v v v v o h v e e e e e hostnm (3F)
current host system. v o o vt v e e . hostid(1)
current hOStSYSIEM. + v & v 4 v v v ¢ v v v v v .. hostname(1)
currentjob list. .+ . v 4 o v h e e e e e e e . csh(1)
current signalmask.00 sigsetmask (2)
currentuserid. 0 a e e e e e e .. whoami(1)
current working directory. 4 4 4 0 0 .. . chdir(2)
current working directory.« . getewd(3F)
current working directory pathname e e e e e ... getwd(3)
curses: screen functions with “‘optimal® cursor curses(3X)
cursor motion. G O T O 5 O G curses(3X)
GIVE: ¢ s s s iisswpeswenpEy 58 . spline(1G)
cycleinIoop. .+ v vt e e e e e e e e e e e e e csh(1)
dBBHHON: = o s s s s s PES WE BV E S 6 8 85§ cron(8)
daemon.. ;5§ i35 BERETEEE S 8§ &y 1pd(8)
dEEMON. & v ¢ v v v v b e e e e e e e e e routed (8C)
AEEMONS;, & v v s v R WS EWHEH T 5 £ 48 8§ rc(8)
DARPA Internet File Transfer Protocol server. ftpd (8C)
DARPA TELNET protocol server. . . . « « « « + « « telnetd (8C)
DARPA Trivial File Transfer Protocol server. tftpd (8C)
BatE. o v o s s v s s G e e B e B e e s csh(1)
datd, s 5 s s 8 s s s AP e Re®m S § 8 5 8356 gprof(1)
/i1 T R v e e v .. prof(1)
GAtH: v 5 8 85 3 % BN B FEWEE E £ 5 ¥ § 8 ttys(5)
database. . v v v v 4w e e e e e e e e . gettytab(5)
database, . . ¢ s s s s v e w e EE & E 8 88§ 4 hosts(5)
database; . : ;5553 hes s EE S S E 8 F AR s networks(5)
databiase. ;v s v s v s v w e wm Y 66 e w4 phones(5)
database: i s s 5 3 5 wwiiwow i 3 § s printcap(5)
databDase. « v v v e v 4 e e e e e e e e e e, protocols(5)
database. 000 & 6t F . . services(5)
ata DASE. .+ v v v b e e e e e e e e e e e termcap(5)
database. & . o ¢ s 5% 00w we : vgrindefs(5)
data base for the mail aliases file. newaliases(1)
data base of terminal types by port. ttytype(5)
data base Subroutines. e o4 ele 0. . dbm(3X)
data segMeENtSiZe. . « ¢ ¢ o o o o 0 0 00 00 b e brk(2)
data sinks . ¢ ¢ 5 5 3 5 5 wsies GEEEE § 3 .« . null4)
Data Translation A/D converter. .+ . .« + ad(4)
AEtALVDES: & 5 s s « s v o VB EEE ¥ 35§ types(5)
database. R L AT I addbib(1)
Aatdbase: v v s v v v v s m e EmwEE v 8 s 8w roffbib(1)
dAtADESE: & . s sz s E B AMBEEEGE S S P § 5 sortbib(1)
database OPErator. .« « o « o o s « o o o o 0 0 0w join(1)
Datagram Protocol. . « + v v v v v v v e e 0w . udp(4P)
Qa1 .. s iis i i RL B R eSS E BG4 date(1)
dateand e o o o o o » oo e mow w € ¥ & o gettimeofday(2)
date and time. e e e e e e .. time(3C)
date and time in an ASCII slrmg fdate (3F)
date and time to ASCIL ctime. ctime(3)
date last modified of afile. touch(1)
date or time in numerical form. idate (3F)
date: print and set thedate. date(1)
dbminit, fetch, store, delete, firstkey, nextkey: 5 dbm (3X)
dbX: debUBBEI. « v v v v v e e e e e e e e e e e dbx(1)
decdeskcalculator. < o v v v vh v vl v e e b e e de(1)
dcheck: file system directory consistency check. dcheck«(8)
dd: convertand copyafile. dd(1)
dEDUEREr: wois ¢ 4 4 § 4 4 s BB P GO WG ¢ b & 8 adb(1)
debugger. N . dbx (1)
debBUZREL. v v s ¢ s ¢ s s 5 PO w HE BT S ¥ § b pdx (1)
DEC CSS PCL-11 B Network Interface. pel(4)
DEC DMC-11/DMR-11 point-to-point communications dmc(4)
DEC IMP-11A LH/DH IMP interface. css(4)
DEC RXO02 floppy disk interface. « 1x(4)
dec standard 144 bad sector information. bad144(8)
decimal, hex, asclidump.« v v v 0 ... od(1)
DEC/mag tape formats. . . . o v v ¢ ¢« o v o o o . tp(5)
default: catchall clause in switch. csh(1)
default directory. . . . v v ¢ v e v v v e e e .. chdir (3F)
default disk partition sizes. ¢ . 0 diskpart(8)
default loginshell. chsh(1)
definition database.0 0. 000 vgrindefs(5)
definitionsforegn. 0 .00 e e e 0. eqnchar(7)
(JefUBCL): wowvm o & & 6 & & o % % e e o ol stty (3C)

- XXXVi - Fourth Berkeley Distribution

close:

dbminit, fetch, store,

tail:

mesg: permit or

tset: terminal

constructs.

crypt, setkey, encrypt:

whatis:

mailaddr: mail addressing

getdiskbyname: get disk

disktab: disk

remote: remote host

close: delete a

dup, dup2: duplicate a

getfstype, setfsent, endfsent: get file system
getdtablesize: get

dc:

access:

access:

file:

DEC DMC-11/DMR-11 point-to-point communications
drum: paging

fold: fold long lines for finite width output
ioctl: control

swapon: add a swap

swapon: specify additional

ik: Ikonas frame buffer, graphics

ps: Evans and Sutherland Picture System 2 graphics

flmin, flmax, firac, dfimin, dflmax,
flmin, flmax, ffrac, dfimin,
values. flmin, flmax, firac,

dh:

dmesg: collect system

autoconf:

print wordy sentences; thesaurus for
diction— print wordy sentences; thesaurus for
diction. explain,

for diction.

diff:
diff3: 3-way

dir: format of

rm, rmdir: remove (unlink) files or
rmdir, rm: remove (unlink)

cd: change working

chdir: change current working
chdir: change default

chroot: change root

cd: change

chdir: change

getcwd: get pathname of current working
Is: list contents of

mkdir: make a

scandir: scan a

uuciean: uucp spool

diff: differential file and

dcheck: file system

unlink: remove

unlink: remove a

mkdir: make a

rmdir: remove a

mklost+found: make a lost+found
pwd: working

readdir, telldir, seekdir, rewinddir, closedir:
getwd: get current working

popd: pop shell

pushd: push shell

quota: display

unhash:

unset:

(obsolete). bk: line

synchronize a file’s in-core state with that on

Fourth Berkeley Distribution

Permuted Index

deleteadescriptor. . . . ¢ v v v v v e e e e ...
delete, firstkey, nextkey: data base subroutines.

deliver the last part of a file.
deny:messages; . o wamiie & ¢ € & 4 4 3 5 8 B
dependent initialization.
deroff: remove nroff, troff, tbi and eqn
DES encryption.
describe what a command is.
AdeSCRIPUON., 100 s st oroms i iwi i 00 & % & & & % % % b @
description by its name.
description file.
description file.
descriptor.
descriptor.
descriptor file entry. /getfsspec, getfsfile,
descriptor table size.
desk calculator.
determine accessability of a file.
determine accessibility of file. . .
determine file type.
device. dmc:
device.
device.
devicE, s ssvsamms GRS ¥ 5§ G E
device for interleaved paging/swapping. "
device for paging and swapping.
device interface.
device interface.
df: disk free.
dffrac, inmax: return extreme values.
dflmax, dffrac, inmax: return extreme values.
dflmin, dflmax, dffrac, inmax: return extreme .
dh: DH-11/DM-11 communications multiplexer.
DH-11/DM-11 communications multiplexer.
diagnostic messages to form error log.
diagnostics from the autoconfiguration code.
diction. diction,explain:
diction. explain, v
diction— print wordy,sentences; thesaurus for
diction,explain: print wordy sentences; thesaurus
diff: differential file and directory comparator.
diff3: 3-way differential file comparison.
differential file and directory comparator.
differential file comparison.
dir: format of directories.
directories.
directories.
directories or files.
directory.
directory.
directory.
directory.
directory.
directory.
directory.
directory.
directory.
directory. .
directory clean-up.
directory comparator.
directory consistency check.
directory entry.
directory entry.
directory file.
directory file.
directory for fsck.
directory name.
directory operations. opendir,
directory pathname.
directory stack.
directory stack.
disc usage and limits.
discard command hash table.
discard shell variables.
discipline for machine-machine communication
disk. fsync:

- XXxvii -

close(2)
dbm(3X)

mailaddr(7)
getdisk (3X)
disktab (5)
remote(5)

dup(2)
getfsent(3X)
getdtablesize (2)
de(1)

access(3F)

swapon (2)
swapon (8)
ik(4)

ps(4)

df(1)

fimin (3F)
flmin (3F)
fimin (3F)
dh(4)
dh(4)
dmesg(8)
autoconf (4)
diction(1)
explain(1)
explain(1)
diction(1)
diff(1)
diff3(1)
diff (1)
diff3(1)
dir(5)
dir(5)
rm(1)
rmdir (1)
cd(1)
chdir(2)
chdir(3F)
chroot(2)
csh(1)
csh(1)
getcwd (3F)
Is(1)
mkdir (1)
scandir (3)
uuclean(8C)
diff(1)
dcheck (8)
unlink (2)
unlink 3F)
mkdir(2)
rmdir(2)
mklost+found(8)
pwd(1)
directory(3)
getwd (3)
csh(1)
csh(1)
quota(l)
csh(1)
csh(1)
bk(4)
fsync(2)

August 1983

Permuted Index

hk: RK6-11/RK06 and RK07 moving head
uda: UDA-50

getdiskbyname: get

disktab:

df:

hp: MASSBUS

rx: DEC RXO02 floppy
format: how to format
diskpart: calculate default
quota: manipulate

drtest: standalone

du: summarize

reboot/halt the system without checking the
rxformat: format floppy

mount, umount: mount and
error: analyze and

rain: animated raindrops
gprof:

snake, snscore:

quota:

vi: screen oriented (visual)
umask: change or

prof:

sysline:

worms: animate worms on a
hypot, cabs: Euclidean
communications device.
dmc: DEC

error log.

dmf:
dn:

style: analyze surface characteristics of a
refer: find and insert literature references in
w: who is on and what they are

rogue: Exploring The Dungeons of
shutdown: shut

shutdown: close

rand,

graph:

arithmetic: provide

ut: UNIBUS TU4S5 tri-density tape

pty: pseudo terminal

etime,

dump: incremental file system
od: octal, decimal, hex, ascii
rdump: file system

rrestore: restore a file system

dumpfs:
dump, dumpdates: incremental

savecore: save a core
kgmon: generate a
dump,

zork: the game of
rogue: Exploring The

dup,
dup, dup2:

dz:

echo:
echo:

August 1983

disk. .
disk controller interface.
disk description by its name.
disk description file.
disk free.
disk interface.
disk interface.
disk packs.
disk partition sizes.
disk quotas.
disk test program.
disk usage.
diskpart: calculate default dlSk parmlon sizes.
disks. fastboot, fasthalt:
disks.
disktab: disk description file.
dismount file system.
disperse compiler error messages
display.
display call graph profile data.
display chase game.
display disc usage and limits.
display editor based on ex.
display file creation mask.
display profile data.
display system status on status line of a termma] oo o
display terminal. . .
distance. .

dmc: DEC DMC ll/DMR 11 point-to-point
DMC-11/DMR-11 point-to-point communications device.
dmesg: collect system diagnostic messages to form . . .
dmf: DMF-32, terminal multiplexor.
DMF-32, terminal multiplexor.
dn: DN-11 autocall unit interface.
DN-11 autocall unit interface.
doctor: interact with a psychoanalyst. . . .
document.
documents.
doing. N PP
Doom. .
down part of a full-duplex connecllon . a w a e e
down the system at a giventime. ¢
drand, irand: return random values.
draw a graph.
drill in number facts.
drive interface.
driver.
drtest: standalone disk test program 5
drum: paging device.
dtime: return elapsed execution time.
du: summarize disk usage.
dump.
dump.
dump across the network.
dump across the network.
dump, dumpdates: incremental dump format.
dump file system information.
dump format. . . .
dump: incremental file syslem dump.
dump of the operating system. s
dump of the operating system’s profile buﬂ'ers
dumpdates: incremental dump format.
dumpfs: dump file system information.
dungeon.
Dungeons of Doom.
dup, dup2: duplicate a descriptor.
dup2: duplicate a descriptor.
duplicate a descriptor. &
dz: DZ-11 communications mumplexer w0 % oa e e
DZ-11 communications multiplexer.
ec: 3Com 10 Mb/s Ethernet interface.
echo arguments.
echo arguments.
echo: echo arguments.
echo: echo arguments.
ecvt, fevt, gevt: output conversion.

- XxXviii -

getdisk (3X)
disktab(5)
df(1)
hp(4)
rx(4)
format(8V)
diskpart(8)
quota(2)
drtest(8)
du(1)
diskpart(8)
fastboot(8)
rxformat(8V)
disktab(5)
mount(8)
error(1)
rain(6)
gprof(1)
snake(6)
quota(1)
vi(l)
csh(1)
prof(1)
sysline(1)
worms(6)
hypot(3M)
dmc(4)
dmc(4)
dmesg(8)
dmf(4)
dmf(4)
dn(4)
dn(4)
doctor (6)
style(1)
refer(1)
w(l)
rogue(6)
shuidown(2)
shutdown (8)
rand (3F)
graph(1G)
arithmetic(6)
ut(4)
pty(4)
drtest(8)
drum(4)
etime (3F)
du(1)
dump(8)
od(1)
rdump(8C)
rrestore(8C)
dump(5)
dumpfs(8)
dump(5)
dump(8)
savecore(8)
kgmon(8)
dump(5)
dumpfs(8)
zork(6)
rogue(6)
dup(2)
dup(2)
dup(2)
dz(4)
dz(4)
ec(4)
csh(1)
echo(1)
csh(1)
echo(1)
ecvt(3)

Fourth Berkeley Distribution

end, etext,

ex,

vipw:

edquota:

ed: text

ex, edit: text

fed: font

Id: link

sed: stream

vi: screen oriented (visual) display
a.out: assembler and link

whoami: print

setregid: set real and

setreuid: set real and

vfork: spawn new process in a virtual memory

grep,

etime, dtime: return

insque, remque: insert/remove
soelim:

setquota:

uuencode: format of an
crypt:

mail. uuencode,uudccode:
crypt, setkey,

crypt, setkey, encrypt: DES
makekey: generate

logout:

/getfsspec, getfsfile, getfstype, setfsent,
getgrent, getgrgid, getgrnam, setgrent,
gethostbyaddr, gethostbyname, sethostent,

getnetent, getnetbyaddr, getnetbyname, setnetent,
socket: create an

getprotobynumber, getprotobyname, setprotoent,
getpwent, getpwuid, getpwnam, setpwent,
getservbyport, getservbyname, setservent,

number: convert Arabic numerals to

xsend, xget,

nlist: get

chfn: change finger

setfsent, endfsent: get file system descriptor file
getgrnam, setgrent, endgrent: get group file
sethostent, endhostent: get network host
getnetbyname, setnetent, endnetent: get network
setprotoent, endprotoent: get protocol

getpwnam, setpwent, endpwent: get password file
getservbyname, setservent, endservent: get service
unlink: remove directory

unlink: remove a directory

execv, execle, execlp, execvp, exec, exece, exect,

setenv: set variable in

environ: user

printenv: print out the

getenv: value for

unsetenv: remove

getenv: get value of

eqnchar: special character definitions for
deroff: remove nroff, troff, tbl and

linemod, space, closepl: graphics/ plot: openpl,
messages.

dmesg: collect system diagnostic messages to form
mkstr: create an

error: analyze and disperse compiler

perror, sys_errlist, sys_nerr: system

perror, gerror, ierrno: get system

Fourth Berkeley Distribution

ed: text editor.

edata: last locations in program.
edit: texteditor.
edit the password file. A TR EEE]
edit USerquotas. v v e e e e .
edifor. - cemome B EE 568 83§ %
L 1o P
EAMOT: & s w ww s W w 8 %6 e
gditor: s v wssemwenE s 8 e 88§
editor.
edllorbasedonex
editoroutput.o
edquota: edit userquolas. AT EEEEEE
effective currentuserid.
effectivegroupID.
effectiveuserIDs.00 ..
efficient way.
efl: Extended Fortran Language.

egrep, fgrep: search a file for a panern‘ FilCh O
elapsed execution time.
element from a queue.
eliminate .so’s from nroff input.
else: alternative commands.
en: Xerox 3 Mb/s Ethernet interface.
enable/disable quotas on a file system.
encoded uuencode file.
encode/decode.
encode/decode a binary file for transmission via
encrypt: DES encryption.
encryption.
encryption key. . .
end, etext, edata: Iast Iocatmns in program. . .
end session.
end: terminate loop. . . . LEE
endfsent: get file system descnplor ﬁle emry. &
endgrent: get group file entry.
endhostent: get network host entry. gethostent,
endif: terminate conditional.

endnetent: get network entry.
endpoint for communication.
endprotoent: get protocol entry. getprotoent, .
endpwent: get password file entry.
endservent: get service entry. getservent, w1
endsw: terminate switch.
English.
enroll: secret mail.
entries fromname list.
entry. . . .
entry. getfsent, getfsspec. getfsﬁle gelfstype. 5
entry. getgrent, getgrgid,
entry. gethostent, gethostbyaddr, gelhoslbyname,
entry. getnetent, getnetbyaddr,
entry. /getprotobynumber, getprotobyname, .
entry. getpwent, getpwuid,
entry. getservent, getservbyport,
entry.
entry.
environ: execute a file. execl,
environ: user environment..
environment.
environment.
environment. .
environment Bame. 4 . 0.0 o0 oo
environment variables.
environment variables.
L T
eqn constructs.
eqn, neqn, checkeq: typeset mathemaucs oo
egnchar: special character definitions for eqn. .
erase, label, line, circle, arc, move, cont, point,

error: analyze and disperse compiler error e
error log.
error message file by massagmg C source. o
€rror messages.
€ITOT messages.
€ITor messages.

- XXXiX -

Permuted Index

ed(1)

end(3)

ex(1)

vipw(8)
edquota(8)
ed(1)

ex(1)

fed(1)

1d(1)

sed(1)

vi(l)

a.out(5)
edquota(8)
whoami(1)
setregid (2)
setreuid (2)
vfork(2)

. efl(1)

grep(1)

etime (3F)
insque(3)
soelim(1)
csh(1)

en(4)
setquota(2)
uuencode(5)
crypt(1)
uuencode(1C)
crypt(3)
crypt(3)
makekey(8)
end(3)

csh(1)

csh(1)
getfsent(3X)
getgrent(3)
gethostent(3n)
csh(1)
getnetent(3n)
socket(2)
getprotoent(3n)
getpwent(3)
getservent(3n)
csh(1)
number(6)
xsend(1)
nlist(3)
chfn(1)
getfsent(3X)
getgrent(3)
gethostent(3n)
getnetent(3n)
getprotoent (3n)
getpwent(3)
getservent(3n)
unlink (2)
unlink (3F)
execl(3)
environ(7)
csh(1)
environ(7)
printenv(1)
getenv(3)
csh(1)
getenv(3F)
eqnchar(7)
deroff (1)
eqn(1)
eqnchar(7)
plot(3X)
error(1)
dmesg(8)
mkstr(1)
error(1)
perror(3)
perror(3F)

August 1983

Permuted Index

intro: introduction to system calls and

eyacc: modified yacc allowing much improved
spell, spellin, spellout: find spelling

traper: trap arithmetic

end,

ec: 3Com 10 Mb/s

en: Xerox 3 Mb/s

il: Interlan 10 Mb/s

hypot, cabs:
/if, while, :, ., break, continue, cd,

expr:

device interface. ps:

history: print history

screen oriented (visual) display editor based on

Ipq: spool queue
execl, execv, execle, execlp, execvp,
/while, :, ., break, continue, cd, eval,

execl, execv, execle, execlp, execvp, exec,
exect, environ: execute a file.

environ: execute a file. execl, execv,
execute a file. execl, execv, execle,

execl, execv, execle, execlp, execvp, exec, exece,
sticky:

execlp, execvp, exec, exece, exect, environ:
execve:

alarm:

system:

repeat:

at:

lastcomm: show last commands

uux: unix to unix command

acct:

sleep: suspend

sleep: suspend

sleep: suspend

monitor, monstartup, moncontrol: prepare
pxp: Pascal

rexecd: remote

etime, dtime: return elapsed

profil:

pix: Pascal interpreter and

environ: execute a file. execl,

file. execl, execv, execle, execlp,

link: make a link to an

tunefs: tune up an

/:, ., break, continue, cd, eval, exec,
breaksw:

pending output.

break:

power, square root.

glob: filename

expand, unexpand:

versa.

for diction.

diction. diction,

aardvark: yet another

adventure: an

rogue:

frexp, ldexp, modf: split into mantissa and
exp, log, logl0, pow, sqrt:

/ . , break, continue, cd, eval, exec, exit,

expr: evaluate arguments as an
re_comp, re_exec: regular
addbib: create or

efl:

strings. xstr:

recovery.

August 1983

error numbers. W TR
€ITOr Tecovery. . »
errors.
€errors.
etext, edata: last locauons in program.
Ethernet interface.
Ethernet interface.
Ethernet interface.

etime, dtime: return elapsed execution ume Cnonc
Euclidean distance. . . . ¢ EEEY
eval, exec, exit, export, Iogm read readonly/ e w

eval: re-evaluate shelldata.
evaluate arguments as an expression.
Evans and Sutherland Picture System 2 graphics
event list.
X, Wi ¢ 5 8% 558 A e e s o o8 8
ex, edit: text editor. . .
examination program. &
exec, exece, exect, environ: execute afile.
exec, exit, export, login, read, readonly, set,/
exec: overlay shell with specified command.

exece, exect, environ: execute a file.
execl, execv, execle, execlp, execvp, exec, exece, . . .
execle, execlp, execvp, exec, exece, exect,
execlp, execvp, exec, exece, exect, environ:
exect, environ: execute a file.
executable files with persistent text.
execute a file. execl, execv, execle, . . .
execute a file.
execute a subroutine aﬂeraspeclﬁed hme. o T T
execute a UNIX command.

execute command repeatedly.
execute commands at a later time.
executed in reverse order. R EER Lo
CXCOULIONL, o v rmiiws o o o & o # x & o iwiiey 505 ey 4 o5 2% 6
execution accounting file. W e W e e
execution foraninterval.
execution foraninterval.00 0L
execution forinterval.00,
execution profile.
execution profilér: s s o & ¥ 5 % % w % e EE A
execution server.

execution time.
execution time profile. . . .
executor.
execv, execle, execlp, execvp, exec, exece. exect, . .
execve: execute a file. . .
eXecvp, exec, exece, exect, environ:
existing fiie.
existing file system. & i 3 o
exit, export, login, read, readonly, sel shlfl / S o
exit from switch.
exit: leave shell.

_exit: terminate a process.
exit: terminate a process after flushing any EEEEE
exit: terminate process with status.
exit while/foreach loop. .
exp, log, logl0, pow, sgrt: exponenual logamhm, 3 E .
expand argument list.
expand tabs to spaces, and vice versa.
expand, unexpand: expand tabs to spaces, and vice . .
explain, diction— print wordy sentences; thesaurus . .
explain: print wordy sentences; thesaurus for
exploration game.
exploration game.

execute a e e

Exploring The Dungeons ofDoom R
EXPOTENL .« v 4 & 5 4 wim @O % W W@ & 84 § & 5 8
exponential, logarithm, power, square root.
export, login, read, readonly, set, shift, times,/
expr: evaluate arguments as an expression.
CXPIESSION, » o » w so oo coi oos er vt s da ek K ® W % 6§

expression handler. 3 %
extend bibliographic database.
Extended Fortran Language.

extract strings from C programs to implement shared .
eyacc: modified yacc allowing much improved error .

o xl-

intro(2)
eyacc(l)
speli(1)
traper(3F)
end(3)
ec(4)
en(4)
il(4)
etime (3F)
hypot (3M)
sh(1)
csh(l)
expr(1)
ps(4)
csh(l)
vi(1)
ex(1)
Ipq(1)
execl(3)
sh(1)
csh(1)
execl(3)
execl(3)
execl(3)
execl(3)
execl(3)
sticky(8)
execl(3)
execve(2)
alarm (3F)
system (3F)
csh(1)
at(1)
lastcomm (1)
uux(1C)
acct(5)
sleep(1)
sleep(3F)
sleep(3)
monitor(3)
pxp(1)
rexecd (8C)
etime (3F)
profil (2)
pix(1)
execl(3)
execve(2)
execl(3)
link (3F)
tunefs(8)
sh(1)
csh(1)
csh(1)
exit(2)
exit(3)
exit(3F)
csh(1)
exp(3M)
csh(1)
expand(1)
expand(1)
explain(1)
diction(1)
aardvark (6)
adventure(6)
rogue(6)
frexp(3)
exp(3M)
sh(1)
expr(1)
expr(1)
regex(3)
addbib(1)
efl(1)
xstr(1)
eyacc(1)

Fourth Berkeley Distribution

ioinit: change

tclose, tread, twrite, trewin, tskipf, tstate:
functions.

networking: introduction to networking
signal: simplified software signal

sigvec: software signal

true,

inet: Internet protocol

pup: Xerox PUP-I protocol

checking the disks.

the disks. fastboot,

abort: generate a

trpfpe, fpecnt: trap and repair floating point
export, login,/ sh, for, case, if, while, :,
exit, export, login,/ sh, for, case, if, while,

ecvt,
fopen, freopen,

ferror,

inquiries.

subroutines. dbminit,

head: give first

fclose,

extreme values. flmin, fimax,
bcopy, bcmp, bzero,

getc,

getc, getchar,

gets,

grep, egrep,

locate a program file including aliases and paths
access: determine accessibility of

access: determine accessability of a

acct: execution accounting

chmod: change mode of

chmod: change mode of a

chown: change owner and group of a

colrm: remove columns from a

core: format of memory image

creat: create a new

source: read commands from

ctags: create a tags

dd: convert and copy a

disktab: disk description

€execvp, exec, exece, €Xect, environ: execute a
execve: execute a

flock: apply or remove an advisory lock on an open
fpr: print Fortran

group: group

link: make a hard link to a

link: make a link to an existing

mkdir: make a directory

mknod: make a special

mknod: build special

rebuild the data base for the mail aliases

open a file for reading or writing, or create a new
passwd: password

pr: print

remote: remote host description

rename: change the name of a

rename: rename a

rev: reverse lines of a

rmdir: remove a directory

size: size of an object

the printable strings in a object, or other binary,
sum: sum and count blocks in a

symlink: make symbolic link to a

tail: deliver the last part of a

touch: update date last modified of a

uniq: report repeated lines in a

uuencode: format of an encoded uuencode

Fourth Berkeley Distribution

Permuted Index

f77: Fortran 77 compiler.
77 1/0 initialization.
77 tape 1/0. topen,
fabs, floor, ceil: absolute value, floor, ceiling
facilities.
facilities.
facilities.
false: provide truth values.
false, true: provide truth values.
family.
family.
fastboot, fasthalt: reboot/halt the system without . . .
fasthalt: reboot/halt the system without checking . . .
fault.
faults.
., break, continue, cd, eval, exec, exit,
:, ., break, continue, cd, eval, exec,

fclose, fllush: close or flush a stream.
fentl: file control.
fcvt, gevt: output conversion.
fdate: return date and time in an ASCII string.
fdopen: open a stream.
fed: font editor.
feof, clearerr, fileno: stream status inquiries.
ferror, feof, clearerr, fileno: stream status

fetch, store, delete, firstkey, nextkey: data base
few lines.
filush: close or flush a stream.
ffrac, dfimin, dflmax, dffrac, inmax: return
fTs: bit and byte string operations.
fg: bring job into foreground.
fgetc: get a character from a logical unit.
fgetc, getw: get character or word from stream.
fgets: get a string from a stream.
fgrep: search a file for a pattern.
(csh only). which:
file. . .

. open:

77(1)
ioinit(3F)
topen (3F)
floor (3M)
intro(4N)
signal (3C)
sigvec(2)
true(1)
false (1)
inet(4F)
pup(4F)
fastboot (8)
fastboot (8)
abort(3)
trpfpe (3F)
sh(1)
sh(1)
fclose(3S)
fentl(2)
ecvt(3)
fdate (3F)
fopen(3S)
fed(1)
ferror(3S)
ferror(3S)
dbm (3X)
head(1)
fclose (3S)
fimin (3F)
bstring(3)
csh(l)
getc(3F)
getc(3S)
gets(3S)
grep(1)
which(1)
access(2)
access(3F)
acct(5)
chmod(2)
chmod (3F)
chown(2)

disktab(5)
execl(3)
execve(2)
flock (2)
fpr(1)
group(5)
link (2)

link (3F)
mkdir(2)
mknod(2)
mknod(8)
newaliases(1)
open(2)
passwd (5)
pr(1)
remote(5)
rename(2)
rename (3F)

uniq(1)
uuencode (5)

August 1983

Permuted Index

vipw: edit the password
versions of object modules were used to construct a
write, writev: write on a

diff: differential

bugfiler:

mKstr: create an error message
diff3: 3-way differential

fentl:

rcp: remote

umask: change or display
umask: set

setfsent, endfsent: get file system descriptor
getgrgid, getgrnam, setgrent, endgrent: get group
getpwnam, setpwent, endpwent: get password
grep, egrep, fgrep: search a

open: open a

aliases: aliases

uuencode,uudecode: encode/decode a binary
ar: archive (library)

tar: tape archive

which: locate a program

fsplit: split a multi-routine Fortran

split: split a

pmerge: pascal

mktemp: make a unique

fseek, ftell: reposition a

more, page:

stat, Istat, fstat: get

stat, Istat, fstat: get

mkfs: construct a

mkproto: construct a prototype

mount, umount: mount or remove

mount, umount: mount and dismount
newfs: construct a new

repquota: summarize quotas for a

setquota: enable/disable quotas on a
tunefs: tune up an existing

repair. fsck:

getfsfile, getfstype, setfsent, endfsent: get
dcheck:

dump: incremental

rdump:

rrestore: restore a

hier:

dumpfs: dump

quot: summarize

quotacheck:

quotaon, quotaoff: turn

restore: incremental

icheck:

mtab: mounted

fs, inode: format of

utime: set

utimes: set

uusend: send a

truncate: truncate a

ftp:

ftpd: DARPA Internet

tftpd: DARPA Trivial

file: determine

basename: strip

glob:

ferror, feof, clearerr,

checknr: check nroff/troff

cmp: compare two

comm: select or reject lines common to two sorted
config: build system configuration

find: find

split a multi-routine Fortran file into individual
makedev: make system special

mv: move or rename

rmdir, rm: remove (unlink) directories or
sort: sort or merge

compact, uncompact, ccat: compress and uncompress
intro: introduction to special

August 1983

file: wow s v 58 5 s s s P BB EIE E FEFE 5 E
file. what: show what . . .
file.
file and directory comparator.
file bug reports in folders automatically.
file by massaging C source.
file comparison.
file control.
file copy.
file creation mask.
file creation mode mask.
file: determine file type. .
file entry. /getfsspec, getfsﬁle getfstype,
file entry. getgrent,
file entry. getpwent, getpwuid,
file for a pattern.
file for reading or writing, or create a new ﬁle
file for sendmail.
file for transmission via mail.
file format.
file format.
file including aliases and paths (csh only).
file into individual files.
file into pieces.
file merger.
file name. . .
file on a logical unit. .
file perusal filter for crt viewing.
file status.
file status.
file system.
file system.
file system.
file system.
file system.
file system.
file system.
file system.
file system cons:slency check and interactive
file system descriptor file entry. /getfsspec,
file system directory consistency check.
file system dump. .
file system dump across the nelwork.
file system dump across the network.
file system hierarchy. . .
file system information.
file system ownership.
file system quota consistency checker.
file system quotas on and off.
file system restore.
file system storage consistency check.
file system table.
file system volume.
file times.
file times.
file to a remote host. . . .
file to a specified length.
file transfer program.
File Transfer Protocol server.
File Transfer Protocol server.
file type.
filename affixes.
filename expand argument list.
fileno: stream status inquiries.
files.

- xlii -

vipw(8)
what(1)
write(2)
diff(1)
bugfiler(8)
mkstr(1)
diff3(1)
fentl(2)

getfsent (3X)
getgrent(3)
getpwent(3)
grep(1)
open(2)
aliases(5)
uuencode(1C)
ar(5)

tar(5)
which(1)
fsplit(1)
split(1)
pmerge(1)
mktemp(3)
fseek (3F)
more(1)
stat(2)
stat(3F)
mkfs(8)
mkproto(8)
mount(2)
mount(8)
newfs(8)
repquota(8)
setquota(2)
tunefs(8)
fsck (8)
getfsent(3X)
dcheck (8)
dump(8)
rdump(8C)
rrestore (8C)
hier(7)
dumpfs(8)
quot(8)
quotacheck (8)
quotaon(8)
restore(8)
icheck(8)
mtab(5)

utimes(2)
uusend(1C)
truncate(2)
ftp(1C)

ftpd (8C)
tftpd (8C)
file(1)
basename(1)
csh(1)
ferror (3S)
checknr(1)
cmp(1)
comm(1)
config(8)
find (1)
fsplit(1)
makedev(8)
mv(1)

compact(1)
intro(4)

Fourth Berkeley Distribution

catman: create the cat
fsync: synchronize a

rm, rmdir: remove (unlink)
badsect: create

sticky: executable

fstab: static information about the
more, page: file perusal
colert:

col:

plot: graphics

refer:

find:

look:

manual. man:

ttyname, isatty, ttyslot:

ttynam, isatty:

lorder:

lookbib: build inverted index for a bibliography,
spell, spellin, spellout:

binary, file. strings:

chfn: change

fold: fold long lines for
head: give

dbminit, fetch, store, delete,
fish: play “‘Go

nice, nohup: run a command at low priority

arff,

extreme values. flmin,

return extreme values.

trpfpe, fpecnt: trap and repair
trapov: trap and repair

file.

functions. fabs,

fabs, floor, ceil: absolute value,
arff, flcopy: archiver and copier for
rx: DEC RX02

rxformat: format

fl: console

fclose, filush: close or

flush:
exit: terminate a process after

device.

fold:

bugfiler: file bug reports in

vwidth: make troff width table for a

fed:

vfont:

inspect and print out information about UNIX

fg: bring job into

idate, itime: return date or time in numerical
dmesg: collect system diagnostic messages to
ar: archive (library) file

arcv: convert archives to new

dump, dumpdates: incremental dump

tar: tape archive file

indent: indent and

format: how to

rxformat:

htable: convert NIC standard

gettable: get NIC

vtroff, or troff. vip:
uuencode:

dir:

fs, inode:

core:

Fourth Berkeley Distribution

Permuted Index

files for the manual.
file’s in-core state with that on disk.
files or directories.
files to contain bad sectors.
files with persistent text. . . .
filesystems.
filter for crt viewing.
filter nroff output for CRT previewing.
filter reverse line feeds.
filters.
find and insert literature references in documents.
find files. .
find: find files.
find lines in a sorted list.
find manual information by keywords; print out the
find name of a terminal.
find name of a terminal port.
find ordering relation for an object library.
find references in a bibliography. indxbib,
find spelling errors.
find the printable strings in a object, or other
finger entry.
finger: user information lookup program.
finite width output device.
first few lines.
firstkey, nextkey: data base subroutines.
Fish”.
fish: play ‘“Go Fish”.
(sh only).
fl: console floppy interface.
flcopy: archiver and copier for floppy.
flmax, firac, dflmin, dflmax, dffrac, inmax: return
fimin, flmax, ffrac, dflmin, dflmax, dffrac, inmax:
floating point faults.
floating point overflow.
flock: apply or remove an advisory lock on an open
floor, ceil: absolute value, floor, ceiling
floor, ceiling functions.
floppy.
floppy disk interface.
floppy disks.
floppy interface.
flush a stream.
flush: flush output to a logical unit.
flush output to a logical unit.
flushing any pending output.
fmt: simple text formatter.
fold: fold long lines for finite width output
fold long lines for finite width output device.
folders automatically.
font.
font editor.
font formats for the Benson-Varian or Versatec.
fonts. vfontinfo:
fopen, freopen, fdopen: open a stream.
foreach: loop over list of names.
foreground.
fork: create a copy of this process.
fork: create a new process.
form.
form error log. TEEE
format.
format.
format.
format.
format C program source.
format disk packs.
format floppy disks.
format host tables.
format host tables from a host.
format: how to format disk packs.
Format Lisp programs to be printed with nroff,
format of an encoded uuencode file.
format of directories.
format of file system volume.
format of memory image file.

- xliii -

catman(8)
fsync(2)
rm(1)
badsect(8)
sticky(8)
fstab(5)
more(1)
colert(1)
col(1)
plot(1G)
refer(1)
find(1)
find (1)
look(1)
man(1)
ttyname(3)
ttynam (3F)
lorder(1)
lookbib(1)
spell(1)
strings(1)
chfn(1)
finger(1)
fold(1)
head (1)
dbm (3X)
fish(6)

fish (6)
nice(1)

trpfpe(3F)
trapov (3F)
flock (2)
floor(3M)
floor (3M)
arff(8V)
rx(4)
rxformat(8V)
1(4)
fclose(3S)
flush (3F)
flush(3F)
exit(3)
fmt(1)
fold(1)
fold(1)
bugfiler(8)
vwidth(1)
fed(1)
vfont(5)
vfontinfo(1)
fopen(3S)
csh(1)
csh(1)

fork (3F)
fork(2)
idate(3F)
dmesg(8)
ar(5)
arcv(8)
dump(5)
tar(5)
indent(1)
format(8V)
rxformat(8V)
htable(8)
gettable(8C)
format(8V)
vip(1)
uuencode(5)
dir(5)

fs(5)
core(5)

August 1983

Permuted Index

tbl:

tp: DEC/mag tape
vfont: font

scanf, fscanf, sscanf:
printf, fprintf, sprintf:
fmt: simple text
nroff: text

troff, nroff: text

ms: text

me: macros for

f77:

ratfor: rational

fpr: print

fsplit: split a multi-routine

efl: Extended

intro: introduction to

putc, fputc: write a character to a

struct: structure

adage.
login,/ sh, for, case, if, while, :, .
exit, export,/ sh, for, case, if, while, :

compiler/interpreter.

trpfpe,

printf,

putc, putchar,
putc,

puts,

ik: Ikonas
liszt: compile a

df: disk

exponent.
from: who is my mail

scanf,
mklost+found: make a lost+found directory for
repair.

individual files.

stat, Istat,
stat, Istat,
on disk.
fseek,
fseek,
time,

shutdown: shut down part of a

gamma: log gamma

compiler/interpreter. fp:

bit: and, or, xor, not, rshift, Ishift bitwise
fabs, floor, ceil: absolute value, floor, ceiling
intro: introduction to library

intro: introduction to compatibility library
intro: introduction to FORTRAN library
intro: introduction to mathematical library
intro: introduction to network library
intro: introduction to miscellaneous library
j0, j1, jn, y0, y1, yn: bessel

cos, tan, asin, acos, atan, atan2: trigonometric
sinh, cosh, tanh: hyperbolic

bessel

curses: screen

fread,

aardvark: yet another exploration
adventure: an exploration

backgammon: the

monop: Monopoly

snake, snscore: display chase

trek: trekkie

worm: Play the growing worm

August 1983

format tables for nroffor troff. tbl(1)
formats. 0404 . 0. e e e e tp(5)
formats for the Benson-Varian or Versatec. vfont(5)
formatted input conversion. scanf(3S)
formatted output conversion. printf(3S)
formatter. + . s s s s s v s s EEE T F 58 e 8§ fmt(1)
formatting. .« . v v v v v e e e e e e e e e e nroff(1)
formatting and typesetting. troff(1)
formatting Macros. « « « « « + o o v 4 .40 ms(7)
formatting papers. .« « v+ v 4 . 4 e e e w0 0w .. me(7)
Fortran 77 compiler. . « « « ¢ ¢ ¢ 4 ¢ o o o o o o« £77(1)
Fortran dialect. . . + v v v v v v 4 v v e e .. ratfor (1)
Fortranifile, . ¢ o s s s s wwmmwmews s s s 5% fpr(1)
Fortran file into individual files. fsplit(1)
Fortran Language. . . . « v v v v v v 0 v v v .. efl(1)
FORTRAN library functions. intro(3F)
fortran logical unit. putc(3F)
Fortran programs. . « « « v v v v ¢ o o o 0 0 4 0 . struct(1)
fortune: print a random, hopefully interesting, .+ . . fortune(6)
, break, continue, cd, eval, exec, exit, export, . . sh()
, ., break, continue, cd, eval, exec, sh(1)
fp: Functional Programming language fp(1)
fpecnt: trap and repair floating point faults. trpfpe 3F)
fpr: print Fortranfile. fpr(1)
fprintf, sprintf: formatted output conversion. printf(3S)
fputc, putw: put character or word on a stream. putc(3S)
fputc: write a character to a fortran logical unit. putc(3F)
fputs: put a string on a stream. puts(3S)
frame buffer, graphics device interface. ik (4)
Franz Lisp program. . . . « v v v v v v v v v v v . liszt (1)
fread, fwrite: buffered binary input/output. fread (3S)
188 wuwmwe sssssspyamea@s o+ 8 4 df(1)
free, realloc, calloc, alloca: memory allocator. malloc(3)
freopen, fdopen: open astream. fopen(3S)
frexp, ldexp, modf: split into mantissaand frexp(3)
from?. . . e e e e e e e e e e e e from(1)
fs, inode: format of file system volume. fs(5)
fscanf, sscanf: formatted input conversion. scanf(3S)
fscki o www v e v v oo s s wmew sy mklost+found (8
fsck: file system consistency check and interactive fsck (8)
fseek, ftell: reposition a file on a logical unit. fseek (3F)
fseek, ftell, rewind: reposition a stream. fseek (35)
fsplit: split a multi-routine Fortran fileinto fsplit(1)
fstab: static information about the filesystems. fstab(5)
fstat: get file status. e stat(2)
fstat: get file status. .« . o . 0 uu e e stat(3F)
fsync: synchronize a file’s in-core state with that fsync(2)
ftell: reposition a file on a logical unit. fseek (3F)
ftell, rewind: reposition a stream. fseek (3S)
ftime: getdateand time. time(3C)
ftp: file transfer program. ftp(1C)
ftpd: DARPA Internet File Transfer Protocol server. ftpd (8C)
full-duplex connection. shutdown(2)
Rfeon., csowee 263533 BRBRERESS gamma(3M)
Functional Programming language fp(1)
fUNCHONS. = v wwwmw 5 8 6 8 & 5 o o %% @ e o5 bit(3F)
functions. . . . v v v v v h e e e e . . floor(3M)
fUNCUONS: o v v o ow @ % 0 ¥ & 5 @ oW W intro(3)
TUACHONS. wome @@ 8 8 8 8 5 § 6 fos o 6w d intro(3C)
TUNCHONS.: oo cor v o st s oot 0 @ @ & & oo can . intro(3F)
TUnetions, s s ww@me ¢ § 8§ 8 s S @ am @ s w s intro(3M)
fUnCtions. .« v v v v v v v e e e e e e e e e e e e intro(3n)
fUBEHONS. oo w e e v 5 5 55 & 5 @ s § @ W intro(3X)
functions.l e e e e e e e e e jo0GM)
functions, Sin, ww we @ & & 5 3 & 5 % 90w E sin(3M)
functions. . v . v v v v e e e e e e e e e sinh (3M)
functions: of two kinds for integer orders. bessel (3F)
functions with “‘optimal’’ cursor motion. curses(3X)
fwrite: buffered binary input/output. fread (3S)
BAME: & wwsis @ winid s 8 5 5 5 5 5 8% e 06 EE aardvark (6)
BAME. & v v v o v e e e e e e e e e e e e e e e e e adventure(6)
BAME! o« 5 sowmn wmia & 8 8 6 & § & 5605w @ backgammon (6)
GAME: 2 s @ RS 8 #8558 36 pmmwdse monop(6)
BAMIE. & oo o w o i o s & % % % ® B % s e m e snake(6)
BANE s s wwa e s@@ ¢ & 8 8 8 5 8 8 &% @ e e trek (6)
BAME. & v v v v e e e e e e e e e e e e e e e e worm(6)

- xliv - Fourth Berkeley Distribution

canfield, cfscores: the solitaire card
cribbage: the card

hangman: Computer version of the
boggle: play the

chess: the

zork: the

wump: the

gamma: log

ecvt, fevt,

buffers. kgmon:

abort:

makekey:

ncheck:

rand, srand: random number

lex:

/srandom, initstate, setstate: better random number
random number generator; routines for changing
perror,

from stream.
stream. getc,

getgid,

getuid,

setfsent, endfsent: get file system descriptor/
system descriptor file entry. getfsent, getfsspec,
endfsent: get file system descriptor/ getfsent,
descriptor file/ getfsent, getfsspec, getfsfile,
getuid,

get group file entry.
file entry. getgrent,
getgrent, getgrgid,

endhostent: get network host entry. gethostent,
host entry. gethostent, gethostbyaddr,
sethostent, endhostent: get network host entry.
current host.

host.

timer.

get network entry. getnetent,
entry. getnetent, getnetbyaddr,
endnetent: get network entry.

getpid,

scheduling priority.

protocol entry. getprotoent, getprotobynumber,
endprotoent: get protocol entry. getprotoent,
setprotoent, endprotoent: get protocol entry.

get password file entry.

entry. getpwent, getpwuid,
password file entry. getpwent,
resource consumption.
utilization.

entry. getservent, getservbyport,
endservent: get service entry. getservent,
setservent, endservent: get service entry.
gettimeofday, settimeofday:
gethostname, sethostname:

getpriority, setpriority:

Fourth Berkeley Distribution

gamne canfield. « s s s s v e B s @ s ¥ 6
game cribbage.
game hangman. o 00000 ..
game of boggle. R
gameofchess. [
game of dungeon. 4 v v e e .
game of hunt-the-wumpus.
gamma function.
gamma: log gamma function. . EE

geore: get core lmages of running processes PR
gcvt: output conversion.
generate a dump of the operating syslem s proﬁle 5
generate a fault.
generate encryption key.
generate names from i-numbers.
generator.
generator of lexical analysns programs
generator; routines for changing generators. i %
generators. /srandom, initstate, setstate: better . .

gerror, ierrno: get system error messages.
getarg, iargc: return command line arguments. : &
getc, fgetc: get a character from a logical unit. . . .

getc, getchar, fgetc, getw: get character or word . .
getchar, fgetc, getw: get character or word from . .
getcwd: get pathname of current working directory.

getdiskbyname: get disk description by its name. 5

getdtablesize: get descriptor table size.

getegid: get group identity.
getenv: get value of environment variables.
getenv: value for environment name.
geteuid: get user identity.
getfsent, getfsspec, getfsfile, getfslype, TR
getfsfile, getfstype, setfsent, endfsent: get file . . .
getfsspec, getfsfile, getfstype, setfsent,
getfstype, setfsent, endfsent: get file system
getgid: get user or group ID of the caller. . . . , .
getgid, getegid: get group identity.
getgrent, getgrgid, getgrnam, setgrent, endgrent: .
getgrgid, getgrnam, setgrent, endgrent: get group .
getgrnam, setgrent, endgrent: get group file entry. .
getgroups: get group access list.
gethostbyaddr, gethostbyname, sethostent,
gethostbyname, sethostent, endhostent: get network
gethostent, gethostbyaddr, gethostbyname,
gethostid, sethostid: get/set unique identifier of . .
gethostname, sethostname: get/set name of current
getitimer, setitimer: get/set value of interval . . .
getlog: get user’s login name.
getlogin: get login name. o
getnetbyaddr, getnetbyname, setnetent, endnetent
getnetbyname, setnetent, endnetent: get network .
getnetent, getnetbyaddr, getnetbyname, setnetent, .
getpagesize: get system page size.
getpass: read a password. . . . S T
getpeername: get name of connected peer o e e
getpgrp: get process group.
getpid: get process id.
getpid, getppid: get process xdenuﬁcauon TR
getppid: get process identification.
getpriority, setpriority: get/set program
getprotobyname, setprotoent, endprotoent: get . .
getprotobynumber, getprotobyname, setprotoent, .
getprotoent, getprotobynumber, getprotobyname, .
getpw: get name from uid. oY e e e e e 8 #
getpwent, getpwuid, getpwnam, setpwent, endpwent:
getpwnam, setpwent, endpwent: get password file .
getpwuid, getpwnam, setpwent, endpwent: get E s

getrlimit, setrlimit: control maximum system

getrusage: get information about resource s
gets, fgets: get a string from a stream.
getservbyname, setservent, endservent: get service

getservbyport, getservbyname, setservent,
getservent, getservbyport, getservbyname,
get/set date and time.
get/set name of current host.
get/set program scheduling priority.

- xlv -

Permuted Index

canfield (6)
cribbage (6)
hangman (6)
boggle (6)
chess(6)
zork(6)
wump(6)
gamma(3M)
gamma(3M)
geore(1)
ecvt(3)
kgmon(8)
abort(3)
makekey(8)
ncheck (8)
rand(3C)

lex (1)

random (3)
random (3)
perror (3F)
getarg(3F)
getc(3F)
getc(3S)
getc(3S)

getcwd 3F)
getdisk (3X)
getdtablesize(2)
getgid(2)
getenv(3F)
getenv(3)
getuid(2)
getfsent(3X)
getfsent(3X)
getfsent(3X)
getfsent(3X)
getuid 3F)
getgid (2)
getgrent(3)
getgrent(3)
getgrent(3)
getgroups(2)
gethostent(3n)
gethostent(3n)
gethostent(3n)
gethostid (2)
gethostname(2)
getitimer(2)
getlog (3F)
getlogin(3)
getnetent(3n)
getnetent(3n)
getnetent(3n)
getpagesize(2)
getpass(3)
getpeername(2)
getpgrp(2)
getpid (3F)
getpid(2)
getpid(2)
getpriority (2)
getprotoent(3n)
getprotoent(3n)
getprotoent(3n)
getpw(3C)
getpwent(3)
getpwent(3)
getpwent(3)
getrlimit(2)
getrusage(2)
gets(3S)
getservent (3n)
getservent(3n)
getservent(3n)
gettimeofday(2)
gethostname (2)
getpriority(2)

August 1983

Permuted Index

gethostid, sethostid:
getitimer, setitimer:

sockets.

getc, getchar, fgetc,

head:
shutdown: close down the system at a

ASCII ctime, localtime,
time, ctime, Itime,

fish: play

setjmp, longjmp: non-local

graph: draw a

gprof: display call

ik: Ikonas frame buffer,

ps: Evans and Sutherland Picture System 2
plot:

arc, move, cont, point, linemod, space, closepl:

plot:
1ib2648: subroutines for the HP 2648

vgrind:

chgrp: change

getpgrp: get process

killpg: send signal to a process

setpgrp: set process

getgroups: get

initgroups: initialize

setgroups: set

group:

getgrgid, getgrnam, setgrent, endgrent: get

setregid: set real and effective

setruid, setgid, setegid, setrgid: set user and
getuid, getgid: get user or

getgid, getegid: get

groups: show

chown: change owner and

make: maintain program

worm: Play the

stty,

stop:

reboot: reboot system or

rmail:
re_comp, re_exec: regular expression
hangman: Computer version of the game

vhangup: virtually

nohup: run command immune to
crash: what

link: make a

intro: introduction to special files and
rehash: recompute command
unhash discard command

get/set unique identifier of current host.
get/set value of interval timer. o e »
getsockname: get socket name. '
getsockopt, setsockopt: get and set cpuons on
gettable: get NIC format host tables from a host. . . .
gettimeofday, settimeofday: get/set date and time.

getty: set terminal mode.
gettytab: terminal configuration data base
getuid, geteuid: get user identity.
getuid, getgid: get user or group ID of the caller.
getw: get character or word from stream.
getwd: get current working directory pathname.
give first few lines.
given time.
glob: filename expand argument hsl & i
gmtime, asctime, timezone: convert date and time lo
gmtime: return system time.
“Go Fish”
goto. . .
goto: command transfer. . AR RN oo
gprof: display call graph proﬁle da!a s ik
graph.
graph:drawagraph. o0 ...
graph profile data. . . .
graphics device interface.
graphics device interface. . .
graphics filters.
graphics interface. /erase, label, line, circle, W %
graphics interface.
graphics terminal. .
grep, egrep, fgrep: search aﬁle for a pattern.
grind nice listings of programs.
group. . .
group.
group.
group.
group access list.
group access list.
group access list.
group file.
group file entry. gelgrenl 6 %5
group: group file.
groupID. . .
group ID. setuid, seteuid, 5 e e
group ID of the caller.
group identity.
group memberships.
group of a file.
groups. .
groups: show group membershnps P FE s e R
growing worm game.
gtty: set and get terminal state (defunct)
halt a job or process.
halt processor.
halt: stop the processor ¥ 3
handle remote mail received via uucp . »
handler.
hangman.
hangman: Computer version of lhe game hangman
“*hangup” the current control terminal. 2
hangups. .
happens when the system crashes.
hard link to a file.
hardware support.
hash table.
hash table.
hashing statistics.

print cc d

leave: remind you when you
od: octal, decimal,

hier: file system
history: print

fortune: print a random,

August 1983

hashstat: print command hashmg statistics.

havetolleave. . « v ¢ s 5 s 5 4 5 510 % 0w
hex, ascii dump.
hier: file system hierarchy. .
hierarchy.
history event list.
history: print history event list. SRIIE,
hk: RK6-11/RK06 and RK07 moving head disk.
hopefully interesting, adage.

- xlvi -

gethostid (2)
getitimer(2)
getsockname (2)
getsockopt (2)
gettable(8C)
gettimeofday (2)
getty(8)
gettytab(5)
getuid(2)
getuid (3F)
getc(3S)
getwd (3)
head(1)
shutdown(8)
csh(1)
ctime(3)
time (3F)
fish (6)
setjmp(3)
csh(1)
gprof(1)
graph(1G)
graph(1G)
gprof(1)

ik (4)

ps(4)
plot(1G)
plot(3X)
plot(5)
1ib2648(3X)
grep(1)
vgrind(1)
chgrp(1)
getpgrp(2)
killpg(2)
setpgrp(2)
getgroups(2)
initgroups(3X)
setgroups(2)
group(5)
getgrent(3)
group(5)
setregid (2)
setuid(3)
getuid (3F)
getgid(2)
groups(1)
chown(2)
make(1)
groups(1)
worm(6)

regex(3)
hangman(6)
hangman (6)
vhangup(2)
csh(1)
crash(8V)
link (2)
intro(4)
csh(1)
csh(1)
csh(1)
csh(1)
leave(1)
od(1)
hier(7)

hier (7)
csh(1)
csh(1)

hk(4)
fortune(6)

Fourth Berkeley Distribution

sethostid: get/set unique identifier of current
gethostname, sethostname: get/set name of current
gettable: get NIC format host tables from a
hostnm: get name of current

uusend: send a file to a remote

htonl, htons, ntohl, ntohs: convert values between
remote: remote

gethostbyname, sethostent, endhostent: get network
hosts:

phones: remote

ruptime: show

hostid: set or print identifier of current

hostname: set or print name of current

htable: convert NIC standard format

gettable: get NIC format

system.

uptime: show
format:
1ib2648: subroutines for the

interface.

host and network byte order.
and network byte order. htonl,
wump: the game of

sinh, cosh, tanh:
hy: Network Systems

getarg,

getpid: get process

setregid: set real and effective group
setgid, setegid, setrgid: set user and group
whoami: print effective current user
getuid, getgid: get user or group

su: substitute user

form.

getpid, getppid: get process
gethostid, sethostid: get/set unique
hostid: set or print

getgid, getegid: get group

getuid, geteuid: get user

setreuid: set real and effective user
perror, gerror,

biff: be notified
eval, exec, exit, export, login,/ sh, for, case,

uu: TU58/DECtape
ik:

abort: terminate abruptly with memory
core: format of memory

gceore: get core

notify: request

nohup: run command

acc: ACC LH/DH

css: DEC IMP-11A LH/DH

implog:

implogd:

imp:

css: DEC

xstr: extract strings from C programs to

eyacc: modified yacc allowing much
which: locate a program file

fsync: synchronize a file’s

dump, dumpdates:

Fourth Berkeley Distribution

Permuted Index

host.
host.
host.
host.
host.
host and network byte order.
host description file.
host entry. gethostent, gethostbyaddr, .
host name data base.
host phone number data base.
host status of local machines.
host system.
host system.
host tables.
host tables from a host.
hostid: set or print identifier of current host
hostname: set or print name of current host system. . .
hostnm: get name of current host.
hosts: host name data base.
how long system has been up.
how to format disk packs.
HP 2648 graphics terminal.
hp: MASSBUS disk interface.
ht: TM-03/TE-16,TU-45,TU-77 MASSBUS magtape
htable: convert NIC standard format host tables.
htonl, htons, ntohl, ntohs: convert values between
htons, ntohl, ntohs: convert values between host .
hunt- the-wumpus T
hy: Network Systems Hyperchannel interface.
hyperbolic functions.
Hyperchannel interface.
hypot, cabs: Euclidean distance.
iargc: return command line arguments.
lcheck file system storage consnstency check.

gethostid,

n:l
IDiof thecallef. o oo 56 4 s 5 5
id temporarily. . .
idate, itime: return date or time m numencal
identification.
identifier of current host.
identifier of current host system.
identity. .
identity.
ID’s. .
ierrno: get syslem error messages
if: conditional statement.
if mail arrives and who it is from.

if, while, :, ., break, continue, cd,
ifconfig: configure network interface parameters. S
I1 UNIBUS cassette interface. . . .
ik: Ikonas frame buffer, graphics device interface. . . .
Ikonas frame buffer, graphics device interface.
il: Interlan 10 Mb/s Ethernet interface.
image. . ..
image file.
images of running processes.
immediate notification.
immune to hangups.
imp: 1822 network interface.
imp: IMP raw socket interface.
IMP interface.
IMP interface.
IMP log interpreter.
IMP logger process.
IMP raw socket interface.
IMP-11A LH/DH IMP interface.
implement shared strings.
implog: IMP log interpreter. v v ¢ 4 4 4 4
implogd: IMP logger process.
improved error recovery. . GG
including aliases and paths (csh only)
in-core state with thatondisk.
incremental dump format.

- xlvii -

gethostid(2)
gethostname(2)
gettable(8C)
hostnm(3F)
uusend (1C)
byteorder(3n)
remote(5)
gethostent(3n)
hosts(5)
phones(5)
ruptime (1C)
hostid(1)
hostname(1)
htable(8)
gettable(8C)
hostid (1)
hostname(1)
hostnm (3F)
hosts(5)
uptime (1)
format(8V)
1ib2648(3X)
hp(4)

ht(4)
htable(8)
byteorder(3n)
byteorder(3n)

getarg(3F)
icheck (8)
getpid (3F)
setregid(2)
setuid(3)
whoami(1)
getuid 3F)
su(1)
idate(3F)
getpid(2)
gethostid (2)
hostid(1)
getgid(2)
getuid(2)
setreuid (2)
perror(3F)
csh(1)

biff (1)
sh(1)
ifconfig (8C)
uu(4)

ik(4)

ik(4)

il4)
abort(3F)
core(5)
geore(1)
csh(1)
csh(1)
imp(4)
imp(4P)
acc(4)
css(4)
implog(8C)
implogd (8C)
imp(4P)
css(4)
xstr(1)
implog(8C)
implogd(8C)
eyacc(l)
which(1)
fsync(2)
dump(5)

August 1983

Permuted Index

dump:
restore:
indent:

tgetnum, tgetflag, tgetstr, tgoto, tputs: terminal
ptx: permuted

bibliography. indxbib, lookbib: build inverted
objects.

strncat, strcmp, strncmp, strcpy, strncpy, strlen,
last:

syscall:

fsplit: split a multi-routine Fortran file into
bibliography, find references in a bibliography.

inet_Inaof, inet_netof: Internet address/

inet_addr, inet_network, inet_ntoa, inet_makeaddr,
address/ inet_addr, inet_network, inet_ntoa,
/inet_network, inet_ntoa, inet_makeaddr, inet_Inaof,
inet_netof: Internet address/ inet_addr,

Internet address/ inet_addr, inet_network,
bad144: read/write dec standard 144 bad sector
dumpfs: dump file system

pac: printer/ploter accounting

getrusage: get

vtimes: get

fstab: static

vfontinfo: inspect and print out

man: find manual

finger: user

miscellaneous: miscellaneous useful

init: process control

ioinit: change 77 1/0

tset: terminal dependent

ttys: terminal

initgroups:

connect:

popen, pclose:

generator; routines for changing/ random, srandom,
fimin, flmax, firac, dfimin, dfimax, dffrac,
clri: clear

fs,

read, readv: read

soelim: eliminate .so’s from nroff’

scanf, fscanf, sscanf: formatted

ungetc: push character back into

fread, fwrite: buffered binary

stdio: standard buffered

ferror, feof, clearerr, fileno: stream status
refer: find and

insque, remque:

vfontinfo:

install:

learn: computer aided

doctor:

fsck: file system consistency check and
fortune: print a random, hopefully

acc: ACC LH/DH IMP

cons: VAX-11 console

css: DEC IMP-11A LH/DH IMP

ct: phototypesetter

dn: DN-11 autocall unit

ec: 3Com 10 Mb/s Ethernet

en: Xerox 3 Mb/s Ethernet

fl: console floppy

hp: MASSBUS disk

ht: TM-03/TE-16,TU-45,TU-77 MASSBUS magtape
hy: Network Systems Hyperchannel

ik: Ikonas frame buffer, graphics device
il: Interlan 10 Mb/s Ethernet

imp: 1822 network

imp: IMP raw socket

lo: software loopback network

August 1983

"inet: Internet protocol family.

incremental file system dump.
incremental file system restore.
indent and format C program source.
indent: indent and format C program source.
independent operation routines. tgetent,
index.
index for a bibliography, find references in a

index, rindex, Inbink, len: tell about character
index, rindex: string operations. strcat,
indicate last logins of users and teletypes.
indirect system call.
individual files.
indxbib, lookbib: build inverted index fora

inet_addr, inet_network, inet_ntoa, inet_makeaddr,
inet_lnaof, inet_netof: Internet address/
inet_makeaddr, inet_Inaof, inet_netof: Internet
inet_netof Internet address manipulation routines.
inet_network, inet_ntoa, inet_makeaddr, inet_Inaof,
inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof:
information.
information.
information.
information about resource utilization.
information about resource utilization.
information about the filesystems.
information about UNIX fonts.
information by keywords; print out the manual.
information lookup program.
information pages.
init: process control initialization.
initgroups: initialize group access list.
initialization.
initialization.
initialization.
initialization data.
initialize group access list.
initiate a connection on a socket.
initiate 1/0 to/from a process.
initstate, setstate: better random number
inmax: return extreme values.
i-node.
inode: format of file system volume.
input.
input.
input conversion.
input stream.
input/output.
input/output package.
inquiries.
insert literature references in documents.
insert/remove element from a queue.
inspect and print out information about UNIX fonts.
insque, remque: insert/remove element from a queue.
install binaries.
install: install binaries.
instruction about UNIX. . .
interact with a psychoanalyst.
interactive repair.
interesting, adage.
interface.
interface.
interface.
interface.
interface.
interface.
interface.
interface.
interface.
interface: s o wmw e m s s 38855555 mEEE
interface. . . .
interface.
interface.
interface.
interface.
interface.

- xlviii -

dump(8)
restore(8)
indent(1)
indent(1)
termcap(3X)
ptx(1)
lookbib(1)
index (3F)
string(3)
last(1)
syscall(2)
fsplit(1)
lookbib(1)
inet(4F)
inet(3n)
inet(3n)
inet(3n)
inet(3n)
inet(3n)
inet(3n)
bad144(8)
dumpfs(8)
pac(8)
getrusage(2)
vtimes(3C)
fstab(5)
vfontinfo(1)
man(1)
finger(1)
intro(7)
init(8)
initgroups(3X)
init(8)
ioinit(3F)
tset(1)
ttys(5)
initgroups (3X)
connect(2)
popen(3)
random (3)
fimin (3F)
ciri(8)

fs(5)
read(2)
soelim(1)
scanf(3S)
ungetc(3S)
fread (3S)
intro(3S)
ferror(3S)
refer(1)
insque(3)
vfontinfo(1)
insque(3)
install (1)
install{1)
learn(1)
doctor (6)
fsck (8)
fortune(6)
acc(4)
cons(4)
css(4)

ct(4)

dn(4)

ec(4)

Fourth Berkeley Distribution

mt: TM78/TU-78 MASSBUS magtape
mtio: UNIX magtape

pel: DEC CSS PCL-11 B Network

cont, point, linemod, space, closepl: graphics
plot: graphics

and Sutherland Picture System 2 graphics device
pup: raw PUP socket

rx: DEC RXO02 floppy disk

tm: TM-11/TE-10 magtape

ts: TS-11 magtape

tty: general terminal

tu: VAX-11/730 and VAX-11/750 TUS8 console cassette
uda: UDA-50 disk controller

un: Ungermann-Bass

ut: UNIBUS TUA4S5 tri-density tape drive
uu: TU58/DECtape 11 UNIBUS cassette
va: Benson-Varian

vp: Versatec

ifconfig: configure network

telnet: user

il:

swapon: add a swap device for

sendmail: send mail over the

/inet_ntoa, inet_makeaddr, inet_lInaof, inet_netof:
ftpd: DARPA

ip:

inet:

tep:

udp:

spline:

implog: IMP log

lisp: lisp

pti: phototypesetter

px: Pascal

pix: Pascal

pi: Pascal

csh: a shell (command

pipe: create an

atomically release blocked signals and wait for
onintr: process

intro:

intro:

intro:

intro:

intro:

intro:

intro:

networking:

intro:

intro:

commands. intro:

ncheck: generate names from

in a bibliography. indxbib, lookbib: build
tread, twrite, trewin, tskipf, tstate: f77 tape
ioinit: change {77

select: synchronous

iostat: report

popen, pclose: initiate

rand, drand,

isascii:/ isalpha, isupper, islower, isdigit,
isspace, ispunct, isprint, iscntrl, isascii:/
isalnum, isspace, ispunct, isprint, iscntrl,
ttynam,

ttyname,

/isdigit, isalnum, isspace, ispunct, isprint,
iscntrl, isascii:/ isalpha, isupper, islower,
isprint, iscntrl, isascii:/ isalpha, isupper,
/islower, isdigit, isalnum, isspace, ispunct,
/isupper, islower, isdigit, isalnum, isspace,
isalpha, isupper, islower, isdigit, isalnum,
system:

ispunct, isprint, iscntrl, isascii:/ isalpha,

Fourth Berkeley Distribution

Permuted Index

interface.
interface.
Interface.
interface. /erase, label, line, circle, arc, move,
interface.
interface.
interface.
interface.
interface.
interface.
interface.
interface.
interface.
interface.
interface.
interface. .
interface.
interface.
interface parameters.
interface to the TELNET protocol.
Interlan 10 Mb/s Ethernet interface.
interleaved paging/swapping.
internet.
Internet address manipulation routines.
Internet File Transfer Protocol server.
Internet Protocol.
Internet protocol family.
Internet Transmission Control Protocol.
Internet User Datagram Protocol.
interpolate smooth curve.
interpreter. .
interpreter.
interpreter.
interpreter.
interpreter and executor.
interpreter code translator.
interpreter) with C-like syntax.
interprocess communication channel.
interrupt. sigpause:
interrupts in command scripts.
introduction to commands.
introduction to compatibility library functions.
introduction to FORFRAN library functions.
introduction to library functions.
introduction to mathematical library functions.
introduction to miscellaneous library functions.
introduction to network library functions.
introduction to networking facilities.
introduction to special files and hardware support.
introduction to system calls and error numbers.
introduction to system maintenance and operation
i-numbers.

inverted index for a bibliography, find references

1/0. topen, tclose, . . « v . v v i 000 e e e .
1/0 initialization. L0000 .
i/omultipleXing. . . « v ¢ ¢ ¢ ¢ e s et 0w 0. e
/0 statistics. .« v v v o v 0 e 0 e e e e e e e
1/0 10/from @ Process. .« « v v ¢ o v 0 4 e e e a0
joctl: control device.
ioinit: change {77 1/0 initialization. e e e e
iostat: report I/O statistics. .« v v 4 o 0 0 0 ...
ip: Internet Protocol.0 e e e e ..
irand: return random values.
isalnum, isspace, ispunct, isprint, iscntrl,
isalpha, isupper, islower, isdigit, isalnum,
isascii: character classification macros. /isdigit, $F %
isatty: find name of a terminal port.
isatty, ttyslot: find name of a terminal.
iscntrl, isascii: character classification macros.
isdigit, isalnum, isspace, ispunct, isprint,
islower, isdigit, isalnum, isspace, ispunct,
isprint, iscntrl, isascii: character classification/
ispunct, isprint, iscntrl, isascii: character/
isspace, ispunct, isprint, iscntrl, isascii:/
issue a shellcommand.
isupper, islower, isdigit, isalnum, isspace,

- xlix -

mt(4)
mtio(4)
pel(4)
plot(3X)
plot(5)
ps(4)
pup(4P)
rx(4)

vp(4)
ifconfig (8C)
telnet (1C)
il4)
swapon(2)
sendmail (8)
inet(3n)
ftpd (8C)
ip(4P)
inet(4F)
tcp(4P)
udp(4P)
spline(1G)
implog(8C)
lisp(1)
pti(1)

px(1)
pix(1)
pi(1)
csh(1)
pipe(2)
sigpause (2)
csh(1)
intro(1)
intro(3C)
intro(3F)
intro(3)
intro(3M)
intro(3X)
intro(3n)
intro(4N)
intro(4)
intro(2)
intro(8)
ncheck (8)
lookbib(1)
topen (3F)
ioinit (3F)
select(2)
iostat(1)
popen(3)
ioctl(2)
ioinit (3F)
iostat(1)
ip(4P)
rand 3F)
ctype(3)
ctype(3)
ctype(3)
ttynam (3F)
ttyname(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
ctype(3)
system (3)
ctype(3)

August 1983

Permuted Index

idate,

io,

jo, j1,

bg: place

fg: bring

jobs: print current
stop: halt a

kill: kill

Iprm: remove

msgs: system messages and
makekey: generate encryption
apropos: locate commands by
man: find manual information by

profile buffers.
kill:

bessel functions: of two

kg:

mem,

linemod, space, closepl:/ plot: openpl, erase,
awk: pattern scanning and processing

bc: arbitrary-precision arithmetic

efl: Extended Fortran

set, shift, times, trap, umask, wait: command
fp: Functional Programming

vgrindefs: vgrind’s

order.

frexp,
leave: remind you when you have to

exit:
index, rindex, Inbink,
truncate: truncate a file to a specified

lex: generator of

acc: ACC

css: DEC IMP-11A

terminal.

ranlib: convert archives to random
lorder: find ordering relation for an object
ar: archive

intro: introduction to

intro: introduction to compatibility
intro: introduction to FORTRAN
intro: introduction te mathematical
intro: introduction to network
intro: introduction to miscelianeous
ar: archive and

limit: alter per-process resource

unlimit: remove resource

quota: display disc usage and

getarg, iargc: return command

space, closepl:/ plot: openpl, erase, label,
kg: KL-11/DL-11W

(obsolete). bk:

col: filter reverse

sysline: display system status on status
Ipr: off

Ip:

print: pr to the

Ipc:

Ipd:

Iprm: remove jobs from the

/erase, label, line, circle, arc, move, cont, point,
head: give first few

_August 1983

itime: return date or time in numerical form. idate(3F)
j0, j1, jn, y0, y1, yn: bessel functions. j0(3M)
j1, jn, y0, v1, yn: bessel functions. j0(3M)
jn, y0, y1, yn: bessel functions. j0(3M)
jobinbackground. g . csh(1)
job into foreground. T O csh(l)
Jobllisth, v 6w v ¢ 5 v ou s B e e e 4 csh(1)
JODOTPIOGESS. o o o v & 5 2 5 5 5 5 s o & 0w o mom csh(1)
jobs and processes. .+ . . 4 e 444 .. a e csh(1)
jobs from the line printer spooling queue. % B S e e Iprm(1)
jobs: print current job list. TR R csh(l1)
join: relational database operator. join(1)
junk mail program. ¢ o . e e e e 0 0. .. msgs(1)
key. .« oo o e makekey(8)
keyword lookup apropos(1)
keywords; print out the manual. « .+ .. man(l)
kg: KL-11/DL-11W lineclock. . . . « v o + kg(4)
kgmon: generate a dump of the operating syslem s kgmon(8)
kill jobs and processes. . ¢ . . 4 4 4 e e e w00 .. csh(1)
kill: kill jobs and processes. . . . 4 v 40 .0 csh(1)
kill: send a signal to a process. W i kill(3F)
kill: send signal to a process.0 kill(2)
kill: terminate a process with extreme prejudice.- kill(1)
killpg: send signal to a process group. e e e e s .. . killpg(2)
kinds for integer orders. 00 o e bessel (3F)
KL-11/DL-11W line clock. v kg(4)
kmem: main memory. . . ¢« v v 0 4 b . a0 0. . mem(4)
label, line, circle, arc, move, cont, point, plot(3X)
language. s w s s wm i o§ 5§ TN EEEN awk(1)
language. e e e e e .« be(l)
Language. « o wm s ow v s s v 5 8 8 s 8 . .oefl(l)
language. /exit, export, login, read, readonly, sh(1)
language compiler/interpreter. fp(1)
language definition database. vgrindefs(5)
lastcomm: show last commands executed in reverse . lastcomm(1)
M:linkeditor. « s vvwwwwwsess i 1d(1)
Idexp, modf: split into mamlssa and expenent. frexp(3)
learn: computer aided instruction about UNIX. learn(1)
leave: o v s s 6 3 5% S mim Ga G & B 588 b as leave(1)
leave: remind you wiien you have to leave. e e s e leave(1)
leavesshell. o« s s swwmnwwwws s 6 65 53 csh(1)
len: tell about character objects S OO G R O O . index(3F)
length. ccvswompwmeomms s 5365 truncate(2)
lex: generator of lexical analysis programs. lex(1)
lexical analysis programs. G ow oW E e E lex(1)
LH/DHIMPinterface. v . v v oo .. . acc(4)
LH/DH IMPinterface. v v v v v v v v u . css(4)
1ib2648: subroutines for the HP 2648 graphxcs o ... 1ib2648(3X)
libraries. . . . i .0 i e e e e e e .. ranlib(1)
Bbramy: v v v v v o v s W wmm wEew § 8 s lorder(1)
(library) file format. G WA 8 e ar(5)
library functions. R w8 intro(3)
library functions. 44000 . . . intro(3C)
library functions. 0o oD o o s e o3 ems e . intro(3F)
library functions. I L IR intro(3M)
library functions.00 oL intro(3n)
library functions. o i intro(3X)
library maintainer. 0. .0 ... ar(1)
limit: alter per-process resource limitations. csh(l)
Hmitations. « « v o« v v s 5 5 4 5 W 5 o e csh(1)
limitiations. 00000 csh(1)
HMits: s mmw s o ¢ & 5 5 & & 5 @ % 5w . quota(1)
line arguments. . .« . v v v b e e e e e e e getarg(3F)
line, circle, arc, move, cont, pomt linemod, plot(3X)
fingclock: wwmwwwa s « 4 6 ¢ 83 3 5% 8 wass kg(4)
line discipline for machine-machine communication . bk(4)
line feeds: « v wwarc o 5 6 ¢ v 5 % 5 5 % 5 . col(l)
lineofaterminal. 5 T o st o sysline(1)
lineprint. R R T 1pr(1)
neprinter: wovwww s s 85 85555 s w5 d ip(4)
line printer. e . .« . print(1)
line printer control program. §F 8 58S EoEEm e Ipc(8)
line printer daemon. 1pd(8)
line printer spooling queve. Iprm(1)
linemod, space, closepl: graphics interface. plot(3X)
lines. head(1)
-1- Fourth Berkeley Distribution

comm: select or reject

fold: fold long

uniq: report repeated

look: find

rev: reverse

readlink: read value of a symbolic
id:

a.out: assembler and

link: make a hard
symlink: make symbolic
link: make a

In: make

Ixref:
lisp:

liszt: compile a Franz

troff. vip: Format

glob: filename expand argument
history: print history event

jobs: print current job

shift: manipulate argument
getgroups: get group access
initgroups: initialize group access
fook: find lines in a sorted

nlist: get entries from name
nm: print name

setgroups: set group access
symorder: rearrange name
varargs: variable argument

Is:

foreach: loop over

users: compact

listen:

vgrind: grind nice
refer: find and insert

index, rindex,

and time to ASCII. ctime,

(csh only). which:

apropos:

whereis:

end, etext, edata: last

flock: apply or remove an advisory

collect system diagnostic messages to form error
syslog, openlog, closelog: control system
gamma:

implog: IMP

power, square root. exp,

syslog:

square root. exp, log,

exp, log, logl0, pow, sqrt: exponential,
rwho: who's

implogd: IMP

flush: flush output to a

fseek, ftell: reposition a file on a

getc, fgetc: get a character from a

putc, fputc: write a character to a fortran
rlogin: remote

ac:

getlog: get user’s

getlogin: get

login:

passwd: change

/break, continue, cd, eval, exec, exit, export,
utmp, wtmp:

rlogind: remote

chsh: change default

Fourth Berkeley Distribution

Permuted Index

lines common to two sorted files.
lines for finite width output device.
lines in a file.
lines in a sorted list.
lines of a file.
link.
link editor. . .
link editor output.
link: make a hard link to a file.
link: make a link to an existing file.
link to a file. rE
link to a file.
link to an existing file. . . .
links. . . .
lint: 2 C program verifier.
lisp cross reference program.
lisp interpreter. v oo D owom oo e e e e e 6 @ .
lisp: lisp interpreter.
Lisp program.
Lisp programs to be printed with nroff, vtroff, or
list.

list of names. e e
list of users who are on the system.
listen for connections on a socket.
listen: listen for connections on a socket.
listings of programs.
liszt: compile a Franz Lisp program. « « « . .
literature references in documents.

In: make links.
inbink, len: tell about character objects.
lo: software loopback network interface.
loc: return the address of an object.
localtime, gmtime, asctime, timezone: convert date
locate a program file including aliases and paths
locate commands by keyword lookup.
locate source, binary, and or manual for program.
locations in program.
lock on an open file.
lock: reserve a terminal.
log. dmesg:
log.
log gamma function.
log interpreter.
log, logl0, pow, sqrt: exponential, logarithm,
log systems messages.
log10, pow, sqrt: exponential, logarithm, power,
logarithm, power, square root.
logged in on local machines.
logger process.
logical unit.
logical unit.
logical unit.
logical unit.
login.
login accounting.
login: login new user.
login name.
login name.
login new user.
login password.
login, read, readonly, set, shift, times, trap,/
login records.
login server.
login shell.

-1i -

comm(1)
fold(1)
unig(1)

look (1)
rev(l)
readlink (2)
1d(1)
a.out(5)
link(2)

link (3F)
link (2)
symlink (2)
link (3F)
In(1)

lint(1)
Ixref(1)
lisp(1)
lisp(1)

liszt (1)
vip(1)
csh(1)
csh(1)
csh(1)
csh(1)
getgroups(2)
initgroups(3X)
Took (1)
nlist(3)
nm(1)
setgroups(2)
symorder(1)
varargs(3)
1s(1)

csh(1)
users(1)
listen(2)
listen(2)
vgrind (1)
liszt (1)
refer(1)

loc(3F)
ctime(3)
which(1)
apropos(1)
whereis(1)
end(3)
flock (2)
lock (1)
dmesg(8)
syslog(3)
gamma (3M)
implog (8C)
exp(3M)
syslog(8)
exp(3M)
exp(3M)
rwho(1C)
implogd (8C)
flush 3F)
fseek{3F)
getc(3F)
putc(3F)
rlogin(1C)
ac(8)
csh(1)
getlog (3F)
getlogin(3)
csh(1)
passwd(1)
sh(1)
utmp(5)
rlogind (8C)
chsh(1)

August 1983

Permuted Index

last: indicate last
setjmp,

find references in a bibliography. indxbib,
apropos: locate commands by keyword
finger: user information

break: exit while/foreach

continue: cycle in

end: terminate

foreach:

lo: software

library.

mklost+found: make a

quéue.

bit: and, or, xor, not, rshift,
stat,

stat,

time, ctime,

bk: line discipline for

ruptime: show host status of local

rwho: who's logged in on local

mé:

alias: shell

isprint, iscntrl, isascii: character classification
ms: text formatting

translate version 6 manual macros to version 7
me:

man:

trman: translate version 6 manual

mt:

ht: TM-03/TE-16,TU-45,TU-77 MASSBUS
mt: TM78/TU-78 MASSBUS

mtio: UNIX

tm: TM-11/TE-10

ts: TS-11

rmt: remote

mail: send and receive

encode/decode a binary file for transmission via
xsend, xget, enroll: secret

sendbug:

mailaddr:

newaliases: rebuild the data base for the
binmail: send or receive

biff: be notified if

from: who is my

prmail: print out

sendmail: send

msgs: system messages and junk

rmail: handle remote

mem, kmem:

make:

ar: archive and library
intro: introduction to system
mkdir:

mkdir:

link:

link:

mklost+found:
mknod:

mktemp:

In:

symlink:

August 1983

login: sign on.
logins of users and teletypes.
logout: end session.00l
longjmp: non-local goto.
look: find lines in a sorted list.
lookbib: build inverted index for a bibliography,
lookup.
lookup program.
loop.
loop.
loop.
loop over list of names.
loopback network interface.
lorder: find ordering relation for an object
lost+found directory for fsck.
Ip: line printer.
Ipc: line printer control program.
Ipd: line printer daemon.
Ipq: spool queue examination program.
Ipr: off line print.
Iprm: remove jobs from the line printer spooling
Is: list contents of directory.
Iseek: move read/write pointer.
Ishift bitwise functions.
Istat, fstat: get file status.
Istat, fstat: get file status.
Itime, gmtime: return system time. . o5 e
Ixref: lisp cross reference program.
m4: macro processor.
machine-machine communication (obsolete).
machines.
machines.
macro processor.
macros.
macros. /isdigit, isalnum, isspace, ispunct,
macros.
macros. trman:
macros for formatting papers.
macros to typeset manual.
macros to version 7 macros. T EE
magnetic tape manipulating program.
magtape interface.
magtape interface.
magtape interface.
magtape interface.
magtape interface.
magtape protocol module.
mail.
mail. uuencode,uudecode:
mall, s s s s s s s s PP M S EEH LT F 8 E b
mail a system bug report to 4bsd-bugs.
mail addressing description.
mail aliases file.
mail among users.
mail arrives and who it is from.
mail from?.
mail in the post office.
mail over the internet.
mail program.
mail received via uucp.
mail: send and receive mail.
mailaddr: mail addressing description.
main memory.
maintain program groups.
maintainer. B
maintenance and operation commands.
make a directory.
make a directory file.
make a hard link to a file.
make a link to an existing file.
make a lost+found directory for fsck.
make a special file.
make a unique file name.
make links.
make: maintain program groups. . . .« . .« « 4+
make symbolic link to a file.

- lii -

login(1)
last(1)
csh(1)
setimp(3)
look(1)
lookbib(1)
apropos(1)
finger(1)
csh(1)
csh(1)
csh(1)
csh(l)

lo(4)

lorder (1)
mklost+found(8)
1p(4)

Ipc(8)
1pd(8)
Ipg(1)
Ipr(1)
Iprm(1)
Is(1)

Iseek (2)
bit(3F)
stat(2)
stat(3F)
time (3F)
Ixref(1)
m4(1)

bk (4)
ruptime(1C)
rwho(1C)
m4(1)
csh(1)
ctype(3)
ms(7)
trman(1)
me(7)
man(7)
trman(1)
mt(1)

ht(4)

mt(4)
mtio(4)
tm(4)

ts(4)
rmt(8C)
mail (1)
uuencode (1C)
xsend (1)
sendbug(1)
mailaddr (7)
newaliases (1)
binmail (1)
biff(1)
from(1)
prmail(1)
sendmail(8)
msgs(1)
rmail(1)
mail(1)
mailaddr(7)
mem (4)

mklost+found(8)
mknod(2)
mktemp(3)

In(1)

make(1)

symlink (2)

Fourth Berkeley Distribution

makedev:
vwidth:
script:

allocator.
the manual.

shift:

quota:

tp:

route: manually

mt: magnetic tape

inet_Inaof, inet_netof: Internet address
frexp, Idexp, modf: split into

catman: create the cat files for the

find manual information by keywords; print out the
man: macros to typeset

whereis: locate source, binary, and or

manual. man: find
trman: translate version 6
route:

umask: change or display file creation
sigsetmask: set current signal

umask: set file creation mode

mkstr: create an error message file by
ho:

p:
ht: TM-03/TE-16,TU-45,TU-77
mt: TM78/TU-78

intro: introduction to

eqn, negn, checkeq: typeset
getrlimit, setrlimit: control
vlimit: control

ec: 3Com 10

en: Xerox 3

il: Interlan 10

bed: convert to antique
vv: Proteon proNET 10

groups: show group

mem, kmem: main

malloc, free, realloc, calloc, alloca:
valloc: aligned

vfork: spawn new process in a virtual
abort: terminate abruptly with

core: format of

vmstat: report virtual

sort: sort or

pmerge: pascal file

mkstr: create an error

recv, recvirom, recvmsg: receive a

send, sendto, sendmsg: send a

error: analyze and disperse compiler error
mesg: permit or deny

perror, sys_errlist, sys_nerr: system error
PError, gerror, ierrno: get system error
psignal, sys_siglist: system signal

syslog: log systems

msgs: system

dmesg: collect system diagnostic

mille: play

intro: introduction to
pages.
miscellaneous:

source.

Fourth Berkeley Distribution

make system special files.
make troff width table forafont.

make typescript of terminal session.

makedev: make system special files.
makekey: generate encryption key.
malloc, free, realloc, calloc, alloca: memory o
man: find manual information by keywords;
man: macros to typeset manual.
manipulate argument list.
manipulate disk quotas.
manipulate tape archive.
manipulate the routing tables.
manipulating program.
manipulation routines. /inet_ntoa, mel makeaddr
mantissa and exponent.

manal: o w e wmmo s & o 8 8 6 4 8 8 6 %%
manual. Man: 00l e e e e e
manual, . ww e v m s v o 86 8 5 E e G

manual for program.
manual information by keywords. pnnl out lhe .
manual macros to version 7 macros.
manually manipulate the routing tables. 50 009
mask.
mask.
mask.
massaging Csource. . « « v v v v v v e 0w .
MASSBUS disk interface. .
MASSBUS magtape interface.
MASSBUS magtape interface.
mathematical library functions.
mathematics.
maximum system resource consumption.
maximum system resource consumption.

Mb/s Ethernet interface. v . 0 o0 . .

Mb/s Ethernet interface.
Mb/s Ethernet interface.
me: macros for formatting papers.
media.
Megabit ring.

mem, kmem: main memory.
memberships.00 0o 0o e
MEMOTY: & v s s o s wwiv o @@ s & s 8
memory allocator. 00w e
memory allocator. 0. 0w e e ..

memory efficientway.
memory image.
memory image file.
memory Statistics. 4 . e e e e . 0. . .
mergefiles.00 il i e e e e
merger.
mesg: permit or deny messages. ST T
message file by massaglnngource. T LEE
message fromasocket. 0.0 ...

message fromasocket.
TABSSARES; 5 5 ¢ v 5 5 5 3 B E S e .
MESSHEES: o o v « » > & ¢ e e e o g e S e
TESSAPES. o s s s V5 4 s LB BT RN E HE G &
MESSABES: « v v o & & & © o o w w0 w o w e
THESSARES: & 5 v ¢ 5 5 5 8 8 PR F W@ EE w8
MESSALLS. « o o s s » o o o o 6 0 o 65 s o 0 o
messages and junk mail program.
messages to formerrorlog.

Mille Bournes.
mille: play Mille Bournes.

mlscellaneous hbrary funcuvns " w1
us! us useful mformanon &%
mlscellanecus useful information pages. S nn

mkdir: make a directory.
mkdir: make a directory file.
mkfs: construct a file system. . . . »

mklost+found: make a lost+found dlreclory for fsck.

mknod: build special file.
mknod: make a special file. . .
mkproto: construct a prototype file system.
mkstr: create an error message file by massaging C

mktemp: make a unique file name.

- liii -

Permuted Index

. makedev(8)
. vwidth(1)
script(1)

. makedev(8)
. makekey(8)
. malloc(3)
. man(l)

. man(7)

. csh(l)

. quota(2)
.op(l)

. route(8C)
. mu(1)

. inet(3n)

. frexp(3)

. catman(8)
. man(l)

. man(7)

. whereis(1)
. man(l)

. trman(1)

. route(8C)
. csh(1)

. sigsetmask(2)
. umask(2)
. mkstr(1)

. hp(4)

. ht(4)

. mté4)

. intro(3M)
. eqn(l)

. getrlimit(2)
. vlimit(3C)
. ec(4)

. en(4)

. il4)

. me(7)

. bed(6)

. wi(4)

. mem(4)

. groups(1)
. mem(4)

. malloc(3)

. valloc(3)

. vfork(2)

. abort(3F)
. core(5)

. vmstat(1)
. sort(1)

. pmerge(l)
. mes|

. mkstr(1)

. recv(2)

. send(2)

. error(1)

. mesg(l)

. perror(3)

. perror(3F)
. psignal(3)
. syslog(8)

. msgs(1)

. dmesg(8)

. mille(6)

. mille(6)

. intro(3X)

. . intro(7)

. intro(7)

. mkdir(1)

. mkdir(2)

. mkfs(8)

. mklost+found(8)
. mknod(8)

. mknod(2)

. mkproto(8)

. mkstr(1)

. mktemp(3)

August 1983

Permuted Index

chmod: change

getty: set terminal

umask: set file creation
chmod: change

chmod: change

frexp, ldexp,

touch: update date last
recovery. eyacc:

rmt: remote magtape protocol
up: unibus storage

what: show what versions of object
monitor, monstartup,

profile.

monop:
monitor,

curses: screen functions with *“‘optimal’’ cursor
mount, umount:
mount, umount:

mtab:

plot: openpl, erase, label, line, circle, arc,
mv:

Iseek:

hk: RK6-11/RK06 and RKO07

eyacc: modified yacc allowing

dh: DH-11/DM-11 communications
dz: DZ-11 communications

select: synchronous i/o

dmf: DMF-32, terminal

fsplit: split a

switch:

from: who is

getdiskbyname: get disk description by its
getenv: value for environment
getlog: get user’s login
getlogin: get login
getsockname: get socket
mktemp: make a unique file
pwd: working directory

tty: get terminal

hosts: host

networks: network

protocols: protocol

services: service

getpw: get

nlist: get entries from

nm: print

symorder: rearrange

rename: change the

ttyname, isatty, ttyslot: find
ttynam, isatty: find
getpeername: get
gethostname, sethostname: get/set
hostnm: get

hostname: set or print

bind: bind a

foreach: loop over list of
term: conventional

ncheck: generate

eqn,
rdump: file system dump across the
rrestore: restore a file system dump across the

ntohl, ntohs: convert values between host and
getnetbyname, setnetent, endnetent: get

August 1983

mode. R . . .
mode: s ww e e G § % 8 ¥ 8 U 8 8 B Beleybue
modemask. o & e
modeofafile. W% EE R Y LE REE 5
mode of file. "
modf: split into mantissa and exponent. s w6 & %
modified ofafile. SR
modified yacc allowing much improved error
module, . s s s vosmmweww s 5a s s s %
module controller/drives. 5 5
modules were used to constructafile.
moncontrol: prepare execution profile.
monitor, monstartup, moncontrol: prepare execution .
monop: Monopoly game. S
Monopolygame. 4w e ..

monstartup, moncontrol: prepare execullon proﬁle

more, page: file perusal filter for crt viewing.
motion. . . .
mount and dismount file system.
mount or remove file system.
mount, umount: mount and dismount file syslem

mount, umount: mount or remove file system.
mounted file system table.
move, cont, point, linemod, space, closepl:/ T
move or rename files. . .

move read/write pointer. &
moving head disk. o i e e
ms: text formatting macros. §

msgs: system messages and junk mail program.
mt: magnetic tape manipulating program. 5 o) 8 i @
mt: TM78/TU-78 MASSBUS magtape mlerface i
mtab: mounted file system table.
mtio: UNIX magtape interface. . . .
much improved error recovery.
multiplexer.
multiplexer.
multiplexing. o 1 0 i 0
multiplexor.
multi-routine Fortran file into individual files.
multi-way command branch.
mv: move or rename files.
my mail from?.
name. . .
name. .
name.
name.
name.
name.
name.
name. . ..
namedatabase. . . . v v v v e E s i s 6 8 s
name data base.
name data base.
name data base.
name from uid. .
name list.
name list.
namelist.
name of a file.
name of a terminal.
name of a terminal port.
name of connected peer. . . .
name of current host.
name of current host.
name of current host system.
nametoasocket.
names.
names for terminals.
names from i-numbers. Ao G
ncheck: generate names from 1—numbers. W) e
neqn, checkeq: typeset mathematics.
netstat: show network status.
network.
network.

network byte order htonl htons
network entry. getnetent, getnetbyaddr,

- liv -

chmod(1)
getty(8)
umask(2)
chmod (3F)
chmod(2)
frexp(3)
touch(1)
eyacc(1)
rmt(8C)
up(4)
what(1)
monitor (3)
monitor (3)
monop(6)
monop(6)
monitor (3)
more(1)
curses(3X)
mount(8)
mount(2)
mount(8)
mount(2)
mtab(5)
plot(3X)
mv(1)

Iseek (2)
hk(4)

ms(7)
msgs(1)
mt(1)

mt(4)
mtab(5)
mtio(4)
eyacc(1)
dh(4)

dz(4)
select(2)
dmf(4)
fsplit(1)
csh(1)
mv(1)
from(1)
getdisk (3X)
getenv(3)
getlog(3F)
getlogin(3)
getsockname(2)
mktemp(3)
pwd (1)

tty (1)
hosts(5)
networks(5)
protocols(5)
services(5)
getpw(3C)
nlist(3)
nm(1)
symorder(1)
rename(2)
ttyname (3)
ttynam (3F)
getpeername(2)
gethostname (2)
hostnm (3F)
hostname (1)
bind(2)
csh(1)
term(7)
ncheck(8)
ncheck (8)
eqn(l)
netstat(1)
rdump(8C)
rrestore(8C)
byteorder(3n)
getnetent(3n)

Fourth Berkeley Distribution

gethostbyname, sethostent, endhostent: get
imp: 1822

lo: software loopback

pcl: DEC CSS PCL-11 B
ifconfig: configure

intro: introduction to
networks:

routed:

netstat: show

hy:

networking: introduction to

creat: create a

open a file for reading or writing, or create a
newfs: construct a

arcv: convert archives to

fork: create a

vfork: spawn

login: login

adduser: procedure for adding

aliases file.

dbminit, fetch, store, delete, firstkey,
gettable: get

htable: convert

vgrind: grind

(sh only).

only). nice,

setjmp, longjmp:

bit: and, or, xor,

notify: request immediate
biff: be

soelim: eliminate .so’s from
tbl: format tables for
colcrt: filter

troff,

deroff: remove

vlp: Format Lisp programs to be printed with
checknr: check

network byte order. htonl, htons,

order. htonl, htons, ntohl,

phones: remote host phone

arithmetic: provide drill in

rand, srand: random

random, srandom, initstate, setstate: better random
atof, atoi, atol: convert ASCII to

intro: introduction to system calls and error
number: convert Arabic

idate, itime: return date or time in

loc: return the address of an

long, short: integer

size: size of an

lorder: find ordering relation for an

what: show what versions of

strings: find the printable strings in a

index, rindex, Inblnk, len: tell about character

line discipline for machine-machine communication
od:

prmail: print out mail in the post

nohup: run a command at low priority (sh
program file including aliases and paths (csh
file. open:

fopen, freopen, fdopen:

flock: apply or remove an advisory lock on an

Fourth Berkeley Distribution

Permuted Index

network host entry. gethostent, gethostbyaddr, gethostent(3n)
network interface. v owow o ow e e IMpE)
network interface. v e e e e e e e .. lo(4)
Network Interface. . « v ¢ ¢ ¢ o o o o s o o o o o & pel(4)
network interface parameters. ifconfig (8C)
network library functions. 0. intro(3n)
network name data base.0 ... networks(5)
network routingdaemon. routed (8C)
NEtWOTK StAtUS. & v o v v o o o o o o o o o 0 o o o netstat(1)
Network Systems Hyperchannel interface. hy(4)
networking facilities. o000 intro(4N)
networking: introduction to networking facilities. intro(4N)
networks: network name database. networks(5)
HEWAIE, wwww o v 5 4 65 5 & 5 W E 6w & @86 creat(2)
newfile. OPEN: & v v v 4 v v e e e e e e e e .. open(2)
newfilesystem.o 0o v 4 newfs(8)
new format. . .c.s & 5 5 § & 5 5 5.5 s 5 o 0 8 10 8 arcv(8)
NEW PEOCESS: s & & & & o & % % % w5 & o & .« .. fork(2)
new process in a virtual memory efficient way. vfork(2)
MEW USET. « v v o o o o o o o o o o o o o o o o o csh(1)
NEWUSETS: s v s 4 5 ¢ 5 8 6 3 s s &% @is® adduser(8)
newaliases: rebuild the data base for the mail newaliases(1)
newfs: construct a new file system. newfs(8)
nextkey: data base subroutines. ey dbm (3X)
NIC format host tables fromahost. gettable (8C)
NIC standard format host tables. htable(8)
nice listings of programs. vgrind (1)
nice, nohup: run a command at low priority nice(1)
nice: run low priority process. . « « « ¢ « ¢ + o o . csh(l)
nice: set Program Priority. . « « « « o o« o o o o o o & nice(3C)
nlist: get entries from name list. nlist(3)
nm:printname list. v e h e e e nm(1)
nohup: run a command at low priority (sh . . . mnice(l)
nohup: run command immune to hangups. csh(1)
non-10cal Boto. « v v v v 4 e e e e e e e e e setjmp(3)
not, rshift, Ishift bitwise functions. bit(3F)
notification. v e v v v v w e w s s 56 v s 6 s ow e csh(1)
notified if mail arrives and who it is from. biff(1)
notify: request immediate notification. csh(1)
nroffinput. & . v . h e e e e e e e e e e e e e .. soelim (1)
aroffortroff. . sowiw e w0 e s e e e s tbl(1)
nroff output for CRT previewing. colert(1)
nroff: text formatting. nroff(1)
nroff: text formatting and typesetting. troff(1)
nroff, troff, tbl and eqn constructs. deroff(1)
nroff, vtroff, ortroff. vip(1)
nroff/trofffiles. 000 checknr(1)
ntohl, ntohs: convert values between host and . . . byteorder(3n)
ntohs: convert values between host and network byte byteorder(3n)
null:datasink.o v v vt e e null(4)
number: convert Arabic numerals to English. number(6)
numberdatabase.0 v e e e e e ... phones(5)
NUMbErfacts. + o « e m s G ¥ e W arithmetic(6)
number generator.« rand(3C)
number generator; routines for changing generators. random(3)
numbers: s s s s s v wE e N @R g R EE o 5§ atof(3)
DUMDBEIS. & v v v v v v v v e e e e e e e e . intro(2)
numeralsto English. number (6)
numerical form. e e e idate (3F)
ODJECL., & & v s 4 % s o e e E E 8§ loc(3F)
object CONVersion. e v e e e e e e w0 .. long (3F)
objectfile.ttt e size(1)
ObjectibTALY:. s v v s s v wC R B G S 8 ¥ § 5§ lorder(1)
object modules were used to construct a file. what(1)
object, or other binary, file. strings(1)
ObIECHS: &+ 5 5 ¢ 5 45 38 M EFEFE G -8 0 & 5 5 8 index 3F)
(obsolete). bk: v . v v h e e e e e e bk(4)
octal, decimal, hex, asciidump. od(1)
od: octal, decimal, hex, ascii dump. od(1)
Office: « a v s v s s s s n W BB WEEE T § 8§ & prmail (1)
onintr: process interrupts in command scripts. csh(l)
only). Mce, « v o s o0 wwmw s G s 88 8 nice (1)
only). which:locateao v which(1)
open a file for reading or writing, or create anew . . . open(2)
OPEMASITEAM. v ¢ v v v v o v o o o v o e o v wu s fopen(3S)
openfile.t e e e e flock (2)
-lv- August 1983

Permuted Index

a new file.

closedir: directory operations.

syslog,

cont, point, linemod, space, closepl:/ plot:
savecore: save a core dump of the

kgmon: generate a dump of the

intro: introduction to system maintenance and
tgetstr, tgoto, tputs: terminal independent
bcopy, bcmp, bzero, ffs: bit and byte string
telldir, seekdir, rewinddir, closedir: directory
strepy, strncpy, strlen, index, rindex: string
join: relational database

curses: screen functions with

stty: set terminal

getsockopt, setsockopt: get and set

ntohs: convert values between host and network byte
lastcomm: show last commands executed in reverse
lorder: find

bessel functions: of two kinds for integer

vi: screen

a.out: assembler and link editor

terminate a process after flushing any pending
ecvt, fevt, gevt:

printf, fprintf, sprintf: formatted

fold: fold long lines for finite width

colcrt: filter nroff

flush: flush

foreach: loop

sendmail: send mail

trapov: trap and repair floating point

exec:

chown: change

chown: change

quot: summarize file system

format: how to format disk
more,

getpagesize: get system
pagesize: print system
1eous useful information

tk:

swapon: specify additional device for
drum:

swapon: add a swap device for interleaved
socketpair: create a

me: macros for formatting

ifconfig: configure network interface
diskpart: calculate default disk

pc:

pxref:

getpass: read a

passwd: change login

passwd:

vipw: edit the

getpwuid, getpwnam, setpwent, endpwent: get
getwd: get current working directory

getcwd: get

which: locate a program file including aliases and
grep, egrep, fgrep: search a file for a

awk:

pel: DEC CSS
popen,

getpeername: get name of connected

August 1983

open: open a file for reading or writing, or create open(2)
opendir, readdir, telldir, seekdir, rewinddir, directory(3)
openlog, closelog: control system log. syslog(3)
openpl, erase, label, line, circle, arc, move, plot(3X)
operating SYStem. . . . 4 . . e v 4w e e e e savecore(8)
operating system’s profile buifers. kgmon(8)
operation commands. 4 4 4 e e . e 0o o. . intro(8)
operation routines. tgetent, tgetnum, tgetflag, termcap(3X)
OpErations. & ¢ ¢ s % s % B B m G @ B S B 8 s e bstring(3)
operations. opendir, readdir,+ .. . directory(3)
operations. strcat, strncat, strcmp, strncmp, string(3)
OPBRAOR. o o o & o s & @ o om0 o o im0 s oo f6e & w5 join(1)
“optimal” cursor motion.0 e curses(3X)
OPHONS. v v v v ¢t v v o o o o o o o 0 o o o o e stty (1)
Options 0N SOCKELS. v & & ¢ v o 4 4 4 4 e 0w e .. getsockopt(2)
order. htonl, htons, ntohl, byteorder(3n)
OPAET: wo s & o v & 5 v & 3 5% e s e Y 6 lastcomm (1)
ordering relation for an object library. lorder(1)
OFHEES, i v s o5 5 & wo o v on b il tan bms ot ot ot v | & bessel (3F)
oriented (visual) display editor based onex. vi(1)
OULPUL 4 v v v v e e v e e e e e e e e e a.out(5)
Output: BRI . v v s v ks e mm e @ . exit(3)
OULPUL CONVETSION. « « « « & & v o o ¢ o o o o o o ecvt(3)
OUtPUL CONVETSION. v v ¢ v v o v o v o o & & printf(3S)
output device. c B RE R e R e fold(1)
output for CRT previewing. « v v v v v v v . colert(1)
outputtoalogical Umit. « « « « ¢ s w0 v W e e e s s flush(3F)
overlistofnames. 000 .. csh(1)
overtheinternet. . . . ¢ v v v o b v b w0 0w sendmail (8)
OVETIOW: & o6 & § 8 § 5 5 3 5 5 s % 80 0 6 8 o cot b trapov(3F)
overlay shell with specified command. csh(l)
OWNEr: wiw@iw s & 8§ 8 8 & 5 5 % & @ 5 & 5% @ chown (8)
ownerand groupofafile. chown(2)
OWHErShip, o jw & 6 & 5 5 5 8 5 5 & o) 5 % & @ 5 6 @ quot(8)
pac: printer/ploter accounting information. pac(8)
PACKS: & wwiow o & 5 5 8 8 8 5 % @@ @ e W format(8V)
page: file perusal filter for crt viewing. more(1)
PARETSIZEL: s oo i@ ® & & W % 5 % 8 % e e e T getpagesize (2)
PaREISIZE, s 8 8 8 8 8 5 % 3 o % @ e e pagesize (1)
DA e R SR o e grogs intro(7)
pagesize: print system page Size. 4 o4 o0 o. . pagesize (1)
paginator for the Tektronix 4014. tk(1)
paging and Swapping.« . . 4 4 4 e . e swapon (8)
DAGINE dEVICE, & s @ & & 3 § ¥ o & & 4w 5 W w4 drum (4)
paging/swapping. . . « . ¢ 4 4 e e 4 e e e e e e * swapon(2)
pair of connected sockets. 0 0444w .. socketpair (2)
PADEIS. o 4l v /s w6 5 & 5 4 § = 5 m o mms e in e me(7)
PAPAMGLEIS: v v oo o & & o 5 & % & o @ @ ifconfig(8C)
Partition Sizes. . v . v v . 4 e v e e e e e diskpart(8)
Pascal compiler. .+ « v v v v v v v e e e e e pe(1)
Pascal cross-reference program. pxref(1)
pascal debugger. e v e e e e e e e pdx(1)
Pascal execution profiler. pxp(1)
pascal file Merger. v v v 4w e e e e e pmerge(1)
Pascal interpreter: woow s o » 6 5 5 5 5 % W e W px(1)
Pascal interpreter and eXecutor. pix(1)
Pascal interpreter code translator. pi(1)
passwd: change login password. passwd(1)
passwd: password file. passwd(5)
PASSWOTds wiw o % w o & & & 8 % 8 % % BE W AW getpass(3)
PASSWOTA. v v v v v v 4 b e e e e e e e e e e . passwd (1)
password file: o v wwiww 5w 5 5 5 5 8 8 e woe s passwd (5)
password file. L. 0 e ... vipw(8)
password file entry. getpwent, getpwent(3)
PRthname, o aw e s @ic® & 5 7 8 6 8 & 5 & o & @ & getwd (3)
pathname of current working directory. 55 0 D e getewd (3F)
paths (cshonly). . . v v v v v v i v e e which(1)
PAEIN. & + v v v vt e e e e e e e e e e e e e grep(1)
pattern scanning and processing language. awk (1)
pause: stop untilsignal. pause(3C)
pc: Pascal compiler. v . 0w e e . .. pe(D)
pcl: DEC CSS PCL-11 B Network Interface. pcl(4)
PCL-11 B Network Interface. .+ « v v v v v o 0 v 0 pel(4)
pclose: initiate 1/0 to/from a process. popen(3)
pdx: pascal debugger.4 0. pdx(1)
PEEE: « s v ww wwi s w s ¥ & 8 & 5 8 5 8 % @ getpeername (2)
- Ivi - Fourth Berkeley Distribution

Permuted Index

exit: terminate a process after flushing any pendingoutput.00 exit(3)
mesg: permit or deny messages.+'e mesg(l)
ptx: permuted index. e e e e e e e .. ptx(1)
limit: alter per-process resource hmllanons v e w0 e @ e e s Coni(L)
perror, gerror, ierrno: get system error messages. . . . perror(3F)
messages. perror, sys_errlist, sys_nerr: system error perror(3)
sticky: executable files with persistenttext. v v v v v v o v v . o .. . sticky(8)
more, page: file perusal filter for crt viewing. e e e e e . more(l)
phones: remote host phone number database. phones(5)
phones: remote host phone number data base. phones(5)
ct: phototypesetter interface. 0 .0 ct(4)
pti: phototypesetter interpreter. . « « « v o o o« o o . o Pti(l)

tc: photoypesetter simulator. te(1)
pi: Pascal interpreter code translator. pi(l)

ps: Evans and Sutherland Picture System 2 graphics device interface. ps(4)
pipe: create an interprocess communication channel. . . pipe(2)
tee: pipefitting.0 e e e e e e e tee(l)
pix: Pascal interpreter and executor. pix(l)
bg: place job in background. csh(l)
fish: play “Go Fish™. e e e fish(6)
mille: play Mille Bournes. I 1111 [1(9)
boggle: play the game of boggle. boggle(6)
worm: Play the growing wormgame. worm(6)
plot: graphics filters. plot(lG)
plot: graphics interface. . . . v s e ww e s plot(s)
move, cont, point, linemod, space, closepl:/ plot: openpl, erase, label, line, c1rcle arc, plot(3X)
vtroff: troff toaraster plotter. v v v v v v e v v u e viroff(l)
pmerge: pascal file merger. pmerge(l)
trpfpe, fpecnt: trap and repair floating pointfaults. trpfpe(3F)
/erase, label, line, circle, arc, move, cont, point, linemod, space closepl: graphics mlerface . . . plot(3X)
trapov: trap and repair floating pointoverflow. trapov(3F)
Iseek: move read/write POINtEr. . . v v 4 4 v 4 4 4 e e . e e e lseek(2)
dmc: DEC DMC-11/DMR-11 point-to-point communications device. dmc(4)
popd: pop shell directory stack. csh(l)
popd: pop shell directory stack. csh(l)
popen, pclose: initiate 1/0 to/from a process. . . ‘. . . popen(3)
ttynam, isatty: find name of a terminal port. ttynam(3F)
ttytype: data base of terminal types by port. 0o i o v v 400 0. .. . ttytype(S)
prmail: print out mail in the post office. GV w e E ¢y ¥ ¥ s § s & was Drmaill)
analyze: Virtual UNIX postmortem crash analyzer. analyze(8)
root. exp, log, logl0, pow, sqrt: exponential, logarithm, power, square . . . exp(3M)
exp, log, logl10, pow, sqrt: exponential, logarithm, power, square root. Y .] €1,)
prrprintfile.c0...... pr(l)
print: prtothelineprinter.:.......... prnt(l)
monitor, monstartup, moncontrol: prepare execution profile. monitor(3)
colert: filter nroff output for CRT previewing. v v v v v v v v v v v« .. . colert(l)
types: primitive system datatypes. types(5)
cat: catenate and print. D 11 ¢ 0]
Ipr: off line print. sa s e v s s e w s ow IpE)
fortune: print a random, hopefully mteresung, adage. fortune(6)
date: print and set the date. G E s § o5 8 8 & s date(l)
cal: printcalendar.00 a0 0. . . cal(l)
hashstat: print command hashing statistics. csh(l)
jobs: print currentjoblist. csh(l)
whoami: print effective current userid. <« ... whoami(l)
pr: printfile. . . : <5 5 v 60w e e as s e s prdl
fpr: print Fortran file. D i ¢ 0]
history: print history eventlist. csh(l)
hostid: set or print identifier of current host system. hostid(1)
banner: print large banner on printer. banner(6)
nm: printnamelist.4.4.4...... nm(l)
hostname: set or print name of current host system. hostname(l)
vfontinfo: inspect and print out information about UNIX fonts. vfontinfo(l)
prmail: print out mail in the post office. prmail(l)
printenv: print out the environment. printenv(l)
man: find manual information by keywords; print out themanual. man(l)
print: pr to the line printer. print(l)
pstat: printsystemfacts. pstat(8)
pagesize: print system page sizeé. pagesize(l)
diction,explain: print wordy sentences; thesaurus for diction. diction(1)
explain, diction— print wordy sentences; thesaurus for diction. explain(l)
file. strings: find the printable strings in a object, or other binary, strings(1)
printcap: printer capability data base. printcap(5)
vip: Format Lisp programs to be printed with nroff, vtroff, ortroff. vip(l)
printenv: print out the environment. printenv(l)
banner: print large banneron printer. banner(f)

Fourth Berkeley Distribution - Ivii - August 1983

Permuted Index

Ip: line

print: pr to the line

printcap:

Ipc: line

Ipd: line

Iprm: remove jobs from the line
pac:

Vpr, Vprm, vpq, Vprint: raster
conversion.

setpriority: get/set program scheduling
nice: set program

nice, nohup: run a command at low
renice: alter

nice: run low

adduser:

reboot: UNIX bootstrapping
nice: run low priority

stop: halt a job or

_exit: terminate a

fork: create a new

fork: create a copy of this
implogd: IMP logger

kill: send signal to a

kill: send a signal to a

popen, pclose: initiate 1/0 to/from a
wait: await completion of
exit: terminate a

init:

getpgrp: get

killpg: send signal to a
setpgrp: set

getpid: get

getpid, getppid: get

vfork: spawn new

onintr:

ps:

times: get

wait, wait3: wait for

wait: wait for a

ptrace:

kill: terminate a

exit: terminate

kill: kill jobs and

geore: get core images of running
renice: alter priority of running
wait: wait for background
awk: pattern scanning and
halt: stop the

mé4: macro

reboot: reboot system or halt

monitor, monstartup, moncentrol: prepare execution
profil: execution time

kgmon: generate a dump of the operating system’s
gprof: display call graph

prof: display

pxp: Pascal execution

drtest: standalone disk test

end, etext, edata: last locations in

finger: user information lookup

ftp: file transfer

liszt: compile a Franz Lisp

Ipc: line printer control

Ipq: spool queue examination

Ixref: lisp cross reference

msgs: system messages and junk mail

mt: magnetic tape manipulating

pxref: Pascal cross-reference

units: conversion

whereis: locate source, binary, and or manual for
cb: C

only). which: locate a

make: maintain

nice: set

August 1983

printer.
printer.
printer capability data base.
printer control program.
printer daemon. . . .
printer spooling queue.

printer/ploter accounting information.
printer/plotter spooler.
printf, fprintf, sprintf: formatted output 20 0 A o s
priority. getpriority,
priority.
priority (shonly).
priority of running processes. . .
priority process.
prmail: print out mail in the post office.
procedure for adding new users.
procedures.
process.

PIOCESS, s « s s s s s d @ mm w8 6 4 8 6 35 8
process after flushing any pending output. « &% o w
process control initialization.
process group.
process group.
process group.
process id.
process identification.
process in a virtual memory efficient way.
process interrupts in command scripts. aee 4 .
process status.
process times.
process to terminate. . . .
process to terminate.
process trace.
process with extreme prejudice.
process with status.
processes.
processes.
processes. . . .
processestocomplete. 0 o0 0.
processing language.
Processor.
Processor.
Processor.
prof: display profile data.
profil: execution time profile.
profile. .
profile.
profile buffers. . . .
profile data.
profiledata.
profiler.
program.
program.
program. . . .
program.
program.
program.
program.
program. . .
program.
program.
program. . .
program.
program.
program beautifier.
program file including aliases and paths (csh 4 @
program groups.
program priority.

.= viii -

getpriority (2)
nice(3C)
nice(1)
renice(8)
csh(1)
prmail(1)
adduser(8)
reboot(8)
csh(1)
csh(l)
exit(2)
fork(2)
fork (3F)
implogd (8C)
kill(2)
kill(3F)
popen(3)
wait(1)
exit(3)
init(8)
getpgrp(2)
killpg (2)
setpgrp(2)
getpid (3F)
getpid (2)
vfork(2)
csh(1)
ps(1)
times(3C)
wait(2)
wait(3F)
ptrace(2)
kill(1)
exit(3F)
esh(1)
geore(1)
renice(8)
csh(1)
awk(1)
halt(8)

profil(2)

_monitor(3)

profil(2)
kgmon (8)
gprof(1)
prof(1)
pxp(1)
drtest(8)
end(3)
finger(1)
ftp(1C)
liszt (1)
Ipc(8)
Ipq(1)
Ixref(1)
msgs(1)
mt(1)
pxref(1)
units(1)
whereis(1)
cb(1)
which(1)
make(1)
nice(3C)

Fourth Berkeley Distribution

getpriority, setpriority: get/set
indent: indent and format C

assert:

lint:a C

fp: Functional

lex: generator of lexical analysis
struct: structure Fortran

vgrind: grind nice listings of

troff. vlp: Format Lisp

xstr: extract strings from C

vv: Proteon

v:

arp: Address Resolution

ip: Internet

tep: Internet Transmission Control
telnet: user interface to the TELNET
udp: Internet User Datagram
getprotobyname, setprotoent, endprotoent: get
inet: Internet

pup: Xerox PUP-I

rmt: remote magtape

protocols:

ftpd: DARPA Internet File Transfer
telnetd: DARPA TELNET

tftpd: DARPA Trivial File Transfer
trpt: transliterate

mkproto: construct a
arithmetic:
false, true:
true, false:

device interface.

pty:

doctor: interact with a

pup: raw

pup: Xerox
ungetc:
pushd:

puts, fputs:

putc, putchar, fputc, putw:
unit.

on a stream.

stream. putc,

putc, putchar, fputc,

insque, remque: insert/remove element from a
Iprm: remove jobs from the line printer spooling
Ipg: spool

gsort:

qsort:

quotacheck: file system

quotaon,

off.

edquota: edit user
quota: manipulate disk

Fourth Berkeley Distribution

Permuted Index

program scheduling priority. getpriority (2)
PrOBram SOUTCE. « &+ « o o o s o o o o o o o o o o & indent(1)
program verification. 0.0 ... assert(3X)
program verifier. 'R lint(1)
Programming language compller/mterpreter fp(1)
DOBTAINIS: o « o o % w0 4 oo s i 0l b o i 780 o & & 8 % lex(1)
programs. SRR S e S e e o o o . struct(l)
PIOBIAMIS: & « « o s & = o o e o % & @ % & 8 § § & vgrind(1)
programs to be printed with nroff, vlroﬂ' or vip(l)
programs to implement shared strings.o oxstr(l)
proNET 10 Megabitring. g & vv(4)
Proteon proNET 10 Megabitring. . . « « « v o « . . vv(4)
Protocol: ¢ v « v v 5 5 % mwn @ mm s & 8 8§ arp(4P)
Protottl: o 5 o5 5 4 5 5 % s ‘ s . . . ip(4P)
Protocol. e P . tcp(4P)
protocol. o S e & R 3 telnet(1C)
Protocol. . . . i o e e e e e e e e udp(4P)
protocol entry. getprotoent getprolobynumber, getprotoent(3n)
protocol family. B tox o o o 8 o gl o E ® m inet (4F)
protocol family. o e e e e e w68 pup(4F)
protocol module. & 3 5) T 8 16 U8 rmt(8C)
protocol name database. protocols(5)
Protocol'SBIvVeri o ¢ s o v % 5 5owiw e @ @ 8 s . ftpd(8C)
protocol server. 50 T T T R e telnetd (8C)
Protocol'server: « + ¢ s s s o s s v & www w w5 s tftpd (8C)
protocol trace. b o e 5 T8 trpt(8C)
protocols: protocol name data base e e s e e .. protocols(5)
prototype filesystem. v . 44000 . .. mkproto(8)
provide drill in number facts. arithmetic(6)
provide truthvalues. ¢ v v v v v v o false(1)
provide truth values. true(l)
ps: Evans and Sutherland Picture Syslem 2 graphm ps(4)
PSIDIOCESS SIAMUS. &« v v o & o o v 0 v v v b e e .. ps(1)
pseudo terminal driver. 4 400 pty(4)
psignal, sys_siglist: system signal messages. psignal (3)
pstat: print system facts. k105 s <3 10 307 pstat(8)
psychoanalyst: o v v v e 5 5 & 5 % & & 5 s . . . doctor(6)
pti: phototypesetter interpreter. pti(l)
PITACE: PIOCESS IFACE. =« s & & s 4 ¢ = s & o o o & & ptrace(2)
ptx:permuted indeX. .« « « 4 4 . 4 e e 0 e e ... ptx(1)
pty: pseudo terminal driver. o 0w e e PIVE)
pup: raw PUP socket interface. pup(4P)
PUP socket interface. . . « « v v v v v v 0 o 0 a0 u . pup(4P)
pup: Xerox PUP-I protocol family. pup(4F)
PUP-I protocol family. .+ . ¢« v v v v v v v v v v u pup(4F)
push character back into input stream. ungetc(3S)
push shell directory stack. « « v v v o v 4 0 v 0. .. csh(1)
pushd: push shell directory stack. csh(1)
put astring on astream. « « & & o o 2 o o o o 4 o . puts(3S)
put character or word on a stream « w s e e_m e putc(3S)
putc, fputc: write a character to afoman loglcal « « .« . putc(3F)
putc, putchar, fpute, putw: put character or word . . . putc(3S)
putchar, fputc, putw: put character orwordona putc(3S)
puts, fputs: put a stringonastream. puts(3S)
putw: put character or word on a stream. putc(3S)
pwd: working directory name. R T pwd(1)
px: Pascal interpreter. 440 4 4.4 ... px(1)
pxp: Pascal execution profiler. pxp(1)
pxref: Pascal cross-reference program. pxref(1)
QSOTL: QUICK SOTL. + v v v v v v o v e o v e e s gsort(3F)
QsOrt: QUICKET SOTL. & v v v v v v v v 0 0 o 0 0 v v ™ gsort(3)
QUEME. « o » » o » o cw e iae e e e “ % % 4w insque(3)
QUEUE. + v v e v e o o e e w . S EEF i F B E Iprm(1)
queue examination program. o0 . . Ipg(1)
qQUiCk'SOIt: & s s s 5 s s wie W e & 5 s E s gsort(3F)
quicker sort. 5.5 B iy o Tou i 185 g a0 e e e e« . . gsort(3)
quiz; test your knowledge quiz(6)
quot: summarize file system ownership. quot(8)
quota consistency checker. . . . « v 4 . . 0 0. . . quotacheck (8)
quota: display disc usage and limits. quota(l)
quota: manipulate disk quotas. quota(2)
quotacheck: file system quota consnstency checker quotacheck (8)
quotaoff: turn file system quotasonand off. quotaon(8)
quotaon, guotaoff: turn file system quotas on and quotaon(8)
QUOAS. & v 5 & & 5 5 5 5 @ o G 8% (86 R EEE edquota(8)
QUOLES. & ¢ ¢ v v v e e e e e e e e e e e e quota(2)

- lix - August 1983

Permuted Index

repquota: summarize
setquota: enable/disable
quotaon, quotaoff: turn file system

rain: animated

fortune: print a

ranlib: convert archives to

rand, srand:

random, srandom, initstate, setstate: better
number generator; routines for changing/
rand, drand, irand: return

vtroff: troff to a
Vpr, vprm, vpq, vprint:

ratfor:
pup:
imp: IMP

stream to a remote command.

getpass:

source:

read, readv:

/continue, cd, eval, exec, exit, export, login,

readlink:
directory operations. opendir,
open: open a file for

command/ /cd, eval, exec, exit, export, login, read,
read,

bad144:

Iseek: move

setregid: set

setreuid: set

malloc, free,

symorder:

reboot:

fastboot, fasthalt:
newaliases:

recv, recvfrom, recvmsg:
mail: send and

binmail: send or

rmail: handle remote mail

rehash:

utmp, wtmp: login

eyacc: modified yacc allowing much improved error
socket.

recv,

recv, recvfrom,

eval:

re_comp,

documents.

Ixref: lisp cross

build inverted index for a bibliography, find
refer: find and insert literature

re_comp, re_exec:

comm: select or

lorder: find ordering

join:

sigpause: atomically

strip: remove symbols and
leave:

calendar:

ruserok: routines for returning a stream to a
rexec: return stream to a
rexecd:

TCp:

August 1983

quotas for a file system. s & u
quotas on a file system.
quotas on and off.
rain: animated raindrops dxsplay % 3w = s e e e e
raindrops display.

rand, drand, irand: return random values SEE A e
rand, srand: random number generator. o o o0t dw s o

random, hopefully interesting, adage. 5 B E) A e

random libraries.
random number generator.
random number generator; routines for changing/ .
random, srandom, initstate, setstate: better random

random values.
ranlib: convert archives to random libraries. .
raster plotter.

raster printer/plotter spooler.

ratfor: rational Fortran dialect. § % % w w0
rational Fortran dialect.
raw PUP socket interface.
raw socket interface.
rc: command script for aulo-reboot and daemons .

remd, rresvport, ruserok: routines for returninga . .

rcp: remote file copy.
rdump: file system dump across the network. . . .
read a password.
read commands from file.
read input. OB
read, readonly, set, shlﬂ times, trap, umask,. / ..
read, readv: read input.
read value of a symbolic link.
readdir, telldir, seekdir, rewinddir, closedir:
reading or writing, or create a new file.
readlink: read value of a symbolic link.
readonly, set, shift, times, trap, umask, wait:
readv: read input.
read/write dec standard 144 bad sector mformanon.
read/write pointer.
real and effective group ID.
real and effective user ID’s.
realloc, calloc, alloca: memory allocator.
rearrange name list.
reboot: reboot system or halt processor.
reboot system or halt processor.
reboot: UNIX bootstrapping procedures.
reboot/halt the system without checking the disks.

rebuild the data base for the mail aliases file. . . .
receive a message from a socket.
receive mail.
receive mail among users. R
received via uucp.

re_comp, re_exec: regular expressxon handler.

recompute command hash table.
records.

recovery.
recv, recvfrom, recvmsg: receive a message from a

recvfrom, recvmsg: receive a message from a socket.
recvmsg: receive a message from a socket.
re-evaluate shell data.
re_exec: regular expression handler.
refer: find and insert literature referencesin =~ . . .
reference program. . . o i e
references in a blbllography mdxblb Iookblb W
references in documents.

regular expression handler.
rehash: recompute command hash !able
reject lines common to two sorted files. b % om ww
relation for an object library.
relational database operator.

release blocked signals and wait for interrupt.

relocation bits. . .
remind you when you have to leave.
reminder service.
remote command. rcmd, rresvport,
remote command.
remote execution server.
remote file copy.

-Ix -

repquota(8)
setquota(2)
quotaon(8)
rain (6)
rain(6)
rand (3F)
rand (3C)
fortune(6)
ranlib(1)
rand (3C)
random (3)
random (3)
rand (3F)
ranlib(1)
vtroff(1)
vpr(1)
ratfor(1)
ratfor(1)
pup(4P)
imp(4P)
rc(8)

remd (3X)
rep(1C)
rdump(8C)
getpass(3)
csh(1)
read(2)
sh(1)
read(2)
readlink(2)
directory(3)
open(2)
readlink (2)
sh(1)
read(2)
bad144(8)
Iseek(2)
setregid(2)
setreuid (2)
malloc(3)
symorder(1)
reboot (2)
reboot(2)
reboot (8)
fastboot(8)
newaliases (1)
recv(2)
mail(1)
binmail (1)
rmail(1)
regex(3)
csh(1)
utmp(5)
eyacc(1)
recv(2)
recv(2)
recv(2)
csh(1)
regex(3)
refer(1)
Ixref(1)
lookbib(1)
refer(1)
regex(3)
csh(1)
comm(1)
lorder(1)
join(1)
sigpause (2)
strip(1)
leave(1)
calendar(1)
remd (3X)
rexec(3X)
rexecd (8C)
rep(1C)

Fourth Berkeley Distribution

uusend: send a file to a remote host. o
remote: remote host description ﬁle G w8y EE N

phones: remote host phone number data base.

rlogin: remotelogin.

rlogind: remote login server. . . . SRCRCIE IS,

rmt: remote magtape protocol module wow e ® B E

rmail: handle remote mail received via uucp. S EE § E§

remote: remote host description file.
rsh: sremotesshell. . v wowiwrn oo e s 8 s

rshd: remote shell server.
tip, cu: connect to a remote system. o e e e e S e e
unlink: remove a directory entry.

rmdir: remove a directory file.

unalias: remove aliases. “ e & 16 @ 8

flock: apply or remove an advisory lock on an open ﬁle. o

colrm: remove columns fromafile.

unlink: remove directory entry.

unsetenv: remove environment variables.

mount, umount: mount or remove file system. o B %

remove nroff, troff, tbl and eqn constructs. . .
remove resource limitiations.
strip: remove symbols and relocation bits.
rmdir, rm: remove (unlink) directories or files.
rm, rmdir: remove (unlink) files or directories.
insque, remgque: insert/remove element from a queue.
rename: renameafile. o i e 5w
rename: change the name of a ﬁle BRI
mv: move or rename files.
rename:rename afile.
renice: alter priority of running processes. .
fsck: file system consistency check and interactive repair. % @ G R
trpfpe, fpecnt: trap and repair floating pomt fauhs P
trapov: trap and repair floating point overflow.
while: repeat commands conditionally.
repeat: execute command repeatedly.
uniq: report repeated linesinafile.
repeat: execute command repeatedly. W S B 6§ § § 9
yes: be repetitively affirmative.
iostat: report I/0 statistics.
uniq: report repeated linesinafile.
sendbug: mail a system bug report to4bsd-bugs. *
vmstat: report virtual memory statistics.
bugfiler: file bug reports in folders automatically.
fseek, ftell: reposition a file on a logical unit. e 8 S

fseek, ftell, rewind: reposition a stream.
repquota: summarize quotas for a file system. %

notify: request immediate notification. AN

lock: reserve a terminal. w8 e e

reset: reset the teletype bits to a sensnble state.
reset: reset the teletype bits to a sensible state. . . .
arp: Address Resolution Protocol.
getrlimit, setrlimit: control maximum system resource consumption.

vlimit: control maximum system resource consumption.
limit: alter per-process resource limitations.

unlimit: remove resource limitiations.

getrusage: get information about resource utilization. § 54 E 3 BA e EE
vtimes: get information about resource utilization. R T .
restore: incremental file system restore. 5

rrestore: restore a file system dump across lhe network
restore: incremental file system restore. @ w w
suspend: suspend a shell, resuming its superior. 83558 B G aemee
getarg, iarge: return command line arguments. RN
fdate: return date and time in an ASCII string. . . .
idate, itime: return date or time in numerical form.

etime, dtime: return elapsed execution time.

fimin, fimax, ffrac, dfimin, dfimax, dffrac, inmax: return extreme values.
rand, drand, irand: return random values. w e e @ 6 5B

rexec: return stream to a remote command 3B

time, ctime, Itime, gmtime: return system time. o “x e s e w e

loc: return the address of an object SRR EE

remd, rresvport, ruserok: routines for returning a stream to a remote command. 5

rev: reverse linesofafile.

col: filter reverselinefeeds.

rev: reverse linesofafile.

lastcomm: show last commands executed in reverseorder.

Fourth Berkeley Distribution - Ixi -

remove jobs from the line prmter spoolmg queue.

Permuted Index

uusend(1C)
remote(5)
phones(5)
rlogin(1C)
rlogind (8C)
rmt(8C)
rmail(1)
remote(5)
rsh(1C)
rshd (8C)
tip(1C)
unlink 3F)
rmdir(2)
csh(1)

flock (2)
colrm(1)
unlink (2)
csh(1)
mount(2)
Iprm(1)
deroff (1)
csh(1)
strip(1)
rmdir (1)
rm(1)
insque(3)
rename (3F)
rename(2)
mv(1)
rename (3F)
renice(8)
fsck (8)
trpfpe (3F)
trapov(3F)
csh(1)
csh(1)
uniq(1)
csh(1)
yes(1)
iostat(1)
uniq(1)
sendbug(1)
vmstat(1)
bugfiler(8)
fseek (3F)
fseek (3S)
repquota(8)
csh(1)

lock (1)
reset(1)
reset(1)
arp(4P)
getrlimit(2)
vlimit(3C)
csh(1)
csh(1)
getrusage(2)
vtimes(3C)
restore(8)
rrestore (8C)
restore(8)
csh(1)
getarg(3F)
fdate (3F)
idate(3F)
etime (3F)
fimin (3F)
rand (3F)
rexec(3X)
time (3F)

. loc(3F)
remd (3X)
rev(1)
col(1)
rev(l)
lastcomm(1)

August 1983

Permuted Index

fseek, ftell,
opendir, readdir, telldir, seekdir,

index,

strcmp, strncmp, strepy, strncpy, strlen, index,
vv: Proteon proNET 10 Megabit

hk: RK6-11/RK06 and

hk:

rmdir,

rm,

pow, sqrt: exponential, logarithm, power, square
chroot: change

inet_netof Internet address manipulation
tgoto, tputs: terminal independent operation
setstate: better random number generator;
command. rcmd, rresvport, ruserok:
routed: network

route: manually manipulate the

network.

to a remote command. rcmd,

bit: and, or, xor, not,
nice, nohup:

nohup:

nice:

roffbib:

geore: get core images of
renice: alter priority of

remote command. rcmd, rresvport,

rx: DEC

savecore:

brk,
scandir:

awk: pattern

alarm:

getpriority, setpriority: get/set program
clear: clear terminal

curses:

ex. vi:

rc: command

onintr: process interrupts in command
grep, egrep, fgrep:

xsend, xget, enroll:

bad144: read/write dec standard 144 bad
badsect: create files to contain bad

opendir, readdir, telldir,
brk, sbrk: change data
comm:

case:

uusend:
send, sendto, sendmsg:

August 1983

rewind: reposition a stream.
rewinddir, closedir: directory operations.
rexec: return stream to a remote command.
rexecd: remote execution server.
rindex, Inblnk, len: tell about character objects. . . .
rindex: string operations. strcat, strncat,
ring.
RKO7 moving head disk.
RK6-11/RK06 and RK07 moving head dlSk e
rlogin: remote login.
rlogind: remote login server.
rm: remove (unlink) directories or files.
rm, rmdir: remove (unlink) files or directories. . . .
rmail: handle remote mail received via uucp.
rmdir: remove a directory file.
rmdir: remove (unlink) files or directories.
rmdir, rm: remove (unlink) directories or files. . . .
rmt: remote magtape protocol module.
roffbib: run off bibliographic database.
rogue: Exploring The Dungeons of Doom.
root. exp, log, logl0,
root directory.
route: manually manipulate the routmg lables e
routed: network routing daemon. .
routines. /inet_ntoa, inet_makeaddr, inet_lnaof, . .
routines. tgetent, tgetnum, tgetflag, tgetstr, e e
routines for changing generators. /initstate, T
routines for returning a stream to a remote
routing daemon. . .
routing tables.
rrestore: restore a file syslem dump across the ...
rresvport, ruserok: routines for returning a stream %
rsh: remote shell.
rshd: remote shell server.
rshift, Ishift bitwise functions.
run a command &t low priority (sh only). RN
run command immune to hangups. £ 8586553
run low priority process. . s
run off bibliographic database.
running processes.
running processes. 'R TEEE
ruptime: show host status of local machmes %333
ruserok: routines for returning a streamtoa

rwho: who's logged in on local machines.

rwhod: system status server.
rx: DEC RXO02 floppy disk interface.
RXO02 floppy disk interface.
rxformat: format floppy disks.
sa, accton: system accounting.
save a core dump of the operating system.
savecore: save a core dump of the operating system. .
sbrk: change data segment size.
scan a directory.
scandir: scan a directory.
scanf, fscanf, sscanf: formatted input conversion. . .
scanning and processing language.
schedule signal after specified time. P w s e s e
scheduling priority.
screen.
screen functions wnh optimal" cursor motion. . . .
screen oriented (visual) display editor based on . . .
script for auto-reboot and daemons.

script: make typescript of terminal session.
SCEIPISE: 4 . oo owe o o vz ont o s vt ok W m K W W A w e
search a file forapattern.

secret mail.
sector information.
sectors.
sed: stream ednor
seekdir, rewinddir, closedir: du’eclory operallons 5
segment size.
select or reject lines common to two soned ﬁles i @
select: synchronous i/o muitiplexing.
selector in switch. . .
send a file to a remote host.
send a message from a socket. o e o

- Ixii -

fseek (3S)
directory(3)
rexec(3X)
rexecd(8C)
index (3F)
string(3)
vv(4)
hk(4)
hk(4)
rlogin(1C)
rlogind(8C)
rmdir(1)
rm(1)

rmail (1)
rmdir(2)
rm(1)
rmdir(1)
rmt(8C)
roffbib(1)
rogue(6)
exp(3M)
chroot(2)
route(8C)
routed (8C)
inet(3n)
termcap(3X)
random(3)
remd (3X)
routed(8C)
route(8C)
rrestore(8C)
remd (3X)
rsh(1C)
rshd (8C)
bit (3F)

nice (1)
csh(1)
csh(1)
roffbib(1)
geore(1)
renice(8)
ruptime(1C)
remd (3X)
rwho(1C)
rwhod (8C)
rx(4)

x(4)
rxformat(8V)
sa(8)
savecore(8)
savecore (8)
brk(2)
scandir (3)
scandir(3)
scanf(3S)
awk (1)
alarm(3C)
getpriority (2)
clear(1)
curses(3X)
vi(1)

rc(8)
script(1)
csh(1)
grep(1)
xsend(1)
bad144(8)
badsect(8)
sed(1)
directory(3)
brk(2)
comm(1)
select(2)
csh(1)
uusend (1C)
send(2)

Fourth Berkeley Distribution

kill:

mail:
sendmail:
binmail:
socket.
kill:
killpg:

aliases: aliases file for

send, sendto,

send,

reset: reset the teletype bits to a
diction,explain: print wordy

‘explain, diction— print wordy

comsat: biff

ftpd: DARPA Internet File Transfer Protocol
rexecd: remote execution

rlogind: remote login

rshd: remote shell

rwhod: system status

telnetd: DARPA TELNET protocol

tftpd: DARPA Trivial File Transfer Protocol

logout: end

script: make typescript of terminal
ascii: map of ASCII character
stty, gtty:

sigstack:

sigsetmask:

umask:

utime:

utimes:

setgroups:

apply: apply a command to a
getsockopt, setsockopt: get and
hostid:

hostname:

setpgrp:

nice:

setregid:

setreuid:

eval, exec, exit, export, login, read, readonly,
getty:

stty:

tabs:

date: print and

setuid, seteuid, setruid, setgid, setegid, setrgid:
setenv:

a stream.

stream. setbuf,

setuid, seteuid, setruid, setgid,

user and group ID. setuid,

entry. getfsent, getfsspec, getfsfile, getfstype,
setuid, seteuid, setruid,

getgrent, getgrgid, getgrnam,

gethostent, gethostbyaddr, gethostbyname,
host. gethostid,

gethostname,

getitimer,

crypt,
setbuf, setbuffer,
geinetent, getnetbyaddr, getnetbyname,

getpriority,

getprotoent, getprotobynumber, getprotobyname,
getpwent, getpwuid, getpwnam,

setuid, seteuid, setruid, setgid, setegid,
consumption. getrlimit,

Fourth Berkeley Distribution

send a signal to a process.
send and receive mail.
send mail over the internet.
send or receive mail among users.
send, sendto, sendmsg: send a message froma .
send signal to a process.
send signal to a process group. o o & E
sendbug: mail a system bug report to 4bsd bugs

sendmail.
sendmail: send mail over the internet.

sendmsg: send a message from a socket.
sendto, sendmsg: send a message from a socket.
sensible state.
sentences; thesaurus for diction.
sentences; thesaurus for diction.
SEIVEL: oo o & 5 & 5 & 5 » & @ @0 @8 @8 ®

o e e W e el e e e g

SEIVEI. v v v v v v v e e e e e e e e e e e
SEIVEL: twse v o o & 5 o & o @ 8 bl W
SETVEr: o 5 5. 8 & 8 5 80 88 8 @@
£ - A
SETVER: wwwwm@a s 8§ 8 & 5 5 8 5 & & W
SETVEL. v v v v v v e v e e e e e e e e e e e
server. 5
services: servncenamedata base EEEEEE
SESSION. o wiie wiioiwim o w o e v 6 6w e w e
SeSSioN: s wwwm e w e e wiwe § & 55 &8 s §
set. © e e e e .
set and get lermmalslate (defunct). R R

set and/or get signal stack context.
set: change value of shell variable.
set current signal mask.
set file creation mode mask.
set file times.
set file times.
setgroupaccess list.
set of arguments.
set options on sockets. . . o e
set or print identifier of currenl hosl syslem &
set or print name of current host system.
set process group.

set program priority.
set real and effective group ID.
set real and effective user ID’s.
set, shift, times, trap, umask, wait: command/ /cd
set terminal mode.

set terminal options.
set terminal tabs.
setthedate. v v v i v
seluserandgroupID
set variable in environment. . .

setbuf, setbuffer, setlinebuf: ass1gn buﬂenng lo .
setbuffer, setlinebuf: assign buffering to a W]
setegid, setrgid: set user and groupID.
setenv: set variable in environment.
seteuid, setruid, setgid, setegid, setrgid: set . . .
setfsent, endfsent: get file system descriptor file .
setgid, setegid, setrgid: set user and group ID. 3
setgrent, endgrent: get group file entry.
setgroups: set group access list.
sethostent, endhostent: get network host entry. .
sethostid: get/set unique identifier of current . .
sethostname: get/set name of current host. . . .
setitimer: get/set value of interval timer.
setjmp, longjmp: non-local goto.
setkey, encrypt: DES encryption.
setlinebuf: assign buffering to a stream. AR
setnetent, endnetent: get network entry.
setpgrp: set process group.
setpriority: get/set program scheduling priority. .
setprotoent, endprotoent: get protocol entry. . .
setpwent, endpwent: get password file entry. 5 @
setquota: enable/disable quotas on a file system. .
setregid: set real and effective groupID.
setreuid: set real and effective user ID’s.
setrgid: set user and group ID. i 1 i
setrlimit: control maximum system resource . .

- Ixiii -

Permuted Index

kill (3F)
mail(1)
sendmail (8)
binmail (1)
send(2)
kill(2)
killpg(2)
sendbug(1)
aliases(5)
sendmail (8)
send(2)
send(2)
reset(1)
diction(1)
explain(1)
comsat (8C)
ftpd (8C)
rexecd (8C)
rlogind (8C)
rshd (8C)
rwhod (8C)

. . telnetd(8C)

1ftpd (8C)
services(5)
csh(1)
script(1)
ascii(7)

stty (3C)
sigstack (2)
csh(1)
sigsetmask (2)
umask (2)
utime (3C)
utimes(2)
setgroups(2)
apply(1)
getsockopt (2)
hostid (1)
hostname(1)
setpgrp(2)
nice(3C)
setregid (2)
setreuid (2)
sh(1)

getty(8)
stty(1)
tabs(1)
date(1)

setuid (3)
csh(1)
setbuf(3S)
setbuf(3S)
setuid (3)
csh(1)

setuid (3)
getfsent (3X)
setuid(3)
getgrent(3)
setgroups(2)
gethostent(3n)
gethostid (2)
gethostname(2)
getitimer(2)
setjmp(3)
crypt(3)
setbuf(3S)
getnetent(3n)
setpgrp(2)
getpriority (2)
getprotoent(3n)
getpwent(3)
setquota(2)
setregid (2)
setreuid (2)
setuid (3)
getrlimit (2)

August 1983

Permuted Index

group ID. setuid, seteuid,

getservent, getservbyport, getservbyname,
getsockopt,

for changing/ random, srandom, initstate,
gettimeofday,

set user and group ID.

continue, cd, eval, exec, exit, export, login,/
xstr: extract strings from C programs to implement
chsh: change default login

exit: leave

rsh: remote

system: issue a

csh:a

eval: re-evaluate

popd: pop

pushd: push

alias:

suspend: suspend a

rshd: remote

set: change value of

@: arithmetic on

unset: discard

exec: overlay

/exec, exit, export, login, read, readonly, set,
long,

groups:

ruptime:

uptime:

lastcomm:

netstat:

uusnap:

construct a file. what:

shutdown:

connection.

login:

pause: stop until

signal: change the action for a
alarm: schedule

signal: simplified software
sigvec: software
sigsetmask: set current
psignal, sys_siglist: system

sigstack: set and/or get

kill: send

kill: send a

killpg: send

sigblock: block

sigpause: atomically release blocked
wait for interrupt.

signal:
tc: photoypesetter
trigonometric functions.

null: data

brk, sbrk: change data segment
getdtablesize: get descriptor table
getpagesize: get system page
pagesize: print system page

size:

diskpar:: calculate default disk partition

spline: interpolate

uusnap: show
snake,

August 1983

setruid, setgid, setegid, setrgid: set userand
setservent, endservent: get serviceentry.
setsockopt: get and set options on sockets.
setstate: better random number generator; routines
settimeofday: get/set date and time.
setuid, seteuid, setruid, setgid, setegid, setrgid:

sh, for, case, if, while, :, ., break,
shared Strings. . . o o ¢ o o ¢ o ¢ 4 4 0 4 0 00 0
shell:. . o w00 o T e
shell. s wmawn 4G 5 B 5§ %388 awans
S e e e e e i o o O
shellcommand: w v s.6 o s 5 5 % % % 4 wwiw

shell (command interpreter) with C-like syntax.
shell data.
shell directory stack.
shell directory stack.
shell macros.
shell, resuming its superior.
shell server.
shell variable.
shell variables.
shell variables.
shell with specified command.
shift: manipulate argument list.
shift, times, trap, umask, wait: command language.
short: integer object conversion.
show group memberships.
show host status of local machines.
show how long system has been up.
show last commands executed in reverse order.
show network status.
show snapshot of the UUCP system.
show what versions of object modules were used to
shut down part of a full-duplex connection.
shutdown: close down the system at a given time. W
shutdown: shut down part of a full-duplex
sigblock: block signals.
sign on.
signal.
signal.
signal after specified time.
signal: change the action for a signal.
signal facilities.
signal facilities.
signal mask.
signal messages.
signal: simplified software signal facilities.
signal stack context.
signal to a process.
signal to a process.
signal to a process group.
signals.
signals and wait for interrupt.
sigpause: atomically release blocked signals and
sigsetmask: set current signal mask.
sigstack: set and/or get signal stack context.
sigvec: software signal facilities.
simplified software signal facilities.
simulator.
sin, cos, tan, asin, acos, atan, atan2:
sinh, cosh, tanh: hyperbolic functions.
sink.
size.
size.
size.
size.
size of an object file.
size: size of an object file.
SIZBS! s s s s e wae @ GEE F E 8§ EE §
sleep: suspend execution for an interval.
sleep: suspend execution for an interval.
sleep: suspend execution for interval.
smooth curve.
snake, snscore: display chase game.
snapshot of the UUCP system.
snscore: display chase game.

- Ixiv -

setuid(3)
getservent(3n)
getsockopt (2)
random(3)
gettimeofday(2)
setuid(3)

sh(1)

system(3)
csh(1)
csh(1)

long (3F)
groups(1)
ruptime(1C)
uptime(1)
lastcomm (1)
netstat(1)
uusnap(8C)
what(1)
shutdown(2)
shutdown (8)
shutdown(2)
sigblock (2)
login(1)
pause(3C)
signal (3F)
alarm (3C)
signal (3F)
signal (3C)
sigvec(2)
sigsetmask (2)
psignal(3)
signal(3C)
sigstack(2)
kill(2)
kill(3F)
killpg(2)
sigblock (2)
sigpause(2)
sigpause(2)
sigsetmask (2)
sigstack (2)
sigvec(2)
signal (3C)
te(1)

brk(2)
getdtablesize(2)
getpagesize (2)
pagesize(1)
size(1)

size(1)
diskpart(8)
sleep(1)
sleep(3F)
sleep(3)
spline(1G)
snake(6)
uusnap(8C)
snake (6)

Fourth Berkeley Distribution

accept: accept a connection on a

bind: bind a name to a

connect: initiate a connection on a

listen: listen for connections on a

recv, recvfrom, recvmsg: receive a message from a
send, sendto, sendmsg: send a message from a

imp: IMP raw
pup: raw PUP
getsockname: get

getsockopt, setsockopt: get and set options on
socketpair: create a pair of connected

lo:
signal: simplified
sigvec:

canfield, cfscores: the.

gsort: quicker
gsort: quick
tsort: topological
sortbib:

sort:

comm: select or reject lines common to two

look: find lines in a

soelim: eliminate

soelim: eliminate .

indent: indent and format C program

mkstr: create an error message file by massaging C
whereis: locate

line, circle, arc, move, cont, point, linemod,
expand, unexpand: expand tabs to

way. vfork:

exec: overlay shell with

truncate: truncate a file to a

alarm: schedule signal after

alarm: execute a subroutine after a

swapon:

spell,
spell, spellin, spellout: find
spell, spellin,

split:
files. fsplit:
frexp, ldexp, modf:

uuclean: uucp

Ipq:

vpr, vprm, vpq, vprint: raster printer/plotter
Iprm: remove jobs from the line printer

printf, fprintf,

exp, log, logl0, pow,

log10, pow, sqrt: exponential, logarithm, power,
rand,

generator; routines for changing/ random,
scanf, fscanf,

popd: pop shell directory
pushd: push shell directory
sigstack: set and/or get signal
drtest:

bad144: read/write dec

stdio:

htable: convert NIC

reset: reset the teletype bits to a sensible
stty, gtty: set and get terminal

fsync: synchronize a file’s in-core

if: conditional

fstab:

hashstat: print command hashing

Fourth Berkeley Distribution

socket.: & s v s s s s e e E e e w4
sockel. e
SOCKEL. o o o w4 s s owomee o e e Rk
SOCKEL: . v s v s Es s eE AT GG s .
socket....................
socket. .

socket: creale an endpomt for commumcauon ..

socket interface.
socket interface.
socket name.

socketpair: create a pair of connected sockels. % v
sockets.
sockets.
soelim: eliminate .so s from nroff input.
software loopback network interface.
software signal facilities.
software signal facilities.

solitaire card game canfield.

SOTL. 4 v vt e b e v e e e e e e e e

SOTL: oo v o o v s ¢ % % & w oo o w0
\

sort.

sort blbhographxc dalabase 6 @ s e e e e s
sort or merge files.
sort: sort or merge files.
sortbib: sort bibliographic database. & @) B @
sorted files. Ay
sorted list.
.so’s from nroff input.

so’s from nroff input. e e e e e e e e e .
SOUFCE: wowimmw mwi@i s o s & 8 6 5 % &
source. . . .

source, binary, and or manual for program. . . .
source: read commands from file.
space, closepl: graphics interface. /erase, label “
spaces, and vice versa.
spawn new process in a virtual memory eﬁ"lcnem .
specified command. w
specified length.
specified time.
specified time.
specify additional device for paging and swapping.
spell, spellin, spellout: find spelling errors. e
spellin, spellout: find spelling errors.
spelling errors.
spellout: find spelling errors. v oo
spline: inlerpolate smooth curve.
split a file into pieces.
split a multi-routine Fortran ﬁle mlo mdlvxdual .
split into mantissa and exponent.
split: split a file into pieces.
spool directory clean-up.
spool queue examination program.
spooler.
spooling queue.
sprintf: formatted output conversion.
sqrt: exponential, logarithm, power, square root.
square root. exp, log, . e
srand: random number generator.
srandom, initstate, setstate: better random number
sscanf: formalted input conversion. o) 0 6 @
stab: symbol table types.
stack.
stack.
stack context.

standalone disk test program.

standard 144 bad sector information.
standard buffered input/output package.
standard format host tables.

stat, Istat, fstat: get file status.

stat, Istat, fstat: get file status.
state.
state (defunct).
state with that on disk. . . .
statement.
static information about the filesystems.
statistics.

- Ixv -

Permuted Index

accept(2)

. bind(2)
connect(2)
listen(2)
recv(2)
send(2)
socket(2)
imp(4P)
pup(4P)
getsockname(2)
socketpair(2)
getsockopt (2)
socketpair (2)
soelim (1)
lo(4)

signal (3C)

. sigvec(2)

. . canfield(6)

. gsort(3)
. gsort(3F)
. tsort(1)
. sortbib(1)

. . sort(l)

. sort(1)

. sortbib(1)
. comm(l)
look(1)
soelim(1)
soelim(1)
indent(1)
mkstr(1)
whereis(1)
csh(1)
plot(3X)
expand(1)
vfork(2)
. csh(1)
truncate(2)
alarm(3C)
alarm (3F)
swapon (8)
spell(1)
spell(1)
spell(1)
spell(1)
spline(1G)
split(1)
fsplit(1)
frexp(3)
split(1)
uuclean(8C)
Ipq(1)
vpr(1)
Iprm (1)
printf(3S)
exp(3M)
exp(3M)

.. randGO)

. random(3)
. scanf(3S)

. stab(5)

. csh(l)

. . csh(l)

sigstack (2)
. drtest(8)
. bad144(8)
. intro(3S)

. . htable(8)
. . stat(2)

stat(3F)
. reset(1)
. stty(3C)
. fsync(2)

. . csh(l)
. . fstab(5)

csh(1)

August 1983

Permuted Index

jostat: report I/O StatisticS. . + +« 4 4 4 4 o 4 s e e o s o iostat(l)
vmstat: report virtual memory Statistics. 4 o 4 e s s 4 vmstat(l)
exit: terminate process with status. R R T e omowow v v w EXILESF)

netstat: show network status. s s i sssamEmememEE s s s s DEsEN)
PS: Process Statls. « ¢ v ¢ o o v v v o v e v e s o oo s o w . ps(l)
stat, Istat, fstat: getfile Status. 4 4 4 e e a . e e e e stat(2)
stat, Istat, fstat: getfile Status. v v . b e w e e stat@3F)
ferror, feof, clearerr, fileno: stream status mqumes e e e e e e i e e e e e . ferror(3S)
sysline: display system status on status line ofatermmal o w e e ow s & & v s ¢ Syshine(l)
ruptime: show host status of local machines. . w e e e e+ e ... ruptime(1C)
sysline: display system status on status line ofalermmal, e e e e e e e« . sysline(1)
rwhod: system StatusServer.+« s oo o+« .. . rwhod(8C)
stdio: standard buffered input/output package. intro(3S)
sticky: executable files with persistent text. sticky(8)
stop: halt a job or process. . . « « « « 2+ ¢« csh(l)
halt: stopthe processor. . . . « « « ¢ « « =« « « « « . . halt(8)
pause: stopuntilsignal. pause(3C)
icheck: file system storage consistency check. Goawam v s e s s v s e icheck(8)
up: unibus storage module controller/drives. up(4)
subroutines. dbminit, fetch, store, delete, firstkey, nextkey: database dbm(3X)
strlen, index, rindex: string operations. strcat, strncat, strcmp, strncmp, strcpy, strncpy. string(3)
rindex: string operations. strcat, strncat, strcmp, strncmp, strepy, strncpy, strien, index, string(3)

operations. strcat, strncat, strcmp, strncmp, strcpy, stracpy, strlen, index, rindex: string string(3)
fclose, fllush: close or flusha stream. . < v « v v« o o o o o ¢ s o o o« « . . fclose(3S)
fopen, freopen, fdopen: opena Stream. . . . « o « v ¢ o o o « « « « + « « « « . « fopen(3S)

fseek, ftell, rewind: reposition a stream. « v . ¢ ¢« 4 ¢ o v o o 0 o 0. .. . fseek(3S)
getchar, fgetc, getw: get character or word from siream. getc, .+ « « « « « ¢ o v o v« o s o o o . . getc(3S)
gets, fgets: get astring froma Stream. . . « + v+ o ¢ o 4 o v o o o o o v .o . gets(3S)

putchar, fputc, putw: put character or word on a stream. PutC, . . » « « « « « + s « « + + « « « » . putc(3S)
puts, fputs: put astringona SIeam. . . « v « v o« o+ 4 o o s o s o o oo« . puts(3S)
setbuffer, setlinebuf: assign buffering to a stream. setbuf, . . .« « o« v o v o o« o« o . . . setbuf(3S)
ungetc: push character back into input stream. e . .+ e oo« ungetc(3S)
sed: streameditor. v v e v e e e e n e .o . .. sed(l)
ferror, feof, clearerr, fileno: stream status mqumes. e e e e e e e e e .. ferror(3S)
remd, rresvport, ruserok: routines for returning a stream to a remote command s 888 s s e w Tomd(3X)
rexec: return stream to a remote command. rexec(3X)
fdate: return date and time in an ASCII string. 5 W e @ e B g s s 8 % e Bow e TQEtE3E)
gels, fgets: get a string fromastream. . . .« « + o o o 4 o o o gets(3S)
puts, fputs: put a String onastream.« « ¢ o ¢+ o « « « + « . puts(3S)
bcopy, bcmp, bzero, fs: bit and byte string operations. s ee s s 6 e & s d s s s s e bSing(3)
strncmp, strepy, strnepy, strlen, index, rindex: string operations. strcat, slrncat slrcmp. e e e« .. . string(3)
extract strings from C programs to implement shared Strings. Xstr: v v v o o v o o ¢ o o 0 0 o 0 oo o Xstr(l)

other binary, file. strings: find the printable strings in a object, or strings(1)
strings. xstr: extract strings from C programs to implement shared xstr(1)
strings: find the printable strings in a object, or other binary, file. strings(1)
basename: strip filename affixes. w++.+... . basename(l)
strip: remove symbols and relocauon bxls R 11:10))]
strcat, strncat, strcmp, strncmp, strepy, strncpy, strlen, index, rindex: string operations. string(3)
index, rindex: string operations. strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, string(3)
string operations. strcat, strncat, strcmp, strncmp, strepy, strncpy, strlen, index, rindex: string(3)
strcat, strncat, stremp, strncmp, strepy, strnepy, strlen, index, rindex: string operations. string(3)
struct: structure Fortran programs. . . . « + . « . . . struct(l)
struct: structure Fortran programs.+« . . struct(l)
stty, gtty: set and get terminal state (defuncl) stty(30)
stty: set terminal options. 0 . 0 0 . . . o stty(1)
document. style: analyze surface characteristicsofa style(l)
su: substitute user id temporarily. su(l)

alarm: execute a subroutine after a specified time. e e e e e . alarm3F)
fetch, store, delete, firstkey, nextkey: data base subroutines. dbminit, e e e e e ... dm@3X)
1ib2648: subroutines for the HP 2648 graphlcs terminal. 1ib2648(3X)
su: substitute user id temporarily. e e e . osu()

sum: sum and count blocksinafile. sum(l)
sum: sum and count blocksinafile. sum(l)
du: summarize disk USage. . « .+ . 4 . 0 e 0o du(l)
quot: summarize file system ownership. quot(8)
repquota: summarize quotas for a file system. repquota(8)
sync: update the superblock. .+ « « v v v v v v v v e v o v w s o . sync(8)
update: periodically update the superblock. e+ v e+ v o e o+« .. . update(8)

sync: update super-block. e e s e s e e woww s SYNC(2)
suspend: suspend a shell, resuming its superior. Vi s R 8 R W v s s & s moeoe s ESHD
intro: introduction to special files and hardware support. e e e e e e e ... intro(4)

style: analyze surface charactensncs of a documenl s e e e e e s Style(l)
suspend: suspend a shell, resuming its superior. csh(l)
sleep: suspend execution for an interval. sleep(l)

sleep: suspend execution for an interval. sleep(3F)

sleep: suspend execution for interval. sleep(3)

August 1983 - Ixvi - Fourth Berkeley Distribution

. interface. ps: Evans and

swab:

swapon: add a

paging/swapping.

swapping.

swapon: specify additional device for paging and
breaksw: exit from

case: selector in

default: catchall clause in

endsw: terminate

stab:

readlink: read value of a
symlink: make

strip: remove

disk. fsync:
select:
csh: a shell (command interpreter) with C-like

perror,
terminal.

perror, sys_errlist,

psignal,

hy: Network

syslog: log

kgmon: generate a dump of the operating
rehash: recompute command hash
unhash: discard command hash

mtab: mounted file system

vwidth: make troff width

getdtablesize: get descriptor

stab: symbol

htable: convert NIC standard format host
route: manually manipulate the routing
tbl: format

gettable: get NIC format host

tabs: set terminal

expand, unexpand: expand
ctags: create a

talk:

functions. sin, cos,
sinh, cosh,

tp: manipulate

tar:

tar:

ut: UNIBUS TU4S5 tri-density

tp: DEC/mag

tclose, tread, twrite, trewin, tskipf, tstate: f77
mt: magnetic

deroff: remove nroff, troff,
tape 1/0. topen,

tk: paginator for the

reset: reset the

last: indicate last logins of users and
index, rindex, Inblnk, len:
operations. opendir, readdir,
telnet: user interface to the

telnetd: DARPA

Fourth Berkeley Distribution

Permuted Index

suspend: suspend a shell, resuming its superior.
Sutherland Picture System 2 graphics device
swab: swap bytes.
swap bytes. . . .
swap device for 1merleaved pagmg/swappmg
swapon: add a swap device for interleaved
swapon: specify additional device for pagingand
swapping.
switch.
switch.
switch.
switch.
switch: multi-way command branch a0 n
symbol table types.
symbolic link.
symbolic link to a file.
symbols and relocation bits.
symlink: make symbolic link toafile.
symorder: rearrange name list.
sync: update super-block. . . .
sync: update the super block.
synchronize a file’s in-core state with that on
synchronous i/o multiplexing
syntax.
syscall: indirect syslem call 3
sys_errlist, sys_nerr: system error messages.
sysline: display system status on status line ofa
syslog: log systems messages.
syslog, openlog, closelog: control system log
SyS_NEIT: System error messages.
sys_siglist: system signal messages.
Systems Hyperchannel interface. . .
systems messages.
system’s profile buffers.
table.
table.
table.

tables.
tables for nroff or troff.
tables froma host.
tabs. . .
tabs: set lermmal tabs.
tabs to spaces, and vice versa. .
tags file.
tail: deliver the last part of a file.
talk: talk to another user.
talk to another user. . . o
tan, asin, acos, atan, atan2: tngonomemc o s 20 3
tanh: hyperbolic funcllons
tape archive.
tape archive file format.
tape archiver.
tape drive interface. . .
tape formats.
tape 1/0. topen,
tape manipulating program.
tar: tape archive file format.
tar: tape archiver.
tbl and egn constructs.
tbl: format tables for nroff or troff.
tc: photoypesetter simulator.
tclose, tread, twrite, trewin, tskipf, tstate: 77
tcp: Internet Transmission Control Protocol.
tee: pipe fitting.
Tektronix 4014.
teletype bits to a sensible state.
teletypes.
tell about character objects.
telldir, seekdir, rewinddir, closedir: directory
TELNET protocol.
TELNET protocol server. . .
telnet: user interface to the TELNET protocol

- Ixvii -

swab(3)
swapon(2)
swapon (2)
swapon (8)
swapon(8)
csh(1)
csh(1)
csh(1)
csh(1)
csh(1)
stab(5)
readlink (2)
symlink (2)
strip(1)
symlink (2)
symorder(1)
sync(2)
sync(8)
fsync(2)
select(2)
csh(1)
syscall(2)
perror(3)
sysline(1)
syslog(8)
syslog(3)
perror(3)
psignal(3)
hy(4)
syslog(8)
kgmon(8)
csh(1)
csh(1)
mtab(5)
vwidth(1)
getdtablesize(2)
stab(5)
htable(8)
route(8C)
tbl(1)
gettable(8C)
tabs(1)
tabs(1)
expand(1)
ctags(1)
tail (1)

talk (1)
talk (1)
sin(3M)
sinh(3M)
tp(1)
tar(5)
tar(1)
ut(4)

tp(5)
topen (3F)
mt(1)
tar(5)
tar(1)
deroff(1)
tbl(1)

te(1)

topen (3F)
tcp(4P)
tee(1)
tk(1)
reset(1)
last(1)
index (3F)
directory(3)
telnet (1C)
telnetd (8C)
telnet (1C)

August 1983

Permuted Index

su: substitute user id

1ib2648: subroutines for the HP 2648 graphics
lock: reserve a

sysline: display system status on status line of a
ttyname, isatty, ttyslot: find name of a
vhangup: virtually “‘hangup’’ the current control
worms: animate worms on a display

termcap:

gettytab:

tset:

pty: pseudo

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs:
ttys:

tty: general

getty: set

dmf: DMF-32,

tty: get

stty: set

ttynam, isatty: find name of a

clear: clear

script: make typescript of

stty, gtty: set and get

tabs: set

ttytype: data base of

term: conventional names for

wait, wait3: wait for process to

wait: wait for a process to

_exit:

output. exit:

kill:

abort:

endif:

end:

exit:

endsw:

drtest: standalone disk

quiz:

sticky: executable files with persistent
ed:

ex, edit:

fmt: simple

nroff:

troff, nroff:

ms:

terminal independent operation routines.
independent operation routines. tgetent, tgetnum,
independent operation routines. tgetent,
operation routines. tgetent, tgetnum, tgetflag,
routines. tgetent, tgetnum, tgetflag, tgetstr,
diction,explain: print wordy sentences;
explain, diction— print wordy sentences;
alarm: schedule signal after specified

alarm: execute a subroutine after a specified
at: execute commands at a later

etime, dtime: return elapsed execution
gettimeofday, settimeofday: get/set date and
shutdown: close down the system at a given
time, ftime: get date and

time, ctime, Itime, gmtime: return system
time:

time:

fdate: return date and
idate, itime: return date or
profil: execution

gmtime, asctime, timezone: convert date and
getitimer, setitimer: get/set value of interval
times: get process

August 1983

telnetd: DARPA TELNET protocol server.
temporarily.
term: conventional names for terminals.
termcap: terminal capability data base.

terminal: . . v . h e e e e e e s b e e s e e e s
terminal.o e e e e e e e e e e e e .
terminal. . o v v e v e e W e e s e e e e e
terminal. e e e e e e e e e e e e e e
terminall & 4w w e e e s e s e e
terminal. 0. ...
terminal capability data base e e e e e e e e e e
terminal configuration data base. YN EEEE Y.

terminal dependent initialization. T
terminal driver.
terminal independent operatron routmes. BEREEEY
terminal initializationdata.
terminal interface. 0000 0oL
terminal mode.

terminal multiplexor. s @
terminal name.
terminal Options. . . . v . v e e e e e e e e e ...
terminal POrt. . . v . 4 . b e v e e e e e e e e e
terminal screen.00 e 0. e e e e e ..
terminal session. 0.0 000 e e

terminal state (defunct).
terminaltabs. 000000
terminal typesby port.
terminals. . . .
terminate.
terminate.
terminate a process. . P B EEEE
terminate a process after ﬂushmg any pendmg o 1 i1 T
terminate a process with extreme prejudice.
terminate abruptly with memory image.
terminate conditional.
terminate loop.
terminate process with status.
terminate switch. 000 ..
test: condition command.
test program.
test your knowledge. L0000
teXL, & o ¢ c v o o e s b s o s s e e e e e e e
fextedilor, saww.ss i ssissamammam
text editor.
textformatter. 0. v et e e e
text formatting.
text formatting and typesetting.
text formatting macros.
tftpd: DARPA Trivial File Transfer Protocol server. -
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs:
tgetflag, tgetstr, tgoto, tputs: terminal
tgetnum, tgetflag, tgetstr, tgoto, tputs: terminal
tgetstr, tgoto, tputs: terminal independent e e e e
tgoto, tputs: terminal independent operation o e
thesaurus for diction.
thesaurus for diction. 000
time.

e

)11
UME wmsewmess &5 5§ 8 § § 8 5§ e e s
HME: .oooo mimm o wod & 5 8 6 8 3 @8 fhomeaidie
HMEl wmwmm o wmm v » & o % & % @ e
UMe: s o vame@@e &8 9588353
BMEE o wh oo o o i smr w8 & 8 8 e e ey e s sen e e
time.
trmeacommand

time command.
time, ctime, Itime, gmume: return system time.
time, ftime: get date and time.
time in an ASCII string.
time in numerical form.0 ..
time profile.
time: time a command.
time: timecommand.00 ...
time to ASCII. ctime, localtime, o @ mish i i sos B 19 56
timer.
times.

- Ixviii -

telnetd(8C)
su(1)
term(7)
termcap(5)
1ib2648(3X)
lock (1)
sysline(1)
ttyname(3)
vhangup(2)
worms(6)
termcap(5)
gettytab(5)
tset(1)
pty(4)
termcap(3X)
ttys(5)

tty(4)
getty(8)
dmf(4)
tty(1)

stty (1)
ttynam (3F)
clear(1)
script(1)
stty(3C)
tabs(1)
ttytype(5)
term(7)
wait(2)

wait (3F)
exit(2)
exit(3)
kill(1)

abort (3F)
csh(1)
csh(1)

exit (3F)
csh(1)
test(1)
drtest(8)
quiz (6)
sticky(8)
ed(1)

ex(1)

fmt(1)
nroff(1)
troff(1)
ms(7)

tftpd (8C)
termcap(3X)
termcap(3X)
termcap(3X)
termcap(3X)
termcap(3X)
diction(1)
explain(1)
alarm (3C)
alarm (3F)

gettimeofday(2)
shutdown (8)
time (3C)
time (3F)
time(1)
csh(1)
time(3F)
time(3C)
fdate (3F)
idate (3F)
profil(2)
time(1)
csh(1)
ctime(3)
getitimer(2)
times(3C)

Fourth Berkeley Distribution

utime: set file
utimes: set file

exit, export, login, read, readonly, set, shift,
ctime, localtime, gmtime, asctime,

ht:

tm:

mt:

popen, pclose: initiate I/0
tstate: 77 tape 1/0.

tsort:

tgetent, tgetnum, tgetflag, tgetstr, tgoto,

ptrace: process

trpt: transliterate protocol

goto: command

ftp: file

ftpd: DARPA Internet File

tftpd: DARPA Trivial File

tr:

macros. trman:

ad: Data

pi: Pascal interpreter code

trpt:

tcp: Internet

uuencode,uudecode: encode/decode a binary file for
trpfpe, fpecnt:

trapov:

traper:

export, login, read, readonly, set, shift, times,

1/0. topen, tclose,

trek:

topen, tclose, tread, twrite,

ut: UNIBUS TU45

sin, cos, tan, asin, acos, atan, atan2:

tftpd: DARPA

7 macros.

tbl: format tables for nroff or

Lisp programs to be printed with nroff, vtroff, or

deroff: remove nroff,
vtroff:

vwidth: make
faults.

false,
truncate:

false, true: provide
true, false: provide

ts:
topen, tclose, tread, twrite, trewin,

topen, tclose, tread, twrite, trewin, tskipf,

ttyname, isatty,
interface.

ut: UNIBUS
ht: TM-03/TE-16,

Fourth Berkeley Distribution

Permuted Index

times.
times.
times: get process times.
times, trap, umask, wait: command language. /exec,
timezone: convert date and time to ASCIIL.
tip, cu: connect to a remote system.

tk: paginator for the Tektronix 4014.
tm: TM-11/TE-10 magtape interface.

TM-03/TE-16,TU-45,TU-77 MASSBUS magtape interface.

TM-11/TE-10 magtape interface.
TM78/TU-78 MASSBUS magtape interface.
to/from a process.
topen, tclose, tread, twrite, trewin, tskipf,
topological sort.
touch: update date last modified of a file.
tp: DEC/mag tape formats.
tp: manipulate tape archive.
tputs: terminal independent operation routines.
tr: translate characters. . . .
trace.

trace.

transfer.
transfer program.
Transfer Protocol server.
Transfer Protocol server.
translate characters.
translate version 6 manual macros to version 7
Translation A/D converter.
translator.
transliterate protocol trace.
Transmission Control Protocol.
transmission via mail.
trap and repair floating point faults. .
trap and repair floating point overflow. . . .
trap arithmetic errors.
trap, umask, wait: command language. /exec, exn
traper: trap arithmetic errors.
trapov: trap and repair floating point overflow.
tread, twrite, trewin, tskipf, tstate: {77 tape
trek: trekkie game.
trekkie game. .
trewin, tskipf, tstate: f77 tape I/0. . .
tri-density tape drive interface. .
trigonometric functions.
Trivial File Transfer Protocol server.

troff.
troff. vlp: Format
troff, nroff: text formatting and typesellmg
troff, tbl and egn constructs.
troff to a raster plotter.
troff width table for a font.
trpfpe, fpecnt: trap and repair floating pmm R EE
trpt: transliterate protocol trace.
true, false: provide truth values.
true: provide truth values.
truncate a file to a specified length.
truncate: truncate a file to a specified length.
truth values.
truth values.
ts: TS-11 magtape interface.
TS-11 magtape interface.
tset: terminal dependent initialization.
tskipf, tstate: f77 tape 1/0.
tsort: topological sort. . a
tstate: f77 tape 1/0.
tty: general terminal interface.
tty: get terminal name.
ttynam, isatty: find name of a terminal port.
ttyname, isatty, ttyslot: find name of a terminal.
ttys: terminal initialization data.
ttyslot: find name of a terminal.
ttytype: data base of terminal types by port.
tu: VAX-11/730 and VAX-11/750 TUS8 console cassette
TUA4S tri-density tape drive interface.
TU-45,TU-77 MASSBUS magtape interface.

- Ixix -

utime (3C)
utimes(2)
times(3C)
sh(1)
ctime(3)
tip(1C)
tk(1)
tm(4)
ht(4)
tm(4)
mt(4)
popen(3)
topen (3F)
tsort(1)
touch(1)
tp(5)
tp(1)
termcap(3X)
tr(1)
ptrace (2)
trpt (8C)
csh(1)
ftp(1C)
ftpd (8C)
tftpd (8C)
tr(1)
trman(1)
ad(4)
pi(1)
trpt(8C)
tcp(4P)
uuencode(1C)
trpfpe(3F)
trapov(3F)
traper (3F)
sh(1)
traper (3F)
trapov (3F)
topen (3F)
trek (6)
trek (6)
topen (3F)
ut(4)
sin(3M)
tftpd (8C)
trman(1)
tbl(1)
vip(1)
troff(1)
deroff(1)
vtroff (1)
vwidth(1)
trpfpe (3F)
trpt (8C)
true(1)
false (1)
truncate(2)
truncate(2)
false(1)
true(1)
ts(4)
1s(4)
tset(1)
topen (3F)
tsort(1)
topen (3F)
tty(4)
tty (1)
ttynam (3F)
ttyname(3)
ttys(5)
ttyname(3)
ttytype(5)
tu(4)
ut(4)
ht(4)

August 1983

Permuted Index

tu: VAX-11/730 and VAX-11/750

uu:
ht: TM-03/TE-16,TU-45,
tunefs:

topen, tclose, tread,

file: determine file

stab: symbol table

types: primitive system data
ttytype: data base of terminal

script: make

man: macros to

eqn, neqn, checkeq:

troff, nroff: text formatting and

uda:

getpw: get name from

login, read, readonly, set, shift, times, trap,
mount,
mount,

cat them. compact,

compact, uncompact, ccat: compress and
ul: do

expand,

un:

uu: TUS8/DECtape 11
up:
ut:

mktemp: make a

gethostid, sethostid: get/set

flush: flush output to a logical

fseek, ftell: reposition a file on a logical

getc, fgetc: get a character from a logical

putc, fputc: write a character to a fortran logical
dn: DN-11 autocall

learn: computer aided instruction about

reboot:

system: execute a

uux: unix to

uucp, uulog: unix to

vfontinfo: inspect and print out information about
mtio:

analyze: Virtual

uux:

uucp, uulog:

rmdir, rm: remove
rm, rmdir: remove

uptime: show how long system has been
tunefs: tune

touch:

sync:
sync:
update: periodically

du: summarize disk
quota: display disc
what: show what versions of object modules were

us: llaneou:

August 1983

TUS8 console cassette interface.
TUS58/DECtape 11 UNIBUS cassette interface.
TU-77 MASSBUS magtape interface.
tune up an existing file system.
tunefs: tune up an existing file system.

twrite, trewin, tskipf, tstate: f77 tape 1/0.
type.

types.
types by port.
types: primitive system data types.
typescript of terminal session.
typeset manual.
typeset mathematics.
typesetting.
uda: UDA-50 disk controller lmerface
UDA-50 disk controller interface.
udp: Internet User Datagram Protocol.
uid. g% s
ul: do underlining.
umask: change or display file creation mask.
umask: set file creation mode mask.
umask, wait: command language. /exec, exit, export,
umount: mount and dismount file system.
umount: mount or remove file system.
un: Ungermann-Bass interface.
unalias: remove aliases.
uncompact, ccat: compress and uncompress files, and
uncompress files, and cat them.
underlining.
unexpand: expand tabs to spaces, and v1ce versa.
Ungermann-Bass interface.
ungetc: push character back into input stream.
unhash: discard command hash table.
UNIBUS cassette interface.
unibus storage module controller/drives.
UNIBUS TU4S tri-density tape drive interface. .". .
uniq: report repeated lines in a file. TEEE RN
unique file name.
unique identifier of current host.
unit.
unit.
unit.
unit.
unit interface.
units: conversion program.
UNIX: s :scvsmneowmenmonsssss i3 8
UNIX bootstrapping procedures. .
UNIX command.
unix command execution.
unix copy.
UNIX fonts.
UNIX magtape interface. .
UNIX postmonem crash dnalyzer G 8 8 & B S B
unix to unix command execution.
unix to unix copy.
unlimit: remove resource limitiations.
(unlink) directories or files.
(unlink) files or directories.
unlink: remove a directory entry.
unlink: remove directory entry.
unset: discard shell variables.
unselenv remove environment vanables

up an existing file system.
up: unibus storage module controller/drives.
update date last modified of a file.
update: periodically update the super block. .
update super-block.
update the super block.
update the super block.
uptime: show how long system has been up.
usage. .
usage and limits. . .
used to construct a file.
useful information pages.

- Ixx -

tunefs(8)
tunefs(8)
topen (3F)
file(1)
stab(5)
types(5)
ttytype(5)
types(5)
script(1)
man(7)
eqn(1)
troff (1)
uda(4)
uda(4)
udp(4P)
getpw(3C)
ul(1)
csh(1)
umask (2)
sh(1)
mount(8)
mount(2)
un(4)
csh(1)
compact (1)
compact (1)

uniq(1)
mktemp(3)
gethostid (2)
flush (3F)
fseek (3F)
getc(3F)
putc(3F)
dn(4)
units(1)
learn(1)
reboot(8)
system (3F)
uux(1C)
uucp(1C)
vfontinfo(1)
mtio(4)
analyze(8)
uux(1C)
uucp(1C)
csh(1)

unlink 3F)
unlink (2)
csh(1)
csh(1)
uptime(1)
tunefs(8)
up(4)
touch(1)
update(8)
sync(2)
sync(8)
update(8)
uptime (1)
du(1)
quota(1)
what(1)
intro(7)

Fourth Berkeley Distribution

login: login new

talk: talk to another

write: write to another

seteuid, setruid, setgid, setegid, setrgid: set
udp: Internet

environ:

whoami: print effective current

su: substitute

getuid, geteuid: get

setreuid: set real and effective
finger:

telnet:

getuid, getgid: get

edquota: edit

adduser: procedure for adding new
binmail: send or receive mail among
wall: write to all

last: indicate last logins of

getlog: get
users: compact list of

getrusage: get information about resource
vtimes: get information about resource

rmail: handle remote mail received via
uuclean:
uusnap: show snapshot of the

transmission via mail. uuencode,
uuencode: format of an encoded

transmission via mail.
uucp,

abs: integer absolute

fabs, floor, ceil: absolute

getenv:

readlink: read

getenv: get

getitimer, setitimer: get/set

set: change

false, true: provide truth

dflmin, dfimax, dffrac, inmax: return extreme
rand, drand, irand: return random
true, false: provide truth

htonl, htons, ntohl, ntohs: convert

set: change value of shell

varargs:

setenv: set

@: arithmetic on shell

unset: discard shell

unsetenv: remove environment

getenv: get value of environment

as:

cons:

interface. tu:

tu: VAX-11/730 and

assert: program

lint: a C program

expand, unexpand: expand tabs to spaces, and vice
vfont: font formats for the Benson-Varian or
vp:

trman: translate

trman: translate version 6 manual macros to
hangman: Computer

file. what: show what

Fourth Berkeley Distribution

utmp, wtmp: login records.

Permuted Index

user. .
user.
user. A
user and group ID setund
User Datagram Protocol.

user environment.
user id.
user id temporarily. ..
user identity. ..o
user ID’s.
user information lookup program.
user interface to the TELNET protocol.
user or group ID of the caller.
user quotas.
USETS. o o ¢ o o o o o
users. . . .
users.
users and teletypes. “iw s s w o v o e
users: compact list of users who are on the syslem . e

user’s login name. .
users who are on the system. ¥

ut: UNIBUS TUA4S tri-density tape drive mterface 5 %
utilization.
utilization.
utime: set file times.
utimes: set file times.

uu: TU58/DECtape 11 UNIBUS casselle mterface v e e
uuclean: uucp spool directory clean-up.
uucp. .
uucp spool directory clean-up. . .
UUCP system.
uucp, uulog: unix to unix copy.
uudecode: encode/decode a binary file for
uuencode file. .
uuencode: format of an encoded uuencode file.
uuencode,uudecode: encode/decode a binary file'for . .
uulog: unix to unix copy.
uusend: send a file to a remote host.
uusnap: show snapshot of the UUCP system &% ¥ & ¥
uux: unix to unix command execution.
va: Benson-Varian interface. e
valloc: aligned memory allocator.

value. . . .
value, floor, cellmg functmns % e e g
value for environment name.
value of a symbolic link.
value of environment variables. . .
value of interval timer.
value of shell variable.
values. 5 .
values. flmin, fimax, ffrac,
values.
values. . . .
values between hosl and network byte order W 6 e
varargs: variable argument list.

variable.
variable argument list.
variable in environment. « s
variables. 5 T e e e s o o o i
variables. R L T
variables. EEEE R PRCROE:
variables. v Fo e e a o
VAX-11 assembler. 3 5.5 8 &M SRR
VAX-11 console interface.

VAX-11/730 and VAX-11/750 TU58 console cassette
VAX-11/750 TUS8 console cassette interface.
verification.
verifier.
VErSa. . .« o 4 . .
Versatec.
Versatec interface.
version 6 manual macros to versxon 7 macros o 5 i @
version 7 macros. . .

version of the game hangman
versions of object modules were used to construct a

- Ixxi -

udp(4P)
environ(7)
whoami(1)
su(1)
getuid(2)
setreuid (2)
finger(1)
telnet (1C)
getuid (3F)
edquota(8)
adduser(8)
binmail (1)
wall(1)
last(1)
users(1)
getlog (3F)
users(1)
ut(4)
getrusage(2)
vtimes(3C)
utime (3C)
utimes(2)
utmp(5)
uu(4)
uuclean(8C)
rmail(1)
uuclean(8C)
uusnap(8C)
uucp(1C)
uuencode (1C)
uuencode(5)
uuencode(5)
uuencode(1C)
uucp(1C)
uusend(1C)
uusnap(8C)
uux(1C)
va(4)
valloc(3)
abs(3)

floor (3M)
getenv(3)
readlink(2)
getenv (3F)
getitimer(2)
csh(1)

false (1)
fimin (3F)
rand 3F)
true(1)
byteorder (3n)
varargs(3)
csh(1)
varargs(3)
csh(1)
csh(1)
csh(1)
csh(1)
getenv(3F)
as(1)
cons(4)
tu(4)

tu(4)
assert(3X)
lint(1)
expand(1)
vfont(5)
vp(4)

trman (1)
trman(1)
hangman (6)
what(1)

August 1983

Permuted Index

Versatec.
UNIX fonts.
efficient way.

vgrindefs:

terminal.

on ex.

encode/decode a binary file for transmission
rmail: handle remote mail received

expand, unexpand: expand tabs to spaces, and
more, page: file perusal filter for crt

vfork: spawn new process in a
vmstat: report

analyze:

vhangup:

vi: screen oriented
consumption.

vtroff, or troff.

fs, inode: format of file system

Vpr, vprm,
spooler.

Vvpr, Vvprm, vpq,
vpr,

vip: Format Lisp programs to be printed with nroff,

read, readonly, set, shift, times, trap, umask,
wait:

wait:

sigpause: atomically release blocked signals and
wait, wait3:

wait,

what: show what versions of object modules
whatis: describe

crash:

used to construct a file.

w: who is on and

construct a file. what: show

crash: what happens

leave: remind you

program.

paths (csh only).

exec, exit, export, login,/ sh, for, case, if,

break: exit

users: compact list of users

from:

w:

who:

biff: be notified if mail arrives and

rwho:

fold: fold long lines for finite

vwidth: make troff

fastboot, fasthalt: reboot/halt the system
we:

getc, getchar, fgetc, getw: get character or
putc, putchar, fputc, putw: put character or
diction,explain: print

explain, diction— print

cd: change

August 1983

vfont: font formats for the Benson-Varian or
vfontinfo: inspect and print out information about . . .
vfork: spawn new process in a virtual memory o % e
vgrind: grind nice listings of programs.
vgrindefs: vgrind’s language definition data base. . . .
vgrind’s language definition data base.
vhangup virtually ‘‘hangup’’ the current comrol s e
vi: screen oriented (visual) display editor based

via mail. uuencode,uudecode: S I S .
VIBGUCD: s s siwo e @ w88 85 888§
vice versa.
v1ewmg
vipw: ednlhepasswordﬁle ORI B I

virtua! memory efficientway.
virtual memory statistics.
Virtual UNIX poslmorlem crash analyzer
virtually ‘‘hangup’ the current control terminal. s 5 8
(visual) display editor based on ex.
vlimit: control maximum system resource
vip: Format Lisp programs to be printed with nroff, . .
vmstat: report virtual memory statistics.
volume.
vp: Versatec mterface
vpq, vprint: raster pnnler/plolter spooler
vpr, vprm, vpq, vprint: raster printer/plotter
vprint: raster printer/plotter spooler.
vprm, vpq, vprint: raster printer/plotter spooler.
vtimes: get information about resource utilization. . . .
vtroff, or troff.
vtroff: troff to a raster plotter.
vv: Proteon proNET 10 Megabitring.
vwidth: make troff width table forafont.
w: who is on and what they are doing.
wait: await completion of process.
wait: command language. /exec, exit, export, logm, . %
wait for a process to terminate. E
wait for background processes to complete.
wait for interrupt.
wait for process to terminate.
wait: wait for a process to terminate.
wait: wait for background processes to complete. P
wait, wait3: wait for process to terminate.
wait3: wait for process to terminate. .
wall: write to all users.
wc: word count.
were used to construct a file.
what a command is.
what happens when the system crashes. & 3 6 i ow e
what: show what versions of object modules were v ga; @
what they are doing.
what versions of object modules were used 10! < oo e o
whatis: describe what a command is.
when the system crashes.
when you have to leave. .
whereis: locate source, binary, and or manual for ST
which: locate a program file including aliases and e e
while, :, ., break, continue, cd, eval, AR
while: repeat commands conditionally.
while/foreach loop.
who are on the system.
who is my mail from?.
who is on and what they are dmng 3 By B % 6L e
who is on the system.
who it is from.
who: who is on the system. .
whoami: print effective current userid.
who’s logged in on local machines.
width outputdevice.
width table for a font.
without checking the disks.
word count.
word from stream.
word on a stream.
wordy sentences; thesaurus for diction.
wordy sentences; thesaurus for diction.
working directory.

- Ixxii -

vfont(5)
vfontinfo(1)
vfork(2)
vgrind (1)
vgrindefs(5)
vgrindefs(5)
vhangup(2)
vi(l)
uuencode (1C)
rmail (1)
expand(1)
more(1)
vipw (8)
vfork(2)
vmstat(1)
analyze(8)
vhangup(2)
vi(1)
vlimit(3C)
vip(1)
vmstat(1)
fs(5)

vp(4)
vpr(1)
vpr(1)
vpr(1)
vpr(1)
vtimes(3C)
vip(1)
vtroff(1)
vv(4)
vwidth(1)
w(l)

wait (1)
sh(1)

wait (3F)
csh(1)
sigpause (2)
wait (2)
wait(3F)
csh(1)
wait(2)
wait(2)
wall(1)
we(l)
what(1)
whatis(1)
crash(8V)
what(1)
w(l)
what(1)
whatis(1)
crash(8V)
leave(1)
whereis(1)
which(1)
sh(1)
csh(1)
csh(1)
users(1)

whoami(1)
rwho(1C)
fold (1)
vwidth(1)
fastboot(8)
we(l)
getc(3S)
putc(3S)
diction (1)
explain(1)
cd(1)

Fourth Berkeley Distribution

— -
chdir: change current

getcwd: get pathname of current
pwd:

getwd: get current

worm: Play the growing

worms: animate

putc, fputc:

write, writev:

wall:

write:

write,

open: open a file for reading or
utmp,

en:

pup:

xsend,

bit: and, or,
shared strings.
i0, j1, jn,

j0, j1, jn, y0,
eyacc: modified

j0, j1, jn, y0, y1,

Fourth Berkeley Distribution

4 - —

Permuted Index
working directory. o 0 0 e e e e e e e chdir(2)
working directory. . . . ¢ v v e v e e e e e e e e getewd (3F)
working directory name. o0 e o0 e 0. . pwd(1)
working directory pathname. getwd(3)
WOTM BAME. & « s 5 s o s s @ s 668 ¢ 5 6 6 s & & worm (6)
worm: Play the growing worm game. worm (6)
worms: animate worms on a display terminal. worms(6)
worms on a display terminal. worms(6)
write a character to a fortran logical unit. putc(3F)
writeon afile. . s s s v e s E V@G EEEY ¥ 8 8 6§ write(2)
writetoall users. v v b e e e e e e e wall(1)
write to another user. EEEE write(1)
write: write to another user. . . « .+ « v 4 o 0 ... write(1)
write, writev: writeonafile. write(2)
writev: writeonafile. FE e E 8 EEE Y write(2)
writing, or createanewfile. open(2)
wimp: login records. .« . v . e e 4 e e e e e 0 e e s utmp(5)
wump: the game of hunt-the-wumpus. wump(6)
Xerox 3 Mb/s Ethernet interface. en(4)
Xerox PUP-I protocol family. pup(4F)
xget, enroll: secret mail. xsend(1)
xor, not, rshift, Ishift bitwise functions. bit(3F)
xsend, xget, enroll: secret mail. xsend(1)
xstr: extract strings from C programs to implement xstr(1)
y0, y1, yn: bessel functions. jO(3M)
yl, yn: bessel functions. o j03M)
yacc allowing much improved error recovery. eyacc(1)
yacc: yet another compiler-compiler. yacc(1)
yes: be repetitively affirmative. yes(1)
yn: bessel functions. e e e e joGM)
zork: the game of dungeon. zork (6)

- Ixxiii - August 1983

—— wy WP W - —

INTRO (1) UNIX Programmer’s Manual INTRO(1)
NAME

intro — introduction to commands
DESCRIPTION

This section describes publicly accessible commands in alphabetic order. Certain distinctions of
purpose are made in the headings:

1) Commands of general utility.

(1C) Commands for communication with other systems.

(1G) Commands used primarily for graphics and computer-aided design.

N.B.: Commands related to system maintenance used to appear in section 1 manual pages and
were distinguished by (1IM) at the top of the page. These manual pages now appear in section
8.

SEE ALSO
Section (6) for computer games.

How to get started, in the Introduction.

DIAGNOSTICS

Upon termination each command returns two bytes of status, one supplied by the system giving
the cause for termination, and (in the case of ‘normal’ termination) one supplied by the pro-
gram, see wait and exit(2). The former byte is 0 for normal termination, the latter is cus-
tomarily 0 for successful execution, nonzero to indicate troubles such as erroneous parameters,
bad or inaccessible data, or other inability to cope with the task at hand. It is called variously
‘exit code’, ‘exit status’ or ‘return code’, and is described only where special conventions are
involved.

7th Edition 18 January 1983 1

ADB (1) UNIX Programmer’s Manual ADB (1)

NAME

adb — debugger
SYNOPSIS

adb [—w] [=k] [-Idir] [objfil [corfil]]
DESCRIPTION

Adbis a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of UNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table; if not then
the symbolic features of adb cannot be used although the file can still be examined. The
default for eBjfil is a.out. Corfil is assumed to be a core image file produced after executing
objfit, the default for corfilis core.

Requests to adb are read from the standard input and responses are to the standard output. If
the —w flag is present then both objfiland corfilare created if necessary and opened for reading
and writing so that files can be modified using adb.

The —k option makes adb do UNIX kernel memof-y mapping; it should be used when coreis a
UNIX crash dump or /dev/imem

The —1 option specifies a directory where files to be read with $< or $< < (see below) will be
sought; the default is /usr/lib/adb.

Adbignores QUIT; INTERRUPT causes return to the next adbcommand.
In general requests to adbare of the form
[address) {, count] [command] [;]

If address is present then dot is set to address. Initially dotis set to 0. For most commands
count specifies how many times the command will be executed. The default countis 1. Address
and count are expressions.

The interpretation of an address depends on the context it is used in. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subpro-
cess. If the operating system is being debugged either post-mortem or using the special file
/dev/mem to interactive examine and/or modify memory the maps are set to map the kernel vir-
tual addresses which start at 0x80000000 (on the VAX). ADDRESSES.

EXPRESSIONS
. The value of dor.

+ The value of dorincremented by the current increment.

The value of dordecremented by the current increment.
" The last address typed.

integer A number. The prefixes 0o and 00 (‘“‘zero oh’’) force interpretation in octal radix; the
prefixes Ot and OT force interpretation in decimal radix; the prefixes 0x and 0X force
interpretation in hexadecimal radix. Thus Qo020 = 0t16 = 0x10 = sixteen. If no
prefix appears, then the default radixis used; see the $d command. The default radix is
initially hexadecimal. The hexadecimal digits are 0123456789abcdefABCDEF with the
obvious values. Note that a hexadecimal number whose most significant digit would
otherwise be an alphabetic character must have a 0x (or 0X) prefix (or a leading zero if
the default radix is hexadecimal).

integer. fraction
A 32 bit floating point number.

“ccec” The ASCII value of up to 4 characters. \ may be used to escape a ".

4th Berkeley Distribution 18 July 1983 1

ADB (1) UNIX Programmer’s Manual ADB (1)

< name
The value of name, which is either a variable name or a register name. Adb maintains a
number of variables (see VARIABLES) named by single letters or digits. If name is a
register name then the value of the register is obtained from the system header in
corfil. The register names are those printed by the $r command.

symbol A symbolis a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. The backslash character \ may be used to escape other characters. The
value of the symbol is taken from the symbol table in objfil An initial _ will be
prepended to symbol if needed.

_ symbol
In C, the ‘true name’ of an external symbol begins with _. It may be necessary to utter
this name to distinguish it from internal or hidden variables of a program.

routine.name
The address of the variable name in the specified C routine. Both routine and name are
symbols. 1f name is omitted the value is the address of the most recently activated C
stack frame corresponding to routine. (This form is currently broken on the VAX; local
variables can be examined only with dbx(1).)

(exp) The value of the expression exp.

Monadic operators

+exp The contents of the location addressed by expin corfil.
@exp The contents of the location addressed by expin objfil.
—exp Integer negation.

~exp Bitwise complement.

#exp Logical negation.

Dyadic operators are left associative and are less binding than monadic operators.
el + e2 Integer addition.

el— e2 Integer subtraction.

el+e2 Integer multiplication.

el%e2 Integer division.

el&e2 Bitwise conjunction.

elle2 Bitwise disjunction.

el#e2 EIrounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following
verbs are available. (The commands ‘?” and ‘/> may be followed by ‘*’; see ADDRESSES for
further details.)

7 Locations starting at address in objfil are printed according to the format f£ dotis incre-
mented by the sum of the increments for each format letter (q.v.).
/f Locations starting at address in corfil are printed according to the format fand dor is

incremented as for ‘7.

= f The value of address itself is printed in the styles indicated by the format £ (For i for-
mat *?’ is printed for the parts of the instruction that reference subsequent words.)

.4th Berkeley Distribution 18 July 1983 2

ADB(1)

UNIX Programmer’s Manual ADB(1)

A format consists of one or more characters that specify a style of printing. Each format charac-
ter may be preceded by a decimal integer that is a repeat count for the format character. While
stepping through a format doris incremented by the amount given for each format letter. If no
format is given then the last format is used. The format letters available are as follows.

newline

AOACT == s oepoe O°
== O A BRANBENAENANDAN

wne

-

-

I+

Yoam o=

3

o~

=X

Print 2 bytes in octal. All octal numbers output by adb are preceded by 0.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.

Print double floating point.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the standard escape convention where con-
trol characters are printed as "X and the delete character is printed as 7.

Print the addressed characters until a zero character is reached.

Print a string using the "X escape convention (see C above). nis the length of
the string including its zero terminator.

Print 4 bytes in date format (see ctime(3)).

Print as machine instructions. »n is the number of bytes occupied by the
instruction. This style of printing causes variables 1 and 2 to be set to the
offset parts of the source and destination respectively.

Print the value of dorin symbolic form. Symbols are checked to ensure that
they have an appropriate type as indicated below.

local or global data symbol
local or global text symbol
local or global absolute symbol

Print the addressed value in symbolic form using the same rules for symbol
lookup as a.

When preceded by an integer tabs 10 the next appropriate tab stop. For exam-
ple, 8t moves o the next 8-space tab stop.

Print a space.

Print a newline.

Print the enclosed string.

Datis decremented by the current increment. Nothing is printed.

Dot is incremented by 1. Nothing is printed.

Dotis decremented by 1. Nothing is printed.

Repeat the previous command with a countof 1.

[2/11 value mask

Words starting at dot are masked with mask and compared with value until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged; otherwise dot is set to the matched location. If mask is
omitted then —1 is used.

[?2/1w value ...

4th Berkeley Distribution 18 July 1983 3

ADB (1) UNIX Programmer’s Manual ADB (1)

Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to the subprocess address space.

[2/1m b1 el f112/)
New values for (b1, el, fI) are recorded. If less than three expressions are given then
the remaining map parameters are left unchanged. If the ‘?° or */’ is followed by ‘¢’
then the second segment (b2, e2, f2) of the mapping is changed. If the list is ter-
minated by ‘?> or ‘/° then the file (objfil or corfil respectively) is used for subsequent
requests. (So that, for example, /m?’ will cause /° to refer to objfil.)

> name Dot is assigned to the variable or register named.
! A shell (/bin/sh) is called to read the rest of the line following ‘!".

S modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file £ If this command is executed in a file, further
commands in the file are not seen. If fis omitted, the current input stream is
terminated. If a countis given, and is zero, the command will be ignored. The
value of the count will be placed in variable 9 before the first command in fis
executed.

< <f Similar to < except it can be used in a file of commands without causing the
file to be closed. Variable 9 is saved during the execution of this command,
and restored when it completes. There is a (small) finite limit to the number
of << files that can be open at once.

>f Append output to the file f, which is created if it does not exist. If fis omitted,
output is returned to the terminal.

i Print process id, the signal which caused stoppage or termination, as well as the

registers as $r. This is the default if modifier is omitted.

Print the general registers and the instruction addressed by pe. Dotis set to pe.

Print all breakpoints and their associated counts and commands.

c C stack backtrace. If address is given then it is taken as the address of the
current frame instead of the contents of the frame—pointer register. If C is
used then the names and (32 bit) values of all automatic and static variables are
printed for each active function. (broken on the VAX). If countis given then
only the first countframes are printed.

d Set the default radix to address and report the new value. Note that address is

interpreted in the (old) current radix. Thus **108d”’ never changes the default

radix. To make decimal the default radix, use *‘0t103d’".

The names and values of external variables are printed.

Set the page width for output to address (default 80).

Set the limit for symbol matches to address (default 255).

All integers input are regarded as octal.

Exit from adb.

Print all non zero variables in octal.

Print the address map.

(Kernel debugging) Change the current kernel memory mapping to map the

designated user structure to the address given by the symbol _u. The address

argument is the address of the user’s user page table entries (on the VAX).

o -

T g<oomgo

:modifier
Manage a subprocess. Available modifiers are:
be Set breakpoint at address. The breakpoint is executed count—1 times before
causing a stop. Each time the breakpoint is encountered the command cis exe-
cuted. If this command is omitted or sets dor to zero then the breakpoint

4th Berkeley Distribution 18 July 1983 4

ADB (1) UNIX Programmer’s Manual ADB (1)

causes a stop.
d Delete breakpoint at address.

r Run objfil as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the com-
mand. An argument starting with < or > causes the standard input or output
to be established for the command.

cs The subprocess is continued with signal s, see sigvec(2). If address is given
then the subprocess is continued at this address. If no signal is specified then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is the
same as for r.

ss As for ¢ except that the subprocess is single stepped count times. If there is no
current subprocess then objfil is run as a subprocess as for r. In this case no
signal can be sent; the remainder of the line is treated as arguments to the sub-
process.

k The current subprocess, if any, is terminated.

VARIABLES

Adb provides a number of variables. Named variables are set initially by adb but are not used
subsequently. Numbered variables are reserved for communication as follows.

0 The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

9 The count on the last $< or $< < command.

On entry the following are set from the system header in the corfil. If corfil does not appear to
be a core file then these values are set from objfil.

b The base address of the data segment.
d The data segment size.
e The entry point.
m The ‘magic’ number (0407, 0410 or 0413).
S The stack segment size.
t The text segment size.
ADDRESSES

FILES

The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (b1, el, f1) and (b2, €2, f2) and the
file address corresponding to a written addressis calculated as follows.

bl< address< el => file address= address+ f1—bl, otherwise,

b2< address< e2 => file address= address+ f2—b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated I
and D space) the two segments for a file may overlap. If a ? or / is followed by an * then only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is

not of the kind expected then, for that file, 4/ is set to 0, e/ is set to the maximum file size and
1 is set to 0; in this way the whole file can be examined with no address translation.

a.out
core

4th Berkeley Distribution 18 July 1983 5

ADB (1) UNIX Programmer’s Manual ADB (1)

SEE ALSO
cc(1), dbx (1), ptrace(2), a.out(5), core(5)

DIAGNOSTICS
‘Adb’ when there is no current command or format. Comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or
returned nonzero status.

BUGS
Since no shell is invoked to interpret the arguments of the :r command, the customary wild-
card and variable expansions cannot occur.

4th Berkeley Distribution 18 July 1983 6

ADDBIB (1) UNIX Programmer’s Manual ADDBIB (1)

NAME

addbib — create or extend bibliographic database
SYNOPSIS

addbib [—p promptfile] [—a] database
DESCRIPTION

When this program starts up, answering ‘‘y’’ to the initial *“‘Instructions?”’ prompt yields direc-
tions; typing ‘“‘n’’ or RETURN skips them. Addbib then prompts for various bibliographic fields,
reads responses from the terminal, and sends output tecords to a database. A null response
(just RETURN) means to leave out that field. A minus sign (—) means to go back to the previ-
ous field. A trailing backslash allows a field to be continued on the next line. The repeating
“Continue?”” prompt allows the user either to resume by typing “‘y” or RETURN, to quit the
current session by typing ““n’ or ‘‘q”, or to edit the database with any system editor (vi, ex,
edit, ed).

The —a option suppresses prompting for an abstract; asking for an abstract is the default.
Abstracts are ended with a CTRL-d. The —p option causes addbib to use a new prompting
skeleton, defined in promptfile. This file should contain prompt strings, a tab, and the key-letters
to be written to the database.

The most common key-letters and their meanings are given below. Addbib insulates you from
these key-letters, since it gives you prompts in English, but if you edit the bibliography file later
on, you will need to know this information.

%A Author’s name

%B Book containing article referenced

%C City (place of publication)

%D Date of publication

%E Editor of book containing article referenced
%F Footnote number or label (supplied by refer)
%G Government order number

%H Header commentary, printed before reference
%I Issuer (publisher)

%J Journal containing article

%K Keywords to use in locating reference

%L Label field used by —k option of refer

%M Bell Labs Memorandum (undefined)

%N Number within volume

%0 Other commentary, printed at end of reference
%P Page number(s)

%Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished)

%S Series title

%T Title of article or book

%V Volume number

%X Abstract — used by roffbib, not by refer
%Y,Z ignored by refer

Except for ‘A’, each field should be given just once. Only relevant fields should be supplied.
An example is:

%A Bill Tuthill

%T Refer — A Bibliography System
%I Computing Services

4th Berkeley Distribution 18 July 1983 1

ADDBIB (1)

%C
%D
%0

FILES
promptfile

SEE ALSO

UNIX Programmer’s Manual

Berkeley
1982
UNX 4.3.5.

optional file to define prompting

refer(1), sortbib(1), roffbib(1), indxbib(1), lookbib(1)

AUTHORS

Al Stangenberger, Bill Tuthill

4th Berkeley Distribution 18 July 1983

ADDBIB (1)

APPLY (1) UNIX Programmer’s Manual APPLY (1)

NAME

apply — apply a command to a set of arguments
SYNOPSIS

apply [—ac] [—=n] command args ...
DESCRIPTION

Apply runs the named command on each argument arg in turn. Normally arguments are chosen
singly; the optional number n specifies the number of arguments to be passed to command. If n
is zero, command is run without arguments once for each arg. Character sequences of the form
%d in command, where d is a digit from ! to 9, are replaced by the &’th following unused arg. If
any such sequences occur, » is ignored, and the number of arguments passed to command is the
maximum value of din command. The character ‘%’ may be changed by the —a option.

Examples:
apply echo =
is similar to Is(1);
apply —2 cmp al bl a2 b2 ...
compares the ‘a’ files to the ‘b’ files;
apply —Owho 12345
runs who(1) 5 times; and
apply ‘In %1 /usr/joe” =
links all files in the current directory to the directory /usr/joe.
SEE ALSO
sh(1)

AUTHOR
Rob Pike

BUGS
Shell metacharacters in command may have bizarre effects; it is best to enclose complicated
commands in single quotes " *

There is no way to pass a literal ‘%2’ if ‘%’ is the argument expansion character.

7th Edition 24 February 1979 1

APROPOS (1) UNIX Programmer’s Manual APROPOS (1)

NAME

apropos — locate commands by keyword lookup
SYNOPSIS

apropos keyword ...
DESCRIPTION

Apropos shows which manual sections contain instances of any of the given keywords in their
title. Each word is considered separately and case of letters is ignored. Words which are part of
other words are considered thus looking for compile will hit all instances of ‘compiler’ also.
Try

apropos password
and
apropos editor

If the line starts ‘name(section) ...” you can do ‘man section name’ to get the documentation
for it. Try ‘apropos format’ and then ‘man 3s printf” to get the manual on the subroutine printf.

Apropos is actually just the —k option to the man(1) command.

FILES

/usr/lib/whatis data base
SEE ALSO

man(1), whatis(1), catman(8)
AUTHOR

William Joy

4th Berkeley Distribution 24 February 1979 1

AR(1)

NAME

UNIX Programmer’s Manual AR (1)

ar — archive and library maintainer

SYNOPSIS

ar key [posname] afile name ...

DESCRIPTION

Ar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the loader. It can be used, though, for any similar purpose.
N.B: This version of ar uses a ASCII-format archive which is portable among the various
machines running UNIX. Programs for dealing with older formats are available: see arcv(8).

Key is one character from the set drqtpmx, optionally concatenated with one or more of vuaib-
clo. Afile is the archive file. The names are constituent files in the archive file. The meanings
of the key characters are:

d
r

FILES

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u is used with r,
then only those files with ‘last-modified’ dates later than the archive files are replaced.
If an optional positioning character from the set abi is used, then the posname argument
must be present and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are to
be moved.

Extract the named files. If no names are given, all files in the archive are extracted. In
neither case does x alter the archive file. Normally the ‘last-modified’ date of each
extracted file is the date when it is extracted. However, if o is used, the ‘last-modified’
date is reset to the date recorded in the archive.

Verbose. Under the verbose option, ar gives a file-by-file description of the making of
a new archive file from the old archive and the constituent files. When used with t, it
gives a long listing of all information about the filess. When used with p, it precedes
each file with a name.

Create. Normally ar will create afile when it needs to. The create option suppresses
the normal message that is produced when afile is created.

Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

/tmp/v= temporaries

SEE ALSO

lorder(1), 1d(1), ranlib(1), ar(5), arcv(8)

BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

4th Berkeley Distribution 24 February 1979 1

AR (1) UNIX Programmer’s Manual AR (1)

The ‘last-modified’ date of a file will not be altered by the o option if the user is not the owner
of the extracted file, or the super-user.

4th Berkeley Distribution 24 February 1979 2

AS (1) UNIX Programmer’s Manual AS (1)
NAME

as — VAX-11 assembler
SYNOPSIS

as[—d124] [-L][-W][-V][-J]1[—=R][—tdirectory] [—o objfile] [name ...]
DESCRIPTION

As assembles the named files, or the standard input if no file name is specified. The available

flags are:

-d Specifies the number of bytes to be assembled for offsets which involve forward or
externai references, and which have sizes unspecified in the assembly language. The
default is —d4.

—L Save defined labels beginning with a ‘L’, which are normally discarded to save space in
the resultant symbol table. The compilers generate such temporary labels.

—V Use virtual memory for some intermediate storage, rather than a temporary file.

—W Do not complain about errors.

-J Use long branches to resolve jumps when byte-displacement branches are insufficient.
This must be used when a compiler-generated assembly contains branches of more than
32k bytes.

-R Make initialized data segments read-only, by concatenating them to the text segments.

-t

This obviates the need to run editor scripts on assembly code to make initialized data
read-only and shared.

Specifies a directory to receive the temporary file, other than the default /tmp.

All undefined symbols in the assembly are treated as global.
The output of the assembly is left on the file objfile; if that is omitted, a.outis used.

FILES
/tmp/as* default temporary files
a.out default resultant object file
SEE ALSO

1d(1), nm(1), adb(1), dbx (1), a.out(5)
Auxiliary documentation Assembler Reference Manual.

AUTHORS

John F. Reiser
Robert R. Henry

BUGS

—J should be eliminated: the assembler should automatically choose among byte, word and
long branches.

4th Berkeley Distribution July 1, 1983 1

AT (1) UNIX Programmer’s Manual . AT (1)

NAME
at — execute commands at a later time

SYNOPSIS
at time [day] [file]

DESCRIPTION
. At squirrels away a copy of the named file (standard input default) to be used as input to sk(1)
(or ¢csh(1) if you normally use it) at a specified later time. . A ¢d command to the current direc-
tory is inserted at the beginning, followed by assignments to all environment variables (except-
ing the variable TERM, which is useless in this context.) When the script is run, it uses the
user and group ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following ‘A’, ‘P’, ‘N’ or ‘M’ for AM, PM, noon or
midnight. One and two digit numbers are taken to be hours, three and four digits to be hours
and minutes. If no letters follow the digits, a 24 hour clock time is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day of the
week; if the word ‘week’ follows invocation is moved seven days further off. Names of months
and days may be recognizably truncated. Examples of legitimate commands are

at 8am jan 24
at 1530 fr week

At programs are executed by periodic execution of the command /usr/lib/atrun from cron(8).
The granularity of ar depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

FILES
/usr/lib/atrun executor (run by cron(8)).

in /usr/spool/at:

yy.ddd.hhhh.* activity for year yy, day dd, hour hhhh.
lasttimedone last hhhh
past activities in progress
SEE ALSO
calendar(1), pwd(1), sleep(1), cron(8)
DIAGNOSTICS

Complains about various syntax errors and times out of range.

BUGS
Due to the granularity of the execution of /usr/liblatrun, there may be bugs in scheduling things
almost exactly 24 hours into the future.

4th Berkeley Distribution 18 January 1983 1

AWK (1) UNIX Programmer’s Manual AWK (1)

NAME

awk — pattern scanning and processing language

SYNOPSIS

awk [=Fc] [prog] [file] ...

DESCRIPTION

Awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a
file matches the pattern. The set of patterns may appear literally as prog, or in a file specified as
—f file.

Files are read in order; if there are no files, the standard input is read. The file name ‘—
means the standard input. Each line is matched against the pattern portion of every pattern-
action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, vide infra.) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form
pattern { action }
A missing { action } means print the line; a missing pattern always matches.

]

An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, —, +, /, %, and concatenation (indicated by a blank). The C
operators ++, ——, +=, —=, »=, /= and %= are also available in expressions. Variables
may be scalars, array elements (denoted x[il) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of
associative memory. String constants are quoted "...".

The print statement prints its arguments on the standard output (or on a file if > file is present),
separated by the current output field separator, and terminated by the output record separator.
The printf statement formats its expression list according to the format (see printf(3S)).

The built-in function length returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions exp, log, sqrt, and int. The last truncates
its argument to an integer. substr(s, m, n) returns the n-character substring of s that begins at
position m. The function sprintf{fint, expr, expr, ...) formats the expressions according to the
printf(3S) format given by fint and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, Il, &&, and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as in
egrep. Isolated regular expressions in a pattern apply to the entire line. Regular expressions
may also occur in relational expressions.

7th Edition 18 January 1983 1

AWK (1) UNIX Programmer’s Manual AWK (1)

A pattern may consist of two patterns separated by a comma; in this case, the action is per-
formed for all lines between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression

expression relop expression
where a relop is any of the six relational operators in C, and a matchop is either ~ (for contains)
or !” (for does not contain). A conditional is an arithmetic expression, a relational expression,
or a Boolean combination of these.
The special patterns BEGIN and END may be used to capture control before the first input line
is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with
BEGIN { FS = "¢"
or by using the —Fc option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current
input file; OFS, the output field separator (default blank); ORS, the output record separator
(default newline); and OFMT, the output format for numbers (default "%.6g").

EXAMPLES

Print lines longer than 72 characters:
length > 72
Print first two fields in opposite order:
{ print $2, $1}
Add up first column, print sum and average:

{s+=281)
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{for (i = NF; i > 0; ——i) print 8i }

Print all lines between start/stop pairs:
/start/, /stop/

Print all lines whose first field is different from previous one:
$1 != prev { print; prev = $1 }

SEE ALSO

BUGS

lex(1), sed(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk — a pattern scanning and processing
language

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add 0 to it; to force it to be treated as a string concaténate ™ to it.

7th Edition 18 January 1983 2

BASENAME (1) UNIX Programmer’s Manual BASENAME (1)

NAME

basename — strip filename affixes
SYNOPSIS

basename string [suffix]
DESCRIPTION

Basename deletes any prefix ending in /> and the suffix, if present in string, from string, and
prints the result on the standard output. It is normally used inside substitution marks * " in
shell procedures.

This shell procedure invoked with the argument /usr/src/bin/cat.c compiles the named file and
moves the output to cat in the current directory:

cc $1

mv a.out ‘basename $1 .c’

SEE ALSO
sh(1)

7th Edition 1 April 1981 1

BC (1) UNIX Programmer’s Manual BC(1)

NAME

bc — arbitrary-precision arithmetic language
SYNOPSIS

be[—c]l[—=1][file..]
DESCRIPTION

Bc is an interactive processor for a language which resembles C but provides unlimited preci-
sion arithmetic. It takes input from any files given, then reads the standard input. The —I
argument stands for the name of an arbitrary precision math library. The syntax for bc pro-
grams is as follows; L means letter a-z, E means expression, S means statement.

Comments
are enclosed in /+ and /.

Names
simple variables: L
array elements: L [E]
The words ‘ibase’, ‘obase’, and ‘scale’

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E,..,E)

Operators
+ — * / % " (% is remainder; " is power)
++ —— (prefix and postfix; apply to names)
== <= >= =< >
= 4= —= a= /= Y= *=

Statements
E
{S;..;8}
if (E)S
while (E) S
for (E;EZ;E)S
null statement
break
quit

Function definitions
defineL (L,...,L) {

autoL, ..., L
S; 'S
return (E)
}
Functions in —1 math library
s(x) sine

c(x) cosine

e(x) exponential
1x) log

a(x) arctangent
j(n,x) Bessel function

7th Edition 1 April 1981 1

BC (1) UNIX Programmer’s Manual BC (1)

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign-
ment. Either semicolons or newlines may separate statements. Assignment to scale influences
the number of digits to be retained on arithmetic operations in the manner of dc(1). Assign-
ments to ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. ‘Auto’ variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables empty square
brackets must follow the array name.

For example

scale = 20
define e(x){
autoa, b, c, i, s

a=1
b=1
s=1
for(i=1; 1==1; i+ +){
a = a*x
b = b+
c=a/b
if(c == 0) return(s)
s = s+c
}

}

defines a function to compute an approximate value of the exponential function and
for(i=1; i<=10; i++) e()

prints approximate values of the exponential function of the first ten integers.

Be is actually a preprocessor for dc(1), which it invokes automatically, unless the —c¢ (compile
only) option is present. In this case the dc input is sent to the standard output instead.

FILES
/usr/lib/lib.b mathematical library
de(1) desk calculator proper
SEE ALSO
de(1)

L. L. Cherry and R. Morris, BC — An arbitrary precision desk-calculator language
BUGS

No &&, [, or ! operators.

For statement must have all three E’s.

Quit is interpreted when read, not when executed.

7th Edition 1 April 1981 2

BIFF (1) UNIX Programmer’s Manual BIFF (1)

NAME
biff — be notified if mail arrives and who it is from

SYNOPSIS
biff [yn]
DESCRIPTION
Biff'informs the system whether you want to be notified when mail arrives during the current
terminal session. The command
biff y
enables notification; the command
biff n
disables it. When mail notification is enabled, the header and first few lines of the message will
be printed on your screen whenever mail arrives. A *‘biff y*’ command is often included in the
file .login or .profile to be executed at each login.

Biff operates asynchronously. For synchronous notification use the MAIL variable of sh(1) or
the mail variable of csh(1).

SEE ALSO
csh(1), sh(1), mail(1), comsat(8C)

4th Berkeley Distribution 18 July 1983 1

BINMAIL (1) UNIX Programmer’s Manual BINMAIL (1)

NAME

binmail — send or receive mail among users

SYNOPSIS

=i] [person] ...

/bin/mail [+ 1 [
1{+1[—i] —ffile

/bin/mai

DESCRIPTION

FILES

Note: This is the old version 7 UNIX system mail program. The default mail command is
described in Mail(1), and its binary is in the directory /usrfucb.

mail with no argument prints a user’s mail, message-by-message, in last-in, first-out order; the
optional argument + displays the mail messages in first-in, first-out order. For each message,
it reads a line from the standard input to direct disposition of the message.

newline
Go on to next message.
d Delete message and go on to the next.
p Print message again.
= Go back to previous message.

s[file] ..

Save the message in the named files (‘mbox’ default).
wlfile]..
Save the message, without a header, in the named files (‘mbox’ default).
m [person] ...
Mail thé message to the named persons (yourself is default).
EOT (control-D)
Put unexamined mail back in the mailbox and stop.
q Same as EOT.
'command
Escape to the Shell to do command.
® Print a command summary.
An interrupt normally terminates the mail command; the mail file is unchanged. The optional
argument —i tells maif 1o continue after interrupts.

When persons are named, mail takes the standard input up to an end-of-file (or a line with just
‘) and adds it 1o each person’s ‘mail’ file. The message is preceded by the sender’s name and a
postmark. Lines that Jook like postmarks are prepended with ‘>’. A person is usually a user
name recognized by login(1). -To denote a recipient on a remote system, prefix person by the
system name and exclamation mark (see unep(1C)).

The —f option causes the named file, for example, ‘mbox’, to be printed as if it were the mail
file.

When a user logs in he is informed of the presence of mail.

/etc/passwd to identify sender and locate persons
/usr/spool/mail/# incoming mail for user *

mbox saved mail

/tmp/max temp file

/usr/spool/mail/=.lock lock for mail directory

dead.letter unmailable text

7th Edition 16 November 1979 1

BINMAIL (1) UNIX Programmer’s Manual BINMAIL (1)

SEE ALSO
Mail(1), write(1), uucp(1C), uux(1C), xsend(1), sendmail (8)

BUGS
Race conditions sometimes result in a failure to remove a lock file.

Normally anybody can read your mail, unless it is sent by xsend(1). An installation can over-
come this by making mail a set-user-id command that owns the mail directory.

7th Edition 16 November 1979 2

CAL (1) UNIX Programmer’s Manual CAL(1)

NAME
cal — print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number between 1 and 12.
The calendar produced is that for England and her colonies.

Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.
Beware that ‘cal 78’ refers to the early Christian era, not the 20th century.

7th Edition 29 March 1982 1

CALENDAR (1) UNIX Programmer’s Manual CALENDAR (1)

NAME

calendar — reminder service
SYNOPSIS

calendar [—]
DESCRIPTION

Calendar consults the file ‘calendar’ in the current directory and prints out lines that contain
today’s or tomorrow’s date anywhere in the line. Most reasonable month-day dates such as
‘Dec. 7,” ‘december 7, ‘12/7,’ etc., are recognized, but not ‘7 December’ or ‘7/12°. If you
give the month as “‘¢” with a date, i.e. ‘« 17, that day in any month will do. On weekends
‘tomorrow’ extends through Monday.

When an argument is present, calendar does its job for every user who has a file ‘calendar’ in
his login directory and sends him any positive results by mai/(1). Normally this is done daily in
the ‘wee hours under control of cron(8).

The file ‘calendar’ is first run through the “‘C*’ preprocessor, /lib/cpp, to include any other
calendar files specified with the usual “#include” syntax. Included calendars will usually be
shared by all users, maintained and documented by the local administration.

FILES
calendar
/usr/lib/calendar to figure out today’s and tomorrow’s dates
/etc/passwd
/tmp/cal=
/lib/cpp, egrep, sed, mail as subprocesses

SEE ALSO
at(1), cron(8), mail(1)

BUGS
Calendar’s extended idea of ‘tomorrow’ doesn’t account for holidays.

Provisional 4.2 BSD 29 March 1982 1

CAT (1) UNIX Programmer’s Manual CAT (1)

NAME
cat — catenate and print
SYNOPSIS
cat [=u] [=n][=s][=v]fie..
DESCRIPTION
Cat reads each file in sequence and disptays it on the standard output. Thus

cat file
displays the file on the standard output, and
cat filel file2 >file3]
concatenates the first two files and places the result on the third.
If no input file is given, or if the argument ‘-’ is encountered, cat reads from the standard

input file. Output is buffered in 1024-byte blocks unless the standard output is a terminal, in
which case it is line buffered. The —u option makes the output completely unbuffered.

The —n option displays the output lines preceded by lines numbers, numbered sequentially
from 1. Specifying the —b option with the —n option omits the line numbers from blank lines.

The —s option crushes out multiple adjacent empty lines so that the output is displayed single
spaced.

The —v option dispfays non-printing characters so that they are visible. Control characters
print like "X for control-x; the delete character (octal 0177) prints as “?. Non-ascii characters
(with the high bit set) are printed as M- (for meta) followed by the character of the low 7 bits.
A —e option may be given with the —v option, which displays a ‘$’ character at the end of
each line. Specifying the —t option with the —v option displays tab characters as "I.

SEE ALSO
cp(1), ex(1), more(1), pr(1), tail(1)

BUGS
Beware of ‘cat ab >a’ and ‘cat a b >b’, which destroy the input files before reading them.

4th Berkeley Distribution 18 January 1983 1

CB(1) UNIX Programmer’s Manual CB(1)

NAME

cb — C program beautifier
SYNOPSIS

cb
DESCRIPTION

Cb places a copy of the C program from the standard input on the standard output with spacing
and indentation that displays the structure of the program.

7th Edition 18 January 1983 1

CC(1) UNIX Programmer’s Manual CC(1)
NAME
cc — C compiler
SYNOPSIS
cc [option] ... file ...
DESCRIPTION

Ccis the UNIX C compiler. Ccaccepts several types of arguments:

Arguments whose names end with ‘.c’ are taken to be C source programs; they are compiled,
and each object program is left on the file whose name is that of the source with ‘.0’ substituted
for ‘.c’. The ‘.0’ file is normally deleted, however, if a single C program is compiled and
loaded all at one go.

In the same way, arguments whose names end with ‘.s’ are taken to be assembly source pro-
grams and are assembled, producing a ‘.0’ file.

The following options are interpreted by cc. See /d(1) for load-time options.

—¢ Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.
-g Have the compiler produce additional symbol table information for dbx(1). Also pass

the —Ig flag to /d(1).

—go Have the compiler produce additional symbol table information for the obsolete
debugger sdb(1). Also pass the —Iig flag to /d(1).

-w Suppress warning diagnostics.

-p Arrange for the compiler to produce code which counts the number of times each rou-
tine is called. If loading takes place, replace the standard startup routine by one which
automatically calls monitor(3) at the start and arranges to write out a mon.out file at
normal termination of execution of the object program. An execution profile can then
be generated by use of prof(1).

-pg Causes the compiler to produce counting code in the manner of —p, but invokes a
run-time recording mechanism that keeps more extensive statistics and produces a
gmon.out file at normal termination. Also, a profiling library is searched, in lieu of the
standard C library. An execution profile can then be generated by use of gprof(1).

-0 Invoke an object-code improver.

-R Passed on to as, making initialized variables shared and read-only.

-S Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed *.s’.

-E Run only the macro preprocessor on the named C programs, and send the result to the
standard output.

-C prevent the macro preprocessor from eliding comments.

—o output

Name the final output file ourput. 1f this option is used the file ‘a.out’ will be left
undisturbed.

—D name=def

—Dname
Define the name to the preprocessor, as if by ‘#define’. If no definition is given. the
name is defined as "1".

—Uname
Remove any initial definition of name.

4th Berkeley Distribution 9 February 1982 1

Cc(1)

FILES

UNIX Programmer’s Manual cCc(1)

—1dir ‘#include’ files whose names do not begin with ¢/’ are always sought first in the direc-
tory of the file argument, then in directories named in —1I options, then in directories
on a standard list.

—Bstring
Find substitute compiler passes in the files named string with the suffixes cpp, ccom
and c2. If stringis empty, use a standard backup version.

—t[p012]

Find only the designated compiler passes in the files whose names are constructed by a
—B option. In the absence of a —B option, the stringis taken to be ‘/usr/c/’.

Other arguments are taken to be either loader option arguments, or C-compatible object pro-
grams, typicaily produced by an earlier cc run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name a.out.

file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/cpp preprocessor
/lib/ccom compiler

/usr/c/occom backup compiler

/usr/c/ocpp backup preprocessor

/lib/c2 optional optimizer

/1ib/crt0.0 runtime startoff

/lib/mcrt0.0 startoff for profiling
/usr/lib/gert0.ostartoff for gprof-profiling

/lib/libc.a standard library, see intro(3)
/usr/lib/libc_p.aprofiling library, see intro(3)
/usr/include standard directory for ‘#include’ files

mon.out file produced for analysis by prof(1)
gmon.out file produced for analysis by gprof(1)
SEE ALSO

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C—a tutorial

D. M. Ritchie, C Reference Manual

monitor(3), prof(1), gprof(1), adb(1), 1d(1), dbx(1), as(1)

DIAGNOSTICS

BUGS

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader.

The compiler currently ignores advice to put char, unsigned char, short or unsigned short
variables in registers. It previously produced poor, and in some cases incorrect, code for such

declarations.

4th Berkeley Distribution 9 February 1982 2

CD (1) UNIX Programmer’s Manual CD(1)

NAME
cd — change working directory
SYNOPSIS
cd directory
DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) permis-
sion in directory.
Because a new process is created to execute each command, cd would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the shells. In csa(1)
you may specify a list of directories in which directory is to be sought as a subdirectory if it is
not a subdirectory of the current directory; see the description of the cdpath variable in csh(1).
SEE ALSO
csh(1), sh(1), pwd(1), chdir(2)

4th Berkeley Distribution 5 April 1980 1

CHECKNR (1) UNIX Programmer’s Manual CHECKNR (1)

NAME

checknr — check nroff/troff files
SYNOPSIS

checknr [—s] [—=f] [—a.x1.yl.x2.y2. ... xnyn] [—ex1.x2.x3xn] [file...]
DESCRIPTION

Checknr checks a list of nroff(1) or troff(1) input files for certain kinds of errors involving
mismatched opening and closing delimiters and unknown commands. If no files are specified,
checknr checks the standard input. Delimeters checked are:

(1) Font changes using \fx ... \fP.
() Size changes using \sx ... \s0.

3) Macros that come in open ... close forms, for example, the .TS and .TE macros which
must always come in pairs.

Checknr knows about the ms(7) and me(7) macro packages.

Additional pairs of macros can be added to the list using the —a option. This must be followed
by groups of six characters, each group defining a pair of macros. The six characters are a
period, the first macro name, another period, and the second macro name. For example, to
define a pair .BS and .ES, use —a.BS.ES

The —c¢ option defines commands which would otherwise be complained about as undefined.
The —f option requests checknr to ignore \f font changes.
The —s option requests checknr to ignore \s size changes.

Checknr is intended to be used on documents that are prepared with checknr in mind, much the
same as lint. It expects a certain document writing style for \f and \s commands, in that each
\fx must be terminated with \fP and each \sx must be terminated with \s0. While it will work
to directly go into the next font or explicitly specify the original font or point size, and many
existing documents actually do this, such a practice will produce complaints from checknr. Since
it is probably better to use the \fP and \sO forms anyway, you should think of this as a contri-
bution to your document preparation style.

SEE ALSO
nroff(1), troff(1), checkeq(1), ms(7), me(7)
DIAGNOSTICS
Complaints about unmatched delimiters.
Complaints about unrecognized commands.
Various complaints about the syntax of commands.

AUTHOR
Mark Horton

BUGS
There is no way to define a 1 character macro name using —a.
Does not correctly recognize certain reasonable constructs, such as conditionals.

4th Berkeley Distribution 5 April 1980 1

CHFN (1) UNIX Programmer’s Manual CHFN (1)

NAME
chfn — change finger entry

SYNOPSIS
chfn [loginname]

DESCRIPTION
Chfn is used to change information about users. This information is used by the finger pro-
gram, among others. It consists of the user’s "real life" name, office room number, office
phone number, and home phone number. Chfn prompts the user for each field. Included in
the prompt is a default value, which is enclosed between brackets. The default value is
accepted simply by typing <return>. To enter a blank field, type the word 'none’. Below is a
sample run:

Name [Biff Studsworth I11:

Room number (Exs: 597E or 197C) ll: 521E
Office Phone (Ex: 1632) [I: 1863

Home Phone (Ex: 987532) [5771546]: none

Chfn allows phone numbers to be entered with or without hyphens. Because finger only knows
about UCB extensions, chfin will insist upon a four digit number (after the hyphens are
removed) for office phone numbers. Also, room numbers must be in Evans or Cory; again,
this is because of finger.

It is a good idea to run finger after running chfi to make sure everything is the way you want it.

The optional argument loginname is used to change another person’s finger information. This
can only be done by the super-user.

FILES
/etc/passwd, /etc/ptmp

SEE ALSO
finger(1), passwd(5)

BUGS
The encoding of the office and extension information is installation dependent.
For historical reasons, the user’s name, etc are stored in the passwd file. This is a bad place to
store the information. Rumors are that a data base is being developed to store this information,
but don’t hold your breath.
Because two users may try to write the passwd file at once, a synchronization method was

developed. On rare occasions, a message that the password file is "busy" will be printed. In this
case, chfnsleeps for a while and then tries to write to the passwd file again.

4th Berkeley Distribution 17 March 1982 deprecated 1

CHGRP (1) UNIX Programmer’s Manual CHGRP (1)

NAME

chgrp — change group
SYNOPSIS

cherp [-f 1 group file ...

DESCRIPTION
Chgrp changes the group-1D of the filesto group. The group may be either a decimal GID or a
group name found in the group-1D file.

The user invoking chgrp must belong to the specified group and be the owner of the file, or be
the super-user.

No errors are reported when the —f (force) option is given.

FILES
/etc/group

SEE ALSO
chown(2), passwd(5), group(5)

4th Berkeley Distribution 28 April 1982 1

CHMOD (1) UNIX Programmer’s Manual CHMOD (1)

NAME

chmod — change mode
SYNOPSIS

chmed mode file ...
DESCRIPTION

The mode of each named file is changed according to mode, which may be absolute or symbolic.
An absolute mode is an octal number constructed from the OR of the following modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod(2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[whol op permission lop permission] ...

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other).
The letter a stands for all, or ugo. If who is omitted, the default is @ but the setting of the file
creation mask (see umask(2)) is taken into account.

Op can be + to add permission to the file’s mode, — to take away permission and = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group id) and t (save text — sticky). Letters u, g or o indicate that permission is to be taken
from the current mode. Omitting permission is only useful with = to take away all permissions.

EXAMPLES
The first example denies write permission to others, the second makes a file executable:

chmod o—w file
chmod +x file

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO ’
1s(1), chmod(2), stat(2), umask(2), chown(8)

7th Edition 18 January 1983 1

CHSH(1) UNIX Programmer’s Manual CHSH (1)

NAME
chsh — change default login shell

SYNOPSIS
chsh name [shell]

DESCRIPTION
Chsh is a command similar to passwd(1) except that it is used to change the login shell field of
the password file rather than the password entry. If no shell is specified then the shell reverts to
the default login shell /bin/sh. Otherwise only /binfcsh, /binfoldcsh, or lusr/new/csh can be specified
as the shell unless you are the super-user.

An example use of this command would be
chsh bill /bin/csh

SEE ALSO
csh(1), passwd(1), passwd(5)

4th Berkeley Distribution 21 October 1980 1

CLEAR (1) UNIX Programmer’s Manual CLEAR(1)

NAME
clear — clear terminal screen

SYNOPSIS
clear

DESCRIPTION
Clear clears your screen if this is possible. It looks in the environment for the terminal type
and then in /etc/termcap to figure out how to clear the screen.

FILES
/etc/termcap terminal capability data base

3rd Berkeley Distribution 24 February 1979 1

CMP (1) UNIX Programmer’s Manual CMP(1)

NAME
cmp — compare two files

SYNOPSIS
emp [=1] [—s] filel file2

DESCRIPTION
The two files are compared. (If filel is ‘—’, the standard input is used.) Under default options,
cmp makes no comment if the files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.
Options:
=1 Print the byte number (decimal) and the differing bytes (octal) for each difference.
=s Print nothing for differing files; return codes only.

SEE ALSO
diff (1), comm(1)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or miss-
ing argument.

Tth Edition 18 January 1983 1

COL (1) UNIX Programmer’s Manual COL (1)

NAME

col — filter reverse line feeds

SYNOPSIS

col [=bfx]

DESCRIPTION

Col reads the standard input and writes the standard output. It performs the line overlays
implied by reverse line feeds (ESC-7 in ASCII) and by forward and reverse half line feeds
(ESC-9 and ESC-8). Col is particularly useful for filtering multicolumn output made with the
‘.rt’ command of nroff and output resulting from use of the #6/(1) preprocessor.

Although col accepts half line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full line boundary.
This treatment can be suppressed by the =f (fine) option; in this case the output from col may
contain forward half line feeds (ESC-9), but will still never contain either kind of reverse line
motion.

If the —b option is given, col assumes that the output device in use is not capable of backspac-
ing. In this case, if several characters are to appear in the same place, only the last one read
will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end text in
an alternate character set. The character set (primary or alternate) associated with each printing
character read is remembered; on output, SO and SI characters are generated where necessary
to maintain the correct treatment of each character.

Col normally converts white space to tabs to shorten printing time. If the —x option is given,
this conversion is suppressed.

All control characters are removed from the input except space, backspace, tab, return, new-
line, ESC (033) followed by one of 7, 8, 9, SI, SO, and VT (013). This last character is an
alternate form of full reverse line feed, for compatibility with some other hardware conven-
tions. All other non-printing characters are ignored.

SEE ALSO

BUGS

troff (1), tbi(1)

Can’t back up more than 128 lines.
No more than 800 characters, including backspaces, on a line.

7th Edition 18 January 1983 1

COLCRT (1) UNIX Programmer’s Manual COLCRT (1)

NAME

colert — filter nroff output for CRT previewing

SYNOPSIS

colert [=] [—=2][file...]

DESCRIPTION

Colcrt provides virtual half-line and reverse line feed sequences for terminals without such
capability, and on which overstriking is destructive. Half-line characters and underlining
(changed to dashing ‘—’) are placed on new lines in between the normal output lines.

The optional — suppresses all underlining. It is especially useful for previewing allboxed tables
from tbi(1).

The option =2 causes all half-lines to be printed, effectively double spacing the output. Nor-
mally, a minimal space output format is used which will suppress empty lines. The program
never suppresses two consecutive empty lines, however. The =2 option is useful for sending
output to the line printer when the output contains superscripts and subscripts which would
otherwise be invisible.

A typical use of colcrt would be
tbl exum2.n | nroff —ms | colcrt — | more

SEE ALSO

nroff/troff(1), col(1), more(1), ul(1)

AUTHOR

BUGS

William Joy

Should fold underlines onto blanks even with the ‘=" option so that a true underline character
would show; if we did this, however, colcrt wouldn’t get rid of cu'd underlining completely.

Can’t back up more than 102 lines.
General overstriking is lost; as a special case { overstruck with ‘=’ or underline becomes ‘+’.
Lines are trimmed to 132 characters.

Some provision should be made for processing superscripts and subscripts in documents which
are already double-spaced.

3rd Berkeley Distribution 24 February 1979 1

COLRM (1) UNIX Programmer’s Manual COLRM (1)

NAME
colrm — remove columns from a file

SYNOPSIS
colrm [startcol [endcol]]

DESCRIPTION
Colrm removes selected columns from a file. Input is taken from standard input. Output is
sent to standard output.
If called with one parameter the columns of each line will be removed starting with the
specified column. If called with two parameters the columns from the first column to the last
column will be removed.

Column numbering starts with column 1.

SEE ALSO
expand(1)

AUTHOR
Jeff Schriebman

4th Berkeley Distribution 18 January 1983 1

COMM (1) UNIX Programmer’s Manual COMM (1)

NAME
comm — select or reject lines common to two sorted files

SYNOPSIS
comm [= [123]] filel file2

DESCRIPTION
Comm reads filel and file2, which should be ordered in ASCII collating sequence, and produces
a three column output: lines only in filel; lines only in fileZ; and lines in both files. The
filename ‘—’ means the standard input.
Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm =12 prints only
the lines common to the two files; comm =23 prints only lines in the first file but not in the
second; comm —123 is a no-op.

SEE ALSO
emp(1), diff (1), unig(1)

7th Edition 18 January 1983 1

COMPACT (1) UNIX Programmer’s Manual COMPACT (1)

NAME

compact, uncompact, ccat — compress and uncompress files, and cat them

SYNOPSIS

compact [name ...]
uncompact [name ...]
ceat [file ...]

DESCRIPTION

Compact compresses the named files using an adaptive Huffman code. If no file names are
given, the standard input is compacted to the standard output. Compact operates as an on-line
algorithm. Each time a byte is read, it is encoded immediately according to the current prefix
code. This code is an optimal Huffman code for the set of frequencies seen so far. It is
unnecessary to prepend a decoding tree to the compressed file since the encoder and the
decoder start in the same state and stay synchronized. Furthermore, compact and uncompact can
operate as filters. In particular,

... | compact | uncompact | ...

operates as a (very slow) no-op.

When an argument file is given, it is compacted and the resulting file is placed in file.C; file is
unlinked. The first two bytes of the compacted file code the fact that the file is compacted.
This code is used to prohibit recompaction.

The amount of compression to be expected depends on the type of file being compressed. Typ-
ical values of compression are: Text (38%), Pascal Source (43%), C Source (36%) and Binary
(19%). These values are the percentages of file bytes reduced.

Uncompact restores the original file from a file compressed by compact. If no file names are
given, the standard input is uncompacted to the standard output.

Cecat cats the original file from a file compressed by compact, without uncompressing the file.

RESTRICTION

FILES

The last segment of the filename must contain fewer than thirteen characters to allow space for
the appended °.C’.

+.C compacted file created by compact, removed by uncompact

SEE ALSO

Gallager, Robert G., ‘Variations on a Theme of Huffman’, LE.E.E. Transactions on Information
Theory, vol. IT-24, no. 6, November 1978, pp. 668 - 674.

AUTHOR

Colin L. Mc Master

4th Berkeley Distribution 18 January 1983 1

CP(1) UNIX Programmer’s Manual CP (1)

NAME
cp — copy

SYNOPSIS
ep [=111 —r] filel file2
ep[=1][=r]file ... directory

DESCRIPTION
Filel is copied onto file2. The mode and owner of file2 are preserved if it already existed; the
mode of the source file is used otherwise.

In the second form, one or more files are copied into the directory with their original file-names.

Cp refuses to copy a file onto itself.

If the =1 option is specified, ¢p will prompt the user with the name of the file whenever the
copy will cause an old file to be overwritten. An answer of ’y’ will cause cp to continue. Any
other answer will prevent it from overwriting the file.

If the —r option is specified and any of the source files are directories, cp copies each subtree
rooted at that name; in this case the destination must be a directory.

SEE ALSO
cat(1), pr(1), mv(1)

4th Berkeley Distribution 1 April 1982 1

CRYPT (1) UNIX Programmer’s Manual CRYPT (1)

NAME

crypt — encode/decode

SYNOPSIS

crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. Crypt encrypts and decrypts with
the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.
Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard
to solve; direct search of the key space must be infeasible; ‘sneak paths’ by which keys or clear-
text can becort_le visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but
with a 256-element rotor. Methods of attack on such machines are known, but not widely;
moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to
be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters, then encrypted files can be read by expending only a
substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing
ps(1) or a derivative. To minimize this possibility, crypt takes care to destroy any record of the
key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

ed(1), makekey(8)

There is no warranty of merchantability nor any warranty of fitness for a particular purpose nor
any other warranty, either express or implied, as to the accuracy of the enclosed materials or as
to their suitability for any particular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient. Further, Bell Laboratories assumes no
obligation to furnish any assistance of any kind whatsoever, or to furnish any additional infor-
mation or documentation.

7th Edition 18 January 1983 1

CSH (1) UNIX Programmer’s Manual CSH (1)

NAME

csh — a shell (command interpreter) with C-like syntax
SYNOPSIS

esh [—cefinstvVxX] [arg ...]
DESCRIPTION

Csh is a first implementation of a command language interpreter incorporating a history
mechanism (see History Substitutions) job control facilities (see Jobs) and a C-like syntax.
So as to be able to use its job control facilities, users of csh must (and automatically) use the
new tty driver fully described in #ty(4). This new tty driver allows generation of interrupt char-
acters from the keyboard to tell jobs to stop. See sty(1) for details on setting options in the
new tty driver.

An instance of csh begins by executing commands from the file ‘.cshrc’ in the home directory of
the invoker. If this is a login shell then it also executes commands from the file ‘.login’ there.
It is typical for users on crt’s to put the command “‘stty crt’’ in their .login file, and to also
invoke rset(1) there.

In the normal case, the shell will then begin reading commands from the terminal, prompting
with ‘% . Processing of arguments and the use of the shell to process files containing com-
mand scripts will be described later.

The shell then repeatedly performs the following actions: a line of command input is read and
broken into words. This sequence of words is placed on the command history list and then
parsed. Finally each command in the current line is executed.

When a login shell terminates it executes commands from the file ‘.logout’ in the users home
directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following exceptions. The
characters ‘&’ ‘P ¢’ ‘<’ ‘>’ *(" *)’ form separate words. If doubled in ‘&&’, I, ‘<<’ or
*>>" these pairs form single words. These parser metacharacters may be made part of other
words, or prevented their special meaning, by preceding them with ‘\’. A newline preceded by
a ‘\’ is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, ¢, ¢ or *’, form parts of a word;
metacharacters in these strings, including blanks and tabs, do not form separate words. These
quotations have semantics to be described subsequently. Within pairs of ‘"> or *’ characters a
newline preceded by a ‘\’ gives a true newline character.

When the shell’s input is not a terminal, the character ‘#’ introduces a comment which contin-
ues to the end of the input line. It is prevented this special meaning when preceded by ‘\’ and
in quotations using ‘”, *’, and ‘.

Commands

A simple command is a sequence of words, the first of which specifies the command to be exe-
cuted. A simple command or a sequence of simple commands separated by ‘! characters forms
a pipelitic. The output of each command in a pipeline is connected to the input of the next.
Sequences of pipelines may be separated by °‘;’, and are then executed sequentially. A
sequence of pipelines may be executed without immediately waiting for it to terminate by fol-
lowing it with an ‘&’.

Any of the above may be placed in ‘(‘)’ to form a simple command (which may be a com-
ponent of a pipeline, etc.) It is also possible to separate pipelines with ‘|[' or ‘&&’ indicating, as
in the C language, that the second is to be executed only if the first fails or succeeds respec-
tively. (See Expressions.)

4th Berkeley Distribution 18 July 1983 1

CSH (1) UNIX Programmer’s Manual CSH (1)

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs, printed by the jobs
command, and assigns them small integer numbers. When a job is started asynchronously with
‘&’, the shell prints a line which looks like:

(11 1234

indicating that the jobs which was started asynchronously was job number 1 and had one (top-
level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key “Z (control-Z)
which sends a STOP signal to the current job. The shell will then normally indicate that the job
has been ‘Stopped’, and print another prompt. You can then manipulate the state of this job,
putting it in the background with the bg command, or run some other commands and then
eventually bring the job back into the foreground with the foreground command fz A "Z takes
effect immediately and is like an interrupt in that pending output and unread input are dis-
carded when it is typed. There is another special key ~Y which does not generate a STOP signal
until a program attempts to read(2) it. This can usefully be typed ahead when you have
prepared some commands for a job which you wish to stop after it has read them.

A job being run in the background will stop if it tries to read from the terminal. Background
jobs are normally allowed to produce output, but this can be disabled by giving the command
“‘stty tostop”. If you set this tty option, then background jobs will stop when they try to pro-
duce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character ‘%’ introduces a job name.
If you wish to refer to job number 1, you can name it as ‘%1°. Just naming a job brings it to
the foreground; thus ‘%1’ is a synonym for ‘fg %]1°, bringing job 1 back ‘into the foreground.
Similarly saying ‘%1 &’ resumes job 1 in the background. Jobs can also be named by prefixes
of the string typed in to start them, if these prefixes are unambiguous, thus ‘%ex’ would nor-
mally restart a suspended ex(1) job, if there were only one suspended job whose name began
with the string ‘ex’. It is also possible to say ‘%?string’ which specifies a job whose text con-
tains string, if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to jobs, the
current job is marked with a ‘+’ and the previous job with a ‘—’. The abbreviation ‘%+’
refers to the current job and ‘% —" refers to the previous job. For close analogy with the syntax
of the history mechanism (described below), ‘%%’ is also a synonym for the current job.

Status reporting

This shell learns immediately whenever a process changes state. It normally informs you when-
ever a job becomes blocked so that no further progress is possible, but only just before it prints
a prompt. This is done so that it does not otherwise disturb your work. If, however, you set
the shell variable notify, the shell will notify you immediately of changes of status in back-
ground jobs. There is also a shell command notjfy which marks a single process so that its
status changes will be immediately reported. By default notify marks the current process; simply
say ‘notify’ after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that ‘You have
stopped jobs.” You may use the jobscommand to see what they are. If you do this or immedi-
ately try to exit again, the shell will not warn you a second time, and the suspended jobs will be
terminated.

4th Berkeley Distribution 18 July 1983 2

CSH (1) UNIX Programmer’s Manual CSH (1)

Substitutions

We now describe the various transformations the shell performs on the input in the order in
which they occur.

History substitutions

History substitutions place words from previous command input as portions of new commands,
making it easy to repeat commands, repeat arguments of a previous command in the current
command, or fix spelling mistakes in the previous command with little typing and a high degree
of confidence. History substitutions begin with the character ‘!" and may begin anywhere in the
input stream (with the ‘proviso that they do not nest.) This ‘!" may be preceded by an ‘\’ to
prevent its special meaning; for convenience, a ‘!" is passed unchanged when it is followed by a
blank, tab, newline, ‘=" or ‘C. (History substitutions also occur when an input line begins
with ‘1. This special abbreviation will be described later.) Any input line which contains his-
tory substitution is echoed on the terminal before it is executed as it could have been typed
without history substitution.

Commands input from the terminal which consist of one or more words are saved on the his-
tory list. The history substitutions reintroduce sequences of words from these saved commands
into the input stream. The size of which is controlled by the history variable; the previous com-
mand is always retained, regardless of its value. Commands are numbered sequentially from 1.

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c

11 cat oldwrite.c
12 diff =write.c

The commands are shown with their event numbers. It is not usually necessary to use event
numbers, but the current event number can be made part of the prompt by placing an ‘!” in the
prompt string.

With the current event 13 we can refer to previous events by event number ‘!11°, relatively as
in ‘!—2 (referring to the same event), by a prefix of a command word as in ‘!d’ for event 12
or ‘'wri’ for event 9, or by a string contained in a word in the command as in ‘!?mic?’ also
referring to event 9. These forms, without further modification, simply reintroduce the words
of the specified events, each separated by a single blank. As a special case ‘!!" refers to the pre-
vious command, thus ‘!!" alone is essentially a redo.

To select words from an event we can follow the event specification by a ‘:* and a designator for
the desired words. The words of a input line are numbered from 0, the first (usually com-
mand) word being 0, the second word (first argument) being 1, etc. The basic word designa-
tors are:

0 first (command) word

n n’th argument

1 first argument, i.e. ‘1’

$ last argument

% word matched by (immediately preceding) ?s? search
x—y range of words *

—y abbreviates ‘0—y’

* abbreviates ‘1 —$’, or nothing if only 1 word in event
Xx* abbreviates ‘x—§’
x— like ‘x*' but omitting word ‘$’

4th Berkeley Distribution 18 July 1983 3

CSH (1) UNIX Programmer’s Manual CSH (1)

The *’ separating the event specification from the word designator can be omitted if the argu-
ment selector begins with a ‘1, ‘8, “«> ‘=" or ‘%’. After the optional word designator can be
placed a sequence of modifiers, each preceded by a ‘*. The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.

r Remove a trailing ‘.xxx’ component, leaving the root name.
toe Remove all but the extension ‘.xxx’ part.

s/l r/ Substitute /for r

t Remove all leading pathname components, leaving the tail.

& Repeat the previous substitution.

g Apply the change globally, prefixing the above, e.g. ‘g&’.

p Print the new command but do not execute it.

q Quote the substituted words, preventing further substitutions.

X Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a ‘g’ the modification is applied only to the first modifiable word. With
substitutions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the editors, but
rather strings. Any character may be used as the delimiter in place of /°; a ‘\’ quotes the del-
imiter into the /and r strings. The character ‘&’ in the right hand side is replaced by the text
from the left. A “\’ quotes ‘&’ also. A null /uses the previous string either from a /or from a
contextual scan string sin ‘!?s?’. The trailing delimiter in the substitution may be omitted if a
newline follows immediately as may the trailing ‘?” in a contextual scan.

A history reference may be given without an event specification, e.g. ‘!$°. In this case the
reference is to the previous command unless a previous history reference occurred on the same
line in which case this form repeats the previous reference. Thus ‘!?foo?{ !$’ gives the first
and last arguments from the command matching ‘?foo?’.

A special abbreviation of a history reference occurs when the first non-blank character of an
input line is a ‘1”. This is equivalent to ‘!:s]’ providing a convenient shorthand for substitu-
tions on the text of the previous line. Thus ‘{Ibflib’ fixes the spelling of ‘lib’ in the previous
command. Finally, a history substitution may be surrounded with ‘{’ and ‘}> if necessary to
insulate it from the characters which follow. Thus, after ‘Is —Id “paul’ we might do ‘!{l}a’ to
do ‘Is —1d “paula’, while ‘!la’ would look for a command starting ‘la’.

Quotations with * and "

The quotation of strings by ‘"’ and ‘"’ can be used to prevent all or some of the remaining sub-
stitutions. Strings enclosed in ‘" are prevented any further interpretation. Strings enclosed in
‘" may be expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case
(see Command Substitition below) does a ‘"> quoted string yield parts of more than one word; *”
quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified by the
alias and unalias commands. After a command line is scanned, it is parsed into distinct com-
mands and the first word of each command, left-to-right, is checked to see if it has an alias. If
it does, then the text which is the alias for that command is reread with the history mechanism
available as though that command were the previous input line. The resulting words replace
the command and argument list. If no reference is made to the history list, then the argument
list is left unchanged.

4th Berkeley Distribution 18 July 1983 4

CSH (1) UNIX Programmer’s Manual CSH (1)

Thus if the alias for ‘Is’ is ‘Is —I’ the command ‘Is /usr’ would map to ‘Is —1 /usr’, the argu-
ment list here being undisturbed. Similarly if the alias for ‘lookup’ was ‘grep !{ /etc/passwd’
then ‘lookup bill’ would map to ‘grep bill /etc/passwd’.

If an alias is found, the word transformation of the input text is performed and the aliasing pro-
cess begins again on the reformed input line. Looping is prevented if the first word of the new
text is the same as the old by flagging it to prevent further aliasing. Other loops are detected
and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can ‘alias
print "pr \!= | Ipr” to make a command which pr'sits arguments to the line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or more words.
Some of these variables are set by the shell or referred to by it. For instance, the argv variable
is an image of the shell’s argument list, and words of this variable's value are referred to in
special ways.

The values of variables may be displayed and changed by using the serand unsercommands. Of
the variables referred to by the shell a number are toggles; the shell does not care what their
value is, only whether they are set or not. For instance, the verbose variable is a toggle which
causes command input to be echoed. The setting of this variable results from the —v com-
mand line option.

Other operations treat variables numerically. The ‘@’ command permits numeric calculations
to be performed and the result assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For the purposes of numeric operations, the null string
is considered to be zero, and the second and subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed, variable sub-
stitution is performed keyed by ‘8’ characters. This expansion can be prevented by preceding
the ‘" with a ‘\’ except within ‘"’s where it always occurs, and within *’s where it never
occurs. Strings quoted by ‘” are interpreted later (see Command substitution below) so *$’ sub-
stitution does not occur there until later, if at all. A *$’ is passed unchanged if followed by a
blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable expanded
separately. Otherwise, the command name and entire argument list are expanded together. It
is thus possible for the first (command) word to this point to generate more than one word, the
first of which becomes the command name, and the rest of which become arguments.

Unless enclosed in “" or given the “:q’ modifier the results of variable substitution may eventu-
ally be command and filename substituted. Within ‘"> a variable whose value consists of multi-
ple words expands to a (portion of) a single word, with the words of the variables value
separated by blanks. When the ‘:q’ modifier is applied to a substitution the variable will expand
to multiple words with each word separated by a blank and quoted to prevent later command or
filename substitution.

The following metasequences are provided for introducing variable values into the shell input.
Except as noted, it is an error to reference a variable which is not set.

$name

${name]}
Are replaced by the words of the value of variable name, each separated by a blank.
Braces insulate name from foliowing characters which would otherwise be part of it. Shell
variables have names consisting of up to 20 letters and digits starting with a letter. The
underscore character is considered a letter.
If name is not a shell variable, but is set in the environment, then that value is returned

4th Berkeley Distribution 18 July 1983 5

CSH (1) UNIX Programmer’s Manual CSH (1)

(but : modifiers and the other forms given below are not available in this case).

$namel[selector]
${name [selector]}
May be used to select only some of the words from the value of name. The selector is

subjected to ‘$’ substitution and may consist of a single number or two numbers separated
by a ‘“—’. The first word of a variables value is numbered ‘1'. If the first number of a
range is omitted it defaults to ‘1°. If the last member of a range is omitted it defaults to
‘$#name’. The selector ‘*’ selects all words. It is not an error for a range to be empty if
the second argument is omitted or in range.

$#name
${#name)
Gives the number of words in the variable. This is useful for later use in a *[selector]’.

$0
Substitutes the name of the file from which command input is being read. An error
occurs if the name is not known.
$number
${number}
Equivalent to ‘Sargv[number]’.
$l
Equivalent to ‘Sargv[+]".
The modifiers “:h’, “:t’, “:r’, :q’ and “:x’ may be applied to the substitutions above as may ‘:gh’,
“:gt’ and “:gr’. If braces ‘{*)’ appear in the command form then the modifiers must appear
within the braces. The current implementation allows only one ¢’ modifier on each ‘%
expansion.

The following substitutions may not be modified with ;> modifiers.

$?name
${?name}
Substitutes the string ‘1’ if name is set, ‘0’ if it is not.
$20
Substitutes ‘1’ if the current input filename is known, ‘0’ if it is not.
33
Substitute the (decimal) process number of the (parent) shell.
$<

Substitutes a line from the standard input, with no further interpretation thereafter. It
can be used to read from the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selectively to the
arguments of builtin commands. This means that portions of expressions which are not
evaluated are not subjected to these expansions. For commands which are not internal to the
shell, the command name is substituted separately from the argument list. This occurs very
late, after input-output redirection is performed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in ‘. The output from such a
command is normally broken into separate words at blanks, tabs and newlines, with null words
being discarded, this text then replacing the original string. Within ‘"’s, only newlines force
new words; blanks and tabs are preserved.

4th Berkeley Distribution 18 July 1983 6

CSH (1) UNIX Programmer’s Manual CSH (1)

In any case, the single final newline does not force a new word. Note that it is thus possible for
a command substitution to yield only part of a word, even if the command outputs a complete
line.

Filename substitution

If a word contains any of the characters ‘=, *?°, ‘I’ or *{* or begins with the character ‘™, then
that word is a candidate for filename substitution, also known as ‘globbing’. This word is then
regarded as a pattern, and replaced with an alphabetically sorted list of file names which match
the pattern. In a list of words specifying filename substitution it is an error for no pattern to
match an existing file name, but it is not required for each pattern to match. Only the meta-
characters ‘+’, *?* and ‘[’ imply pattern matching, the characters ‘=’ and ‘{* being more akin to
abbreviations.

In matching filenames, the character ‘." at the beginning of a filename or immediately following
a ‘/°, as well as the character /> must be matched explicitly. The character ‘*’ matches any
string of characters, including the null string. The character ‘?° matches any single character.
The sequence ‘[...]" matches any one of the characters enclosed. Within *[...], a pair of charac-

ters separated by ‘—' matches any character lexically between the two.

The character ‘™" at the beginning of a filename is used to refer to home directories. Standing
alone, i.e. ‘7’ it expands to the invokers home directory as reflected in the value of the variable
home. When followed by a name consisting of letters, digits and ‘—’ characters the shell
searches for a user with that name and substitutes their home directory; thus ‘"ken’ might
expand to ‘/usr/ken’ and ‘"ken/chmach’ to ‘/usr/ken/chmach’. If the character ‘™ is followed
by a character other than a letter or ‘/° or appears not at the beginning of a word, it is left
undisturbed.

The metanotation ‘a{b,c,d}e’ is a shorthand for ‘abe ace ade’. Left to right order is preserved,
with results of matches being sorted separately at a low level to preserve this order. This con-
struct may be nested. Thus ‘“source/sl/{oldls,Is).c’ expands to ‘/usr/source/sl/oldls.c
/usr/source/s1/1s.c’ whether or not these files exist without any chance of error if the home
directory for ‘source’ is ‘/usr/source’. Similarly ‘../{memo,*box}’ might expand to ‘../memo
../box ../mbox’. (Note that ‘memo’ was not sorted with the results of matching ‘*box’.) As a
special case ‘{’, ‘}* and *{}* are passed undisturbed.

Input/output

The standard input and standard output of a command may be redirected with the following
syntax:

< name
Open file name (which is first variable, command and filename expanded) as the standard
input.
<< word
Read the shell input up to a line which is identical to word. Word is not subjected to vari-
able, filename or command substitution, and each input line is compared to word before
any substitutions are done on this input line. Unless a quoting ¢\’, *, *” or *” appears in
word variable and command substitution is performed on the intervening lines, allowing
‘\’ to quote ‘$’, ‘\’ and ‘. Commands which are substituted have all blanks, tabs, and
newlines preserved, except for the final newline which is dropped. The resultant text is
placed in an anonymous temporary file which is given to the command as standard input.

> name
>! name
>& name

4th Berkeley Distribution 18 July 1983 7

CSH (1) UNIX Programmer’s Manual CSH (1)

>&! name
The file nameis used as standard output. If the file does not exist then it is created; if the

file exists, its is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character special file
(e.g. a terminal or ‘/dev/null’) or an error results. This helps prevent accidental destruc-
tion of files. In this case the ‘!" forms can be used and suppress this check.

The forms involving ‘&’ route the diagnostic output into the specified file as well as the
standard output. Name is expanded in the same way as ‘<" input filenames are.

> > name

>>& name

>>! name

>>&! name
Uses file name as standard output like *>" but places output at the end of the file. If the
variable noclobber is set, then it is an error for the file not to exist unless one of the ‘!
forms is given. Otherwise similar to ‘>,

A command receives the environment in which the shell was invoked as modified by the
input-output parameters and the presence of the command in a pipeline. Thus, unlike some
previous shells, commands run from a file of shell commands have no access to the text of the
commands by default; rather they receive the original standard input of the shell. The ‘<<’
mechanism should be used to present inline data. This permits shell command scripts to func-
tion as components of pipelines and allows the shell to block read its input. Note that the
default standard input for a command run detached is not modified to be the empty file
‘/dev/null’; rather the standard input remains as the original standard input of the shell. If this
is a terminal and if the process attempts to read from the terminal, then the process will block
and the user will be notified (see Jobs above.)

Diagnostic output may be directed through a pipe with the standard output. Simply use the
form ‘|&’ rather than just ‘.

Expressions

A number of the builtin commands (to be described subsequently) take expressions, in which
the operators are similar to those of C, with the same precedence. These expressions appear in
the @, exit, if, and whilecommands. The following operators are available:

| && |1 & === =" "' <= >= < > << >> 4+ — «/ %!~ ()

»

Here the precedence increases to the right, ‘=="‘!=" ‘=7 apnd ‘!, ‘<="‘>=" ‘<’ and
‘>’ ‘<<’and ‘>>’, ‘4’ and ‘—’, ‘*’ /> and ‘%’ being, in groups, at the same level. The
‘=="*1=" ‘=7 and ‘! operators compare their arguments as strings; all others operate on
numbers. The operators ‘=""and ‘!™ are like ‘!="and ‘==" except that the right hand side is
a pattern (containing, e.g. ‘*’s, ‘?’s and instances of ‘[...]’) against which the left hand operand
is matched. This reduces the need for use of the switch statement in shell scripts when all that
is really needed is pattern matching.

Strings which begin with ‘0’ are considered octal numbers. Null or missing arguments are con-
sidered ‘0’. The result of all expressions are strings, which represent decimal numbers. It is
important to note that no two components of an expression can appear in the same word;
except when adjacent to components of expressions which are syntactically significant to the
parser (‘& ‘f <’ *>" (")) they should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in ‘{* and
‘}’> and file enquiries of the form ‘—/ name’ where /is one of:

4th Berkeley Distribution 18 July 1983 8

CSH (1) UNIX Programmer’s Manual CSH (1)

read access

write access

execute access

existence

ownership

Zero size

plain file

directory

The specified name is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If the file does not exist or is inaccessible then all
enquiries return false, i.e. ‘0’. Command executions succeed, returning true, i.e. ‘1’, if the
command exits with status 0, otherwise they fail, returning false, i.e. ‘0’. If more detailed
status information is required then the command should be executed outside of an expression
and the variable starus examined.

aA=NOO® X g

Control flow

The shell contains a number of commands which can be used to regulate the flow of control in
command files (shell scripts) and (in limited but useful ways) from terminal input. These com-
mands all operate by forcing the shell to reread or skip in its input and, due to the implementa-
tion, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if—then—else form of the ifstatement
require that the major keywords appear in a single simple command on an input line as shown
below.

If the shell’s input is not seekable, the shell buffers up input whenever a loop is being read and
performs seeks in this internal buffer to accomplish the rereading implied by the loop. (To the
extent that this allows, backward goto’s will succeed on non-seekable inputs.)

Builtin commands

Builtin commands are executed within the shell. If a builtin command occurs as any com-
ponent of a pipeline except the last then it is executed in a subshell.

alias

alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name. The final
form assigns the specified wordlist as the alias of name; wordlistis command and filename
substituted. Name is not allowed to be aliasor unalias.

alloc
Shows the amount of dynamic core in use, broken down into used and free core, and
address of the last location in the heap. With an argument shows each used and free
block on the internal dynamic memory chain indicating its address, size, and whether it is
used or free. This is a debugging command and may not work in production versions of
the shell; it requires a modified version of the system memory allocator.

bg

bg %job ...
Puts the current or specified jobs into the background, continuing them if they were
stopped.

break
Causes execution to resume after the end of the nearest enclosing foreach or while. The
remaining commands on the current line are executed. Multi-level breaks are thus possi-
ble by writing them all on one line.

4th Berkeley Distribution 18 July 1983 9

CSH (1) UNIX Programmer’s Manual CSH (1)

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd

cd name

chdir

chdir name
Change the shells working directory to directory name. If no argument is given then
change to the home directory of the user.
If name is not found as a subdirectory of the current directory (and does not begin with
¢/*, *./” or *../"), then each component of the variable cdpath is checked to see if it has a
subdirectory name. Finally, if all else fails but name is a shell variable whose value begins
with ‘/°, then this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands
on the current line are executed.

default:
Labels the default case in a switch statement. The default should come after all case
labels.

dirs

Prints the directory stack; the top of the stack is at the left, the first directory in the stack
being the current directory.

echo wordlist

echo — n wordlist
The specified words are written to the shells standard output, separated by spaces, and ter-
minated with a newline unless the —n option is specified.

else
end
endif
endsw
See the description of the foreach, if, switch, and while statements below.

eval arg ...
(As in sh(1).) The arguments are read as input to the shell and the resulting command (s)
executed in the context of the current shell. This is usually used to execute commands
generated as the result of command or variable substitution, since parsing occurs before
these substitutions. See rset(1) for an example of using eval.

exec command
The specified command is executed in place of the current shell.

exit

exit(expr)
The shell exits either with the value of the status variable (first form) or with the value of
the specified expr (second form).

fg

fg %job ...
Brings the current or specified jobs into the foreground, continuing them if they were
stopped.

4th Berkeley Distribution 18 July 1983 10

CSH (1) UNIX Programmer’s Manual CSH (1)

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the sequence of
commands between this command and the matching end are executed. (Both foreach and
end must appear alone on separate lines.)

The builtin command continue may be used to continue the loop prematurely and the buil-
tin command break to terminate it prematurely. When this command is read from the
terminal, the loop is read up once prompting with ‘2> before any statements in the loop
are executed. If you make a mistake typing in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no ‘\’ escapes are recognized and words are delimited by null characters in
the output. Useful for programs which wish to use the shell to filename expand a list of
words.

goto word
The specified word is filename and command expanded to yield a string of the form
‘label’. The shell rewinds its input as much as possible and searches for a line of the form
‘label:’ possibly preceded by blanks or tabs. Execution continues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been at locating
commands (and avoiding exec’s). An exec is attempted for each component of the parh
where the hash function indicates a possible hit, and in each component which does not
begin with a */°.

history
history n
history —r n
history —h n

Displays the history event list; if nis given only the n most recent events are printed.
The —r option reverses the order of printout to be most recent first rather than oldest
first. The —h option causes the history list to be printed without leading numbers. This
is used to produce files suitable for sourceing using the —h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with arguments is exe-
cuted. Variable substitution on command happens early, at the same time it does for the
rest of the ifcommand. Command must be a simple command, not a pipeline, a com-
mand list, or a parenthesized command list. Input/output redirection occurs even if expr
is false, when command is net executed (this is a bug).

if (expr) then
else if (expr2) then
else

endif
If the specified expris true then the commands to the first else are executed; else if expr2
is true then the commands to the second else are executed, eic. Any number of else-if
pairs are possible; only one endifis needed. The else part is likewise optional. (The words
else and endjfmust appear at the beginning of input lines; the ifmust appear alone on its
input line or after an else.)

4th Berkeley Distribution 18 July 1983 11

CSH (1) UNIX Programmer’s Manual CSH (1)

jobs

jobs —1
Lists the active jobs; given the —1 options lists process id’s in addition to the normal
information.

kill %job

kill —sig %job ...

kill pid
kill —sig pid ...
kill —1

Sends either the TERM (terminate) signal or the specified signal to the specified jobs or
processes. Signals are either given by number or by names (as given in
Jusr/include/signal.h, stripped of the prefix “‘SIG*’). The signal names are listed by ‘‘kill
—I*. There is no default, saying just ‘kill> does not send a signal to the current job. If
the signal being sent is TERM (terminate) or HUP (hangup), then the job or process will
be sent a CONT (continue) signal as well.

limit

limit resource

limit resource maximum-use
Limits the consumption by the current process and each process it creates to not individu-
ally exceed maximum-use on the specified resource. If no maximum-use is given, then the
current limit is printed; if no resource is given, then all limitations are given.

Resources controllable currently include cputime (the maximum number of cpu-seconds to
be used by each process), filesize (the largest single file which can be created), datasize
(the maximum growth of the data+stack region via sbrk(2) beyond ‘the end of the pro-
gram text), stacksize (the maximum size of the automatically-extended stack region), and
coredumpsize (the size of the largest core dump that will be created).

The maximum-use may be given as a (floating point or integer) number followed by a
scale factor. For all limits other than cputime the default scale is ‘k’ or ‘kilobytes’ (1024
bytes); a scale factor of ‘m’ or ‘megabytes’ may also be used. For cputime the default
scaling is ‘seconds’, while ‘m’ for minutes or *h’ for hours, or a time of the form ‘mm:ss’
giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the names suffice.

login
Terminate a login shell, replacing it with an instance of /bin/legin. This is one way to log
off, included for compatibility with sh(1).

logout
Terminate a login shell. Especially useful if ignoreeofis set.

nice

nice +number

nice command

nice +number command
The first form sets the nice for this shell to 4. The second form sets the nice to the given
number. The final two forms run command at priority 4 and number respectively. The
super-user may specify negative niceness by using ‘nice —number ... Command is
always executed in a sub-shell, and the restrictions place on commands in simple ifstate-
ments apply.

nohup

4th Berkeley Distribution 18 July 1983 12

CSH (1) UNIX Programmer’s Manual CSH (1)

nohup command
The first form can be used in shell scripts to cause hangups to be ignored for the

remainder of the script. The second form causes the specified command to be run with
hangups ignored. All processes detached with ‘&’ are effectively nohup’ed.

notify
notify %job ...
Causes the shell to notify the user asynchronously when the status of the current or

specified jobs changes; normally notification is presented before a prompt. This is
automatic if the shell variable notify is set.

onintr

onintr —

onintr label
Control the action of the shell on interrupts. The first form restores the default action of
the shell on interrupts which is to terminate shell scripts or to return to the terminal com-
mand input level. The second form ‘onintr —> causes all interrupts to be ignored. The
final form causes the shell to execute a ‘goto label’ when an interrupt is received or a
child process terminates because it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored, all forms of
onintr have no meaning and interrupts continue to be ignored by the shell and all invoked
commands.

popd

popd +n
Pops the directory stack, returning to the new top directory. With a-argument ‘+ ' dis-
cards the nth entry in the stack. The elements of the directory stack are numbered from
0 starting at the top.

pushd

pushd name

pushd +n
With no arguments, pushdexchanges the top two elements of the directory stack. Given a
name argument, pushd changes to the new directory (ala cd) and pushes the old current
working directory (as in csw) onto the directory stack. With a numeric argument, rotates
the nth argument of the directory stack around to be the top element and changes to it.
The members of the directory stack are numbered from the top starting at 0.

rehash
Causes the internal hash table of the contents of the directories in the path variable to be
recomputed. This is needed if new commands are added to directories in the path while
you are logged in. This should only be necessary if you add commands to one of your
own directories, or if a systems programmer changes the contents of one of the system
directories.

repeat count command
The specified command which is subject to the same restrictions as the command in the
one line ifstatement above, is executed counttimes. 1/0 redirections occur exactly once,
even if countis 0.

set
set name
set name =word
set name [index] =word
set name = (wordlist)
The first form of the command shows the value of all shell variables. Variables which

4th Berkeley Distribution 18 July 1983 13

CSH (1) UNIX Programmer’s Manual CSH (1)

have other than a single word as value print as a parenthesized word list. The second
form sets name to the null string. The third form sets name to the single word. The
fourth form sets the index’th component of name to word; this component must already
exist. The final form sets name to the list of words in wordlist. In all cases the value is
command and filename expanded.

These arguments may be repeated to set multiple values in a single set command. Note
however, that variable expansion happens for all arguments before any setting occurs.

setenv name value
Sets the value of environment variable name to be value, a single string. The most com-
monly used environment variable USER, TERM, and PATH are automatically imported
to and exported from the csh variables user, term, and path; there is no need to use setenv
for these.

shift

shift variable
The members of argy are shifted to the left, discarding argv/1]. It is an error for argv not
to be set or to have less than one word as value. The second form performs the same
function on the specified variable.

source name

source —h name
The shell reads commands from name. Source commands may be nested; if they are
nested too deeply the shell may run out of file descriptors. An error in a source at any
level terminates all nested source commands. Normally input during source commands is
not placed on the history list; the —h option causes the commands to be placed in the his-
tory list without being executed.

stop
stop %job ...
Stops the current or specified job which is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal with “Z.
This is most often used to stop shells started by su(1).

switch (string)
case strl:

breaksw
default:

breaksw

endsw
Each case label is successively matched, against the specified string which is first command
and filename expanded. The file metacharacters ‘#’, *?” and ‘[...]" may be used in the case
labels, which are variable expanded.. If none of the labels match before a ‘default’ label is
found, then the execution begins after the default label. Each case label and the default
label must appear at the beginning of a line. The command breaksw causes execution to
continue after the endsw. Otherwise control may fall through case labels and default labels
as in C. If no label matches and there is no default, execution continues after the endsw.

time

time command
With no argument, a summary of time used by this shell and its children is printed. If

4th Berkeley Distribution 18 July 1983 14

CSH (1) UNIX Programmer’s Manual CSH (1)

arguments are given the specified simple command is timed and a time summary as
described under the time variable is printed. If necessary, an extra shell is created to print
the time statistic when the command completes.

umask

umask value
The file creation mask is displayed (first form) or set to the specified value (second form).
The mask is given in octal. Common values for the mask are 002 giving all access to the
group and read and execute access to others or 022 giving all access except no write access
for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all aliases are
removed by ‘unalias *’. It is not an error for nothing to be unaliased.

unhash
Use of the internal hash table to speed location of executed programs is disabled.

unlimit resource

unlimit
Removes the limitation on resource. If no resource is specified, then all resource limita-
tions are removed.

unset pattern
All variables whose names match the specified pattern are removed. Thus all variables
are removed by ‘unset *’; this has noticeably distasteful side-effects. It is not an error for
nothing to be unset.

unsetenv pattern
Removes all variables whose name match the specified pattern from the environment.
See also the setenvcommand above and printenv(1).

wait
All background jobs are waited for. It the shell is interactive, then an interrupt can dis-
rupt the wait, at which time the shell prints names and job numbers of all jobs known to
be outstanding.

while (expr)

end

While the specified expression evaluates non-zero, the commands between the while and
the matching end are evaluated. Break and continue may be used to terminate or continue
the loop prematurely. (The while and end must appear alone on their input lines.)
Prompting occurs here the first time through the loop as for the foreach statement if the
input is a terminal.

%job
Brings the specified job into the foreground.

%job &
Continues the specified job in the background.

@

@ name = expr

@ namelindex] = expr
The first form prints the values of all the shell variables. The second form sets the
specified name to the value of expr. If the expression contains ‘<’, *>’, ‘&’ or ‘! then at
least this part of the expression must be placed within ‘(’ *)’. The third form assigns the
value of expr to the index’th argument of name. Both name and its index’th component

4th Berkeley Distribution 18 July 1983 15

CSH (1) UNIX Programmer’s Manual CSH (1)

must already exist.

The operators ‘*=", ‘+ =", etc are available as in C. The space separating the name from
the assignment operator is optional. Spaces are, however, mandatory in separating com-
ponents of expr which would otherwise be single words.

Special postfix ‘++" and ‘— — operators increment and decrement name respectively,
ie. ‘@ i++’.
Pre-defined and environment variables

The following variables have special meaning to the shell. Of these, argv, cwd, home, path,
prompt, shell and status are always set by the shell. Except for cwdand status this setting occurs

= only at initialization; these variables will not then be modified unless this is done explicitly by
the user. '

This shell copies the environment variable USER into the variable user, TERM into term, and
HOME into home, and copies these back into the environment whenever the normal shell vari-
ables are reset. The environment variable PATH is likewise handled; it is not necessary to
worry about its setting other than in the file .cshrc as inferior csh processes will import the
definition of pathfrom the environment, and re-export it if you then change it.

argv Set to the arguments to the shell, it is from this variable that positional param-
eters are substituted, i.e. ‘$1” is replaced by ‘$argvi1]’, etc.

cdpath Gives a list of alternate directories searched to find subdirectories in chdir com-
mands.

cewd The full pathname of the current directory.

echo Set when the —x command line option is given. Causes each command and

its arguments to be echoed just before it is executed. For non-builtin com-
mands all expansions occur before echoing. Builtin commands are echoed
before command and filename sybstitution, since these substitutions are then
done selectively.

histchars Can be given a string value to change the characters used in history substitu-
tion. The first character of its value is used as the history substitution charac-
ter, replacing the default character !. The second character of its value replaces
the character | in quick substitutions.

history Can be given a numeric value to control the size of the history list. Any com-
mand which has been referenced in this many events will not be discarded.
Too large values of history may run the shell out of memory. The last exe-
cuted command is always saved on the history list.

home The home directory of the invoker, initialized from the environment. The
filename expansion of ‘™ refers to this variable.

ignoreeof If set the shell ignores end-of-file from input devices which are terminals.
This prevents shells from accidentally being killed by control-D’s.

mail The files where the shell checks for mail. This is done after each command
completion which will result in a prompt, if a specified interval has elapsed.
The shell says ‘You have new mail.’ if the file exists with an access time not
greater than its modify time.
If the first word of the value of mail is numeric it specifies a different mail
checking interval, in seconds, than the default, which is 10 minutes.

If multiple mail files are specified, then the shell says ‘New mail in name’
when there is mail in the file name.

4th Berkeley Distribution 18 July 1983 16

CSH (1)

noclobber

noglob

nonomatch

notify

path

prompt

savehist

shell

status

time

verbose

UNIX Programmer’s Manual CSH (1)

As described in the section on Input/output, restrictions are placed on output
redirection to insure that files are not accidentally destroyed, and that ‘> >

redirections refer to existing files.

If set, filename expansion is inhibited. This is most useful in shell scripts
which are not dealing with filenames, or after a list of filenames has been
obtained and further expansions are not desirable:

If set, it is not an error for a filename expansion to not match any existing
files; rather the primitive pattern is returned. It is still an error for the primi-
tive pattern to be malformed, i.e. ‘echo [’ still gives an error.

If set, the shell notifies asynchronously of job completions. The default is to
rather present job completions just before printing a prompt.

Each word of the path variable specifies a directory in which commands are to

“be sought for execution. A null word specifies the current directory. If there

is no path variable then only full path names will execute. The usual search
path is *.’, */bin’ and ‘/usr/bin’, but this may vary from system to system. For
the super-user the default search path is ‘/etc’, ‘/bin’ and ‘/usr/bin’. A shell
which is given neither the —c nor the —t option will normally hash the con-
tents of the directories in the parh variable after reading .cshrc, and each time
the path variable is reset. If new commands are added to these directories
while the shell is active, it may be necessary to give the rehash or the com-
mands may not be found.

The string which is printed before each command is read from an interactive
terminal input. If a ‘" appears in the string it will be replaced by the current
event number unless a preceding ‘\’ is given. Default is ‘% ’, or ‘#’ for the
super-user.

is given a numeric value to control the number of entries of the history list
that are saved in ~/.history when the user logs out. Any command which has
been referenced in this many events will be saved. During start up the shell
sources “/.history into the history list enabling history to be saved across
logins. Too large values of savehist will slow down the shell during start up.
The file in which the shell resides. This is used in forking shells to interpret
files which have execute bits set, but which are not executable by the system.
(See the description of Non-builtin Command Execution below.) Initialized to
the (system-dependent) home of the shell.

The status returned by the last command. If it terminated abnormally, then
0200 is added to the status. Builtin commands which fail return exit status ‘1°,
all other builtin commands set status ‘0’.

Controls automatic timing of commands. If set, then any command which
takes more than this many cpu seconds will cause a line giving user, system,
and real times and a utilization percentage which is the ratio of user plus sys-
tem times to real time to be printed when it terminates.

Set by the —v command line option, causes the words of each command to be
printed after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin command the shell attempts to
execute the command via execve(2). Each word in the variable path names a directory from
which the shell will attempt to execute the command. If it is given neither a —c nor a —t
option, the shell will hash the names in these directories into an internal table so that it will

4th Berkeley Distribution 18 July 1983 17

CSH (1) UNIX Programmer’s Manual CSH (1)

only try an exec in a directory if there is a possibility that the command resides there. This
greatly speeds command location when a large number of directories are present in the search
path. If this mechanism has been turned off (via unhash), or if the shell was givena —cor —t
argument, and in any case for each directory component of path which does not begin with a
¢/*, the shell concatenates with the given command name to form a path name of a file which it
then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus ‘(cd ; pwd) ; pwd’ prints the
home directory; leaving you where you were (printing this after the home directory), while ‘cd :
pwd’ leaves you in the home directory. Parenthesized commands are most often used to
prevent chdir from affecting the current shell.

If the file has execute permissions but is not an executable binary to the system, then it is
assumed to be a file containing shell commands and a new shell is spawned to read it.

If there is an alias for shell then the words of the alias will be prepended to the argument list to
form the shell command. The first word of the alias should be the full path name of the shell
(e.g. ‘$shell’). Note that this is a special, late occurring; case of alias substitution, and only
allows words to be prepended to the argument list without modification.

Argument list processing

If argument O to the shell is ‘—" then this is a login shell. The flag arguments are interpreted

as follows:

—c¢ Commands are read from the (single) following argument which must be present. Any
remaining arguments are placed in argv.

—e The shell exits if any invoked command terminates abnormally or yields a non-zero exit
status.

—f The shell will start faster, because it will neither search for nor execute commands from
the file ‘.cshrc’ in the invokers home directory.

—i The shell is interactive and prompts for its top-level input, even if it appears to not be a
terminal. Shells are interactive without this option if their inputs and outputs are termi-
nals.

—n Commands are parsed, but not executed. This aids in syntactic checking of shell scripts.

—s Command input is taken from the standard input.

—t A single line of input is read and executed. A ‘\’ may be used to escape the newline at
the end of this line and continue onto another line.

—v Causes the verbose variable to be set, with the effect that command input is echoed after
history substitution.

—x Causes the echo variable to be set, so that commands are echoed immediately before exe-
cution.

—V Causes the verbose variable to be set even before ‘.cshrc’ is executed.
—X Isto —xas —Visto —v.

After processing of flag arguments if arguments remain but none of the —e¢, —i, —s, or —t
options was given the first argument is taken as the name of a file of commands to be executed.
The shell opens this file, and saves its name for possible resubstitution by ‘$0°. Since many
systems use either the standard version 6 or version 7 shells whose shell scripts are not compa-
tible with this shell, the shell will execute such a ‘standard’ shell if the first character of a script
is not a ‘#°, i.e. if the script does not start with a comment. Remaining arguments initialize the
variable argv.

4th Berkeley Distribution 18 July 1983 18

CSH (1) UNIX Programmer’s Manual CSH (1)

Signal handling

The shell normally ignores quit signals. Jobs running detached (either by ‘&’ or the bgor %...
& commands) are immune to signals generated from the keyboard, including hangups. Other
signals have the values which the shell inherited from its parent. The shells handling of inter-
rupts and terminate signals in shell scripts can be controlled by onintr. Login shells catch the
terminate signal; otherwise this signal is passed on to children from the state in the shell’s
parent. In no case are interrupts allowed when a login shell is reading the file ‘.logout’.

AUTHOR

William Joy. Job control and directory stack features first implemented by J.E. Kulp of
LI.LA.S.A, Laxenburg, Austria, with different syntax than that used now.

FILES

~/.cshrc Read at beginning of execution by each shell.

“/.login Read by login shell, after ‘.cshrc’ at login.

/.logout Read by login shell, at logout.

/bin/sh Standard shell, for shell scripts not starting with a ‘#".

/tmp/sh+ Temporary file for ‘< <’.

/etc/passwd Source of home directories for ‘"name’.
LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument lists to 10240 char-
acters. The number of arguments to a command which involves filename expansion is limited
to 1/6’th the number of characters allowed in an argument list. Command substitutions may
substitute no more characters than are allowed in an argument list. To detect looping, the shell
restricts the number of alias substitutions on a single line to 20.

SEE ALSO

BUGS

sh(1), access(2), execve(2), fork(2), killpg(2), pipe(2), sigvec(2), umask(2), setrlimit (2),
wait(2), tty(4), a.out(5), environ(7), ‘An introduction to the C shell’

When a command is restarted from a stop, the shell prints the directory it started in if this is
different from the current directory; this can be misleading (i.e. wrong) as the job may have
changed directories internally.

Shell builtin functions are not stoppable/restartable. Command sequences of the form ‘a ; b ;
¢’ are also not handled gracefully when stopping is attempted. If you suspend ‘b’, the shell will
then immediately execute ‘c’. This is especially noticeable if this expansion results from an
alias. It suffices to place the sequence of commands in ()’s to force it to a subshell, i.e. *(a ; b
;c)

Control over tty output after processes are started is primitive; perhaps this will inspire some-
one to work on a good virtual terminal interface. In a virtual terminal interface much more
interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell procedures
should be provided rather than aliases.

Commands within loops, prompted for by *?°, are not placed in the history list. Control struc-
ture should be parsed rather than being recognized as built-in commands. This would allow
control commands to be placed anywhere, to be combined with ‘I, and to be used with ‘& and
‘;> metasyntax.

It should be possible to use the ‘’ modifiers on the output of command substitutions. All and
more than one ‘:’ modifier should be allowed on ‘$’ substitutions.

4th Berkeley Distribution 18 July 1983 19

CSH (1) UNIX Programmer’s Manual CSH (1)

Symbolic links fool the shell. In particular, dirs and ‘cd ..” don’t work properly once you've
crossed through a symbolic link.

4th Berkeley Distribution 18 July 1983 20

CTAGS (1) UNIX Programmer’s Manual CTAGS (1)

NAME
ctags — create a tags file

SYNOPSIS

ctags [—=BFatuwvx] name ...
. DESCRIPTION
Ctags makes a tags file for ex(1) from the specified C, Pascal and Fortran sources. A tags file
gives the locations of specified objects (in this case functions and typedefs) in a group of files.
Each line of the tags file contains the object name, the file in which it is defined, and an address
specification for the object definition. Functions are searched with a pattern, typedefs with a line
number. Specifiers are given in separate fields on the line, separated by blanks or tabs. Using
the tags file, ex can quickly find these objects definitions.
If the —x flag is given, crags produces a list of object names, the line number and file name on
which each is defined, as well as the text of that line and prints this on the standard output.
This is a simple index which can be printed out as an off-line readable function index.
If the —v flag is given, an index of the form expected by vgrind(1) is produced on the standard
output. This listing contains the function name, file name, and page number (assuming 64 line
pages). Since the output will be sorted into lexicographic order, it may be desired to run the
output through sort —f. Sample use:

ctags —v files | sort —f > index

vgrind —x index
Files whose name ends in .c or .h are assumed to be C source files and are searched for C rou-
tine and macro definitions. Others are first examined to see if they contain any Pascal or For-
tran routine definitions; if not, they are processed again looking for C definitions.

Other options are:

=F use forward searching patterns (/.../) (default).
=B use backward searching patterns (?...7).

=—a append to tags file.

=t create tags for typedefs.

=—w suppressing warning diagnostics.

=u causing the specified files to be updated in tags, that is, all references to them are deleted,
and the new values are appended to the file. (Beware: this option is implemented in a
way which is rather slow; it is usually faster to simply rebuild the tags file.)

The tag main is treated specially in C programs. The tag formed is created by prepending M to
the name of the file, with a trailing .c removed, if any, and leading pathname components also
removed. This makes use of ctags practical in directories with more than one program.

FILES
tags output tags file
SEE ALSO
ex(1), vi(1)
AUTHOR
Ken Arnold; FORTRAN added by Jim Kleckner; Bill Joy added Pascal and —x, replacing cxref:
C typedefs added by Ed Pelegri-Liopart.
BUGS

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a
very simpleminded way. No attempt is made to deal with block structure; if you have two Pas-
cal procedures in different blocks with the same name you lose.

4th Berkeley Distribution 25 August 1982 1

CTAGS (1) UNIX Programmer’s Manual CTAGS (1)

The method of deciding whether to look for C or Pascal and FORTRAN functions is a hack.
Does not know about #ifdefs.

Should know about Pascal types. Relies on the input being well formed to detect typedefs. Use
of -tx shows only the last line of typedefs.

4th Berkeley Distribution 25 August 1982 2

DATE (1) UNIX Programmer’s Manual DATE (1)

NAME
date — print and set the date

SYNOPSIS
date [-u] [yymmddhhmm [.ss 1]

DESCRIPTION
If no arguments are given, the current date and time are printed. If a date is specified, the
current date is set. The -u flag is used to display the date in GMT (universal) time. This flag
may also be used to set GMT time. yy is the last two digits of the year; the first mm is the
month number; dd is the day number in the month; Ak is the hour number (24 hour system);
the second mm is the minute number; .ss is optional and is the seconds. For example:

date 10080045
sets the date to Oct 8, 12:45 AM. The year, month and day may be omitted, the current values
being the defaults. The system operates in GMT. Date takes care of the conversion to and
from local standard and daylight time.

FILES
/usr/adm/wtmp to record time-setting

SEE ALSO
utmp(5)

DIAGNOSTICS
‘Failed to set date: Not owner’ if you try to change the date but are not the super-user.

BUGS
The system attempts to keep the date in a format closely compatible with-VMS. VMS, how-
ever, uses local time (rather than GMT) and does not understand daylight savings time. Thus
if you use both UNIX and VMS, VMS will be running on GMT.

4th Berkeley Distribution 1 April 1983 : 1

DBX (1) UNIX Programmer’s Manual DBX (1)

NAME

dbx — debugger
SYNOPSIS

dbx [=r1 [=il [=1 dir] [objifile [coredump]]
DESCRIPTION

Dbx is a tool for source level debugging and execution of programs under UNIX. The objfile is
an object file produced by a compiler with the appropriate flag (usually *“—g”’) specified to pro-
duce symbol information in the object file. Currently, cc(1) and f77(1) produce the appropriate
source information and it is expected that in the future the Pascal compiler will also be able to
generate source level information. The machine level facilities of dbx can be used on any pro-
gram.

If no objfile is specified, dbxlooks for a file named “‘a.out’ in the current directory. The object
file contains a symbol table which includes the name of the all the source files translated by the
compiler to create it. These files are available for perusal while using the debugger.

If a file named ‘‘core” exists in the current directory or a coredump file is specified, dbx can be
used to examine the state of the program when it faulted.

If the file ““.dbxinit™ exists in the current directory then the debugger commands in it are exe-
cuted. Dbx also checks for a *‘.dbxinit’’ in the user’s home directory if there isn’t one in the
current directory.

The command line options and their meanings are:

-r Execute objfile immediately. If it terminates successfully dbx exits. Otherwise the rea-
son for termination will be reported and the user offered the option of entering the
debugger or letting the program fault. Dbx will read from °‘/dev/tty”’ when —r is
specified and standard input is not a terminal.

—i Force dbxto act as though standard input is a terminal.

—1I dir Add dir to the list of directories that are searched when looking for a source file. Nor-
mally dbxlooks for source files in the current directory and in the directory where objfile
is located. The directory search path can also be set with the use command.

Unless —r is specified, dbxjust prompts and waits for a command.

Execution and Tracing Commands

run [argd [< filenamel [> filenamel
Start executing objfile, passing argsas command line arguments; < or > can be used to
redirect input or output in the usual manner. If objfile has been written since the last
time the symbolic information was read in, dbx will read in the new information.

trace [in procedure/functionl [if conditior]

trace source-line-number [if condition]

trace procedure/function [in procedure/functionl [if condition]

trace expression at source-line-number [if condition]

trace variable [in procedure/functior] [if condition]
Have tracing information printed when the program is executed. A number is associ-
ated with the command that is used to turn the tracing off (see the delete command).

The first argument describes what is to be traced. If it is a source-line-number, then the

4th Berkeley Distribution 18 July 1983 1

DBX (1) UNIX Programmer’s Manual DBX (1)

line is printed immediately prior to being executed. Source line numbers in a file other
than the current one must be preceded by the name of the file-in quotes and a colon,
e.g. "mumble.p":17.

If the argument is a procedure or function name then every time it is called, informa-
tion is printed telling what routine called it, from what source line it was called, and
what parameters were passed to it. In addition, its return is noted, and if it’s a function
then the value it is returning is also printed.

If the argument is an expression with an at clause then the value of the expression is
printed whenever the identified source line is reached:

If the argument is a variable then the name and value of the variable is printed when-
ever it changes. Execution is substantially slower during this form of tracing.

If no argument is specified then all source lines are printed before they are executed.
Execution is substantially slower during this form of tracing.

The clause ‘“‘in procedure/function’’ restricts tracing information to be printed only while
executing inside the given procedure or function.

Condition is a boolean expression and is evaluated prior to printing the tracing informa-
tion; if it is false then the information is not printed.

stop if condition

stop at source-line-number [if condition]

stop in procedure/function [if conditior]

stop variable [if condition]
Stop execution when the given line is reached, procedure or function called, variable
changed, or condition true.

status [> filenamdl
Print out the currently active trace and stop commands.

delete command-number
The trace or stop corresponding to the given number is removed. The numbers associ-
ated with traces and stops are printed by the status command.

catch number

ignore number
Start or stop trapping signal number before it is sent to the program. This is useful
when a program being debugged handles signals such as interrupts. Initially all signals
are trapped except SIGCONT, SIGCHILD, SIGALRM and SIGKILL.

cont Continue execution from where it stopped. Execution cannot be continued if the pro-
cess has ““finished”, that is, called the standard procedure “‘exit’’. Dbx does not allow
the process to exit, thereby letting the user to examine the program state.

step Execute one source line.

next Execute up to the next source line. The difference between 'this and step is that if the
line contains a call to a procedure or function the step command will stop at the begin-
ning of that block, while the next command will not.

4th Berkeley Distribution 18 July 1983 2

DBX (1) UNIX Programmer’s Manual DBX (1)

Displaying and Naming Data

print expression [, expression ...]
Print out the values of the expressions. Array expressions are always subscripted by
brackets (‘[1”’). Variables having the same identifier as one in the current block may
be referenced as ‘ block-name . variablé’. The field reference operator (““.”’) can be
used with pointers as well as records, making the C operator ‘‘->’ unnecessary
(although it is supported). The construct typename(expression) can be used to print the’
expression out in the format of the named type

whatis name
Print the declaration of the given name, which may be qualified with block names as
above.

which identifier
Print the full qualification of the given identifer, i.e. the outer blocks that the identifier
is associated with.

whereis identifier
Print the full qualification of all the symbols whose name matches the given identifier.
The order in which the symbols are printed is not meaningful.

assign variable = expression
set variable = expression
Assign the value of the expression to the variable.

call procedure(parameters)..
Execute the object code associated with the named procedure or function. Currently,
calls to a procedure with a variable number of arguments are not possible. Also, string
parameters are not passed properly for C.

where Print out a list of the active procedures and function.

dump [> filenamel
Print the names and values of all active variables.

Accessing Source Files

edit [filename

edit procedure/function-name
Invoke an editor on filename or the current source file if none is specified. If a pro-
cedure or function name is specified, the editor is invoked on the file that contains it.
Which editor is invoked by default depends on the installation. The default can be
overridden by setting the environment variable EDITOR to the name of the desired
editor.

file [filenamel
Change the current source file name to filename. If none is specified then the current
source file name is printed.

func [procedure/function]
Change the current function. If none is specified then print the current function.
Changing the current funetion implicitly changes the current source file to the one that
contains, the function; it also changes the current scope used for name resolution.

list [source-line-number [, source-line-number]
list procedure/function
List the lines in the current source file from the first line number to the second

4th Berkeley Distribution 18 July 1983 3

DBX (1) UNIX Programmer’s Manual DBX (1)

inclusive. If no lines are specified, the next 10 lines are listed. If the name of a pro-
cedure or function is given lines n-kto n+kare listed where nis the first statement in
the procedure or function and kis small.

use directory-list
Set the list of directories to be searched when looking for source files.

Machine Level Commands

tracei [address) [if cond
tracei [variable] [at addresd [if cond
stopi [address [if cond
stopi [at] [addresd [if cond
Turn on tracing or set a stop using a machine instruction address.

stepi
nexti Single step as in step or next, but do a single instruction rather than source line.

address ,address/ [mode]

[address / [cound [model
Print the contents of memory starting at the first address and continuing up to the
second address or until count items are printed. If no address is specified, the address
following the one printed most recently is used. The mode specifies how memory is to
be printed; if it is omitted the previous mode specified is used. The initial mode is
“X**. The following modes are supported:

print the machine instruction

print a short word in decimal

print a long word in decimal

print a short word in octal

print a long word in octal

print a short word in hexadecimal
print a long word in hexadecimal
print a byte in octal

print a byte as a character

print a string of characters terminated by a null byte
print a single precision real number
print a double precision real number

e 0T OO0 e

Symbolic addresses are specified by preceding the name with an ““&”. Registers are denoted by
“$rN”’ where N is the number of the register. Addresses may be expressions made up of other
addresses and the operators ‘“+’, “-**, and indirection (unary ‘“***).

Miscellaneous Commands

sh command-line
Pass the command line to the shell for execution. The SHELL environment variable
determines which shell is used.

alias new-command-name old-command-name
Respond to new-command-name as though it were old-command-name.

help Print out a synopsis of dbxcommands.

4th Berkeley Distribution 18 July 1983 4

DBX (1) UNIX Programmer’s Manual DBX (1)

gripe Invoke a mail program to send a message to the person in charge of dbx

source filename
Read dbx commands from the given filename. Especially useful when the filename has
been created by redirecting a status command from an earlier debugging session.

quit Exit dbx

FILES
a.out object file
.dbxinit initial commands
SEE ALSO
cc(1), £77(1), pc(1)
COMMENTS

Non-local gotos can cause some trace/stops to be missed. Most of the command names are too
long. The alias facility helps, but is really quite weak. A csklike history capability would
improve the situation. But then, who wants to duplicate the c-shell in a debugger?

Dbx suffers from the same “‘multiple include’’ malady as does sdb. If you have a program con-
sisting of a number of object files and each is built from source files that include header files,
the symbolic information for the header files is replicated in each object file. Since about one
debugger start-up is done for each link, having the linker (1d) re-organize the symbol informa-
tion won’t save much time, though it would reduce some of the disk space used. The problem
is an artifact of the unrestricted semantics of #include’s in C; for example an include file can
contain static declarations that are separate entities for each file in which they are included.

4th Berkeley Distribution 18 July 1983 5

DC(1)

NAME

UNIX Programmer’s Manual DC(1)

dc — desk calculator

SYNOPSIS

de [file]

DESCRIPTION

Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but

one may specify an input base, output base, and a number of fractional digits to be maintained.

The overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given,

input is taken from that file until its end, then from the standard input. The following con-

structions are recognized:

number .

The value of the number is pushed on the stack. A number is an unbroken string of the
digits 0-9. It may be preceded by an underscore _ to input a negative number. Numbers
may contain decimal points.

+ =/ %"
The top two values on the stack are added (+), subtracted (=), multiplied (), divided
(/), remaindered (%), or exponentiated (). The two entries are popped off the stack;
the result is pushed on the stack in their place. Any fractional part of an exponent is
ignored.

8x The top of the stack is popped and stored into a register named x, where x may be any
character. If the s is capitalized, x is treated as a stack and the value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not altered. All registers
start with zero value. If the 1 is capitalized, register x is treated as a stack and its top
value is popped onto the main stack.

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged. P interprets
the top of the stack as an ascii string, removes it, and prints it.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is popped by two. If q is
capitalized, the top value on the stack is popped and the string execution level is popped
by that value.

X treats the top element of the stack as a character string and executes it as a string of dc
commands.
X replaces the number on the top of the stack with its scale factor.

«-. | puts the bracketed ascii string onto the top of the stack.

<x >x =x
The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing fractional part of
the argument is taken into account, but otherwise the scale factor is ignored.

! interprets the rest of the line as a UNI¥X command.
¢ All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input. I
pushes the input base on the top of the stack.

) The top value on the stack is popped and used as the number radix for further output.

Tth Edition 18 January 1983 1

DC(1) UNIX Programmer’s Manual DC(1)

(0] pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a non-negative scale factor: the
appropriate number of places are printed on output, and maintained during multiplica-
tion, division, and exponentiation. The interaction of scale factor, input base, and out-
put base will be reasonable if all are changed together.

z The stack level is pushed onto the stack.
A replaces the number on the top of the stack with its length.
? A line of input is taken from the input source (usually the terminal) and executed.

$is are used by bc for array operations.
An example which prints the first ten values of n! is

[1a1+ dsaeplal0>ylsy
0Osal
lyx
SEE ALSO
bc(1), which is a preprocessor for dc providing infix notation and a C-like syntax which imple-
ments functions and reasonable control structures for programs.

DIAGNOSTICS
‘x is unimplemented’ where x is an octal number.
‘stack empty’ for not enough elements on the stack to do what was asked.
‘Out of space’ when the free list is exhausted (too many digits).
‘Out of headers’ for too many numbers being kept around.
‘Out of pushdown’ for too many items on the stack.
‘Nesting Depth’ for too many levels of nested execution.

7th Edition 18 January 1983 2

DD (1) UNIX Programmer’s Manual DD (1)

NAME
dd — convert and copy a file

SYNOPSIS
dd [option=value] ...

DESCRIPTION .
Dd copies the specified input file to the specified output with possible conversions. The stan-

dard input and output are used by default. The input and output block size may be specified to
take advantage of raw physical 1/0.

option values

if= input file name; standard input is default

of = output file name; standard output is default

ibs=n input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both input and output block size, superseding ibs and obs; also, if no
conversion is specified, it is particularly efficient since no copy need be done

cbs=n conversion buffer size

skip=n skip n input records before starting copy

files=n copy n input files before terminating (makes sense only where input is a
magtape or similar device).

seek=n seek n records from beginning of output file before copying

count==p copy only n input records

conv = ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC

ibm slightly different map of ASCII to EBCDIC

block convert variable length records to fixed length

unblock convert fixed length records to variable length

Icase map alphabetics to lower case

ucase map alphabetics to upper case

swab swap every pair of bytes

noerror do not stop processing on an error

sync pad every input record to ibs

.., .. several comma-separated conversions
Where sizes are specified, a number of bytes is expected. A number may end with k, b or w to
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x
to indicate a product.
Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the first two
cases, cbs characters are placed into the conversion buffer, any specified character mapping is
done, trailing blanks trimmed and new-line added before sending the line to the output. In the
latter three cases, characters are read into the conversion buffer, and blanks added to make up
an output record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into
the ASCII file x:

dd if=/dev/rmt0 of =x ibs=_800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/0 on the raw physical devices because
it allows reading and writing in arbitrary record sizes.

4th Berkeley Distribution 18 January 1983 1

DD (1) UNIX Programmer’s Manual DD (1)

SEE ALSO
cp(1), tr(1)
DIAGNOSTICS
f+p records in(out): numbers of full and partial records read (written)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov, 1968. The ‘ibm’ conversion, while less blessed as a standard, corresponds better to cer-
tain IBM print train conventions. There is no universal solution.
One must specify ‘‘conv=noerror,sync’> when copying raw disks with bad sectors to insure dd
stays synchronized.

4th Berkeley Distribution 18 January 1983 2

DEROFF (1) UNIX Programmer’s Manual DEROFF (1)

NAME

deroff — remove nroff, troff, tbl and eqn constructs
SYNOPSIS

deroff [—w] file ...
DESCRIPTION

Deroff reads each file in sequ~nce and removes all nroff and troff command lines, backslash con-
structions, macro definitions, egn constructs (between ‘. EQ’ and “.EN’ lines or between delim-
iters), and table descriptions and writes the remainder on the standard output. Derqff follows
chains of included files (‘.s0’ and ‘.nx’ commands); if a file has already been included, a ‘.s0’ is
ignored and a ‘.nx’ terminates execution. If no input file is given, deroff reads from the stan-
dard input file.)

If the —w flag is given, the output is a word list, one ‘word’ (string of letters, digits, and apos-
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters
ignored. Otherwise, the output follows the original, with the deletions mentioned above.

SEE ALSO
troff (1), eqn(1), tbl(1)

BUGS
Deroff is not a complete troff interpreter, so it can be confused by subtle constructs. Most
errors result in too much rather than too little output.

7th Edition 18 January 1983 1

DF(1) UNIX Programmer’s Manual DF(1)

NAME
df — disk free

SYNOPSIS
df [—1] [filesystem ...] [file ...]

DESCRIPTION
Df prints out the amount of free disk space available on the specified filesystem, e.g.
“‘/dev/rp0a”, or on the filesystem in which the specified file, e.g. “‘SHOME”, is contained. If
no file system is specified, the free space on all of the normally mounted file systems is printed.
The reported numbers are in kilobytes.
Other options are:
=i Report also the number of inodes which are used and free.

FILES
/etc/fstab list of normally mounted filesystems

SEE ALSO
fstab(5), icheck(8), quot(8)

4th Berkeley Distribution 18 January 1983 1

DICTION (1) UNIX Programmer’s Manual DICTION (1)

NAME

diction,explain — print wordy sentences; thesaurus for diction
SYNOPSIS

diction [—ml] [=mm] [—n] [—f pfile] file ...

explain
DESCRIPTION

Diction finds all sentences in a document that contain phrases from a data base of bad or wordy
diction. Each phrase is bracketed with []. Because diction runs deroff before looking at the
text, formatting header files should be included as part of the input. The default macro package
=ms may be overridden with the flag —mm. The flag —ml which causes deroff to skip lists,
should be. used if the document contains many lists of non-sentences. The user may supply
her/his own pattern file to be used in addition to the default file with —f pfile. If the flag —n is
also supplied the default file will be suppressed.

Explain is an interactive thesaurus for the phrases found by diction.

SEE ALSO
deroff(1)

BUGS
Use of non-standard formatting macros may cause incorrect sentence breaks. In particular, dic-
tion doesn’t grok —me.

7th Edition 18 January 1983 : 1

DIFF (1) UNIX Programmer’s Manual DIFF (1)
NAME

diff — differential file and directory comparator
SYNOPSIS

A [=11 [—r][—=s][—cefh][—b]dirl dir2
diff [—cefh] [=b] filel file2
diff [=Dstring] [=b] filel file2

DESCRIPTION
If both arguments are directories, djff sorts the contents of the directories by name, and then
runs the regular file djff algorithm (described below) on text files which are different. Binary
files which differ, common subdirectories, and files which appear in only one directory are
listed. Options when comparing directories are:

-1 long output format; each text file djff is piped through pr(1) to paginate it, other
differences are remembered and summarized after all text file differences are reported.

=r causes application of djff recursively to common subdirectories encountered.
=S causes diff'to report files which are the same, which are otherwise not mentioned.

=—Sname
starts a directory djffin the middle beginning with file name.

When run on regular files, and when comparing text files which differ during directory com-
parison, diff tells what lines must be changed in the files to bring them into agreement. Except
in rare circumstances, diff finds a smallest sufficient set of file differences. If neither filel nor
Jile2 is a directory, then either may be given as ‘—’, in which case the standard input is used.
If filel is a directory, then a file in that directory whose file-name is the same as the file-name
of file2 is used (and vice versa).

There are several options for output format; the default output format contains lines of these
forms:

nl a n3,nd
nl,n2d n3
nl,n2 c n3,néd

These lines resemble ed commands to convert filel into file2. The numbers after the letters

pertain to file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain

equally how to convert file2 into filel. As in ed, identical pairs where nl = n2 or n3 = n4 are
abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘<’,

then all the lines that are affected in the second file flagged by “>.

Except for —b, which may be given with any of the others, the following options are mutually

exclusive:

—e producing a script of @, ¢ and d commands for the editor ed, which will recreate file2
from filel. In connection with —e, the following shell program may help maintain
multiple versions of a file. Only an ancestral file ($1) and a chain of version-to-
version ed scripts ($2,$3,...) made by djff need be on hand. A ‘latest version’ appears
on the standard output.

(shift; cat $=; echo "1,$p") | ed — $1
Extra commands are added to the output when comparing directories with —e, so
that the result is a sh(1) script for converting text files which are common to the two
directories from their state in dirl to their state in dir2.

=f produces a script similar to that of —e, not useful with ed, and in the opposite order.

4th Berkeley Distribution 18 January 1983 1

DIFF (1) UNIX Programmer’s Manual DIFF (1)

-c produces a diff with lines of context. The default is to present 3 lines of context and
may be changed, e.g to 10, by —c10. With —c the output format is modified slightly:
the output beginning with identification of the files involved and their creation dates
and then each change is separated by a line with a dozen «’s. The lines removed
from filel are marked with ‘—’; those added to file2 are marked ‘+°’. Lines which are
changed from one file to the other are marked in both files with <!°.

=h does a fast, half-hearted job. It works only when changed stretches are short and well
separated, but does work on files of unlimited length.

—Dstring
causes d(ff to create a merged version of filel and file2 on the standard output, with C
preprocessor controls included so that a compilation of the result without defining
string is equivalent to compiling filel, while defining string will yield file2.

=b causes trailing blanks (spaces and tabs) to be ignored, and other strings of blanks to
compare equal.

FILES

/usr/lib/diffh for =h
/bin/pr
SEE ALSO
cmp(1), cc(1), comm(1), ed(1), diff3(1)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

BUGS
Editing scripts produced under the —e or —f option are naive about creating lines consisting of
a single “.’.
When comparing directories with the —b option specified, djjf first compares the files ala cmp,
and then decides to run the djff algorithm if they are not equal. This may cause a small amount
of spurious output if the files then turn out to be identical because the only differences are
insignificant blank string differences.

4th Berkeley Distribution 18 January 1983 2

DIFF3 (1) UNIX Programmer’s Manual DIFF3 (1)

NAME

diff3 — 3-way differential file comparison

SYNOPSIS

diff3 [—ex3] filel file2 file3

DESCRIPTION

FILES

Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with
these codes:

=== all three files differ
=m==] filel is different
=———=) file2 is different
mm==3 file3 is different

The type of change suffered in converting a given range of a given file to some other is indi-
cated in one of these ways:

finla Text is to be appended after line number n! in file £, where f=1, 2, or 3.

finl,n2¢ Text is to be changed in the range line nl to line n2. If nl = n2, the range
may be abbreviated to nl.

The original contents of the range follows immediately after a ¢ indication. When the contents
of two files are identical, the contents of the lower-numbered file is suppressed.

Under the —e option, diff3 publishes a script for the editor ed that will incorporate into filel all
changes between file2 and file3, i.e. the changes that normally would be flagged = === and
====3 Option =x (=3) produces a script to incorporate only changes flagged == ===
(====3). The following command will apply the resulting script to ‘filel’.

(cat script;.echo 1,$p") | ed — filel

/usr/lib/diff3

SEE ALSO

BUGS

diff (1)

Text lines that consist of a single .” will defeat —e.

7th Edition 18 January 1983 1

DU(1) UNIX Programmer’s Manual DU(1)

NAME
du — summarize disk usage
SYNOPSIS
du[=s][=a][name..]
DESCRIPTION
Du gives the number of kilobytes contained in all files and, recursively, directories within each
specified directory or file name. If name is missing, ‘.’ is used.
The argument —s causes only the grand total to be given. The argument —a causes an entry
to be generated for each file. Absence of either causes an entry to be generated for each direc-
tory only.
A file which has two links to it is only counted once.
SEE ALSO
df(1), quot(8)
BUGS
Non-directories given as arguments (not under —a option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

4th Berkeley Distribution 17 March 1982 1

ECHO (1) UNIX Programmer’s Manual ECHO (1)

NAME
echo — echo arguments

SYNOPSIS
echo[=n] [arg] ..

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a newline on the standard out-
put. If the flag —n is used, no newline is added to the output.

Echo is useful for producing diagnostics in shell programs and for writing constant data on
pipes. To send diagnostics to the standard error file, do ‘echo ... 1>&2’.

7th Edition 18 January 1983 1

ED (1) UNIX Programmer’s Manual ED (1)

NAME
ed — text editor
SYNOPSIS
ed[—=][=x][name]
DESCRIPTION

Ed is the standard text editor.

If a name argument is given, ed simulates an e command (see below) on the named file; that is
to say, the file is read into ed'’s buffer so that it can be edited. If —x is present, an x command
is simulated first to handle an encrypted file. The optional — suppresses the printing of expla-
natory output and should be used when the standard input is an editor script.

Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the
file until a w (write) command is given. The copy of the text being edited resides in a tem-
porary file called the byffer.

Commands to ed have a simple and regular structure: zero or more addresses followed by a sin-
gle character command, possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of
text to the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no
commands are recognized; all input is merely collected. Input mode is left by typing a period
‘. alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression specifies a set of
strings of characters. A member of this set of strings is said to be matched by the regular
expression. In the following specification for regular expressions the word ‘character’ means
any character but newline.

1. Any character except a special character matches itself. Special characters are the regu-
lar expression delimiter plus \ [. and sometimes " «$.

2. A . matches any character. .
A\ followed by any character except a digit or () matches that character.

4. A nonempty string s bracketed [s] (or [*s]) matches any character in (or not in) s. In
5, \ has no special meaning, and] may only appear as the first letter. A substring a—b,

with a and b in ascending ASCII order, stands for the inclusive range of ASCII charac-
ters.

5. A regular expression of form 1-4 followed by * matches a sequence of 0 or more
matches of the regular expression.

A regular expression, x, of form 1-8, bracketed \(x\) matches what x matches.

1. A\ followed by a digit » matches a copy of the string that the bracketed regular expres-
sion beginning with the nth \(matched.

8. A regular expression of form 1-8, x, followed by a regular expression of form 1-7, y
matches a match for x followed by a match for y, with the x match being as long as pos-
sible while still permitting a y match.

9. A regular expression of form 1-8 preceded by ~ (or followed by $), is constrained to
matches that begin at the left (or end at the right) end of a line.

10. A regular expression of form 1-9 picks out the longest among the leftmost matches in a
line.

11. An empty regular expression stands for a copy of the last regular expression encoun-
tered.

3rd Berkeley Distribution 14 September 1979 1

ED (1) UNIX Programmer’s Manual ED (1)

Regular expressions are used in addresses to specify lines and in one command (see s below)
to specify a portion of a line which is to be replaced. If it is desired to use one of the regular
expression metacharacters as an ordinary character, that character may be preceded by ‘\’. This
also applies to the character bounding the regular expression (often ¢/°) and to ‘\’ itself.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally speaking, the current line is the last line affected by a command; however, the exact
effect on the current line is discussed under the description of the command. Addresses are
constructed as follows.

1. The character ‘.” addresses the current line.

2 The character ‘$’ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4 “x’ addresses the line marked with the name x, which must be a lower-case letter.

Lines are marked with the kK command described below.

S. A regular expression enclosed in slashes ¢/’ addresses the line found by searching for-
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the beginning of the
buffer.

6. A regular expression enclosed in queries ‘?” addresses the line found by searching back-
ward from the current line and stopping at the first line containing a string that matches
the regular expression. If necessary the search wraps around to the end of the buffer.

¢

7. An address followed by a plus sign ‘+’ or a minus sign ‘=’ followed by a decimal
number specifies that address plus (resp. minus) the indicated number of lines. The
plus sign may be omitted.

8. If an address begins with ‘+’ or ‘—’ the addition or subtraction is taken with respect to
the current line; e.g. ‘“—5’ is understood to mean ‘.—5".

9. If an address ends with ‘4’ or ‘—’, then 1 is added (resp. subtracted). As a conse-
quence of this rule and rule 8, the address ‘— refers to the line before the current line.
Moreover, trailing ‘+’ and ‘—’ characters have cumulative effect, so ‘——" refers to
the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character ‘"’ in

addresses is equivalent to ‘—"’.

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two addresses
assume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

[}

Addresses are separated from each other typically by a comma ‘,". They may also be separated
by a semicolon ;’. In this case the current line ‘.’ is set to the previous address before the
next address is interpreted. This feature can be used to determine the starting line for forward
and backward searches (‘/’, ‘?°). The second address of any two-address sequence must
correspond to a line following the line corresponding to the first address. The special form ‘%’
is an abbreviation for the address pair ‘1,$’.

In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the
default.

As mentioned, it is generally illegal for more than one command to appear on a line. However,
most commands may be suffixed by ‘p’ or by ‘I’, in which case the current line is either printed
or listed respectively in the way discussed below. Commands may also be suffixed by ‘n’,

3rd Berkeley Distribution 14 September 1979 2

ED (1) UNIX Programmer’s Manual ED (1)

meaning the output of the command is to be line numbered. These suffixes may be combined
in any order.

(.)a
<text>

The append command reads the given text and appends it after the addressed line. .’ is
left on the last line input, if there were any, otherwise at the addressed line. Address ‘0’
is legal for this command; text is placed at the beginning of the buffer.

Coy o)
<text>

The change command deletes the addressed lines, then accepts input text which replaces

these lines. “.’ is left at the last line input; if there were none, it is left at the line preced-
ing the deleted lines.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line originally after
the last line deleted becomes the current line; if the lines deleted were originally at the
end, the new last line becomes the current line.

e filename
The edit command causes the entire contents of the buffer to be deleted, and then the
named file to be read in. ‘.” is set to the last line of the buffer. The number of characters
read is typed. ‘filename’ is remembered for possible use as a default file name in a subse-
quent ror wcommand. If ‘filename’ is missing, the remembered name is used.

E filename
This command is the same as e, except that no diagnostic results when no w has been
given since the last buffer alteration.

f filename
The filename command prints the currently remembered file name. If ‘filename’ is given,
the currently remembered file name is changed to ‘filename’.

(1,$) g/regular expression/command list

In the global command, the first step is to mark every line which matches the given regu-
lar expression. Then for every such line, the given command list is executed with °.’ ini-
tially set to that line. A single command or the first of multiple commands appears on the
same line with the global command. All lines of a multi-line list except the last line must
be ended with ‘\’. 4, i, and ¢ commands and associated input are permitted; the ‘.’ ter-
minating input mode may be omitted if it would be on the last line of the command list.
The commands g and v are not permitted in the command list.

()i
<text>

This command inserts the given text before the addressed line. .’ is left at the last line
input, or, if there were none, at the line before the addressed line. This command differs
from the @ command only in the placement of the text.

G,.+1j
This command joins the addressed lines into a single line; intermediate newlines simply

]

disappear. ‘.’ is left at the resulting line.

(.)kx
The mark command marks the addressed line with name x, which must be a lower-case

3rd Berkeley Distribution 14 September 1979 v 3

ED (1)

®r

—~—

Coy s

UNIX Programmer’s Manual ED (1)

letter. The address form “x’ then addresses this line.

)1l

The list command prints the addressed lines in an unambiguous way: non-graphic charac-
ters are printed in two-digit octal, and long lines are folded. The / command may be
placed on the same line after any non-i/o command.

.)ma

The move command repositions the addressed lines after the line addressed by a. The
last of the moved lines becomes the current line.

)n

The number command prints the addressed lines with line numbers and a tab at the left.

Jp

The print command prints the addressed lines. ‘.’ is left at the last line printed. The p
command may be placed on the same line after any non-i/o command.

)P

This command is a synonym for p.
The quit command causes ed to exit. No automatic write of a file is done.

This command is the same as g, except that no diagnostic results when no w has been
given since the last buffer alteration.

filename

The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (see e and fcommands). The file name
is remembered if there was no remembered file name already. Address ‘0’ is legal for r
and causes the file to be read at the beginning of the buffer. If the read is successful, the

<

number of characters read is typed. ‘.’ is left at the last line read in from the file.

.) s/regular expression/replacement/ or,
.) s/regular expression/replacement/g

The substitute command searches each addressed line for an occurrence of the specified
regular expression. On each line in which a match is found, all matched strings are
replaced by the replacement specified, if the global replacement indicator ‘g’ appears after
the command. If the global indicator does not appear, only the first occurrence of the
matched string is replaced. It is an error for the substitution to fail on all addressed lines.
Any punctuation character may be used instead of ‘/’ to delimit the regular expression

[

and the replacement. *.’ is left at the last line substituted.

An ampersand ‘&’ appearing in the replacement is replaced by the string matching the
regular expression. The special meaning of ‘&’ in this context may be suppressed by
preceding it by ‘\’. The characters ‘\n’ where n is a digit, are replaced by the text
matched by the n-th regular subexpression enclosed between ‘\(’ and ‘\)’. When nested,
parenthesized subexpressions are present, # is determined by counting occurrences of ‘\(’
starting from the left.

Lines may be split by substituting new-line characters into them. The new-line in the
replacement string must be escaped by preceding it by ‘\’.

One or two trailing delimiters may be omitted, implying the ‘p’ suffix. The special form
‘s’ followed by no delimiters repeats the most recent substitute command on the
addressed lines. The ‘s’ may be followed by the letters r (use the most recent regular
expression for the left hand side, instead of the most recent left hand side of a substitute
command), p (complement the setting of the p suffix from the previous substitution), or
g (complement the setting of the g suffix). These letters may be combined in any order.

)ta

3rd Berkeley Distribution 14 September 1979 4

ED (1) UNIX Programmer’s Manual ED (1)

This command acts just like the m command, except that a copy of the addressed lines is
placed after address a (which may be 0). ‘.’ is left on the last line of the copy.

(.,)u
The undo command restores the buffer to it’s state before the most recent buffer modify-
ing command. The current line is also restored. Buffer modifying commands are aq, c, d,
& i, k, and v. For purposes of undo, g and v are considered to be a single buffer modifying

command. Undo is its own inverse.

When ed runs out of memory (at about 8000 lines on any 16 bit mini-computer such as
the PDP-11) This full undo is not possible, and u can only undo the effect of the most
recent substitute on the current line. This restricted undo also applies to editor scripts
when ed is invoked with the - option.

(1, $) v/regular expression/command list
This command is the same as the global command g except that the command list is exe-
cuted g with *.’ initially set to every line except those matching the regular expression.

(1, $) w filename
The write command writes the addressed lines onto the given file. If the file does not
exist, it is created. The file name is remembered if there was no remembered file name
already. If no file name is given, the remembered file name, if any, is used (see e and f
commands). °.’ is unchanged. If the command is successful, the number of characters

written is printed.

(1, $) W filename
This command is the same as w, except that the addressed lines are appended to the file.

(1, $) wq filename
This' command is the same as w except that afterwards a ¢ command is done, exiting the
editor after the file is written.

X A key string is demanded from the standard input. Later r, e and w commands will
encrypt and decrypt the text with this key by the algorithm of crypt(1). An explicitly
empty key turns off encryption. (. +1)z or,

(.4+1)zn
This command scrolls through the buffer starting at the addressed line. 22 (or n, if given)
lines are printed. The last line printed becomes the current line. The value n is sticky, in
that it becomes the default for future z commands.

% =

The line number of the addressed line is typed. “.” is unchanged by this command.

!<shell command>
The remainder of the line after the ‘!’ is sent to sh(1) to be interpreted as a command.
‘.’ is unchanged.

(.+1,.+1) <newline>
An address alone on a line causes the addressed line to be printed. A blank line alone is
equivalent to ‘.+1p’; it is useful for stepping through text. If two addresses are present
with no intervening semicolon, ed prints the range of lines. If they are separated by a
semicolon, the second line is printed.

If an interrupt signal (ASCII DEL) is sent, ed prints ‘?interrupted’ and returns to its command
level.

Some size limitations: 512 characters per line, 256 characters per global command list, 64 char-
acters per file name, and, on mini computers, 128K characters in the temporary file. The limit
on the number of lines depends on the amount of core: each line takes 2 words.

3rd Berkeley Distribution 14 September 1979 5

ED (1) UNIX Programmer’s Manual ED (1)

When reading a file, ed discards ASCII NUL characters and all characters after the last newline.
It refuses to read files containing non-ASCII characters.

FILES
/tmp/e=
edhup: work is saved here if terminal hangs up
SEE ALSO
B. W. Kernighan, A4 Tutorial Introduction to the ED Text Editor
B. W. Kernighan, Advanced editing on UNIX
ex(1), sed(1), crypt(1)
DIAGNOSTICS
‘Iname’ for inaccessible file; ‘?self-explanatory message’ for other errors.

To protect against throwing away valuable work, a g or e command is considered to be in error,
unless a w has occurred since the last buffer change. A second g or e will be obeyed regardless.

BUGS
The / command mishandles DEL.
The undo command causes marks to be lost on affected lines.
The x command, -x option, and special treatment of hangups only work on UNIX.

3rd Berkeley Distribution 14 September 1979 6

EFL (1) UNIX Programmer’s Manual EFL (1)

NAME

efl — Extended Fortran Language

SYNOPSIS

efl [option ...] [filename ...]

DESCRIPTION

Efl compiles a program written in the EFL language into clean Fortran. Eff provides the same
control flow constructs as does ratfor(1), which are essentially identical to those in C:

statement grouping with braces;
decision-making with if, if-else, and switch-case; while, for, Fortran do, repeat, and
repeat...until loops; multi-level break and next. In addition, EFL has C-like data struc-
tures, and more uniform and convenient input/output syntax, generic functions. EFL
also provides some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation statement label names (not just
numbers),

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE,, etc.

return (expression)
returns expression to caller from function

define: define name replacement

include:
include filename

The Efl command option —w suppresses warning messages. The option —C causes comments
to be copied through to the Fortran output (default); —# prevents comments from being
copied through. If a command argument contains an embedded equal sign, that argument is
treated as if it had appeared in an option statement at the beginning of the program. Ffi is best
used with f77(1).

SEE ALSO

£77(1), ratfor(1).
S. I. Feldman, The Programming Language EFL, Bell Labs Computing Science Technical Report
#78.

7th Edition 14 September 1979 1

EQN (1) UNIX Programmer’s Manual EQN (1)

NAME
eqn, neqn, checkeq — typeset mathematics

SYNOPSIS
eqn [—dxy] [—pn] [—=sn]l[—fn][file]..
checkegq [file] ...
DESCRIPTION
Egn is a troff(1) preprocessor for typesetting mathematics on a Graphic Systems photo-
typesetter, negn on terminals. Usage is almost always
eqn file ... | troff
neqn file ... | nroff
If no files are specified, these programs reads from the standard input. A line beginning with
*EQ’ marks the start of an equation; the end of an equation is marked by a line beginning with
*.EN’. Neither of these lines is altered, so they may be defined in macro packages to get
centering, numbering, etc. It is also possible to set two characters as ‘delimiters’; subsequent
text between delimiters is also treated as egn input. Delimiters may be set to characters x and y
with the command-line argument —dxy or (more commonly) with ‘delim xp’ between .EQ and
.EN. The left and right delimiters may be identical. Delimiters are turned off by ‘delim off’.
All text that is neither between delimiters nor between .EQ and .EN is passed through
untouched.

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within egn are separated by spaces, tabs, newlines, braces, double quotes, tildes or
circumflexes. Braces {} are used for grouping; generally speaking, anywhere a single character
like x could appear, a complicated construction enclosed in braces may be used instead. Tilde ~
represents a full space in the output, circumflex " half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes x;,
a sub i sup 2 produces a2, and e sup {x sup 2 + y sup 2) gives ¥+,

Fractions are made with over: a over b yields %.

. 1
sqrt makes square roots: I over sqrt {ax sup 2 +bx+c} results in —\/——-——— .
2
ax“+bx+c

The keywords from and to introduce lower and upper limits on arbitrary things: ,}1_1110 }’:x, is
made with lim from {n—> inf} sum from 0 to n x sub i. ’

Left and right brackets, braces, etc., of the right height are made with left and right: left [x sup
2 + y sup 2 over alpha right] ~="1 produces x7+y:2 = 1. The right clause is optional. Legal

characters after left and right are braces, brackets, bars, ¢ and f for ceiling and floor, and "" for
nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, Ipile, cpile, and rpile: pile {a above b above c} pro-
duces Z. There can be an arbitrary number of elements in a pile. lpile left-justifies, pile and
cpile cgnter, with different verticiél spacing, and rpile right justifies.

Matrices are made with matrix: matrix { Icol { x sub i above y sub 2} ccol { I above 2} } pro-

x; 1
duces y, 2 In addition, there is rcol for a right-justified column.

7th Edition 18 January 1983 1

EQN (1) UNIX Programmer’s Manual EQN (1)

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: x dot = f(z)

baris x=£ (1), y dotdot bar =" n underis § = n, and x vec ="y dyad is ¥ = J.

Sizes and font can be changed with size n or size =+ n, roman, italic, bold, and font n. Size and
fonts can be changed globally in a document by gsize » and gfont n, or by the command-line
arguments —sn and —fn.

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this
may be changed by the command-line argument —pn.

Successive display arguments can be lined up. Place mark before the desired lineup point in
the first equation; place lineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define: define thing % replace-
ment % defines a new token called thing which will be replaced by replacement whenever it
appears thereafter. The % may be any character that does not occur in replacement.

Keywords like sum (3) int (f) inf () and shorthands like >= () —> (=), and != (&)
are recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA.
Mathematical words like sin, cos, log are made Roman automatically. Troff(1) four-character
escapes like \(bs (@) can be used anywhere. Strings enclosed in double quotes "..." are passed
through untouched; this permits keywords to be entered as text, and can be used to communi-
cate with rrofffwhen all else fails.

StE ALSO

BUGS

troff (1), tbl(1), ms(7), eqnchar(7)
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics— User’s Guide
J. F. Ossanna, NROFF/TROFF User’s Manual

To embolden digits, parens, etc., it is necessary to quote them, as in ‘bold "12.3".

7th Edition 18 January 1983 2

ERROR (1) UNIX Programmer’s Manual ERROR (1)

NAME
error — analyze and disperse compiler error messages

SYNOPSIS
error [=n] [=s][=q][=v][—tsuffixlist] [=1 ignorefile] [name]

DESCRIPTION
Error analyzes and optionally disperses the diagnostic error messages produced by a number of
compilers and language processors to the source file and line where the errors occurred. It can
replace the painful, traditional methods of scribbling abbreviations of errors on paper, and per-
mits error messages and source code to be viewed simultaneously without machinations of mul-
tiple windows in a screen editor.

Error looks at the error messages, either from the specified file name or from the standard
input, and attempts to determine which language processor produced each error message, deter-
mines the source file and line number to which the error message refers, determines if the
error message is to be ignored or not, and inserts the (possibly slightly modified) error message
into the source file as a comment on the line preceding to which the line the error message
refers. Error messages which can’t be categorized by language processor or content are not
inserted into any file, but are sent to the standard output. Error touches source files only after
all input has been read. By specifying the —q query option, the user is asked to confirm any
potentially dangerous (such as touching a file) or verbose action. Otherwise error proceeds on
its merry business. If the —t touch option and associated suffix list is given, error will restrict
itself to touch only those files with suffices in the suffix list. Error also can be asked (by speci-
fying —v) to invoke vi(1) on the files in which error messages were inserted; this obviates the
need to remember the names of the files with errors.

Error is intended to be run with its standard input connected via a pipe to the error message
source. Some language processors put error messages on their standard error file; others put
their messages on the standard output. Hence, both error sources should be piped together
into error. For example, when using the csh syntax,

make —s lint |& error —q —v

will analyze all the error messages produced by whatever programs make runs when making
lint.

Error knows about the error messages produced by: make, cc, cop, ccom, as, Id, lint, pi, pc and
S77. Error knows a standard format for error messages produced by the language processors, so
is sensitive to changes in these formats. For all languages except Pascal, error messages are
restricted to be on one line. Some error messages refer to more than one line in more than
one files; error will duplicate the error message and insert it at all of the places referenced.

Error will do one of six things with error messages.

synchronize
Some language processors produce short errors describing which file it is processing.
Error uses these to determine the file name for languages that don’t include the file
name in each error message. These synchronization messages are consumed entirely
by error.

discard Error messages from lint that tefer to one of the two lint libraries, /usr/lib/llib-lc and
lusr/lib/llib-port are discarded, to prevent accidently touching these libraries. Again,
these error messages are consumed entirely by error.

nullify Error messages from lint can be nullified if they refer to a specific function, which is
known to generate diagnostics which are not interesting. Nullified error messages
are not inserted into the source file, but are written to the standard output. The
names of functions to ignore are taken from either the file named .errorrc in the

4th Berkeley Distribution 18 January 1983 1

ERROR (1) UNIX Programmer’s Manual ERROR (1)

users’s home directory, or from the file named by the —1I option. If the file does
not exist, no error messages are nullified. If the file does exist, there must be one
function name per line.

not file specific
Error messages that can’t be intuited are grouped together, and written to the stan-
dard output before any files are touched. They will not be inserted into any source
file.

file specific Error message that refer to a specific file, but to no specific line, are written to the
standard output when that file is touched.

true errors Error messages that can be intuited are candidates for insertion into the file to which
they refer.

Only true error messages are candidates for inserting into the file they refer to. Other error
messages are consumed entirely by error or are written to the standard output. Error inserts the
error messages into the source file on the line preceding the line the language processor found
in error. Each error message is turned into a one line comment for the language, and is inter-
nally flagged with the string “‘###"’ at the beginning of the error, and “%%%’ at the end of
the error. This makes pattern searching for errors easier with an editor, and allows the mes-
sages to be easily removed. In addition, each error message contains the source line number
for the line the message refers to. A reasonably formatted source program can be recompiled
with the error messages still in it, without having the error messages themselves cause future
errors. For poorly formatted source programs in free format languages, such as C or Pascal, it
is possible to insert a comment into another comment, which can wreak havoc with a future
compilation. To avoid this, programs with comments and source on the.same line should be
formatted so that language statements appear before comments.

Options available with error are:
—n Do not touch any files; all error messages are sent to the standard output.

—q The user is queried whether s/he wants to touch the file. A “y”’ or “n” to the question is
necessary to continue. Absence of the —q option implies that all referenced files (except
those referring to discarded error messages) are to be touched.

=v After all files have been touched, overlay the visual editor vi with it set up to edit all files
touched, and positioned in the first touched file at the first error. If vi can’t be found, try
ex or ed from standard places.

—t Take the following argument as a suffix list. Files whose suffixes do not appear in the
suffix list are not touched. The suffix list is dot separated, and ‘>’ wildcards work. Thus
the suffix list:

".c.y.foos.h"
allows error to touch files ending with “.c”, ““.y”’, “.foos*’ and “.y”".
—s Print out satistics regarding the error categorization. Not too useful.

Error catches interrupt and terminate signals, and if in the insertion phase, will orderly ter-
minate what it is doing.

AUTHOR
Robert Henry

FILES
~/.errorrc function names to ignore for lint error messages
/dev/tty user’s teletype

4th Berkeley Distribution 18 January 1983 2

ERROR (1) UNIX Programmer’s Manual ERROR (1)

BUGS
Opens the teletype directly to do user querying.

Source files with links make a new copy of the file with only one link to it.

Changing a language processor’s format of error messages may cause error to not understand
the error message.

Error, since it is purely mechanical, will not filter out subsequent errors caused by ‘floodgating’
initiated by one syntactically trivial error. Humans are still much better at discarding these
related errors.

Pascal error messages belong after the lines affected (error puts them before). The alignment
of the *|” marking the point of error is also disturbed by error.

Error was designed for work on CRT’s at reasonably high speed. It is less pleasant on slow
speed terminals, and has never been used on hardcopy terminals.

4th Berkeley Distribution 18 January 1983 3

EX (1) UNIX Programmer’s Manual EX (1)

NAME
ex, edit — text editor

SYNOPSIS
ex[=]1[=v][—ttag] [=r] [+command] [=1] name ...
edit [ex options]

DESCRIPTION
Ex is the root of a family of editors: edir, ex and vi. Ex is a superset of ed, with the most notable
extension being a display editing facility. Display based editing is the focus of vi.
If you have not used ed, or are a casual user, you will find that the editor edit is convenient for
you. It avoids some of the complexities of ex used mostly by systems programmers and per-
sons very familiar with ed.
If you have a CRT terminal, you may wish to use a display based editor; in this case see vi(1),
which is a command which focuses on the display editing portion of ex.

DOCUMENTATION
The document Edit: A tutorial provides a comprehensive introduction to edit assuming no previ-
ous knowledge of computers or the UNIX system.
The Ex Reference Manual — Version 3.5 is a comprehensive and complete manual for the com-
mand mode features of ex, but you cannot learn to use the editor by reading it. For an intro-
duction to more advanced forms of editing using the command mode of ex see the editing
documents written by Brian Kernighan for the editor ed; the material in the introductory and
advanced documents works also with ex.
An Introduction to Display Editing with Vi introduces the display editor vi and provides reference
material on vi. All of these documents can be found in volume 2c of the Programmer’s Manual.
In addition, the Vi Quick Reference card summarizes the commands of viin a useful, functional
way, and is useful with the Introduction.

FILES
/usr/lib/ex?.?strings error messages
/usr/lib/ex?.?recover recover command
/usr/lib/ex?.?preserve preserve command
/etc/termcap describes capabilities of terminals
~/.exrc editor startup file
/tmp/Exnnnnn editor temporary
/tmp/Rxnnnnn named buffer temporary
/usr/preserve preservation directory
SEE ALSO
awk(1), ed(1), grep(1), sed(1), grep(1), vi(1), termcap(5), environ(7)
AUTHOR

Originally written by William Joy
Mark Horton has maintained the editor since version 2.7, adding macros, support for many
unusual terminals, and other features such as word abbreviation mode.

BUGS
The undo command causes all marks to be lost on lines changed and then restored if the
marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a screen full
of output may result if long lines are present.

4th Berkeley Distribution 26 August 1980 1

EX (1) UNIX Programmer’s Manual EX (1)

File input/output errors don’t print a name if the command line ‘=’ option is used.
There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exiting the edi-
tor.

Null characters are discarded in input files, and cannot appear in resultant files.

4th Berkeley Distribution 26 August 1980 2

EXPAND (1) UNIX Programmer’s Manual EXPAND (1)

NAME
expand, unexpand — expand tabs to spaces, and vice versa

SYNQPSIS
expand [—tabstop] [—tabl,tab2,...,tabn] [file ...]

unexpand [—a] [file ...]

DESCRIPTION
Expand processes the named files or the standard input writing the standard output with tabs
changed into blanks. Backspace characters are preserved into the output and decrement the
column count for tab calculations. Expand is useful for pre-processing character files (before
sorting, looking at specific columns, etc.) that contain tabs.
If a single tabstop argument is given then tabs are set fabstop spaces apart instead of the default
8. If multiple tabstops are given then the tabs are set at those specific columns.

Unexpand puts tabs back into the data from the standard input or the named files and writes the
result on the standard output. By default only leading blanks and tabs are reconverted to maxi-
mal strings of tabs. If the —a option is given, then tabs are inserted whenever they would
compress the resultant file by replacing two or more characters.

4th Berkeley Distribution 18 January 1983 1

EXPLAIN (1) UNIX Programmer’s Manual EXPLAIN (1)

NAME

explain, diction— print wordy sentences; thesaurus for diction
SYNOPSIS

diction [=ml] [=mm] [=n] [—f pfile] file ...

explain
DESCRIPTION

Diction finds all sentences in a document that contain phrases from a data base of bad or wordy
diction. Each phrase is bracketed with []. Because diction runs deroff before looking at the
text, formatting header files should be included as part of the input. The default macro package
—ms may be overridden with the flag —mm. The flag —ml which causes deroff to skip lists,
should be used if the document contains many lists of non-sentences. The user may supply
her/his own pattern file to be used in addition to the default file with —f pfile. If the flag —n is
also supplied the default file will be suppressed.

Explain is an interactive thesaurus for the phrases found by diction.

SEE ALSO
deroff (1)

BUGS
Use of non-standard formatting macros may cause incorrect sentence breaks. In particular, dic-
tion doesn’t grok —me.

4th Berkeley Distribution 18 January 1983 1

EXPR (1) UNIX Programmer’s Manual EXPR (1)

NAME
expr — evaluate arguments as an expression
SYNOPSIS
expr arg ...
DESCRIPTION) .
The arguments are taken as an expression. After evaluation, the result is written on the stan-
dard output. Each token of the expression is a separate argument.
The operators and keywords are listed below. The list is in order of increasing precedence, with
equal precedence operators grouped.
expr| expr
yields the first expr if it is neither null nor ‘0’, otherwise yields the second expr.

expr & expr
yields the first expr if neither expr is null or ‘0’, otherwise yields ‘0’.

expr relop expr
where relop is one of < <= = |= >= > vyields ‘1’ if the indicated comparison is
true, ‘0’ if false. The comparison is numeric if both expr are integers, otherwise lexico-
graphic.

expr + expr

expr — expr
addition or subtraction of the arguments.

expr ¢ expr

expr / expr

expr % expr
multiplication, division, or remainder of the arguments.

expr . expr
The matching operator compares the string first argument with the regular expression
second argument; regular expression syntax is the same as that of ed(1). The \(...\)
pattern symbols can be used to select a portion of the first argument. Otherwise, the
matching operator yields the number of characters matched (‘0’ on failure).

(expr)
parentheses for grouping.

Examples:
To add 1 to the Shell variable a:
a='expr $a + 1°

To find the filename part (least significant part) of the pathname stored in variable a, which
may or may not contain ‘/’:

expr $a : ".+/\(s\)" | $a
Note the quoted Shell metacharacters.

SEE ALSO
sh(1), test(1)
DIAGNOSTICS
Expr returns the following exit codes:
0 if the expression is neither null nor ‘0°,
1 if the expression is null or ‘0’,
2 for invalid expressions.

7th Edition 18 January 1983 1

EYACC (1) UNIX Programmer’s Manual EYACC(1)

NAME
eyacc — modified yacc allowing much improved error recovery

SYNOPSIS
eyace [=v] [grammar]

DESCRIPTION
Eyacc is an old version of yacc(1), which produces tables used by the Pascal system and its
error recovery routines. Eyacc fully enumerates test actions in its parser when an error token is
in the look-ahead set. This prevents the parser from making undesirable reductions when an
error occurs before the error is detected. The table format is different in eyacc than it was in
the old yacc, as minor changes had been made for efficiency reasons.

SEE ALSO
yacc(1)
“Practical LR Error Recovery”” by Susan L. Graham, Charles B. Haley and W. N. Joy; SIG-
PLAN Conference on Compiler Construction, August 1979.

AUTHOR
S. C. Johnson

Eyacc modifications by Charles Haley and William Joy.

BUGS
Pc and its error recovery routines should be made into a library of routines for the new yacc.

4th Berkeley Distribution 18 January 1983 1

F17(1)

NAME

UNIX Programmer’s Manual F77(1)

f77 — Fortran 77 compiler

SYNOPSIS

£77 [option] ... file ...

DESCRIPTION

F77is the UNIX Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with ‘.f* are taken to be Fortran 77 source programs; they are
compiled, and each object program is left on the file in the current directory whose name is that
of the source with ‘.0’ substituted for ’.f*.

Arguments whose names end with ‘. F’ are also taken to be Fortran 77 source programs; these
are first processed by the C preprocessor before being compiled by f77.

Arguments whose names end with ‘.r’ or ‘.e’ are taken to be Ratfor or EFL source programs
respectively; these are first transformed by the appropriate preprocessor, then compiled by f77.
Arguments whose names end with ‘.c’ or ‘.s’ are taken to be C or assembly source programs
and are compiled or assembled, producing a ‘.0’ file.
The following options have the same meaning as in cc(1). See /d(1) for load-time options.
=c Suppress loading and produce ‘.0’ files for each source file.
-g Have the compiler produce additional symbol table information for dbx(1). Also pass
the —Ig flag to /d(1).
=0 output
Name the final output file output instead of ‘a.out’.
—p Prepare object files for profiling, see prof(1).
=pg Causes the compiler to produce counting code in the manner of =p, but invokes a

run-time recording mechanism that keeps more extensive statistics and produces a
gmon.out file at normal termination. An execution profile can then be generated by use

of gprof(1).

=w Suppress all warning messages. If the option is ‘—w66’, only Fortran 66 compatibility
warnings are suppressed.

=Dname=def

=Dname
Define the name to the C preprocessor, as if by ‘#define’. If no definition is given, the
name is defined as "1". (“.F’ suffix files only).

=Idir ‘#include’ files whose names do not begin with ‘/° are always sought first in the direc-
tory of the file argument, then in directories named in =1 options, then in directories
on a standard list. (‘. F° suffix files only).

=0 Invoke an object-code optimizer.

=S Compile the named programs, and leave the assembler-language output on correspond-
ing files suffixed “.s>. (No ‘.0’ is created.).

The following options are peculiar to f77.

=12 On machines which support short integers, make the default integer constants and vari-

ables short. (=14 is the standard value of this option). All logical quantities will be
short.

=m Apply the M4 preprocessor to each ‘.r’ file before transforming it with the Ratfor or
EFL preprocessor.

4th Berkeley Distribution 13 May 1983 1

F77(1) UNIX Programmer’s Manual F77(1)

—onetrip
Compile DO loops that are performed at least once if reached. (Fortran 77 DO loops
are not performed at all if the upper limit is smaller than the lower limit.)

=u Make the default type of a variable ‘undefined’ rather than using the default Fortran
rules.

—-v Print the version number of the compiler, and the name of each pass as it executes.

=C Compile code to check that subscripts are within declared array bounds.

=F Apply the C, EFL, or Ratfor preprocessors to relevant files, put the result in the file
with the suffix changed to “.f*, but do not compile.

=Ex Use the string x as an EFL option in processing ‘.e’ files.

=Rx Use the string x as a Ratfor option in processing ‘.r’ files.

—Nlgxsenlnnn
Make static tables in the compiler bigger. The compiler will complain if it overflows its
tables and suggest you apply one or more of these flags. These flags have the following
meanings:
q Maximum number of equivalenced variables. Default is 150.
X Maximum number of external names (common block names, subroutine and

function names). Default is 200.
] Maximum number of statement numbers. Default is 401.
c Maximum depth of nesting for control statements (e.g. DO loops). Default is
20.

n Maximum number of identifiers. Default is 1009.

=U Do not convert upper case letters to lower case. The default is to convert Fortran pro-

grams to lower case except within character string constants.

Other arguments are taken to be either loader option arguments, or F77-compatible object pro-
grams, typically produced by an earlier run, or perhaps libraries of F77-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name ‘a.out’.

FILES
file. [fFresc] input file
file.o object file
a.out loaded output
/usr/lib/f77passl1 compiler
/1ib/f1 pass 2
/ib/c2 optional optimizer
/lib/cpp C preprocessor

/ust/1ib/1ibF77.a intrinsic function library
/usr/1ib/1ibi77.a Fortran 1/0 library
/ust/lib/libU77.a UNIX interface library
/ust/lib/libF77_p.a profiling intrinsic function library
/usr/lib/1ibI77_p.a profiling Fortran 1/0 library
/usr/lib/1ibU77_p.a profiling UNIX interface library

/lib/libc.a C library, see section 3
mon.out file produced for analysis by prof(1).
gmon.out file produced for analysis by gprof(1).

4th Berkeley Distribution 13 May 1983 2

F17(1) UNIX Programmer’s Manual Fr1(1)

SEE ALSO
S. 1. Feldman, P. J. Weinberger, 4 Portable Fortran 77 Compiler
D. L. Wasley, Introduction to the f77 I/O Library
prof (1), gprof (1), cc(1), 1d(1), efi(1), ratfor(1)
DIAGNOSTICS
The diagnostics produced by /77 itself are intended to be self-explanatory. Occasional messages
may be produced by the loader.

BUGS
This compiler is still somewhat experimental. The optimizer occasionally makes mistakes; it
should be avoided when debugging if apparently incorrect results are obtained. Because of an
assembler error, complaints about long branches may occur with very large source files; such
errors can be avoided by splitting the sources into smaller sections. If necessary, the old ver-
sion of f77 can be resurrected from /usr/src/old.

4th Berkeley Distribution 13 May 1983 3

FALSE (1) UNIX Programmer’s Manual FALSE (1)

NAME
false, true — provide truth values
SYNOPSIS
true
false
DESCRIPTION
True and false are usually used in a Bourne shell script. They test for the appropriate status
"true" or "false” before running (or failing to run) a list of commands.
EXAMPLE
while false
do
command list
done
SEE ALSO
csh(1), sh(1), true(1)
DIAGNOSTICS

False has exit status nonzero.

7th Edition 11 January 1982 1

FED (1) UNIX Programmer’s Manual FED (1)

NAME

fed — font editor

SYNOPSIS

fed [=1] [—q] name

DESCRIPTION

FONTS

Fed is an editor for font files. It is display oriented and must be used on an HP 2648 graphics
terminal. Fed does the necessary handshaking to work at 9600 baud on the 2648.

The =i flag requests inverse video mode, where all dots are dark and the background is bright.
This provides a setting similar to the hardcopy output of the plotter, and is useful for fonts
such as the shadow font where shading is important.

The —q flag requests quier mode, where all graphic output is suppressed. This mode is useful
on terminals other than the HP 2648 (assuming you are editing blindly) and for operations such
as the # and A commands, since these operations do not make essential use of graphics, and
since suppression of the graphic output speeds of fed considerably.

A font is a collection of up to 256 glyphs, each of which is some pattern or design. Glyphs are
represented on Unix as a rectangular array of dots, each of which is either dark or blank. Each
location in the array is called a pixel. There are 200 pixels per inch due to the hardware of the
Versatec and Varian plotters.

Each glyph has, in addition to its bit pattern, a base and a width. The base is a point, typically
near the lower left of the array, that represents the logical lower left point of the glyph. The
base is not restricted to be within the array, in fact, it is usually a few locations to the left of
the edge. The vertical position of the base defines the baseline, which is held constant for all
glyphs when a line is typeset. Letters with descenders, such as “‘g’’, go below the baseline.
Other glyphs typically rest on the baseline.

The width is used by trofi{1) to determine where to place the next glyph. It need not be the
same as the width of the array, although it is usually about the same.

The size of the array, location of the base, and the width can vary among glyphs in a font.
Fonts where all glyphs have the same width are called fixed width fonts, others are variable width
Jonts.

Attributes which do not vary among glyphs include the font name, which can be up to 11 alpha-
betic characters, and the point size, which is a positive integer indicating the overall size of the
font. A point is 1/72 inch. The point size of a font is the distance, in points, from the top of
the tallest glyph to the bottom of the lowest. The software of troff currently restricts point
sizes to 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36 point. Normal text is usually
10 point.

Font files conventionally have names of the form

name.pointsize
for example, “‘bocklin.14” to indicate 14 point bocklin. Fed will look for such a file in both the
current directory and /usr/lib/vfont. Vtroff will only look in /usr/lib/vfont.

There is a correspondence between glyphs and characters in a font. For a given font, each glyph
has an ASCII character associated with it. The glyph is obtained in troff by typing the associ-
ated character, and in fed glyphs are also referred to by their character. However, it is not
required for all characters to have a glyph, fonts never have more than 128 glyphs and usually
have fewer.

There is usually a natural correspondence between glyphs and characters. For example, the
glyph which is a roman lower case ‘a’ will generally have the ascii character ‘a’ as its
corresponding character. In the special font, the Greek lower case alpha has ‘a’ as it’s

4th Berkeley Distribution 21 September 1980 1

FED (1) UNIX Programmer’s Manual FED (1)

corresponding character, upper case delta has "D’ as it’s corresponding character, etc. However,
special fonts such as the chess font have glyphs that do not appear to be related to their
corresponding characters.

It is easy to confuse glyphs and characters. Note, however, that the three glyphs roman a, bold
8, and italic a, are all different, yet all three correspond to the character ‘a’. When this is mul-
tiplied by the large number of font styles and point sizes, there are many glyphs that match a
single character, (but only one in a particular font).

FED ORGANIZATION

Fed organizes the screen into 21 windows in a 3 by 7 array. Each window is 100 by 100 pixels,
meaning that the maximum height and width of a glyph is 100 pixels. Since the HP 2648 has a
resolution of 100 dots per inch, glyphs displayed on the screen and printer will be double the
actual height and width, even when fully zoomed out. There is a current window, which will be
marked with a square border. There are two pens, called fine and bold. The fine pen is one
pixel wide, the bold pen can range from two pixels to ten pixels in diameter. The default width
of the bold pen is taken from the point size implied by the file name. The point size is not oth-
erwise used. There are also fine and bold erasers.

There are two locations in the window, called the cursor and the mark. These tools are used to
draw on glyphs.

Sometimes the cursor is on, in which case it is indicated by the hardware graphics cursor of the
terminal, a cross. The cursor is considered to be located at the center of the cross. Sometimes
the rubber band line is turned on, showing the path a line drawn would traverse. This line runs
from the mark to the cursor, and is the only way the mark is graphically visible.

COMMANDS
Commands to fed are single characters, sometimes followed by any needed arguments. The
commands used by fed were chosen to be as similar to vi(1) commands as was reasonable.
Another distinction is that certain commands are in upper case. These commands were deli-
berately made hard to type because they cause a large change in the state of the editor and
should not be done by accident. In a few cases there are both upper and lower case commands
with the same letter.

Alphanumeric Keypad: Note that this is the keypad on the far right. The graphics keypad on the
near right will not work. These keys are each synonyms for other commands. They are
arranged in a manner that causes the five arrow keys to behave sensibly, but the others need to
be memorized or stickers placed on the keys. They are provided for convenience only, and the
user can avoid memorization simply by using the mnemonic letter keys instead.

The layout is as follows:

undo (u) rezoom () fillin (f)

move (m) up (k) draw (d)

left (h) base (b) right (1) .
setdot (.) down (j) cleardot (>)

The arrow keys move the cursor one pixel in the indicated direction. The cursor is turned on if
it was off. Note that the alphanumeric keys (far right) must be used. The graphics keys (near
right) will appear to move the cursor but it will not be moved internally. The cursor cannot be
moved outside the current window.

“L: Redraw the screen. This is useful if an I/O error or background process has caused the
screen to get messed up.

b: Move the cursor to the base of the window. This is the default location of the cursor.

4th Berkeley Distribution 21 September 1980 2

FED (1) UNIX Programmer’s Manual FED (1)

c: If the cursor is on, turn it off. Otherwise, turn it on.

d: Draw a line from the mark to the cursor. The currently selected tool (fine pen, bold pen,
fine eraser, bold eraser) is used. The cursor is turned off. The mark is moved to the location
of the cursor.

f. Fill in the current hole. The cursor must be in a completely enclosed empty (white) area.
The area is set to black. If this command is invoked on the outside or there are any leaks to
the outside, the entire outside will be filled in. (Undo is useful in this case.) Filling in cannot
jump diagonals, but can rather only spread in the four orthogonal directions.

g <x>: Get a glyph. X can be any character. The glyph corresponding to x is put in a win-
dow, and this window is made the current window. The glyph is centered horizontally in the
window. The baseline is located at row 70 from the top of the window. The pen and cursor are
placed at the base, and the cursor is turned off. The glyph must exist.

h, j, k, and | are accepted to mean left, down, up, and right, respectively. They are
synonymous with the alphanumeric arrow keys. They have the same meanings as in vi(l).

m: Move the mark to the current location of the cursor. The cursor is turned on.

n <x>: New glyph. This is similar to g, except that the glyph must nor exist. It is used to
create a new glyph. A blank window is created, centered at (50, 70) as in g.

p: Print the contents of the screen. An HP 2631 printer must be connected to the terminal.
The screen is copied to the printer. If in inverse video mode, the screen is changed to normal
video mode before the print, and then changed back after the print.

r: If the rubber band line is on, turn it off. Otherwise, turn it on.

s <what> [<where>]: Set <what> to <where>. What and where are single characters.
The possibilities are:

spf: Set pen fine. (‘I for light is also accepted.)
spb: set pen bold. (‘h’ for heavy is also accepted.)
sd: Set draw. The pen is used instead of the eraser.
se: Set erase. The eraser is used instead of the pen.

ss<n>: Set size of bold pen. <n> is a digit from 1 to 9. The size of the bold pen is
set accordingly. This also affects the bold eraser.

u: Undo. The previous change to the current window is undone. Note that undo is on a win-
dow by window basis, so that commands that affect characters or more than one window cannot
be undone.

z <n>: Zoom to level n. The screen is blown up by a factor of n. This only affects the
appearance of the screen to make it easy to see the individual dots, and does not affect the size
of the glyph or the result of a print command. Zooming to 1 shows the entire screen, a level of
3 or 4 is probably good for editing glyphs. When a message is printed on the screen, fed
automatically zooms out to level 1 so you can read the message. Hitting space will zoom back.
z follower by <return> zooms out without changing the previous zoom.

space: Zoom back to the level most recently requested by the z command.

A <ifelr> <first> <last> [<oldps> < newps>]:

Atrtificially italicize/embolden/resize a range of glyphs in the current font. Enter i for italicize,
e for embolden, or r for resize, and the first and last character in the range desired. If you are
resizing you will also have to enter the old and new point size, each terminated by a return.
Each glyph is gotten and changed on the screen visibly. Glyphs are italicized by slanting them
to the right at a slope of 1/5. They are emboldened by smearing them to the right a number if
pixels equal to the current heavy pen size. They are resized with an algorithm which translates

4th Berkeley Distribution 21 September 1980 3

FED (1) UNIX Programmer’s Manual FED (1)

all on bits to the new position. These operations will be considerably faster if the —q option is
in effect, since much overhead is involved in the graphic display.

B: Move the base to the cursor. The cursor is turned on.

C <from> <to>: Copy the glyph in character <from> to character <to>. If <from> has
a window on the screen, that window is given to <to>.

D <from> <through>: Delete a range of characters in the font, from <from> through
<through> inclusive. To delete a single character type it twice.

E <file>: Edit the named file. If changes have been made to the current file, confirmation will
be requested. (Either ’y’ or "E’ is accepted.) The file name is terminated with return.

F <first> <last>: Show the font on the screen. The characters in the specified range are
shown. The width values are used to get natural spacing. The display will remain until another
command is typed, at which time the previous display will be redrawn and the new command
will be executed. As a special case, a ‘‘p’’ command will print the results of the ‘“‘F’ command
instead of the previous display.

I <h/v>: Invert the current glyph about a horizontal or vertical axis, as indicated by h or v.
The axis runs up the center of the window. The base can be subsequently positioned with the
B command.

K: Kill the current glyph. All dots are set to blank. The glyph is not removed from the font.
This is used for redrawing a glyph from scratch or replacing it with another glyph.

M <from> <to>: Move a glyph from <from> to <to>. This is just like the copy com-
mand but the original is deleted.

N <file>: Write out the current file, if necessary, and edit the new file' specified. The file
name is terminated with return.

P <first> <last> <file>: Partial read from a file. A file and the first and last characters in
the range are prompted for. Characters not in the range are left unmodified, characters in the
range are handled as in the R command.

Q: Quit the editor, without saving any work. If changes have been made confirmation will be
required (either ‘Q’ or ’y’ is taken as ‘yes’.)

R <file>: Read in the named file on top of the current file. Glyphs are merged wherever pos-
sible. If there is a conflict, you will be asked whether fed should take the glyph from the file
(f) or buffer (b). Responding with F or B will lock in that mode for the remainder of the read.
The file name is terminated with a return.

T <text>:

Typeset the line of text on the terminal. This is similar to the F command except that the
given text is arranged on the screen, so you can see how some particular combination of charac-
ters would look.

V: Toggle whether editing is being done in inverse video mode.

W < file>: Write the buffer out onto the named file, which is terminated by return. A null file
name means the current file name.

ZZ: Exit fed. A write is done, if necessary, followed by a quit. This is the normal way to leave
fed. The Z must be doubled for compatibility with vi.

.: Turn on the dot under the cursor. The cursor is turned off.
>: Turn off the dot under the cursor. The cursor is turned off.

4th Berkeley Distribution 21 September 1980 4

FED (1) UNIX Programmer’s Manual FED (1)

FILES

<char> <field> <value>: Edit a numerical field. This only makes sense if the glyph has
not been gotten (g or n) yet, since otherwise the values are taken from window specific things
such as the base. Fed does not do any sanity checking, but just substitutes the value input.
Fields are the first letter of any field from the dispatch structure (see vfont(5)), specifically,
these fields are addr, nbytes, left, right, up, down, and width. The number, which may be
signed, is terminated by a newline.

/usr/lib/vfont/e.«

SEE ALSO

vfont(5), vfontinfo(1), vtroff(1), vwidth(1)

AUTHOR

BUGS

Mark Horton

Attempting to use the second 128 characters would be folly. Fed has never been tested on
such fonts, and at a bare minimum there would be problems trying to input 8 bit characters.

The character DEL is interpreted by the tty driver to mean interrupt. Hence the corresponding
glyph cannot be accessed. The start, stop, and quit characters are turned off, but other charac-
ters used by the new tty driver must be quoted with “V.

Changed widths are not copied to the width table used by troff. This only matters if logical
widths are changed, or if glyphs are moved around. For these cases, vwidth(1) must be used.

The artificial operations don’t do a very good job. The quality possible from blowing a font up
is in general poor. Italicizing tends to make edges that were previously slanted very ragged.
However, these operations are better than nothing at all and are a reasonable first approxima-
tion for hand fixing.

The HP 2648 Terminal on which this runs has been stolen.

4th Berkeley Distribution 21 September 1980 5

FILE (1) UNIX Programmer’s Manual FILE (1)

NAME
file — determine file type

SYNOPSIS
file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an argument
appears to be ascii, file examines the first 512 bytes and tries to guess its language.

BUGS
It often makes mistakes. In particular it often suggests that command files are C programs.

Does not recognize Pascal or LISP.

7th Edition 18 January 1983 1

FIND (1) UNIX Programmer’s Manual FIND (1)
NAME
find — find files
SYNOPSIS
find pathname-list expression
DESCRIPTION

Find recursively descends the directory hierarchy for each pathname in the pa!hname-li:sr (i.;.,
one or more pathnames) seeking files that match a boolean expression written in the primaries
given below. In the descriptions, the argument n is used as a decimal integer where +n means
more than n, —n means less than » and » means exactly n.
—name filename
True if the filename argument matches the current file name. Normal Shell argu-
ment syntax may be used if escaped (watch out for ‘[’, *?’ and ‘¢’).
=perm onum
True if the file permission flags exactly match the octal number onum (see
chmod(1)). If onum is prefixed by a minus sign, more flag bits (017777, see stat(2))
become significant and the flags are compared: (fags€onum) = =onum.
=type c True if the type of the file is ¢, where cis b, ¢, d, f or 1 for block special file, charac-
ter special file, directory, plain file, or symbolic link.

=links n True if the file has n links.

—user uname
True if the file belongs to the user uname (login name or numeric user ID).

=—group gname
True if the file belongs to group gname (group name or numeric group ID).

=size n True if the file is n blocks long (512 bytes per block).
—inum n True if the file has inode number 7.
—atime n True if the file has been accessed in n days.

—mtime n
True if the file has been modified in n days.

=—exec command
True if the executed command returns a zero value as exit status. The end of the
command must be punctuated by an escaped semicolon. A command argument ‘{}’
is replaced by the current pathname.

=ok command
Like —exec except that the generated command is written on the standard output,
then the standard input is read and the command executed only upon response y.

=print Always true; causes the current pathname to be printed.

=—newer file
True if the current file has been modified more recently than the argument file.

The primaries may be combined using the following operators (in order of decreasing pre-
cedence):

1) A parenthesized group of primaries and operators (parentheses are special to the Shell and
must be escaped).

2) The negation of a primary (‘! is the unary nor operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri-
maries).

7th Edition 18 January 1983 1

—

FIND (1) UNIX Programmer’s Manual FIND (1)

4) Alternation of primaries (‘—o’ is the or operator).

EXAMPLE
To remove all files named ‘a.out’ or ‘=.0’ that have not been accessed for a week:

find / \(—name a.out —o —name ’¢.0’ \) —atime +7 —exec rm {} \;

FILES
/etc/passwd
/etc/group

SEE ALSO
sh(1), test(1), fs(5)

BUGS
The syntax is painful.

7th Edition 18 January 1983 2

FINGER (1) UNIX Programmer’s Manual FINGER (1)

NAME

finger — user information lookup program

SYNOPSIS

finger [options] name ...

DESCRIPTION

By default finger lists the login name, full name, terminal name and write status (as a ’+’ before
the terminal name if write permission is denied), idle time, login time, and office location and
phone number (if they are known) for each current UNIX user. (Idle time is minutes if it is a
single integer, hours and minutes if a >’ is present, or days and hours if a °d’ is present.)

A longer format also exists and is used by finger whenever a list of peoples names is given.
(Account names as well as first and last names of users are accepted.) This format is multi-line,
and includes all the information described above as well as the user’s home directory and login
shell, any plan which the person has placed in the file .plan in their home directory, and the
project on which they are working from the file .project also in the home directory.

Finger options include:

=m Match arguments only on user name.
=1 Force long output format.

=p Suppress printing of the .plan files
-s Force short output format.

FILES
/etc/utmp who file
/etc/passwd for users names, offices, ...
/usr/adm/lastlog last login times
“/.plan plans
~/.project projects

SEE ALSO
w(1), who(1)

AUTHOR
Earl T. Cohen

BUGS

Only the first line of the .project file is printed.

The encoding of the gcos field is UCB dependent — it knows that an office ‘197MC’ is ‘197TM
Cory Hall’, and that ‘529BE’ is ‘529B Evans Hall’.

A user information data base is in the works and will radically alter the way the information
that finger uses is stored. Finger will require extensive modification when this is implemented.

4th Berkeley Distribution 18 January 1983 1

FMT (1) UNIX Programmer’s Manual FMT (1)

NAME

fmt — simple text formatter
SYNOPSIS

fmt [name ...]
DESCRIPTION

Fmt is a simple text formatter which reads the concatenation of input files (or standard input if
none are given) and produces on standard output a version of its input with lines as close to 72
characters long as possible. The spacing at the beginning of the input lines is preserved in the
output, as are blank lines and interword spacing.
Fmt is meant to format mail messages prior to sending, but may also be useful for other simple
tasks. For instance, within visual mode of the ex editor (e.g. vi) the command
1}fmt

will reformat a paragraph, evening the lines.

SEE ALSO
nroff (1), mail(1)

AUTHOR
Kurt Shoens

BUGS
The program was designed to be simple and fast — for more complex operations, the standard
text processors are likely to be more appropriate.

3rd Berkeley Distribution 24 February 1979 1

FOLD (1) UNIX Programmer’s Manual FOLD (1)

NAME

fold — fold long lines for finite width output device
SYNOPSIS

fold [—width] [file ...]
DESCRIPTION

Fold is a filter which will fold the contents of the specified files, or the standard input if no files
are specified, breaking the lines to have maximum width width. The default for width is 80.
Width should be a multiple of 8 if tabs are present, or the tabs should be expanded using
expand(1) before coming to fold.

SEE ALSO
expand(1)

BUGS
If underlining is present it may be messed up by folding.

3rd Berkeley Distribution 24 February 1979 1

FP(1) UNIX Programmer’s Manual FP (1)
NAME
fp — Functional Programming language compiler/interpreter
SYNOPSIS
fp
DESCRIPTION

Fp is an interpreter/compiler that implements the applicative language proposed by John
Backus. It is written in FRANZ LISP.

In a functional programming language intent is expressed in a mathematical style devoid of
assignment statements and variables. Functions compute by value only; there are no side-
effects since the result of a computation depends solely on the inputs.

Fp "programs" consist of functional expressions — primitive and user-defined jfp functions com-
bined by functional forms. These forms take functional arguments and return functional results.
For example, the composition operator ‘@ ’takes two functional arguments and returns a func-
tion which represents their composition.

There exists a single operation in fp — application. This operation causes the system to evaluate
the indicated function using the single argument as input (all functions are monadic).

GETTING STARTED

FILES

Fp invokes the system. Fp compiles functions into lisp(1) source code; lisp(1) interprets this
code (the user may compile this code using the liszt (1) compiler to gain a factor of 10 in per-
formance). Control D exits back to the shell. Break terminates any computation in progress
and resets any open file units. Jhelp provides a short summary of all user commands.

/usr/ucb/lisp the FRANZ LISP interpreter
/usr/ucb/liszt the liszt compiler
/usr/doc/fp the User’s Guide

SEE ALSO

BUGS

lisp(1), liszt(1).

The Berkeley FP user’s manual, available on-line. The language is described in the August
1978 issue of CACM (Turing award lecture by John Backus).

If a non-terminating function is applied as the result of loading a file, then control is returned
to the user immediately, everything after that position in the file is ignored.

FP incorrectly marks the location of a syntax error on large, multi-line function definitions or
applications.

AUTHOR

Scott B. Baden

4th Berkeley Distribution 28 April 1983 1

FPR (1) UNIX Programmer’s Manual FPR (1)

NAME

fpr — print Fortran file
SYNOPSIS

fpr
DESCRIPTION

Fpr is a filter that transforms files formatted according to Fortran’s carriage control conventions
into files formatted according to UNIX line printer conventions.

Fpr copies its input onto its output, replacing the carriage control characters with characters that
will produce the intended effects when printed using /pr(1). The first character of each line
determines the vertical spacing as follows:

Character | Vertical Space Before Printing
Blank One line

0 Two lines
1 To first line of next page
+ No advance

A blank line is treated as if its first character is a blank. A blank that appears as a carriage con-
trol character is deleted. A zero is changed to a newline. A one is changed to a form feed. The
effects of a "+" are simulated using backspaces.

EXAMPLES
a.out | fpr | lIpr

fpr < f77.output | Ipr

AUTHOR
Robert P. Corbett

BUGS
Results are undefined for input lines longer than 170 characters.

4th Berkeley Distribution 5 May 1983 1

FROM (1) UNIX Programmer’s Manual FROM (1)

NAME
from — who is my mail from?
SYNOPSIS
from [—s sender] [user]
DESCRIPTION
From prints out the mail header lines in your mailbox file to show you who your mail is from.
If user is specified, then user's mailbox is examined instead of your own. If the -s option is
given, then only headers for mail sent by sender are printed.
FILES
/usr/spool/mail/»
SEE ALSO
biff (1), mail(1), prmail(1)

4th Berkeley Distribution 18 January 1983 1

FSPLIT (1) UNIX Programmer’s Manual FSPLIT (1)

NAME

fsplit — split a multi-routine Fortran file into individual files
SYNOPSIS

fsplit [-e efile] ... [file]
DESCRIPTION

Fsplit takes as input either a file or standard input containing Fortran source code. It attempts
to split the input into separate routine files of the form name.f, where name is the name of the
program unit (e.g. function, subroutine, block data or program). The name for unnamed block
data subprograms has the form blkdtaNNN.fwhere NNN is three digits and a file of this name
does not already exist. For unnamed main programs the name has the form mainNNN.f. 1f
there is an error in classifying a program unit, or if name.falready exists, the program unit will
be put in a file of the form zzzZNNN.fwhere 2zzNNN . fdoes not already exist.
Normally each subprogram unit is split into a separate file. When the -e option is used, only
the specified subprogram units are split into separate files. E.g.:

fsplit -e readit -e doit prog.f
will split readit and doit into separate files.

DIAGNOSTICS
If names specified via the -e option are not found, a diagnostic is written to standard error.

AUTHOR
Asa Romberger and Jerry Berkman

BUGS
Fsplit assumes the subprogram name is on the first noncomment line of the subprogram unit.
Nonstandard source formats may confuse Ssplit.
It is hard to use -e for unnamed main programs and block data subprograms since you must
predict the created file name.

4th Berkeley Distribution 2 May 1983 1

FTP (1C) UNIX Programmer’s Manual FTP (1C)

NAME

ftp — file transfer program
SYNOPSIS

ftp[—vI[—dl[—il[—=n] [—g][host]
DESCRIPTION

Fipis the user interface to the ARPANET standard File Transfer Protocol. The program allows
a user to transfer files to and from a remote network site.

The client host with which fipis to communicate may be specified on the command line. If this
is done, fip will immediately attempt to establish a connection to an FTP server on that host;
otherwise, fip will enter its command interpreter and await instructions from the user. When fip
is awaiting commands from the user the prompt ‘‘ftp>"" is provided the user. The following
commands are recognized by fip:

! Invoke a shell on the local machine.

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is left unspecified,
the local file name is used in naming the remote file. File transfer uses the current set-
tings for rype, format, mode, and structure.

ascii Set the file transfer fypeto network ASCII. This is the default type.

bell Arrange that a bell be sounded after each file transfer command is completed.
binary Set the file transfer fype to support binary image transfer.

bye Terminate the FTP session with the remote server and exit fip.

cd remote-directory
Change the working directory on the remote machine to remote-directory.

close Terminate the FTP session with the remote server, and return to the command inter-
preter.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value) -
Toggle debugging mode. If an optional debug-value is specified it is used to set the
debugging level. When debugging is on, fip prints each command sent to the remote
machine, preceded by the string **-->"".

dir [remote-directory] [local-file]
Print a listing of the directory contents in the directory, remote-directory, and, option-
ally, placing the output in local-file. 1f no directory is specified, the current working
directory on the remote machine is used. If no local file is specified, output comes to
the terminal.

form format
Set the file transfer formto format. The default format is *‘file”’.

get remote-file | local-file
Retrieve the remote-file and store it on the local machine. If the local file name is not
specified, it is given the same name it has on the remote machine. The current settings
_ for wype, form, mode, and structure are used while transferring the file.

hash Toggle hash-sign (**#) printing for each data block transferred. The size of a data
block is 1024 bytes.

glob Toggle file name globbing. With file name globbing enabled, each local file or path-
name is processed for csh(1) metacharacters. These characters include **+?[17{}".

4th Berkeley Distribution 18 July 1983 1

FTP (1C) UNIX Programmer’s Manual FTP (1C)

Remote files specified in mutliple item commands, e.g. mpur, are globbed by the
remote server. With globbing disabled all files and pathnames are treated literally.

help [command
Print an informative message about the meaning of command. 1f no argument is given,
Jip prints a list of the known commands.

Ied [directory]
Change the working directory on the local machine. If no directory is specified, the
user’s home directory is used.

Is [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on the remote machine. If
remote-directory is left unspecified, the current working directory is used. If no local file
is specified, the output is sent to the terminal.

mdelete remote-files
Delete the specified files on the remote machine. If globbing is enabled, the
specification of remote files will first be expanded using /s.

mdir remote-files local-file
Obtain a directory listing of multiple files on the remote machine and place the result in
local-file.

mget remote-files
Retrieve the specified files from the remote machine and place them in the current
local directory. If globbing is enabled, the specification of remote files will first be
expanding using /s.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Obtain an abbreviated listing of multiple files on the remote machine and place the

result in local-file.

mode [mode-name]
Set the file transfer mode to mode-name. The default mode is ‘‘stream’” mode.

mput local-files
Transfer multiple local files from the current local directory to the current working
directory on the remote machine.

open host [port]
Establish a connection to the specified host FTP server. An optional port number may
be supplied, in which case, fip will attempt to contact an FTP server at that port. If the
auto-login option is on (default), fip will also attempt to automatically log the user in to
the FTP server (see below).

prompt Toggle interactive prompting. Interactive prompting occurs during multiple file
transfers to allow the user to selectively retrieve or store files. If prompting is turned
off (default), any mgeror mputwill transfer all files.

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is left unspecified, the local file
name is used in naming the remote file. File transfer uses the current settings for ppe,
Jormat, mode, and structure.

pwd Print the name of the current working directory on the remote machine.
quit A synonym for bye.

4th Berkeley Distribution 18 July 1983 2

FTP (1C) UNIX Programmer’s Manual FTP (1C)

quote argl arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server. A single FTP
reply code is expected in return.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name
Request help from the remote FTP server. If a command-name is specified it is sup-
plied to the server as well.

rename [from] [0]
Rename the file from on the remote machine, to the file ro.

rmdir directory-name
Delete a directory on the remote machine.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, fip will attempt to use a PORT com-
mand when establishing a connection for each data transfer. If the PORT command
fails, fip will use the default data port. When the use of PORT commands is disabled,
no attempt will be made to use PORT commands for each data transfer. This is useful
for certain FTP implementations which do ignore PORT commands but, incorrectly,
indicate they’ve been accepted.

status Show the current status of fip.

struct [struct-name
Set the file transfer structure to struct-name. By default “‘stream”” structure is used.

tenex Set the file transfer type to that needed to talk to TENEX machines.
trace Toggle packet tracing.
type [type-name

Set the file transfer rype to type-name. 1f no type is specified, the current type is
printed. The default type is network ASCII.

user user-name [password] [account]
Identify yourself to the remote FTP server. If the password is not specified and the
server requires it, fip will prompt the user for it (after disabling local echo). If an
account field is not specified, and the FTP server requires it, the user will be prompted
for it. Unless fipis invoked with ‘‘auto-login’’ disabled, this process is done automati-
cally on initial connection to the FTP server.

verbose
Toggle verbose mode. In verbose mode, all responses from the FTP server are
displayed to the user. In addition, if verbose is on, when a file transfer completes,
statistics regarding the efficiency of the transfer are reported. By default, verbose is on.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.

FILE NAMING CONVENTIONS
Files specified as arguments to fip commands are processed according to the following rules.

1) If the file name ‘‘—> is specified, the stdin (for reading) or stdout (for writing) is
used.

4th Berkeley Distribution 18 July 1983 3

FTP (1C) UNIX Programmer’s Manual FTP (1C)

2) If the first character of the file name is *‘’, the remainder of the argument is inter-
preted as a shell command. Fip then forks a shell, using popen(3) with the argument
supplied, and reads (writes) from the stdout (stdin). If the shell command includes
spaces, the argument must be quoted; e.g. *“'|Is -1t"”. A particularly useful example of
this mechanism is: *‘dir lmore”’.

3) Failing the above checks, if ‘‘globbing™ is enabled, local file names are expanded
according to the rules used in the csh(1); c.f. the globcommand.

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters which may affect a file transfer. The type may
be one of ‘‘ascii”’, “‘image’” (binary), “‘ebcdic™, and “‘local byte size” (for PDP-10’s and PDP-
20’s mostly). Fipsupports the ascii and image types of file transfer.
Ftp supports only the default values for the remaining file transfer parameters: mode, JSorm, and
struct.

OPTIONS
Options may be specified at the command line, or to the command interpreter.
The —v (verbose on) option forces fip to show all responses from the remote server, as well as
report on data transfer statistics.

The —n cption restrains fip from attempting ‘‘auto-login’® upon initial connection. If auto-
login is enabled, fip will check the .netrcfile in the user’s home directory for an entry describing
an account on the remote machine. If no entry exists, fip will use the login name on the local
machine as the user identity on the remote machine, and prompt for a password and, option-
ally, an account with which to login.

The —ioption turns off interactive prompting during mutliple file transfers.
The —d option enables debugging.
The —g option disables file name globbing.

BUGS
Many FTP server implementation do not support the experimental operations such as print
working directory. Aborting a file transfer does not work right; if one attempts this the local fip
will likely have to be killed by hand.

4th Berkeley Distribution 18 July 1983 4

GCORE (1) UNIX Programmer’s Manual GCORE (1)

NAME
gecore — get core images of running processes

SYNOPSIS
geore process-id ...

DESCRIPTION
Geore creates a core image of each specified process, suitable for use with adb(1) or dbx(1).

FILES
core. < process-id> core images

BUGS
Paging activity that occurs while gcore is running may cause the program to become confused.
For best results, the desired processes should be stopped.

4th Berkeley Distribution 18 January 1983

GPROF (1) UNIX Programmer’s Manual GPROF (1)

NAME

gprof — display call graph profile data
SYNOPSIS

gprof [options] [a.out [gmon.out ... 1]
DESCRIPTION

gprof produces an execution profile of C, Pascal, or Fortran77 programs. The effect of called
routines is incorporated in the profile of each caller. The profile data is taken from the call
graph profile file (gmon.out default) which is created by programs which are compiled with the
—pg option of cc, pc, and f77. That option also links in versions of the library routines which
are compiled for profiling. The symbol table in the named object file (a.ourdefault) is read and
correlated with the call graph profile file. If more than one profile fle is specified, the gprof
output shows the sum of the profile information in the given profile files.

First, a flat profile is given, similar to that provided by prof(1). This listing gives the total exe-
cution times and call counts for each of the functions in the program, sorted by decreasing
time.

Next, these times are propagated along the edges of the call graph. Cycles are discovered, and
calls into a cycle are made to share the time of the cycle. A second listing shows the functions
sorted according to the time they represent including the time of their call graph descendents.
Below each function entry is shown its (direct) call graph children, and how their times are pro-
pagated to this function. A similar display above the function shows how this function’s time
and the time of its descendents is propagated to its (direct) call graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members of
the cycle and their contributions to the time and call counts of the cycle.

The following options are available:

—a suppresses the printing of statically declared functions. If this option is given, all
relevant information about the static function (e.g., time samples, calls to other func-
tions, calls from other functions) belongs to the function loaded just before the static
function in the a.out file.

—-b supresses the printing of a description of each field in the profile.

g the static call graph of the program is discovered by a heuristic which examines the text
space of the object file. Static-only parents or children are indicated with call counts of

—e name
suppresses the printing of the graph profile entry for routine name and all its descen-
dants (unless they have other ancestors that aren’t suppressed). More than one —e
option may be given. Only one name may be given with each —e option.

—E name
suppresses the printing of the graph profile entry for routine name (and its descendants)
as —e, above, and also excludes the time spent in name (and its descendants) from the
total and percentage time computations. (For example, —E mcount —E mcleanup is the
default.)

—f name
prints the graph profile entry of only the specified routine name and its descendants.
More than one —f option may be given. Only one name may be given with each —f
option.

—F name
prints the graph profile entry of only the routine name and its descendants (as —f,
above) and also uses only the times of the printed routines in total time and percentage

4th Berkeley Distribution 18 January 1983 1

GPROF (1) UNIX Programmer’s Manual GPROF (1)

computations. More than one —F option may be given. Only one name may be given
with each —F option. The —F option overrides the —E option.

-s a profile file gmon.sum is produced which represents the sum of the profile information
in all the specified profile files. This summary profile file may be given to subsequent
executions of gprof (probably also with a —s) to accumulate profile data across several
runs of an a.outfile.

o displays routines which have zero usage (as indicated by call counts and accumulated
time). This is useful in conjunction with the —c option for discovering which routines
were never called.

FILES

a.out the namelist and text space.

gmon.out dynamic call graph and profile.

gmon.sum summarized dynamic call graph and profile.
SEE ALSO

BUGS

monitor (3), profil(2), cc(1), prof(1)

“gprof: A Call Graph Execution Profiler”’, by Graham, S.L., Kessler, P.B., McKusick, M.K.;
Proceedings of the SIGPLAN '82 Symposium on Compiler Construction, SIGPLAN Notices, Vol.
17, No. 6, pp. 120-126, June 1982.

Beware of quantization errors. The granularity of the sampling is shown, but remains statistical
at best. We assume that the time for each execution of a function can be expressed by the total
time for the function divided by the number of times the function is called. Thus the time pro-
pagated along the call graph arcs to parents of that function is directly proportional to the
number of times that arc is traversed.

Parents which are not themselves profiled will have the time of their profiled children pro-
pagated to them, but they will appear to be spontaneously invoked in the call graph listing, and
will not have their time propagated further. Similarly, signal catchers, even though profiled,
will appear to be spontaneous (although for more obscure reasons). Any profiled children of
signal catchers should have their times propagated properly, unless the signal catcher was
invoked during the execution of the profiling routine, in which case all is lost.

The profiled program must call exit(2) or return normally for the profiling information to be
saved in the gmon.out file.

4th Berkeley Distribution 18 January 1983 2

GRAPH (1G) UNIX Programmer’s Manual GRAPH (1G)

NAME

graph — draw a graph

SYNOPSIS

graph [option] ...

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as abscissas and ordi-
nates of a graph. Successive points are connected by straight lines. The graph is encoded on
the standard output for display by the plot(1G) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a
label beginning on the point. Labels may be surrounded with quotes "...", in which case they
may be empty or contain blanks and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

—a Supply abscissas automatically (they are missing from the input); spacing is given by
the next argument (default 1). A second optional argument is the starting point for
automatic abscissas (default 0 or lower limit given by =x).

=b Break (disconnect) the graph after each label in the input.

=c Character string given by next argument is default label for each point.

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).
=1 Next argument is label for graph.

—m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected
(default). Some devices give distinguishable line styles for other small integers.

=3 Save screen, don’t erase before plotting.

-x[1]
If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x
limits. Third argument, if present, is grid spacing on x axis. Normally these quantities
are determined automatically.

=y 1]
Similarly for y.

=h Next argument is fraction of space for height.

=w Similarly for width.

=r Next argument is fraction of space to move right before plotting.

-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option —x now applies to the vertical axis.)
A legend indicating grid range is produced with a grid unless the —s option is present.

If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO

BUGS

spline(1G), plot(1G)

Graph stores all points internally and drops those for which there isn’t room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

7th Edition 18 January 1983 1

GREP (1) UNIX Programmer’s Manual GREP (1)

NAME
grep, egrep, fgrep — search a file for a pattern

SYNOPSIS
grep [option] ... expression [file] ...

egrep [option] ... [expression] [file] ...
fgrep [option] ... [strings] [file]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for lines matching a
pattern. Normally, each line found is copied to the standard output. Grep patterns are limited
regular expressions in the style of ex(1); it uses a compact nondeterministic algorithm. Egrep
patterns are full regular expressions; it uses a fast deterministic algorithm that sometimes needs
exponential space. Fgrep patterns are fixed strings; it is fast and compact. The following
options are recognized.

-V All lines but those matching are printed.

=x (Exact) only lines matched in their entirety are printed (fgrep only).

-c Only a count of matching lines is printed.

=1 The names of files with matching lines are listed (once) separated by newlines.
-=n Each line is preceded by its relative line number in the file.

=b Each line is preceded by the block number on which it was found. This is sometimes
useful in locating disk block numbers by context.

=i The case of letters is ignored in making comparisons — that is, upper and lower case
are considered identical. This applies to grep and fgrep only.

=3 Silent mode. Nothing is printed (except error messages). This is useful for checking
the error status.

—w The expression is searched for as a word (as if surrounded by ‘\<’ and ‘\>’, see
ex(1).) (grep only)

=@ expression
Same as a simple expression argument, but useful when the expression begins with a —.

=f file The regular expression (egrep) or string list (fgrep) is taken from the file.

In all cases the file name is shown if there is more than one input file. Care should be taken
when using the characters $ « [~| () and \ in the expression as they are aiso meaningful to the
Shell. It is safest to enclose the entire expression argument in single quotes * ",

Fgrep searches for lines that contain one of the (newline-separated) strings.

Egrep accepts extended regular expressions. In the following description ‘character’ excludes
newline:

A\ followed by a single character other than newline matches that character.

The character " matches the beginning of a line.

The character § matches the end of a line.

A . (period) matches any character.

A single character not otherwise endowed with special meaning matches that character.

A string enclosed in brackets [] matches any single character from the string. Ranges
of ASCII character codes may be abbreviated as in ‘a—z0—9°. A] may occur only as
the first character of the string. A literal — must be placed where it can’t be mistaken

4th Berkeley Distribution 11 August 1980 1

GREP (1)

- UNIX Programmer’s Manual GREP (1)

as a range indicator.

A regular expression followed by an ¢ (asterisk) matches a sequence of 0 or more
matches of the regular expression. A regular expression followed by a + (plus)
matches a sequence of 1 or more matches of the regular expression. A regular expres-
sion followed by a ? (question mark) matches a sequence of 0 or 1 matches of the reg-
ular expression.

Two regular expressions concatenated match a match of the first followed by a match of
the second.

Two regular expressions separated by | or newline match either a match for the first or a
match for the second.

A regular expression enclosed in parentheses matches a match for the regular expres-
sion.

The order of precedence of operators at the same parenthesis level is [] then ¢+ ? then con-
catenation then | and newline.

Ideally there should be only one grep, but we don’t know a single algorithm that spans a wide
enough range of space-time tradeoffs.

SEE ALSO
ex(1), sed(1), sh(1)
DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files.
BUGS
Lines are limited to 256 characters; longer lines are truncated.
4th Berkeley Distribution 11 August 1980 2

»

GROUPS (1) UNIX Programmer’s Manual GROUPS (1)

NAME

groups — show group memberships
SYNOPSIS

groups luser]
DESCRIPTION

The groups command shows the groups to which you or the optionally specified user belong.
Each user belongs to a group specified in the password file /etc/passwd and possibly to other
groups as specified in the file /etc/group. 1f you do not own a file but belong to the group which
it is owned by then you are granted group access to the file.
When a new file is created it is given the group of the containing directory.

SEE ALSO
setgroups(2)

FILES
/etc/passwd, /etc/group

BUGS
More groups should be allowed.

4th Berkeley Distribution 30 May 1983 1

HEAD (1) UNIX Programmer’s Manual HEAD (1)

NAME

head — give first few lines
SYNOPSIS

head [—count] [file ...]
DESCRIPTION

This filter gives the first count lines of each of the specified files, or of the standard input. If
count is omitted it defaults to 10.

SEE ALSO
tail(1)

3rd Berkeley Distribution 24 February 1979 1

HOSTID (1) UNIX Programmer’s Manual HOSTID (1)

NAME

hostid — set or print identifier of current host system
SYNOPSIS

hostid [identifier]
DESCRIPTION

The hostid command prints the identifier of the current host in hexadecimal. This numeric
value is expected to be unique across all hosts and is normally set to the host’s Internet
address. The super-user can set the hostid by giving a hexadecimal argument; this is usually
done in the startup script /etc/rc.local.

SEE ALSO
gethostid (2), sethostid(2)

4th Berkeley Distribution 1 April 1983 1

HOSTNAME (1) UNIX Programmer’s Manual HOSTNAME (1)

NAME

hostname — set or print name of current host system
SYNOPSIS

hostname [nameofhost]
DESCRIPTION

The hostname command prints the name of the current host, as given before the ‘‘login”’
prompt. The super-user can set the hostname by giving an argument; this is usually done in
the startup script /etc/rc.local.

SEE ALSO
gethostname(2), sethostname(2)

4th Berkeley Distribution 13 March 1982 1

INDENT (1) UNIX Programmer’s Manual INDENT (1)

NAME
indent — indent and format C program source
SYNOPSIS
indent input [output] [flags)
DESCRIPTION
Indent is intended primarily as a C program formatter. Specifically, indent will:
® indent code lines
° align comments
° insert spaces around operators where necessary
L] break up declaration lists as in ‘‘int a,b,c;’".

Indent will not break up long statements to make them fit within the maximum line length, but
it will flag lines that are too long. Lines will be broken so that each statement starts a new line,
and braces will appear alone on a line. (See the —br option to inhibit this.) Also, an attempt is
made to line up identifiers in declarations.

The flags which can be specified follow. They may appear before or after the file names. If the
ourput file is omitted, the formatted file will be written back into inpurand a ‘‘backup’’ copy of
input will be written in the current directory. If inpuris named ‘‘/blah/blah/file’’, the backup
file will be named *‘.Bfile”. If outputis specified, indentchecks to make sure it is different from
input.

The following flags may be used to control the formatting style imposed by indent.

—1lnnn Maximum length of an output line. The default is 75.

—cnnn - The column in which comments will start. The default is 33.

—cdnnn The column in which comments on declarations will start. The default is for these
comments to start in the same column as other comments.

—innn The number of spaces for one indentation level. The default is 4.

—dj, —ndj —dj will cause declarations to be left justified. —ndj will cause them to be indented
the same as code. The default is — ndj.

—v,—nv —vV turns on ‘“‘verbose’’ mode, —nv turns it off. When in verbose mode, indent will
report when it splits one line of input into two or more lines of output, and it will
give some size statistics at completion. The default is —nv.

—be, —nbe
If —bc is specified, then a newline will be forced after each comma in a declaration.
—nbe will turn off this option. The default is —be.

—dnnn This option controls the placement of comments which are not to the right of code.
Specifying —d2 means that such comments will be placed two indentation levels to
the left of code. The default —d0 lines up these comments with the code. See the
section on comment indentation below.

—br,—bl Specifying —bl will cause complex statements to be lined up like this:
if (..)
{

code
Specifying —br (the default) will make them look like this:

if (..) {
code
}

4th Berkeley Distribution 22 December 1977 1

INDENT (1) UNIX Programmer’s Manual « INDENT (1)

You may set up your own ‘‘profile” of defaults to indent by creating the file ‘‘.indent.pro’’ in
your login directory and including whatever switches you like. If indentis run and a profile file
exists, then it is read to set up the program'’s defaults. Switches on the command line, though,
will always override profile switches. The profile file must be a single line of not more than 127
characters. The switches should be separated on the line by spaces or tabs.

Multi-line expressions

Indent will not break up complicated expressions that extend over multiple lines, but it will usu-
ally correctly indent such expressions which have already been broken up. Such an expression
might end up looking like this:

x =
(
(Arbitrary parenthesized expression)
+
(5
(Parenthesized expression)
=
(Parenthesized expression)
)
Comments

Indent recognizes four kinds of comments. They are: straight text, ““box”> comments, UNIX-
style comments, and comments that should be passed through unchanged. The action taken
with these various types are as follows:

“Box’’ comments. Indent assumes that any comment with a dash immediately after the start of
comment (i.e. ““/*—"") is a comment surrounded by a box of stars. Each line of such a com-
ment will be left unchanged, except that the first non-blank character of each successive line
will be lined up with the beginning slash of the first line. Box comments will be indented (see
below).

“Unix-style”” comments. This is the type of section header which is used extensively in the
UNIX system source. If the start of comment (‘‘/*"’) appears on a line by itself, indent
assumes that it is a UNIX-style comment. These will be treated similarly to box comments,
except the first non-blank character on each line will be lined up with the ‘+* of the **/+"".

Unchanged comments. Any comment which starts in column 1 will be left completely
unchanged. This is intended primarily for documentation header pages. The check for
unchanged comments is made before the check for UNIX-style comments.

Straight text. All other comments are treated as straight text. Indent will fit as many words
(separated by blanks, tabs, or newlines) on a line as possible. Straight text comments will be
indented.

Comment indentation

Box, UNIX-style, and straight text comments may be indented. If a comment is on a line with
code it will be started in the ‘“‘comment column’, which is set by the —cnnn command line
parameter. Otherwise, the comment will be started at nnn indentation levels less than where
code is currently being placed, where nnn is specified by the —dnnn command line parameter.
(Indented comments will never be placed in column 1.) If the code on a line extends past the
comment column, the comment will be moved to the next line.

4th Berkeley Distribution 22 December 1977 2

INDENT (1) UNIX Programmer’s Manual INDENT (1)

DIAGNOSTICS
Diagnostic error messages, mostly to tell that a text line has been broken or is too long for the
output line.

FILES
.indent.pro profile file

BUGS

Does not know how to format “‘long’’ declarations.

4th Berkeley Distribution 22 December 1977 3

INSTALL (1) UNIX Programmer’s Manual INSTALL (1)

NAME

install — install binaries
SYNOPSIS

install [—c] [—mmode] [—oowner] [—g group] [—s] binary destination
DESCRIPTION

Binary is moved (or copied if —c is specified) to destination. If destination already exists, it is
removed before binary is moved. If the destination is a directory then binary is moved into the
destination directory with its original file-name.

The mode for Destination is set to 755; the —m mode option may be used to specify a different
mode.

Destination is changed to owner root; the —o owner option may be used to specify a different
owner.

Destination is changed to group staff; the —g group option may be used to specify a different
group.

If the —s option is specified the binary is stripped after being installed.

Installrefuses to move a file onto itself.

SEE ALSO
chgrp(1), chmod(1), cp(1), mv(1), strip(1), chown(8)

4th Berkeley Distribution 22 April 1983 1

IOSTAT (1) UNIX Programmer’s Manual IOSTAT (1)

NAME
iostat — report 1/0 statistics

SYNOPSIS
jostat [interval [count]]

DESCRIPTION
lostat iteratively reports the number of characters read and written to terminals, and, for each
disk, the number of seeks transfers per second, kilobytes transfered per second, and the mil-
liseconds per average seek. It also gives the percentage of time the system has spent in user
mode, in user mode running low priority (niced) processes, in system mode, and idling.
To compute this information, for each disk, seeks and data transfer completions and number of
words transferred are counted; for terminals collectively, the number of input and output char-
acters are counted. Also, each sixtieth of a second, the state of each disk is examined and a
tally is made if the disk is active. From these numbers and given the transfer rates of the dev-
ices it is possible to determine average seek times for each device.
The optional interval argument causes Jostat to report once each interval seconds. The first
report is for all time since a reboot and each subsequent report is for the last interval only.

The optional countargument restricts the number of reports.

FILES
/dev/kmem
/vmunix

SEE ALSO
vmstat(1)

4th Berkeley Distribution 18 January 1983 1

JOIN (1) UNIX Programmer’s Manual JOIN (1)

NAME

join — relational database operator

SYNOPSIS

join [options] filel file2

DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by the lines of filel and
file2. If filel is ‘=, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the fields on which
they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have identical join
fields. The output line normally consists of the common field, then the rest of the line from
filel, then the rest of the line from file2.

Fields are normally separated by blank, tab or newline. In this case, multiple separators count
as one, and leading separators are discarded.

These options are recognized:

=an In addition to the normal output, produce a line for each unpairable line in file n,
where nis 1 or 2.

—e s Replace empty output fields by string s.
=jn m Join on the mth field of file n. If n is missing, use the mth field in each file.

—o list Each output line comprises the fields specified in lisz, each element of which has the
form n.m, where n is a file number and m is a field number.

—tc Use character ¢ as a separator (tab character). Every appearance of c in a line is
significant.

SEE ALSO

BUGS

sort(1), comm(1), awk(1)

With default field separation, the collating sequence is that of sort —b; with —t, the sequence is
that of a plain sort.

The conventions of join, sort, comm, uniq, look and awk (1) are wildly incongruous.

7th Edition 18 January 1983 1

B

KILL (1) UNIX Programmer’s Manual KILL (1)

NAME
kill — terminate a process with extreme prejudice

SYNOPSIS
kill [—sig] processid ...
kill —1

DESCRIPTION
Kill sends the TERM (terminate, 15) signal to the specified processes. If a signal name or
number preceded by ‘—’ is given as first argument, that signal is sent instead of terminate (see
sigvec(2)). The signal names are listed by ‘kill —1’, and are as given in /usr/include/signal.h,
stripped of the common SIG prefix.

The terminate signal will kill processes that do not catch the signal; ‘kill —9 ...” is a sure kill, as
the KILL (9) signal cannot be caught. By convention, if process number 0 is specified, all
members in the process group (i.e. processes resulting from the current login) are signaled (but
beware: this works only if you use sh(1); not if you use csh(1).) The killed processes must
belong to the current user unless he is the super-user.

The process number of an asynchronous process started with ‘&’ is reported by the shell. Pro-
cess numbers can also be found by using Kill is a built-in to csha(1); it allows job specifiers
“0...”" so process id’s are not as often used as killarguments. See csh(1) for details.

SEE ALSO
csh(1), ps(1), kill(2), sigvec(2)

BUGS
An option to kill process groups ala killpg(2) should be provided; a replacement for “kill 0** for

csh(1) users should be provided.

4th Berkeley Distribution 18 January 1983 1

LAST (1) UNIX Programmer’s Manual LAST (1)

NAME
last — indicate last logins of users and teletypes

SYNOPSIS
last [=N] [name ..] [tty ...]

DESCRIPTION
Last will look back in the wrmp file which records all logins and logouts for information about a
user, a teletype or any group of users and teletypes. Arguments specify names of users or tele-
types of interest. Names of teletypes may be given fully or abbreviated. For example ‘last 0" is
the same as ‘last tty0’. If multiple arguments are given, the information which applies to any
of the arguments is printed. For example ‘last root console’ would list all of "root’s" sessions as
well as all sessions on the console terminal. Last will print the sessions of the specified users
and teletypes, most recent first, indicating the times at which the session began, the duration of
the session, and the teletype which the session took place on. If the session is still continuing
or was cut short by a reboot, /astso indicates.
The pseudo-user reboot logs in at reboots of the system, thus

last reboot

will give an indication of mean time between reboot.
Last with no arguments prints a record of all logins and logouts, in reverse order. The —N
option limits the report to N lines.
If lastis interrupted, it indicates how far the search has progressed in wemp. If interrupted with
a quit signal (generated by a control-\) /astindicates how far the search has progressed so far,
and the search continues.

FILES
/usr/adm/wtmp login data base
/usr/adm/shutdownlog which records shutdowns and reasons for same

SEE ALSO
wtmp(5), ac(8), lastcomm(1)

AUTHOR

Howard Katseff

4th Berkeley Distribution 1 April 1981 1

LASTCOMM (1) UNIX Programmer’s Manual LASTCOMM (1)

NAME

lastcomm — show last commands executed in reverse order
SYNOPSIS

lastcomm [command name] ... [user name] ... [terminal name] ...
DESCRIPTION

Lastcomm gives information on previously executed commands. With no arguments, lastcomm
prints information about all the commands recorded during the current accounting file’s life-
time. If called with arguments, only accounting entries with a matching command name, user
name, or terminal name are printed. So, for example,

lastcomm a.out root ttyd0
would produce a listing of all the executions of commands named a.out by user rooton the ter-
minal tyd0.

For each process entry, the following are printed.

The name of the user who ran the process.

Flags, as accumulated by the accounting facilities in the system.

The command name under which the process was called.

The amount of cpu time used by the process (in seconds).

The time the process exited.
The flags are encoded as follows: ‘‘S” indicates the command was executed by the super-user,
“F” indicates the command ran after a fork, but without a following exec, “‘C” indicates the
command was run in PDP-11 compatibility mode (VAX only), “D” indicates the command
terminated with the generation of a core file, and *“‘X’* indicates the command was terminated
with the signal SIGTERM.

SEE ALSO
last(1), sigvec(2), acct(5), core(5)

3rd Berkeley Distribution 4 April 1983 1

LD (1) UNIX Programmer’s Manual LD(1)

NAME

Id — link editor
SYNOPSIS

1d [option] ... file ...
DESCRIPTION

Ld combines several object programs into one, resolves external references, and searches
libraries. In the simplest case several object files are given, and /d combines them, producing an
object module which can be either executed or become the input for a further /d run. (In the
latter case, the —r option must be given to preserve the relocation bits.) The output of /d is
left on a.out. This file is made executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine (unless the —e option is specified).

If any argument is a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. If a
routine from a library references another routine in the library, and the library has not been
processed by ranlib(1), the referenced routine must appear after the referencing routine in the
library. Thus the order of programs within libraries may be important. The first member of a
library should be a file named ‘__.SYMDEF’, which is understood to be a dictionary for the
library as produced by ranlib(1); the dictionary is searched iteratively to satisfy as many refer-
ences as possible.

The symbols ‘_etext’, ‘_edata’ and ‘_end’ (‘etext’, ‘edata’ and ‘end’ in C) are reserved, and if
referred to, are set to the first location above the program, the first location above initialized
data, and the first location above all data respectively. It is erroneous to define these symbols.

Ld understands several options. Except for =1, they should appear before the file names.

=A This option specifies incremental loading, i.e. linking is to be done in a manner so that
the resulting object may be read into an aiready executing program. The next argument
is the name of a file whose symbol table will be taken as a basis on which to define
additional symbols. Only newly linked material will be entered into the text and data
portions of a.out, but the new symbol table will reflect every symbol defined before and
after the incremental load. This argument must appear before any other object file in
the argument list. The =T option may be used as well, and will be taken to mean that
the newly linked segment will commence at the corresponding address (which must be
a multiple of 1024). The default value is the old value of _end.

=D Take the next argument as a hexadecimal number and pad the data segment with zero
bytes to the indicated length.

=d Force definition of common storage even if the —r flag is present.

—-e The following argument is taken to be the name of the entry point of the loaded pro-
gram; location 0 is the default.

=lIx This option is an abbreviation for the library name ‘/lib/libx.a’, where x is a string. If
that does not exist, /d tries ‘/usr/lib/libx.a’> A library is searched when its name is
encountered, so the placement of a =1 is significant.

=M produce a primitive load map, listing the names of the files which will be loaded.
=N Do not make the text portion read only or sharable. (Use "magic number" 0407.)

=mn Arrange (by giving the output file a 0410 "magic number") that when the output file is
executed, the text portion will be read-only and shared among all users executing the
file. This involves moving the data areas up to the first possible 1024 byte boundary
following the end of the text.

4th Berkeley Distribution 18 January 1983 1

LD (1) UNIX Programmer’s Manual LD(1)
-0 The name argument after —o is used as the name of the /d output file, instead of a.out.
=r Generate relocation bits in the output file so that it can be the subject of another /d run.

This flag also prevents final definitions from being given to common symbols, and
suppresses the ‘undefined symbol’ diagnostics.

=S ‘Strip’ the output by removing all symbols except locals and globals.

=3 ‘Strip’ the output, that is, remove the symbol table and relocation bits to save space
(but impair the usefulness of the debuggers). This information can also be removed by
strip(1).

=T The next argument is a hexadecimal number which sets the text segment origin. The
default origin is 0.

-t ("trace") Print the name of each file as it is processed.

=u Take the following argument as a symbol and enter it as undefined in the symbol table.
This is useful for loading wholly from a library, since initially the symbol table is empty
and an unresolved reference is needed to force the loading of the first routine.

=X Save local symbols except for those w. 9se names begin with ‘L’. This option is used
by cc(1) to discard internally-generated labels while retaining symbols local to routines.

-x Do not preserve local (non-.globl) symbols in the output symbol table; only enter
external symbols. This option saves some space in the output file.

—ysym Indicate each file in which sym appears, its type and whether the file defines or refer-
ences it. Many such options may be given to trace many symbols. (It is usually neces-
sary to begin sym with an °_’, as external C, FORTRAN and Pascal variables begin with
underscores.)

-z Arrange for the process to be loaded on demand from the resulting executable file (413
format) rather than preloaded. This is the default. Results in a 1024 byte header on
the output file followed by a text and data segment each of which have size a multiple
of 1024 bytes (being padded out with nulis in the file if necessary). With this format
the first few BSS segment symbols may actually appear (from the output of size(1)) to
live in the data segment; this to avoid wasting the space resulting from data segment
size roundup.

FILES
/lib/libe.a libraries
/usr/lib/libe.a more libraries
/ust/local/lib/libe.a still more libraries
a.out output file

SEE ALSO

as(1), ar(1), cc(1), ranlib(1)

BUGS

There is no way to force data to be page aligned. Ld pads images which are to be demand
loaded from the file system to the next page boundary to avoid a bug in the system.

4th Berkeley Distribution 18 January 1983 2

LEARN(1) UNIX Programmer’s Manual LEARN (1)

NAME

learn — computer aided instruction about UNIX
SYNOPSIS

learn [—directory] [subject [lesson]]
DESCRIPTION

FILES

Learn gives Computer Aided Instruction courses and practice in the use of UNIX, the C Shell,
and the Berkeley text editors. To get started simply type learn. The program will ask questions
to find out what you want to do. Some questions may be bypassed by naming a subject, and
more yet by naming a lesson. You may enter the lesson as a number that learn gave you in a
previous session. If you do not know the lesson number, you may enter the lesson as a word,
and learn will look for the first lesson containing it. If the lessonis * =, learn prompts for each
lesson,; this is useful for debugging.

The subject’s presently handled are

files

editor

vi

morefiles

macros

eqn

C
There are a few special commands. The command ‘bye’ terminates a learn session and ‘where’
tells you of your progress, with ‘where m’ telling you more. The command ‘again’ re-displays
the text of the lesson and ‘again lessor’ lets you review lesson.

The — directory option allows one to exercise a script in a nonstandard place.

/usr/lib/learn subtree for all dependent directories and files
/usr/tmp/pl* playpen directories

SEE ALSO

BUGS

csh(1), ex(1)

The main strength of learn, that it asks the student to use the real UNIX, also makes possible
baffling mistakes. It is helpful, especially for nonprogrammers, to have a UNIX initiate near at
hand during the first sessions.

Occasionally lessons are incorrect, sometimes because the local version of a command operates
in a non-standard way. Such lessons may be skipped with the ‘skip’ command, but it takes
some sophistication to recognize the situation.

To find a lesson given as a word, learn does a simple fgrep(1) through the lessons. It is unclear
whether this sort of subject indexing is better than none.

Spawning a new shell is required for each of many user and internal functions.

7th Edition 26 April 1983 1

LEAVE (1) UNIX Programmer’s Manual LEAVE (1)

NAME
leave — remind you when you have to leave

SYNOPSIS
leave [hhmm]

DESCRIPTION
Leave waits until the specified time, then reminds you that you have to leave. You are rem-
inded S minutes and 1 minute before the actual time, at the time, and every minute thereafter.
When you log off, leave exits just before it would have printed the next message.
The time of day is in the form hhmm where hh is a time in hours (on a 12 or 24 hour clock).
All times are converted to a 12 hour clock, and assumed to be in the next 12 hours.
If no argument is given, leave prompts with "When do you have to leave?". A reply of newline
causes leave to exit, otherwise the reply is assumed to be a time. This form is suitable for
inclusion in a .login or .profile.
Leave ignores interrupts, quits, and terminates. To get rid of it you should either log off or use
“kill —9” giving its process id.

SEE ALSO
calendar(1)

AUTHOR
Mark Horton

BUGS

3rd Berkeley Distribution 1

LEX (1) UNIX Programmer’s Manual LEX (1)

NAME
lex — generator of lexical analysis programs

SYNOPSIS
lex [—tvfn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text. The input files (standard
input default) contain regular expressions to be searched for, and actions written in C to be
executed when expressions are found.

A C source program, ’lex.yy.c’ is generated, to be compiled thus:
cc lex.yy.c =11

This program, when run, copies unrecognized portions of the input to the output, and executes
the associated C action for each regular expression that is recognized.

The options have the following meanings.

-t Place the result on the standard output instead of in file "lex.yy.c".
-v Print a one-line summary of statistics of the generated analyzer.
-n Opposite of —v; —n is default.

. "Faster" compilation: don’t bother to pack the resulting tables; limited to small pro-
grams.
EXAMPLE
lex lexcommands

would draw /ex instructions from the file lexcommands, and place the output in lex.yy.c

%%
[A—2Z] putchar(yytext[0] +'a’ —"A");
[1+8
[1+ putchar(9);
is an example of a lex program that would be put into a /ex command file. This program con-
Vverts upper case to lower, removes blanks at the end of lines, and replaces multiple blanks by
single blanks.
SEE ALSO
yacc(1), sed(1)
M. E. Lesk and E. Schmidt, LEX — Lexical Analyzer Generator

7th Edition 7 February 1983 1

LINT (1) UNIX Programmer’s Manual LINT (1)

NAME

lint — a C program verifier

SYNOPSIS

lint [—abchnpuvx] file ...

DESCRIPTION

Lint attempts to detect features of the C program files which are likely to be bugs, or non-
portable, or wasteful. It also checks the type usage of the program more strictly than the com-
pilers. Among the things which are currently found are unreachable statements, loops not
entered at the top, automatic variables declared and not used, and logical expressions whose
value is constant. Moreover, the usage of functions is checked to find functions which return
values in some places and not in others, functions called with varying numbers of arguments,
and functions whose values are not used.

By default, it is assumed that all the files are to be loaded together; they are checked for mutual
compatibility. Function definitions for certain libraries are available to linf; these libraries are
referred to by a conventional name, such as ‘—Im’, in the style of /d(1). Arguments ending in
.In are also treated as library files. To create lint libraries, use the —C option:

lint —Cfoo files . . .

where files are the C sources of library foo. The result is a file lib-{foo.In in the correct library
format suitable for linting programs using foo.

Any number of the options in the following list may be used. The —D, —U, and —I options of
cc(1) are also recognized as separate arguments.

p Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs, improve style, and reduce
waste.

b Report break statements that cannot be reached. (This is not the default because,

unfortunately, most lex and many yacc outputs produce dozens of such comments.)

v Suppress complaints about unused arguments in functions.

x Report variables referred to by extern declarations, but never used.

a Report assignments of long values to int variables.

[Complain about casts which have questionable portability.

u Do not complain about functions and variables used and not defined, or defined and
not used (this is suitable for running /inf on a subset of files out of a larger program).

n Do not check compatibility against the standard library.

z Do not complain about structures that are never defined (e.g. using a structure pointer

without knowing its contents.).
Exit(2) and other functions which do not return are not understood; this causes various lies.
Certain conventional comments in the C source will change the behavior of lint:
/«NOTREACHED+/)

at appropriate points stops comments about unreachable code.

/«VARARGSne/
suppresses the usual checking for variable numbers of arguments in the following func-
tion declaration. The data types of the first n arguments are checked; a missing n is
taken to be 0.

/*NOSTRICT+/
shuts off strict type checking in the next expression.

4th Berkeley Distribution 7 March 1983 1

LINT (1) UNIX Programmer’s Manual LINT (1)

/+ARGSUSEDs/
turns on the =v option for the next function.
/*LINTLIBRARY?+/
at the beginning of a file shuts off complaints about unused functions in this file.
AUTHOR
S.C. Johnson. Lint library construction implemented by Edward Wang.
FILES
/ust/lib/lint/lint[12] programs
/usr/lib/lint/llib-lc.ln declarations for standard functions
/usr/lib/lint/1lib-lc human readable version of above
/ust/lib/lint/llib-port.In declarations for portable functions
/usr/lib/lint/llib-port human readable . . .
1lib-1¢.In library created with —C
SEE ALSO
cc(1)
S. C. Johnson, Lint, a C Program Checker
BUGS

There are some things you just can’t get lint to shut up about.

4th Berkeley Distribution 7 March 1983 2

LISP(1) UNIX Programmer’s Manual LISP (1)

NAME

lisp — lisp interpreter
SYNOPSIS

lisp
DESCRIPTION

Lisp is a lisp interpreter for a dialect which closely resembles MIT’s MACLISP. This lisp, known
as FRANZ Lisp, features an 1/0 facility which allows the user to change the input and output
syntax, add macro characters, and maintain compatibility with upper-case only lisp systems;
infinite precision integer arithmetic, and an error facility which allows the user to trap system
errors in many different ways. Interpreted functions may be mixed with code compiled by
liszt(1) and both may be debugged using the “‘Joseph Lister”” trace package. A lisp containing
compiled and interpreted code may be dumped into a file for later use.

There are too many functions to list here; one should refer to the manuals listed below.

AUTHORS
An early version was written by Jeff Levinsky, Mike Curry, and John Breedlove. Keith
Sklower wrote and is maintaining the current version, with the assistance of John Foderaro.
The garbage collector was implemented by Bill Rowan.

FILES
/usr/lib/lisp/trace.l Joseph Lister trace package
/usr/lib/lisp/toplevel.l top level read-eval-print loop
SEE ALSO

liszt (1), Ixref(1)
‘FRANZ LISP Manual, Version 1’ by John K. Foderaro
MACLISP Manual
BUGS
The error system is in a state of flux and not all error messages are as informative as they could
be.

4th Berkeley Distribution 1 October 1980 1

LISZT (1) UNIX Programmer’s Manual LISZT (1)

NAME

liszt — compile a Franz Lisp program

SYNOPSIS

liszt [—mpqruwxCQST] [—e form] [—o objfile] [name]

DESCRIPTION

Liszr takes a file whose names ends in ‘.1’ and compiles the FRANZ LISP code there leaving an
object program on the file whose name is that of the source with .0’ substituted for *.I’.

The following options are interpreted by /iszt.

—e Evaluate the given form before compilation begins.

—m Compile a MACLISP file, by changing the readtable to conform to MACLISP syntax and
including a macro-defined compatibility package.

-0 Put the object code in the specified file, rather than the default ‘.0’ file.

-p places profiling code at the beginning of each non-local function. If the lisp system is
also created with profiling in it, this allows function calling frequency to be determined
(see prof(1).)

—q Only print warning and error messages. Compilation statistics and notes on correct but
unusual constructs will not be printed.

-r place bootstrap code at the beginning of the object file, which when the object file is
executed will cause a lisp system to be invoked and the object file fasl’ed in.

-u Compile a UCl-lispfile, by changing the readtable to conform to UCI-Lisp syntax and
including a macro-defined compatibility package.

-w Suppress warning diagnostics.

-x Create a lisp cross reference file with the same name as the source file but with “.x’
appended. The program Ixref(1) reads this file and creates a human readable cross
reference listing.

-C put comments in the assembler output of the compiler. Useful for debugging the com-
piler.

-Q Print compilation statistics and warn of strange constructs. This is the default.

-S Compile the named program and leave the assembler-language output on the
corresponding file suffixed ‘.. This will also prevent the assembler language file from
being assembled.

=T send the assembler output to standard output.

If no source file is specified, then the compiler will run interactively. You will find yourself

talking to the /isp(1) top-level command interpreter. You can compile a file by using the func-

tion /iszt (an nlambda) with the same arguments as you use on the command line. For example
to compile ‘foo’, a MACLISP file, you would use:

(liszt —m foo)
Note that liszt supplies the *“.1” extension for you.

FILES
/usr/lib/lisp/machacks.1 MACLISP compatibility package
/usr/lib/lisp/syscall.l macro definitions of Unix system calls
/usr/lib/lisp/ucifnc.] UCI Lisp compatibility package

AUTHOR

John Foderaro

4th Berkeley Distribution 1 October 1980 1

LISZT (1) UNIX Programmer’s Manual LISZT (1)

SEE ALSO
lisp(1), Ixref(1)

4th Berkeley Distribution 1 October 1980

LN(1) UNIX Programmer’s Manual LN(1)

NAME
In — make links

SYNOPSIS
In [=s] namel [name2]
In name ... directory

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protec-
tion information, etc.) may have several links to it. There are two kinds of links: hard links
and symbolic links.
By default In makes hard links. A hard link to a file is indistinguishable from the original direc-
tory entry; any changes to a file are effective independent of the name used to reference the
file. Hard links may not span file systems and may not refer to directories.

The =s option causes In to create symbolic links. A symbolic link contains the name of the file
to which it is linked. The referenced file is used when an open(2) operation is performed on
the link. A star(2) on a symbolic link will return the linked-to file; an Istat(2) must be done to
obtain information about the link. The readlink(2) call may be used to read the contents of a
symbolic link. Symbolic links may span file systems and may refer to directories.

Given one or two arguments, /n creates a link to an existing file namel. If name? is given, the
link has that name; name2 may also be a directory in which to place the link; otherwise it is
placed in the current directory. If only the directory is specified, the link will be made to the
last component of namel.

Given more than two arguments, /n makes links to all the named files in .the named directory.
The links made will have the same name as the files being linked to.

SEE ALSO
m(1), cp(1), mv(1), link(2), readlink(2), stat(2), symlink(2)

4th Berkeley Distribution 17 March 1982 1

LOCK (1) UNIX Programmer’s Manual LOCK (1)

NAME
lock — reserve a terminal

SYNOPSIS
lock

DESCRIPTION
Lock requests a password from the user, then prints "LOCKED" on the terminal and refuses to

relinquish the terminal until the password is repeated. If the user forgets the password, he has
no other recourse but to login elsewhere and kill the lock process.

AUTHOR
Kurt Shoens

BUGS
Should timeout after 15 minutes.

3rd Berkeley Distribution 24 February 1979 1

LOGIN (1) UNIX Programmer’s Manual LOGIN (1)

NAME

login — sign on

SYNOPSIS

login [username]

DESCRIPTION

The login command is used when a user initially signs on, or it may be used at any time to
change from one user to another. The latter case is the one summarized above and described
here. See ‘‘How to Get Started”’ for how to dial up initially.

If login is invoked without an argument, it asks for a user name, and, if appropriate, a pass-
word. Echoing is turned off (if possible) during the typing of the password, so it will not
appear on the written record of the session.

After a successful login, accounting files are updated and the user is informed of the existence
of mail, and the message of the day is printed, as is the time he last logged in (unless he has a
‘“.hushlogin” file in his home directory — this is mostly used to make life easier for non-
human users, such as uucp).

Login initializes the user and group IDs and the working directory, then executes a command
interpreter (usually sh(1)) according to specifications found in a password file. Argument 0 of
the command interpreter is “—sh”, or more generally the name of the command interpreter
with 2 leading dash (‘‘—") prepended.

Login also initializes the environment environ(7) with information specifying home directory,
command interpreter, terminal type (if available) and user name,

If the file /etc/nologin exists login prints its contents on the user’s termjnal and exits. This is
used by shutdown(8) to stop users logging in when the system is about to go down.

Login is recognized by sh(1) and csh(1) and executed directly (without forking).

FILES

/etc/utmp accounting

/usr/adm/wtmp accounting

/usr/spool/mail/s mail

/etc/motd message-of-the-day

/etc/passwd password file

/etc/nologin stops logins

.hushlogin makes login quieter

/etc/securetty lists ttys that root may log in on
SEE ALSO

init(8), getty(8), mail (1), passwd (1), passwd(5), environ(7), shutdown (8)
DIAGNOSTICS

“‘Login incorrect,” if the name or the password is bad.

“No Shell”, ‘““cannot open password file””, “‘no directory’’: consult a programming counselor.
BUGS

An undocumented option, —r is used by the remote login server, rlogind(8C) to force login to
enter into an initial connection protocol.

4th Berkeley Distribution 1 April 1981 1

LOOK (1) UNIX Programmer’s Manual LOOK (1)

NAME
look — find lines in a sorted list

SYNOPSIS
look [—df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

The options d and f affect comparisons as in sort(1):

d ‘Dictionary’ order: only letters, digits, tabs and blanks participate in comparisons.
f Fold. Upper case letters compare equal to lower case.

If no file is specified, /usr/dict/words is assumed with collating sequence —df.

FILES
/usr/dict/words

SEE ALSO
sort(1), grep(1)

7th Edition 18 January 1983 1

LOOKBIB (1) UNIX Programmer’s Manual LOOKBIB (1)

NAME

indxbib, lookbib — build inverted index for a bibliography, find references in a bibliography

SYNOPSIS

indxbib database ...
lookbib database

DESCRIPTION

FILES

Indxbib makes an inverted index to the named databases (or files) for use by lookbib(1) and
refer(1). These files contain bibliographic references (or other kinds of information) separated
by blank lines.

A bibliographic reference is a set of lines, constituting fields of bibliographic information. Each
field starts on a line beginning with a ““%”’, followed by a key-letter, then a blank, and finally
the contents of the field, which may continue until the next line starting with “%”’.

Indxbib is a shell script that calls /usr/lib/refer/mkey and /usr/lib/refer/inv. The first program,
mkey, truncates words to 6 characters, and maps upper case to lower case. It also discards
words shorter than 3 characters, words among the 100 most common English words, and
numbers (dates) < 1900 or > 2000. These parameters can be changed; see page 4 of the Refer
document by Mike Lesk. The second program, inv, creates an entry file (.ia), a posting file
(ib), and a tag file (.ic), all in the working directory.

Lookbib uses an inverted index made by indxbib to find sets of bibliographic references. It reads
keywords typed after the ‘> prompt on the terminal, and retrieves records containing all
these keywords. If nothing matches, nothing is returned except another ““>"’ prompt.

It is possible to search multiple databases, as long as they have a common index made by indx-
bib. In that case, only the first argument given to indxbib is specified to lookbib.

If lookbib does not find the index files (the .ilabc] files), it looks for a reference file with the
same name as the argument, without the suffixes. It creates a file with a *.ig’ suffix, suitable for
use with fgrep. It then uses this fgrep file to find references. This method is simpler to use, but
the .ig file is slower to use than the .ilabc] files, and does not allow the use of multiple refer-
ence files.

x.ia, x.ib, x.ic, where xis the first argument, or if these are not present, then x.ig, x

SEE ALSO

BUGS

refer(1), addbib(1), sortbib(1), roffbib(1), lookbib(1)

Probably all dates should be indexed, since many disciplines refer to literature written in the
1800s or earlier.

4th Berkeley Distribution 18 July 1983 1

LORDER (1) UNIX Programmer’s Manual LORDER (1)

NAME
lorder — find ordering relation for an object library
SYNOPSIS
lorder file ...
DESCRIPTION
The input is one or more object or library archive (see ar(1)) files. The standard output is a list
of pairs of object file names, meaning that the first file of the pair refers to external identifiers

defined in the second. The output may be processed by tsort(1) to find an ordering of a library
suitable for one-pass access by /d(1).

This brash one-liner intends to build a new library from existing ‘.0’ files.
ar cr library *lorder =.0 | tsort’

The need for lorder may be vitiated by use of ranlib(1), which converts an ordered archive into
a randomly accessed library.

FILES

esymref, ssymdef

nm(1), sed(1), sort(1), join(1)
SEE ALSO

tsort(1), 1d(1), ar(1), ranlib(1)
BUGS

The names of object files, in and out of libraries, must end with ‘.0’; nonsense results other-
wise.

4th Berkeley Distribution 18 January 1983 1

LPQ (1) UNIX Programmer’s Manual LPQ(1)

NAME

Ipq — spool queue examination program

SYNOPSIS

Ipg[+Inl] [-1][—Pprinter] [job # ... 1 [user ...]

DESCRIPTION

Ipg examines the spooling area used by [pd(8) for printing files on the line printer, and reports
the status of the specified jobs or all jobs associated with a user. [pg invoked without any argu-
ments reports on any jobs currently in the queue. A —P flag may be used to specify a particu-
lar printer, otherwise the default line printer is used (or the value of the PRINTER variable in
the environment). If a + argument is supplied, /pg displays the spool queue until it empties.
Supplying a number immediately after the =+ sign indicates that /pg should sleep n seconds in
between scans of the queue. All other arguments supplied are interpreted as user names or job
numbers to filter out only those jobs of interest.

For each job submitted (i.e. invocation of [pr(1)) Ipg reports the user’s name, current rank in
the queue, the names of files comprising the job, the job identifier (a number which may be
supplied to [prm(1) for removing a specific job), and the total size in bytes. The —1 option
causes information about each of the files comprising the job to be printed. Normally, only as
much information as will fit on one line is displayed. Job ordering is dependent on the algo-
rithm used to scan the spooling directory and is supposed to be FIFO (First in First Out). File
names comprising a job may be unavailable (when Ipr(1) is used as a sink in a pipeline) in
which case the file is indicated as *‘(standard input)".

If Ipg warns that there is no daemon present (i.e. due to some malfunction), the [pc(8) com-
mand can be used to restart the printer daemon.

FILES
/etc/termcap for manipulating the screen for repeated display
/etc/printcap to determine printer characteristics
/usr/spool/ * the spooling directory, as determined from printcap
/usr/spool/*/cfx* control files specifying jobs
/usr/spool/+/lock the lock file to obtain the currently active job
SEE ALSO
ipr(1), Iprm(1), Ipc(8), ipd(8)
BUGS
Due to the dynamic nature of the information in the spooling directory Ipq may report unreli-
ably. Output formatting is sensitive to the line length of the terminal; this can results in widely
spaced columns.
DIAGNOSTICS

Unable to open various files. The lock file being malformed. Garbage files when there is no
daemon active, but files in the spooling directory.

4th Berkeley Distribution 18 July 1983 1

LPR (1) UNIX Programmer’s Manual LPR (1)

NAME
Ipr — off line print

SYNOPSIS
Ipr [=Pprinter] [=#num] [=C class) [=3 job1 [=T title] [=1 [numcols 1} [—1234 font
1 [=wnum] [—pltndgvefrmhs] [name ...]

DESCRIPTION
Lpr uses a spooling daemon to print the named files when facilities become available. If no
names appear, the standard input is assumed. The —P option may be used to force output to a
specific printer. Normally, the default printer is used (site dependent), or the value of the
environment variable PRINTER is used.

The following single letter options are used to notify the line printer spooler that the files are
not standard text files. The spooling daemon will use the appropriate filters to print the data
accordingly.

=p Use pr(1) to format the files (equivalent to print).

=1 Use a filter which allows control characters to be printed and suppresses page breaks.
=t The files are assumed to contain data from troff(1) (cat phototypesetter commands).
=n The files are assumed to contain data from ditroff (device independent troff).

=d The files are assumed to contain data from tex(1) (DVI format from Stanford).

—g The files are assumed to contain standard plot data as produced by the plot(3X) routines
(see also plot(1G) for the filters used by the printer spooler).

=v The files are assumed to contain a raster image for devices like the Benson Varian,
—c The files are assumed to contain data produced by cifplot(1).

=f Use a filter which interprets the first character of each line as a standard FORTRAN car-
riage control character.

The remaining single letter options have the following meaning.

=r Remove the file upon completion of spooling or upon completion of printing (with the
=g option).

=m Send mail upon completion.
=h Suppress the printing of the burst page.
=s Use symbolic links. Usually files are copied to the spool directory.

The =C option takes the following argument as a job classification for use on the burst page.
For example,

Ipr —C EECS foo.c

causes the system name (the name returned by hostname(1)) to be replaced on the burst page
by EECS, and the file foo.c to be printed.

The —J option takes the following argument as the job name to print on the burst page. Nor-
mally, the first file’s name is used.

The =T option uses the next argument as the title used by pr(1) instead of the file name.

To get multiple copies of output, use the =—#num option, where num is the number of copies
desired of each file named. For example,

Ipr —#3 foo.c bar.c more.c

4th Berkeley Distribution 28 July 1983 1

LPR (1) UNIX Programmer’s Manual LPR (1)

would result in 3 copies of the file foo.c, followed by 3 copies of the file bar.c, etc. On the
other hand,

cat foo.c bar.c more.c | Ipr —#3
will give three copies of the concatenation of the files.
The —1i option causes the output to be indented. If the next argument is numeric, it is used as
the number of blanks to be printed before each line; otherwise, 8 characters are printed.
The —w option takes the immediately following number to be the page width for pr.
The —s option will use symlink(2) to link data files rather than trying to copy them so large
files can be printed. This means the files should not be modified or removed until they have
been printed.

The option —1234 Specifies a font to be mounted on font position i. The daemon will con-
struct a .railmag file referencing /usr/lib/vfont/name.size.

FILES
/etc/passwd personal identification
/etc/printcap printer capabilities data base
/usr/lib/lpd= line printer daemons
/usr/spool/= directories used for spooling
/usr/spool/=/cfe daemon control files
/usr/spool/«/df= data files specified in "cf” files
/usr/spool/=/tf= temporary copies of "cf" files

SEE ALSO
Ipq(1), Iprm(1), pr(1), symlink(2), printcap(5), Ipc(8), Ipd(8)

DIAGNOSTICS
If you try to spool too large a file, it will be truncated. Lpr will object to printing binary files. If
a user other than root prints a file and spooling is disabled, Ipr will print a message saying so
and will not put jobs in the queue. If a connection to /pd on the local machine cannot be made,
Ipr will say that the daemon cannot be started. Diagnostics may be printed in the daemon’s log
file regarding missing spool files by /pd.

BUGS

Fonts for troff and tex reside on the host with the printer. It is currently not possible to use
local font libraries.

4th Berkeley Distribution 28 July 1983 2

LPRM (1) UNIX Programmer’s Manual LPRM (1)

NAME

Iprm — remove jobs from the line printer spooling queue

SYNOPSIS

Iprm [=Pprinter] [= 1 [job # ... 1 [user...]

DESCRIPTION

FILES

Lprm will remove a job, or jobs, from a printer’s spool queue. Since the spooling directory is
protected from users, using /prm is normally the only method by which a user may remove a
job.

Lprm without any arguments will delete the currently active job if it is owned by the user who
invoked Iprm.

If the — flag is specified, /prm will remove all jobs which a user owns. If the super-user
employs this flag, the spool queue will be emptied entirely. The owner is determined by the
user’s login name and host name on the machine where the /pr command was invoked.

Specifying a user’s name, or list of user names, will cause /prm to attempt to remove any jobs
queued belonging to that user (or users). This form of invoking /prm is useful only to the
super-user.

A user may dequeue an individual job by specifying its job number. This number may be
obtained from the Ipg(1) program, e.g.

% lpq —1

Ist: ken [iob #013ucbarpal
(standard input) 100 bytes

% lprm 13

Lprm will announce the names of any files it removes and is silent if there are no jobs in the
queue which match the request list.

Lprm will kill off an active daemon, if necessary, before removing any spooling files. If a dae-
mon is killed, a new one is automatically restarted upon completion of file removals.

The —P option may be usd to specify the queue associated with a specific printer (otherwise
the default printer, or the value of the PRINTER variable in the environment is used).

/etc/printcap printer characteristics file
/usr/spool/* spooling directories
/usr/spool/=/lock lock file used to obtain the pid of the current
daemon and the job number of the currently active job

SEE ALSO

Ipr(1), 1pq(1), 1pd(8)

DIAGNOSTICS

BUGS

“‘Permission denied" if the user tries to remove files other than his own.

Since there are race conditions possible in the update of the lock file, the currently active job
may be incorrectly identified.

4th Berkeley Distribution 28 July 1983 1

LS (1)

NAME

UNIX Programmer’s Manual LS(1)

Is — list contents of directory

SYNOPSIS

Is [—acdfgilgrstul ACLFR] name ...

DESCRIPTION

For each directory argument, /s lists the contents of the directory; for each file argument, Is
repeats its name and any other information requested. By default, the output is sorted alpha-
betically. When no argument is given, the current directory is listed. When several arguments
are given, the arguments are first sorted appropriately, but file arguments are processed before
directories and their contents.

There are a large number of options:

|

-8
-t
—a

-q

List in long format, giving mode, number of links, owner, size in bytes, and time of
last modification for each file. (See below.) If the file is a special file the size field will
instead contain the major and minor device numbers. If the file is a symbolic link the
pathname of the linked-to file is printed preceded by *“—>"’.

Include the group ownership of the file in a long output.
Sort by time modified (latest first) instead of by name.

List all entries; in the absence of this option, entries whose names begin with a period
(.) are not listed.

Give size in kilobytes of each file.

If argument is a directory, list only its name; often used with —1 to get the status of a
directory.

If argument is a symbolic link, list the file or directory the link references rather than
the link itself.

Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

Use time of last access instead of last modification for sorting (with the —t option)
and/or printing (with the —1 option).

Use time of file creation for sorting or printing.
For each file, print the i-number in the first column of the report.

Force each argument to be interpreted as a directory and list the name found in each
slot. This option turns off =1, —t, —s, and —r, and turns on —a; the order is the
order in which entries appear in the directory.

cause directories to be marked with a trailing ‘/°, sockets with a trailing ‘=", symbolic
links with a trailing ‘@’, and executable files with a trailing ‘*’.

recursively list subdirectories encountered.

force one entry per line output format; this is the default when output is not to a termi-
nal.

force multi-column output; this is the default when output is to a terminal.

force printing of non-graphic characters in file names as the character *?’; this is the
default when output is to a terminal.

The mode printed under the =1 option contains 11 characters which are interpreted as follows:
the first character is

d if the entry is a directory;
b if the entry is a block-type special file;

4th Berkeley Distribution 28 July 1983 1

LS (1) UNIX Programmer’s Manual LS (1)

¢ if the entry is a character-type special file;
1 if the entry is a symbolic link;

s if the entry is a socket, or
— if the entry is a plain file.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions; the next to permissions to others in the same user-group; and the last to all
others. Within each set the three characters indicate permission respectively to read, to write,
or to execute the file as a program. For a directory, ‘execute’ permission is interpreted to mean
permission to search the directory. The permissions are indicated as follows:

if the file is readable;

if the file is writable;

if the file is executable;

if the indicated permission is not granted.

R

The group-execute permission character is given as s if the file has the set-group-id bit set; like-
wise the user-execute permission character is given as s if the file has the set-user-id bit set.

The last character of the mode (normally ‘x’ or ‘—’) is t if the 1000 bit of the mode is on. See
chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect
blocks is printed.

FILES
/etc/passwd to get user id’s for ‘Is —1’.
/etc/group to get group id’s for ‘Is —g’.

BUGS
Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable as ‘‘Is —s’’ is much
different than ““Is —s|lpr’’. On the other hand, not doing this setting would make old shell
scripts which used /s almost certain losers.

4th Berkeley Distribution 28 July 1983 2

LXREF (1) UNIX Programmer’s Manual LXREF (1)

NAME

Ixref — lisp cross reference program

SYNOPSIS

Ixref [=N] xref-file ... [—a source-file ...]

DESCRIPTION

Lxref reads cross reference file(s) written by the lisp compiler lisz¢t and prints a cross reference
listing on the standard output. Liszt will create a cross reference file during compilation when it
is given the —x switch. Cross reference files usually end in ‘.x’ and consequently Ixref will
append a “.x’ to the file names given if necessary. The first option to Irefis a decimal integer,
N, which sets the ignorelevel. If a function is called more than ignorelevel times, the cross refer-
ence listing will just print the number of calls instead of listing each one of them. The default
for ignorelevel is 50.

The —a option causes Ixref to put limited cross reference information in the sources named.
Ixref will scan the source and when it comes across a definition of a function (that is a line
beginning with ‘(def” it will preceed that line with a list of the functions which call this function,
written as a comment preceeded by .. ’. All existing lines beginning with %.. ’will be removed
from the file. If the source file contains a line beginning .-’ then this will disable this annota-
tion process from this point on until a 7.+’ is seen (however, lines beginning with .. ’will
continue to be deleted). After the annoation is done, the original file 0./’ is renamed to "
#.fo0.I" and the new file with annotation is named Yoo./’

AUTHOR

John Foderaro

SEE ALSO

BUGS

lisp(1), liszt(1)

4th Berkeley Distribution 24 September 1980 1

M4(1) UNIX Programmer’s Manual M4 (1)

NAME
mé4 — macro processor

SYNOPSIS
m4 [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of
the argument files is processed in order; if there are no arguments, or if an argument is ‘-,
the standard input is read. The processed text is written on the standard output.

Macro calls have the form

name(argl,arg2, . . ., argn)
The ‘(must immediately follow the name of the macro. If a defined macro name is not fol-
lowed by a ‘(C, it is deemed to have no arguments. Leading unquoted blanks, tabs, and new-

lines are ignored while collecting arguments. Potential macro names consist of alphabetic
letters, digits, and underscore ‘_’, where the first character is not a digit.

Left and right single quotes (*") are used to quote strings. The value of a quoted string is the
string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a matching right
parenthesis. Macro evaluation proceeds normally during the collection of the arguments, and
any commas or right parentheses which happen to turn up within the value of a nested call are
as effective as those in the original input text. After argument collection, the value of the
macro is pushed back onto the input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but once this is
done the original meaning is iost. Their values are null unless otherwise stated.

define The second argument is installed as the value of the macro whose name is the first
argument. Each occurrence of $# in the replacement text, where n is a digit, is
replaced by the n-th argument. Argument 0 is the name of the macro; missing
arguments are replaced by the null string.

undefine removes the definition of the macro named in its argument.

ifdef If the first argument is defined, the value is the second argument, otherwise the
third. If there is no third argument, the value is null. The word unix is predefined
on UNIX versions of m4.

changequote
Change quote characters to the first and second arguments. Changequote without
arguments restores the original values (i.e., *").

divert M4 maintains 10 output streams, numbered 0-9. The final output is the concatena-
tion of the streams in numerical order; initially stream 0 is the current stream. The
divert macro changes the current output stream to its (digit-string) argument. Out-
put diverted to a stream other than 0 through 9 is discarded.

undivert causes immediate output of text from diversions named as arguments, or all diver-
sions if no argument. Text may be undiverted into another diversion. Undiverting
discards the diverted text.

divoum returns the value of the current output stream.
dnl reads and discards characters up to and including the next newline.

ifelse has three or more arguments. If the first argument is the same string as the second,
then the value is the third argument. If not, and if there are more than four argu-
ments, the process is repeated with arguments 4, 5, 6 and 7. Otherwise, the value is

7th Edition 18 January 1983 1

M4 (1)

eval

len

index

substr

translit

include
sinclude
syscmd

maketemp

errprint

UNIX Programmer’s Manual M4 (1)

either the fourth string, or, if it is not present, null.

returns the value of its argument incremented by 1. The value of the argument is
calculated by interpreting an initial digit-string as a decimal number.

evaluates its argument as an arithmetic expression, using 32-bit arithmetic. Opera-
tors include +, —, =, /, %, " (exponentiation); relationals; parentheses.

returns the number of characters in its argument.

returns the position in its first argument where the second argument begins (zero
origin), or —1 if the second argument does not occur.

returns a substring of its first argument. The second argument is a zero origin
number selecting the first character; the third argument indicates the length of the
substring. A missing third argument is taken to be large enough to extend to the
end of the first string.

transliterates the characters in its first argument from the set given by the second
argument to the set given by the third. No abbreviations are permitted.

returns the contents of the file named in the argument.
is identical to include, except that it says nothing if the file is inaccessible.
executes the UNIX command given in the first argument. No value is returned.

fills in a string of XXXXX in its argument with the current process id.
prints its argument on the diagnostic output file.

dumpdef prints current names and definitions, for the named items, or for all if no arguments

SEE ALSO

are given.

B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor

7th Edition

18 January 1983 2

MAIL (1) UNIX Programmer’s Manual MAIL (1)

NAME
mail — send and receive mail

SYNOPSIS
mail [=v][=1][=n][—ssubject] [user...]
mail [=v] [=1][—n] —f [name]
mail [=v] [=1} [—n] —u user

INTRODUCTION
Mail is a intelligent mail processing system, which has a command syntax reminiscent of ed
with lines replaced by messages.

The —v flag puts mail into verbose mode; the details of delivery are displayed on the users ter-
minal. The —1i flag causes tty interrupt signals to be ignored. This is particularly useful when
using mail on noisy phone lines. The —n flag inhibits the reading of /usr/lib/Mail.rc.

Sending mail. To send a message to one or more other people, mail can be invoked with argu-
ments which are the names of people to send to. You are then expected to type in your mes-
sage, followed by an EOT (control—D) at the beginning of a line. A subject may be specified
on the command line by using the —s flag. (Only the first argument after the —s flag is used as
a subject; be careful to quote subjects containing spaces.) The section below, labeled Replying to
or originating mail, describes some features of mail available to help you compose your letter.

Reading mail. In normal usage mail is given no arguments and checks your mail out of the post
office, then prints out a one line header of each message there. The current message is initially
the first message (numbered 1) and can be printed using the print command (which can be
abbreviated p). You can move among the messages much as you move between lines in ed,
with the commands ‘+’ and ‘—’ moving backwards and forwards, and simple numbers.

Disposing of mail. After examining a message you can delete (d) the message or reply (r) to it.
Deletion causes the mail program to forget about the message. This is not irreversible; the
message can be undeleted (u) by giving its number, or the mail session can be aborted by giv-
ing the exit (x) command. Deleted messages will, however, usually disappear never to be seen
again.

Specifying messages. Commands such as print and delete can be given a list of message
numbers as arguments to apply to a number of messages at once. Thus ‘‘delete 1 2’ deletes
messages 1 and 2, while ‘‘delete 1—5"" deletes messages 1 through 5. The special name ‘‘¢”
addresses all messages, and “‘$’’ addresses the last message; thus the command tep which prints
the first few lines of a message could be used in “‘top **’ to print the first few lines of all mes-
sages.

Replying to or originating mail. You can use the reply command to set up a response to a mes-
sage, sending it back to the person who it was from. Text you then type in, up to an end-of-
file, defines the contents of the message. While you are composing a message, mail treats lines
beginning with the character *~ specially. For instance, typing ‘““m” (alone on a line) will
place a copy of the current message into the response right shifting it by a tabstop. Other
escapes will set up subject fields, add and delete recipients to the message and allow you to
escape to an-editor to revise the message or to a shell to run some commands. (These options
are given in the summary below.)

Ending a mail processing session. You can end'a mail session with the quit (g) command. Mes-
sages which have been examined go to your mbox file unless they have been deleted in which
case they are discarded. Unexamined messages go back to the post office. The —f option
causes mail to read in the contents of your mbox (or the specified file) for processing; when you
quit, mail writes undeleted messages back to this file. The —u flag is a short way of doing
"mail =f /usr/spool/mail/user".

4th Berkeley Distribution 1 April 1983 1

MAIL (1) UNIX Programmer’s Manual MAIL (1)

Personal and systemwide distribution lists. It is also possible to create a personal distribution lists
so that, for instance, you can send mail to ‘“‘cohorts’’ and have it go to a group of people. Such
lists can be defined by placing a line like

alias cohorts bill ozalp jkf mark kridle@ucbcory

in the file .mailrc in your home directory. The current list of such aliases can be displayed with
the allas (a) command in mail. System wide distribution lists can be created by editing
/usr/lib/aliases, see aliases(5) and sendmail(8); these are kept in a different syntax. In mail
you send, personal aliases will be expanded in mail sent to others so that they will be able to
reply to the recipients. System wide aliases are not expanded when the mail is sent, but any
reply returned to the machine will have the system wide alias expanded as all mail goes through
sendmail.

Network mail (ARPA, UUCP, Berknet) See mailaddr(7) for a description of network addresses.

Mail has a number of options which can be set in the .mailrc file to alter its behavior; thus *‘set
askcc’ enables the ‘‘askce’ feature. (These options are summarized below.)

SUMMARY
(Adapted from the ‘Mail Reference Manual’)

Each command is typed on a line by itself, and may take arguments following the command
word. The command need not be typed in its entirety — the first command which matches the
typed prefix is used. For commands which take message lists as arguments, if no message list
is given, then the next message forward which satisfies the command’s requirements is used. If
there are no messages forward of the current message, the search proceeds backwards, and if
there are no good messages at all, mail types ‘‘No applicable messages’’ and aborts the com-

mand.

s Goes to the previous message and prints it out. If given a numeric argument n,
goes to the n-th previous message and prints it.

? Prints a brief surhmary of commands.

! Executes the UNIX shell command which follows.

Print (P) Like print but also prints out ignored header fields. See also print and ignore.

Reply (R) Reply to originator. Does not reply to other recipients of the original message.

Type (T) Identical to the Print command.

alias (a) With no arguments, prints out all currently-defined aliases. With one argu-

ment, prints out that alias. With more than one argument, creates an new or
changes an on old alias.

alternates (alt) The alternates command is useful if you have accounts on several machines.
It can be used to inform mail that the listed addresses are really you. When you
reply to messages, mail will not send a copy of the message to any of the
addresses listed on the alfernates list. If the alternates command is given with no
argument, the current set of alternate names is displayed.

chdir (¢) Changes the user’s working directory to that specified, if given. If no direc-
tory is given, then changes to the user’s login directory.

copy (co) The copy command does the same thing that save does, except that it does
not mark the messages it is used on for deletion when you quit.

delete (d) Takes a list of messages as argument and marks them all as deleted. Deleted
messages will not be saved in mbox, nor will they be available for most other
commands.

dp (also dt) Deletes the current message and prints the next message. If there is no

4th Berkeley Distribution 1 April 1983 2

MAIL (1)

edit
exit

file
folders
folder

from
headers

help
hold

ignore

mail
mbox
next

preserve
print
quit

reply

UNIX Programmer’s Manual MAIL (1)

next message, mail says ‘‘at EOF.”

(e) Takes a list of messages and points the text editor at each one in turn. On
return from the editor, the message is read back in.

(ex or x) Effects an immediate return to the Shell without modifying the user’s
system mailbox, his mbox file, or his edit file in —f.

(f) The same as folder.
List the names of the folders in your folder directory.

(fo) The folder command switches to a new mail file or folder. With no argu-
ments, it tells you which file you are currently reading. If you give it an argu-
ment, it will write out changes (such as deletions) you have made in the current
file and read in the new file. Some special conventions are recognized for the
name. # means the previous file, % means your system mailbox, %user means
user’s system mailbox, & means your “/mbox file, and +folder means a file in
your folder directory.

(f) Takes a list of messages and prints their message headers.

(h) Lists the current range of headers, which is an 18 message group. If a “‘+”
argument is given, then the next 18 message group is printed, and if a *‘—"’ argu-
ment is given, the previous 18 message group is printed.

A synonym for ?

(ho, also preserve) Takes a message list and marks each message therein to be
saved in the user’s system mailbox instead of in mbox. Does not override the
delete command.

Add the list of header fields named to the ignored list. Header fields in the ignore
list are not printed on your terminal when you print a message. This command is
very handy for suppression of certain machine-generated header fields. The Type
and Print commands can be used to print a message in its entirety, including
ignored fields. If ignore is executed with no arguments, it lists the current set of
ignored fields.

(m) Takes as argument login names and distribution group names and sends mail
to those people.

Indicate that a list of messages be sent to mbox in your home directory when you
quit. This is the default action for messages if you do not have the hold option set.

(n like + or CR) Goes to the next message in sequence and types it. With an
argument list, types the next matching message.

(pre) A synonym for hold.
(p) Takes a message list and types out each message on the user’s terminal.

() Terminates the session, saving all undeleted, unsaved messages in the user’s
mbox file in his login directory, preserving all messages marked with hold or
preserve or never referenced in his system mailbox, and removing all other mes-
sages from his system mailbox. If new mail has arrived during the session, the
message ‘“You have new mail”’ is given. If given while editing a mailbox file with
the —f flag, then the edit file is rewritten. A return to the Shell is effected, unless
the rewrite of edit file fails, in which case the user can escape with the exit com-
mand.

(r) Takes a message list and sends mail to the sender and all recipients of the
specified message. The default message must not be deleted.

4th Berkeley Distribution 1 April 1983 3

MAIL (1)

respond
save

set

shell
size
source
top

type
unalias

undelete
unset

visual
write
xit

z

UNIX Programmer’s Manual MAIL (1)

A synonym for reply.

(s) Takes a message list and a filename and appends each message in turn to the
end of the file. The filename in quotes, followed by the line count and character
count is echoed on the user’s terminal.

(se) With no arguments, prints all variable values. Otherwise, sets option. Argu-
ments are of the form ‘‘option=value” or ‘‘option.”

(sh) Invokes an interactive version of the shell.
Takes a message list and prints out the size in characters of each message.
(so) The source command reads mail commands from a file.

Takes a message list and prints the top few lines of each. The number of lines
printed is controlled by the variable toplines and defaults to five.

(t) A synonym for print.

Takes a list of names defined by alias commands and discards the remembered
groups of users. The group names no longer have any significance.

(u) Takes a message list and marks each one as nor being deleted.

Takes a list of option names and discards their remembered values; the inverse of
set.

(v) Takes a message list and invokes the display editor on each message.
(w) A synonym for save.
(x) A synonym for exit.

Mail presents message headers in windowfuls as described under the headers com-
mand. You can move mail’s attention forward to the next window with the z com-
mand. Also, you can move to the previous window by using z—.

Here is a summary of the tilde escapes, which are used when composing messages to perform
special functions. Tilde escapes are only recognized at the beginning of lines. The name
‘‘tilde escape” is somewhat of a misnomer since the actual escape character can be set by the
option escape.

“lcommand
“c name ...
“d

“e

“f messages

“h

“m messages

Execute the indicated shell command, then return to the message.
Add the given names to the list of carbon copy recipients.
Read the file “‘dead.letter’” from your home directory into the message.

Invoke the text editor on the message collected so far. After the editing session is
finished, you may continue appending text to the message.

Read the named messages into the message being sent. If no messages are
specified, read in the current message.

Edit the message header fields by typing each one in turn and allowing the user to
append text to the end or modify the field by using the current terminal erase and
kill characters.

Read the named messages into the message being sent, shifted right one tab. If
no messages are specified, read the current message.

Print out the message collected so far, prefaced by the message header fields.

Abort the message being sent, copying the message to ‘‘dead.letter’” in your home
directory if save is set.

4th Berkeley Distribution 1 April 1983 4

MAIL (1)

“r filename
s string
“t name ...

v

“w filename
~|command

““string

UNIX Programmer’s Manual MAIL (1)

Read the named file into the message.
Cause the named string to become the current subject field.
Add the given names to the direct recipient list.

Invoke an alternate editor (defined by the VISUAL option) on the message col-
lected so far. Usually, the alternate editor will be a screen editor. After you quit
the editor, you may resume appending text to the end of your message.

Write the message onto the named file.

Pipe the message through the command as a filter. If the command gives no out-
put or terminates abnormally, retain the original text of the message. The com-
mand fmt(1) is often used as command to rejustify the message.

Insert the string of text in the message prefaced by a single If you have
changed the escape character, then you should double that character in order to
send it.

Options are controlled via the set and unset commands. Options may be either binary, in
which case it is only significant to see whether they are set or not, or string, in which case the
actual value is of interest. The binary options include the following:

append
ask

askcee

autoprint

debug

dot

hold
ignore
ignoreeof

metoo

nosave

quiet
verbose

Causes messages saved in mbox to be appended to the end rather than
prepended. (This is set in /usr/lib/Mail.rc on version 7 systems.)

Causes mail to prompt you for the subject of each message you send. If you
respond with simply a newline, no subject field will be sent.

Causes you to be prompted for additional carbon copy recipients at the end of
each message. Responding with a newline indicates your satisfaction with the
current list.

Causes the delete command to behave like dp — thus, after deleting a mes-
sage, the next one will be typed automatically.

Setting the binary option debug is the same as specifying —d on the command
line and causes mail to output all sorts of information useful for debugging
mail.

The binary option dot causes mail to interpret a period alone on a line as the
terminator of a message you are sending.

This option is used to hold messages in the system mailbox by default.
Causes interrupt signals from your terminal to be ignored and echoed as @’s.

An option related to dot is ignoreeof which makes mail refuse to accept a
control-d as the end of a message. Ignoreeof also applies to mail command
mode.

Usually, when a group is expanded that contains the sender, the sender is
removed from the expansion. Setting this option causes the sender to be
included in the group.

Normally, when you abort a message with two RUBOUT, mail copies the partial
letter to the file ‘‘dead.letter” in your home directory. Setting the binary
option nosave prevents this.

Suppresses the printing of the version when first invoked.

Setting the option verbose is the same as using the —v flag on the command
line. When mail runs in verbose mode, the actual delivery of messages is
displayed on he users terminal.

4th Berkeley Distribution 1 April 1983 5

MAIL (1)

UNIX Programmer’s Manual MAIL (1)

The following options have string values:

EDITOR Pathname of the text editor to use in the edit command and “e escape. If not
defined, then a default editor is used.
SHELL Pathname of the shell to use in the ! command and the ~! escape. A default
shell is used if this option is not defined.
VISUAL Pathname of the text editor to use in the visual command and ~v escape.
crt The valued option crt is used as a threshold to determine how long a message
must be before more is used to read it.
escape If defined, the first character of this option gives the character to use in the
place of ~ to denote escapes.
folder The name of the directory to use for storing folders of messages. If this name
begins with a */°, mail considers it to be an absolute pathname; otherwise, the
folder directory is found relative to your home directory.
record If defined, gives the pathname of the file used to record all outgoing mail. If
not defined, then outgoing mail is not so saved.
toplines If defined, gives the number of lines of a message to be printed out with the
top command; normally, the first five lines are printed.
FILES
/usr/spool/mail/« post office
“/mbox your old mail
~/.mailrc file giving initial mail commands
/tmp/R# temporary for editor escape
/usr/lib/Mail.helps= help files
/usr/lib/Mail.rc system initialization file
Message= temporary for editing messages
SEE ALSO
binmail (1), fmt(1), newaliases(1), aliases(5),
mailaddr(7), sendmail(8)
‘The Mail Reference Manual’
BUGS
There are many flags that are not documented here. Most are not useful to the general user.
Usually, mail is just a link to Mail, which can be confusing.
AUTHOR

Kurt Shoens

4th Berkeley Distribution 1 April 1983 6

MAKE (1) UNIX Programmer’s Manual MAKE (1)

NAME

make — maintain program groups

SYNOPSIS

make [—f makefile] [option] ... file ...

DESCRIPTION

Make executes commands in makefile to update one or more target names. Name is typically a
program. If no —f option is present, ‘makefile’ and ‘Makefile’ are tried in order. If makefile is
‘—’, the standard input is taken. More than one —f option may appear

Make updates a target if it depends on prerequisite files that have been modified since the tar-
get was last modified, or if the target does not exist.

Makefile contains a sequence of entries that specify dependencies. The first line of an entry is a
blank-separated list of targets, then a colon, then a list of prerequisite files. Text following a
semicolon, and all following lines that begin with a tab, are shell commands to be executed to
update the target. If a name appears on the left of more than one ‘colon’ line, then it depends
on all of the names on the right of the colon on those lines, but only one command sequence
may be specified for it. If a name appears on a line with a double colon :: then the command
sequence following that line is performed only if the name is out of date with respect to the
names to the right of the double colon, and is not affected by other double colon lines on
which that name may appear.

Two special forms of a name are recognized. A name like a(b) means the file named b stored
in the archive named a. A name like a(()) means the file stored in archive a containing the
entry point b.

Sharp and newline surround comments.

The following makefile says that ‘pgm’ depends on two files ‘a.0’ and ‘b.0’, and that they in
turn depend on ‘.c’ files and a common file ‘incl’.

pgm: a.0 b.o

cc a.0 b.o —lm —o pgm
a.o0: incl a.c

cc ¢ a.c
b.o: incl b.c

cc —c b.c

Makefile entries of the form
stringl = string2

are macro definitions. Subsequent appearances of $(stringl) or ${stringl} are replaced by
string2. 1If stringl is a single character, the parentheses or braces are optional.

Make infers prerequisites for files for which makefile gives no construction commands. For
example, a ‘.c’ file may be inferred as prerequisite for a ‘.o’ file and be compiled to produce the
‘.0’ file. Thus the preceding example can be done more briefly:

pgm: a.0 b.o
cc a.0 b.o —Im —o pgm
a.0 b.o: incl
Prerequisites are inferred according to selected suffixes listed as the ‘prerequisites’ for the spe-
cial name ‘.SUFFIXES’; multipie lists accumulate; an empty list clears what came before.
Order is significant; the first possible name for which both a file and a rule as described in the
next paragraph exist is inferred. The default list is

.SUFFIXES: out.oc.e.r.f.y.l.s.p

4th Berkeley Distribution 18 January 1983 1

MAKE (1) UNIX Programmer’s Manual MAKE (1)

FILES

The rule to create a file with suffix s2 that depends on a similarly named file with suffix s/ is
specified as an entry for the ‘target’ s/s2. In such an entry, the special macro $» stands for the
target name with suffix deleted, $@ for the full target name, $< for the complete list of prere-
quisites, and $? for the list of prerequisites that are out of date. For example, a rule for mak-
ing optimized ‘.0’ files from ‘.c’ files is

.co:;cc —c —0 —0 $@ $e.c
Certain macros are used by the default inference rules to communicate optional arguments to
any resulting compilations. In particular, ‘CFLAGS’ is used for cc(1) options, ‘FFLAGS’ for
J77(1) options, ‘PFLAGS’ for pc(1) options, and ‘LFLAGS’ and ‘YFLAGS’ for lex and yacc(1)
options. In addition, the macro ‘MFLAGS’ is filled in with the initial command line options
supplied to make. This simplifies maintaining a hierarchy of makefiles as one may then invoke
make on makefiles in subdirectories and pass along useful options such as =k.

Command lines are executed one at a time, each by its own shell. A line is printed when it is
executed unless the special target .SILENT’ is in makefile, or the first character of the com-
mand is ‘@’.

Commands returning nonzero status (see intro(1)) cause make to terminate unless the special
target .IGNORE’ is in makefile or the command begins with <tab> <hyphen>.

Interrupt and quit cause the target to be deleted unless the target is a directory or depends on
the special name ‘. PRECIOUS’.

Other options:
=i Equivalent to the special entry *.IGNORE:’.

-k When a command returns nonzero status, abandon work on the current entry, but con-
tinue on branches that do not depend on the current entry.

-n Trace and print, but do not execute the commands needed to update the targets.
=t Touch, i.e. update the modified date of targets, without executing any commands.
=F Equivalent to an initial special entry . SUFFIXES:’ with no list.

-s Equivalent to the special entry .SILENT:’.

makefile, Makefile

SEE ALSO

BUGS

sh(1), touch(1), £77(1), pc(1)
S. I. Feldman Make — A Program Sor Maintaining Computer Programs

Some commands return nonzero status inappropriately. Use =i to overcome the difficulty.
Commands that are directly executed by the shell, notably cd(1), are ineffectual across newlines
in make.

4th Berkeley Distribution 18 January 1983 2

MAN (1) UNIX Programmer’s Manual MAN (1)

NAME

man — find manual information by keywords; print out the manual

SYNOPSIS

man [—] [—t] [section] title ...
man —k keyword ...
man —f file ...

DESCRIPTION

FILES

Man is a program which gives information from the programmers manual. It can be asked for
one line descriptions of commands specified by name, or for all commands whose description
contains any of a set of keywords. It can also provide on-line access to the sections of the
printed manual.

When given the option —k and a set of keywords, man prints out a one line synopsis of each
manual sections whose listing in the table of contents contains one of those keywords.

When given the option —f and a list of file names, man attempts to locate manual sections
related to those files, printing out the table of contents lines for those sections.

When neither —k nor —f is specified, man formats a specified set of manual pages. If a section
specifier is given man looks in the that section of the manual for the given titles. Section is an
Arabic section number (3 for instance). The number may followed by a single letter classifier
(1g for instance) indicating a graphics program in section 1. If section is omitted, man searches
all sections of the manual, giving preference to commands over subroutines in system libraries,
and printing the first section it finds, if any.

If the standard output is a teletype, or if the flag — is given, man pipes its output through
more(1) with the option —s to crush out useless blank lines and to stop after each page on the
screen. Hit a space to continue, a control-D to scroll 11 more lines when the output stops.

The —t flag causes man to arrange for the specified section to be troff’ed to a suitable raster out-
put device; see vtroff(1).

/usr/man/man?/+
/usr/man/cat?/+

SEE ALSO

BUGS

apropos(1), more(1), whereis(1), catman(8)

The manual is supposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

4th Berkeley Distribution 18 January 1983 1

MESG (1) UNIX Programmer’s Manual MESG (1)

NAME

mesg — permit or deny messages
SYNOPSIS

mesg [n] [y]
DESCRIPTION

Mesg with argument n forbids messages via write and talk(1) by revoking non-user write per-
mission on the user’s terminal. Mesg with argument y reinstates permission. All by itself,
mesg reports the current state without changing it.

FILES
/dev/ttyx

SEE ALSO
write(1), talk(1)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

7th Edition 18 July 1983 1

MKDIR (1) UNIX Programmer’s Manual MKDIR (1)

NAME
mkdir — make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION
Mkdir creates specified directories in mode 777. Standard entries, ‘.’, for the directory itself,

and ..” for its parent, are made automatically.
MKkdir requires write permission in the parent directory.

SEE ALSO
rm(1)

DIAGNOSTICS
Mikdir returns exit code 0 if all directories were successfully made. Otherwise it prints a diag-

nostic and returns nonzero.

7th Edition 1

MKSTR (1) UNIX Programmer’s Manual MKSTR (1)

NAME

mkstr — create an error message file by massaging C source
SYNOPSIS

mkstr [—] messagefile prefix file ...
DESCRIPTION

Mistr is used to create files of error messages. Its use can make programs with large numbers
of error diagnostics much smaller, and reduce system overhead in running the program as the
error messages do not have to be constantly swapped in and out.
Mistr will process each of the specified files, placing a massaged version of the input file in a file
whose name consists of the specified prefix and the original name. A typical usage of mkstr
would be

mkstr pistrings xx e.c
This command would cause all the error messages from the C source files in the current direc-
tory to be placed in the file pistrings and processed copies of the source for these files to be
placed in files whose names are prefixed with xx.
To process the error messages in the source to the message file mkstr keys on the string
‘error(" in the input stream. Each time it occurs, the C string starting at the *"* is placed in the
message file followed by a null character and a new-line character; the null character terminates
the message so it can be easily used when retrieved, the new-line character makes it possible to
sensibly cat the error message file to see its contents. The massaged copy of the input file then
contains a Iseek pointer into the file which can be used to retrieve the message, i.e.:

char efilname[] = "/usr/lib/pi_strings";
int efil = -1;

error(al, a2, a3, ad)
char buf[256];

if (efil < 0) {
efil = open(efilname, 0);
if (efil < 0) {
oops:
perror(efilname);
exit(1);

)

if (Iseek(efil, (long) al, 0) || read(efil, buf, 256) <= 0)
goto oops;

printf(buf, a2, a3, a4);

The optional = causes the error messages to be placed at the end of the specified message file
for recompiling part of a large mkstred program. i

SEE ALSO
Iseek(2), xstr(1)

AUTHORS
William Joy and Charles Haley

3rd Berkeley Distribution 24 February 1979 1

MORE (1) UNIX Programmer’s Manual MORE (1)

NAME
more, page — file perusal filter for crt viewing

SYNOPSIS
more [—cdfisu] [=n 1 [+linenumber1 [+/pattern] [name ...]

page more options

DESCRIPTION
More is a filter which allows examination of a continuous text one screenful at a time on a
soft-copy terminal. It normally pauses after each screenful, printing --More-- at the bottom of
the screen. If the user then types a carriage return, one more line is displayed. If the user hits
a space, another screenful is displayed. Other possibilities are enumerated later.

The command line options are:

-n An integer which is the size (in lines) of the window which more will use instead of the
default.

-¢ More will draw each page by beginning at the top of the screen and erasing each line
just before it draws on it. This avoids scrolling the screen, making it easier to read
while more is writing. This option will be ignored if the terminal does not have the
ability to clear to the end of a line.

-d More will prompt the user with the message "Hit space to continue, Rubout to abort" at
the end of each screenful. This is useful if more is being used as a filter in some set-
ting, such as a class, where many users may be unsophisticated.

-f This causes more to count logical, rather than screen lines. That is, long lines are not
folded. This option is recommended if nroff output is being piped through ul, since the
latter may generate escape sequences. These escape sequences contain characters which
would ordinarily occupy screen positions, but which do not print when they are sent to
the terminal as part of an escape sequence. Thus more may think that lines are longer
than they actually are, and fold lines erroneously.

=1 Do not treat "L (form feed) specially. If this option is not given, more will pause after
any line that contains a "L, as if the end of a screenful had been reached. Also, if a file
begins with a form feed, the screen will be cleared before the file is printed.

-3 Squeeze multiple blank lines from the output, producing only one blank line. Espe-
cially helpful when viewing nroff output, this option maximizes the useful information
present on the screen.

-u Normally, more will handle underlining such as produced by nroffin a manner appropri-
ate to the particular terminal: if the terminal can perform underlining or has a stand-
out mode, more will output appropriate escape sequences to enable underlining or
stand-out mode for underlined information in the source file. The —u option
suppresses this processing.

=+ linenumber
Start up at linenumber.

+/pattern
Start up two lines before the line containing the regular expression pattern.

If the program is invoked as page, then the screen is cleared before each screenful is printed
(but only if a full screenful is being printed), and k — 1 rather than k — 2 lines are printed in
each screenful, where k is the number of lines the terminal can display.

More looks in the file /etc/termcap to determine terminal characteristics, and to determine the
default window size. On a terminal capable of displaying 24 lines, the default window size is 22
lines.

4th Berkeley Distribution 27 April 1981 1

MORE (1) UNIX Programmer’s Manual MORE (1)

More looks in the environment variable MORE to pre-set any flags desired. For example, if
you prefer to view files using the —c mode of operation, the csh command sefenv MORE -c or
the sh command sequence MORE="c’ ; export MORE would cause all invocations of more ,
including invocations by programs such as man and msgs , to use this mode. Normally, the
user will place the command sequence which sets up the MORE environment variable in the
.cshre or .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed along with the
--More-- prompt. This gives the fraction of the file (in characters, not lines) that has been read
so far.

Other sequences which may be typed when more pauses, and their effects, are as follows (i is an
optional integer argument, defaulting to 1) :

i<space>
display / more lines, (or another screenful if no argument is given)
‘D display 11 more lines (a “‘scroll’’). If iis given, then the scroll size is set to .
d same as "D (control-D) _
iz same as typing a space except that /,’if present, becomes the new window size.
is skip / lines and print a screenful of lines
if skip i screenfuls and print a screenful of lines
qor Q Exit from more.
- Display the current line number.
A Start up the editor vi at the current line.
h Help command; give a description of all the more commands.

i/expr search for the i-th occurrence of the regular expression expr. If there are less than /
occurrences of expr, and the input is a file (rather than a pipe), then the position in the
file remains unchanged. Otherwise, a screenful is displayed, starting two lines before
the place where the expression was found. The user’s erase and kill characters may be
used to edit the regular expression. Erasing back past the first column cancels the
search command.

in search for the i-th occurrence of the last regular expression entered.

’ (single quote) Go to the point from which the last search started. If no search has
been performed in the current file, this command goes back to the beginning of the file.

Icommand
invoke a shell with command. The characters ‘%’ and ‘"’ in "command" are replaced
with the current file name and the previous shell command respectively. If there is no
current file name, ‘%’ is not expanded. The sequences "\%" and "\!" are replaced by
"%" and "!" respectively.

in skip to the i-th next file given in the command line (skips to last file if n doesn’t make
sense))

ip skip to the i-th previous file given in the command line. If this command is given in
the middle of printing out a file, then more goes back to the beginning of the file. If /
doesn’t make sense, more skips back to the first file. If more is not reading from a file,
the bell is rung and nothing else happens.

:|f display the current file name and line number.

4th Berkeley Distribution 27 April 1981 2

MORE (1) UNIX Programmer’s Manual MORE (1)

:qor:Q
exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to type a carriage return. Up to
the time when the command character itself is given, the user may hit the line kill character to
cancel the numerical argument being formed. In addition, the user may hit the erase character
to redisplay the --More--(xx%) message.

At any time when output is being sent to the terminal, the user can hit the quit key (normally
control—\). More will stop sending output, and will display the usual --More-- prompt. The
user may then enter one of the above commands in the normal manner. Unfortunately, some
output is lost when this is done, due to the fact that any characters waiting in the terminal’s
output queue are flushed when the quit signal occurs.

The terminal is set to noecho mode by this program so that the output can be continuous.
What you type will thus not show on your terminal, except for the / and ! commands.

If the standard output is not a teletype, then more acts just like cat, except that a header is
printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be
nroff —ms +2 doc.n | more -s

AUTHOR

Eric Shienbrood, minor revisions by John Foderaro and Geoffrey Peck
FILES

/etc/termcap Terminal data base

/usr/lib/more.help Help file
SEE ALSO

csh(1), man(1), msgs(1), script(1), sh(1), environ(7)

4th Berkeley Distribution 27 April 1981 3

MSGS (1) UNIX Programmer’s Manual MSGS (1)

NAME

msgs — system messages and junk mail program

SYNOPSIS

msgs [—fhlpg] [number] [—number]

DESCRIPTION

Msgs is used to read system messages. These messages are sent by mailing to the login ‘msgs’
and should be short pieces of information which are suitable to be read once by most users of
the system.

Msgs is normally invoked each time you login, by placing it in the file .login (profile if you use
/binfsh). 1t will then prompt you with the source and subject of each new message. If there is
no subject line, the first few non-blank lines of the message will be displayed. If there is more
to the message, you will be told how long it is and asked whether you wish to see the rest of
the message. The possible responses are:

y type the rest of the message

RETURN
synonym for y.

n skip this message and go on to the next message.

- redisplay the last message.

q drops you out of msgs; the next time you run the program it will pick up where you left
off.

s append the current message to the file “‘Messages” in the current directory; ‘s—’ will

save the previously displayed message. A ‘s’ or ‘s—° may be followed by a space and a
filename to receive the message replacing the default ‘‘Messages”’.

m or ‘m—" causes a copy of the specified message to be placed in a temporary mailbox
and mail(1) to be invoked on that mailbox. Both ‘m’ and ‘s’ accept a numeric argu-
ment in place of the ‘—°.

Msgs keeps track of the next message you will see by a number in the file .msgsrc in your home
directory. In the directory /usr/msgs it keeps a set of files whose names are the (sequential)
numbers of the messages they represent. The file lusrimsgs/bounds shows the low and high
number of the messages in the directory so that msgs can quickly determine if there are no
messages for you. If the contents of bounds is incorrect it can be fixed by removing it; msgs will
make a new bounds file the next time it is run.

Options to msgs include:

-f which causes it not to say ‘“‘No new messages.”’. This is useful in your .login file since
this is often the case here.

-q Queries whether there are messages, printing “There are new messages.”’ if there are.
The command “msgs —q’ is often used in login scripts.

—h causes msgs to print the first part of messages only.

=1 option causes only locally originated messages to be reported.

num A message number can be given on the command line, causing msgs to start at the
specified message rather than at the next message indicated by your .msgsrc file. Thus

msgs —h 1
prints the first part of all messages.

—number
will cause msgs to start number messages back from the one indicated by your .msgsrc

4th Berkeley Distribution 18 January 1983 1

MSGS (1) UNIX Programmer’s Manual MSGS (1)

file, useful for reviews of recent messages.
-p causes long messages to be piped through more(1).

Within msgs you can also go to any specific message by typing its number when msgs requests
input as to what to do.

FILES
/usr/msgs/= database
~/.msgsrc number of next message to be presented

AUTHORS
William Joy
David Wasley

SEE ALSO
mail(1), more(1)

BUGS

4th Berkeley Distribution 18 January 1983 2

MT (1) UNIX Programmer’s Manual MT (1)

NAME
mt — magnetic tape manipulating program

SYNOPSIS
mt [—f tapename) command [count]

DESCRIPTION
Mt is used to give commands to a magnetic tape drive. If a tape name is not specified, the
environment variable TAPE is used; if TAPE does not exist, mr uses the device /devirmtl2.
Note that tapename must reference a raw (not block) tape device. By default mr performs the
requested operation once. Operations may be performed multiple times by specifying count.

The available commands are listed below. Only as many characters as are required to uniquely
identify a command need be specified.

eof, weof

Write count end-of-file marks at the current position on the tape.
fsf Forward space count files.
fsr Forward space count records.

bsf Back space count files.
bsr Back space count records.
rewind Rewind the tape (Count is ignored.)

offline, rewoffl
Rewind the tape and place the tape unit off-line (Count is ignored.)

status Print status information about the tape unit.

M returns a 0 exit status when the operation(s) were successful, 1 if the command was
unrecognized, and 2 if an operation failed.

FILES
/dev/rmt= Raw magnetic tape interface

SEE ALSO
mtio(4), dd(1), ioctl(2), environ(7)

4th Berkeley Distribution 1 April 1983 1

MV (1) UNIX Programmer’s Manual MV (1)

NAME
mv — move or rename files
SYNOPSIS
mv [—=i][=f][—]filel file2
mv [=i] [=f][=] file ... directory
DESCRIPTION
Mv moves (changes the name of) filel to file2.
If file2 already exists, it is removed before filel is moved. If file2 has a mode which forbids
writing, mv prints the mode (see chmod(2)) and reads the standard input to obtain a line; if the
line begins with y, the move takes place; if not, mv exits.

In the second form, one or more files (plain files or directories) are moved to the directory with
their original file-names.

My refuses to move a file onto itself.
Options:

=i stands for interactive mode. Whenever a move is to supercede an existing file, the user
is prompted by the name of the file followed by a question mark. If he answers with a

line starting with ’y’, the move continues. Any other reply prevents the move from
occurring.

-f stands for force. This option overrides any mode restrictions or the —i switch.

e means interpret all the following arguments to mv as file names. This allows file names
starting with minus.
SEE ALSO
cp(1), In(1)
BUGS
If filel and file2 lie on different file systems, mv must copy the file and delete the original. In

this case the owner name becomes that of the copying process and any linking relationship with
other files is lost.

4th Berkeley Distribution 1 April 1981 1

NETSTAT (1) UNIX Programmer’s Manual NETSTAT (1)

NAME

netstat — show network status
SYNOPSIS

netstat [—Aahimnrs] [—p protocol] [—a] [interval] [system] [core]
DESCRIPTION

The netstat command symbolically displays the contents of various network-related data struc-
tures. The options have the following meaning:

—A show the address of any associated protocol control blocks; used for debugging
-a show the state of all sockets; normally sockets used by server processes are not shown
=h show the state of the IMP host table

=i show the state of interfaces which have been auto-configured (interfaces statically
configured into a system, but not located at boot time are not shown)

—m show statistics recorded by the memory management routines (the network manages a
“‘private share’’ of memory)

-=n show network addresses as numbers (normally netstat interprets addresses and attempts
to display them symbolically)

=p proto
show the state of sockets utilizing protocol proto; the protocol is specified symbolically,
and may be any protocol listed in the file /etc/protocols.

-=s show per-protocol statistics
-r show the routing tables

The arguments, system and core allow substitutes for the defaults */vmunix’’ and
““/dev/kmem”’.

If an interval is specified, netstat will continuously display the information regarding packet
traffic on the configured network interfaces, pausing interval seconds before refreshing the
screen.

There are a number of display formats, depending on the information presented. The default
display, for active sockets, shows the local and remote addresses, send and receive queue sizes
(in bytes), protocol, and, optionally, the internal state of the protocol.

Address formats are of the form ‘‘host.port” or ‘‘network.port™ if a socket’s address specifies a
network but no specific host address. When known the host and network addresses are
displayed symbolically according to the data bases /etc/hosts and fetc/networks, respectively. If a
symbolic name for an address is unknown, or if the —n option is specified, the address is
printed in the Internet “‘dot format”; refer to inet(3N) for more information regarding this for-
mat. Unspecified, or ‘“‘wildcard’’, addresses and ports appear as ‘‘#*’.

The interface display provides a table of cumulative statistics regarding packets transferred,
errors, and collisions. The network address (currently Internet specific) of the interface and the
maximum transmission unit (‘“‘mtu’’) are also displayed.

The routing table display indicates the available routes and their status. Each route consists of
a destination host or network and a gateway to use in forwarding packets. The flags field shows
the state of the route (““U” if “‘up”), and whether the route is to a gateway (‘““G”’). Direct
routes are created for each interface attached to the local host. The refcnt field gives the
current number of active uses of the route. Connection oriented protocols normally hold on to
a single route for the duration of a connection while connectionless protocols obtain a route
then discard it. The use field provides a count of the number of packets sent using that route.
The interface entry indicates the network interface utilized for the route.

4th Berkeley Distribution 18 October 1982 1

NETSTAT (1) UNIX Programmer’s Manual NETSTAT (1)

When netstat is invoked with an interval argument, it displays a running count of statistics
related to network interfaces. This display consists of a column summarizing information for
all interfaces, and a column for the interface with the most traffic since the system was last
rebooted. The first line of each screen of information contains a summary since the system was
last rebooted. Subsequent lines of output show values accumulated over the preceding interval.
SEE ALSO
iostat(1), vmstat(1), hosts(5), networks(5), protocols(5), services(5), trpt(8C)
BUGS
The notion of errors is ill-defined. Collisions mean something else for the IMP.

4th Berkeley Distribution 18 October 1982 2

NEWALIASES (1) UNIX Programmer’s Manual NEWALIASES (1)

NAME
newaliases — rebuild the data base for the mail aliases file

SYNOPSIS
newaliases

DESCRIPTION
Newaliases rebuilds the random access data base for the mail aliases file /usr/lib/aliases. It must
be run each time /usr/lib/aliases is changed in order for the change to take effect.

SEE ALSO
aliases(5), sendmail (8)

BUGS

4th Berkeley Distribution 18 January 1983 1

NICE (1) UNIX Programmer’s Manual NICE (1)

NAME

nice, nohup — run a command at low priority (sk only)

SYNOPSIS

nice [= number] command [arguments]
nohup command [arguments]

DESCRIPTION

FILES

Nice executes command with low scheduling priority. If the number argument is present, the
priority is incremented (higher numbers mean lower priorities) by that amount up to a limit of
20. The default number is 10.

The super-user may run commands with priority higher than normal by using a negative prior-
ity, e.g. ‘“——10".

Nohup executes command immune to hangup and terminate signals from the controlling termi-
nal. The priority is incremented by 5. Nohup should be invoked from the shell with ‘&’ in
order to prevent it from responding to interrupts by or stealing the input from the next person
who logs in on the same terminal. The syntax of nice is also different.

nohup.out standard output and standard error file under nohup

SEE ALSO

csh(1), setpriority(2), renice(8)

DIAGNOSTICS

BUGS

Nice returns the exit status of the subject command.

Nice and nohup are particular to sh(1). If you use csh(1), then commands executed with “&”
are automatically immune to hangup signals while in the background. There is a builtin com-
mand nohup which provides immunity from terminate, but it does not redirect output to
nohup.out.

Nice is built into csh(1) with a slightly different syntax than described here. The form “‘nice

+10” nices to positive nice, and ‘“‘nice —10”’ can be used by the super-user to give a process
more of the processor.

4th Berkeley Distribution 18 January 1983 1

NM (1) UNIX Programmer’s Manual NM (1)

NAME
nm — print name list

SYNOPSIS
nm [—gnopru] [file ...]

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an argument
is an archive, a listing for each object file in the archive will be produced. If no file is given,
the symbols in "a.out" are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data segment symbol), B (bss segment
symbol), C (common symbol), f file name, or — for sdb symbol table entries (see —a below).
If the symbol is local (non-external) the type letter is in lower case. The output is sorted alpha-
betically.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only once.
-p Don’t sort; print in symbol-table order.

-r Sort in reverse order.

—-u Print only undefined symbols.

SEE ALSO
ar(1), ar(5), a.out(5), stab(5)

4th Berkeley Distribution 7 February 1983 1

NROFF (1)

UNIX Programmer’s Manual NROFF (1)

NAME

nroff — text formatting
SYNOPSIS

nroff [option] ... [file] ...
DESCRIPTION

Nroff formats text in the named files for typewriter-like devices. See also roff(1). The full capa-

bilities of

nroff are described in the NroffiTroff User’s Manual.

If no file argument is present, the standard inpyt is read. An argument consisting of a single
minus (=) is taken to be a file name corresponding to the standard input.

The options, which may appear in any order so long as they appear before the files, are:

—olist Print only pages whose page numbers appear in the comma-separated /list of numbers
and ranges. A range N—AM means pages N through M; an initial —N means from
the beginning to page N; and a final N— means from N to the end.

=nN Number first generated page N.

—sN Stop every N pages. Nroff will halt prior to every N pages (default N=1) to allow
paper loading or changing, and will resume upon receipt of a newline.

—mname Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

—raN Set register a (one-character) to N.

=i Read standard input after the input files are exhausted.

| Invoke the simultaneous input-output mode of the rd request.

—Tname Prepare output for specified terminal. Known names are 37 for the (default) Tele-
type Corporation Model 37 terminal, tn300 for the GE TermiNet 300 (or any termi-
nal without half-line capability), 300S for the DASI-300S, 300 for the DASI-300, and
450 for the DASI-450 (Diablo Hyterm).

—e Produce equally-spaced words in adjusted lines, using full terminal resolution.

=h Use output tabs during horizontal spacing to speed output and reduce output charac-
ter count. Tab settings are assumed to be every 8 nominal character widths.

FILES

/tmp/ta* temporary file

/usr/lib/tmac/tmac.* standard macro files

/usr/lib/term/* terminal driving tables for nrofff

SEE ALSO

J. F. Ossanna, NrofflTroff user’s manual
B. W. Kernighan, 4 TROFF Tutorial
troff (1), eqn(1), tbl(1), ms(7), me(7), man(7), col(1)

7th Edition

26 January 1982 1

S—— -— -—_—w W

oD (1) UNIX Programmer’s Manual oD (1)

NAME
od — octal, decimal, hex, ascii dump

SYNOPSIS
od [—format] [file] [[+]offset[.][b] [label]]

DESCRIPTION
Od displays file, or it’s standard input, in one or more dump formats as selected by the first
argument. If the first argument is missing, —o is the default. Dumping continues until end-
of-file.

The meanings of the format argument characters are:

a Interpret bytes as characters and display them with their ACSII names. If the p character
is given also, then bytes with even parity are underlined. The P character causes bytes
with odd parity to be underlined. Otherwise the parity bit is ignored.

b Interpret bytes as unsigned octal.

c Interpret bytes as ASCII characters. Certain non-graphic characters appear as C escapes:
null=\0, backspace=\b, formfeed=\f, newline=\n, return=\r, tab=\t; others appear as
3-digit octal numbers. Bytes with the parity bit set are displayed in octal.

d Interpret (short) words as unsigned decimal.

f Interpret long words as floating point.

h Interpret (short) words as unsigned hexadecimal.

i Interpret (short) words as signed decimal.
1 Interpret long words as signed decimal.
[Interpret (short) words as unsigned octal.

s[n] Look for strings of ascii graphic characters, terminated with a null byte. N specifies the
minimum length string to be recognized. By default, the minimum length is 3 characters.

v Show all data. By default, display lines that are identical to the last line shown are not out-
put, but are indicated with an ‘“+’’ in column 1.

w(n] Specifies the number of input bytes to be interpreted and displayed on each output line. If
w is not specified, 16 bytes are read for each display line. If n is not specified, it defaults
to 32.

x Interpret (short) words as hexadecimal.
An upper case format character implies the long or double precision form of the object.

The offser argument specifies the byte offset into the file where dumping is to commence. By
default this argument is interpreted in octal. A different radix can be specified; If *.” is
appended to the argument, then offser is interpreted in decimal. If offser begins with ““x” or
“‘0x”, it is interpreted in hexadecimal. If “b’’ (‘‘B”’) is appended, the offset is interpreted as a
block count, where a block is 512 (1024) bytes. If the file argument is omitted, an offser argu-

ment must be preceded by ‘“+’.

The radix of the displayed address will be the same as the radix of the offser, if specified; other-
wise it will be octal.

Label will be interpreted as a pseudo-address for the first byte displayed. It will be shown in
“()” following the file offset. It is intended to be used with core images to indicate the real
memory address. The syntax for /abel is identical to that for offser.

SEE ALSO
adb(1)

4th Berkeley Distribution 16 February 83 1

werw WwerTaw - eSS

oD (1) UNIX Programmer’s Manual oD (1)

BUGS
A file name argument can’t start with “‘+>. A hexadecimal offset can’t be a block count.
Only one file name argument can be given.

It is an historical botch to require specification of object, radix, and sign representation in a sin-
gle character argument.

4th Berkeley Distribution 16 February 83 2

PAGESIZE (1) UNIX Programmer’s Manual PAGESIZE (1)

NAME

pagesize — print system page size
SYNOPSIS

pagesize

DESCRIPTION
Pagesize prints the size of a page of memory in bytes, as returned by getpagesize(2). This pro-
gram is useful in constructing portable shell scripts.

SEE ALSO
getpagesize(2)

4th Berkeley Distribution 3 April 1983 1

PASSWD (1) UNIX Programmer’s Manual PASSWD (1)

NAME

passwd — change login password

SYNOPSIS

passwd [name]

DESCRIPTION

FILES

This command changes (or installs) a password associated with the user name (your own name
by default).

The program prompts for the old password and then for the new one. The caller must supply
both. The new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and
at least six characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; the owner must prove
he knows the old password.

/etc/passwd

SEE ALSO

BUGS

login(1), passwd(5), crypt(3)
Robert Morris and Ken Thompson, UNIX password security

The password file information should be kept in a different data structure allowing indexed
access; dbm(3X) would probably be suitable.

4th Berkeley Distribution 18 January 1983 1

PC(1) UNIX Programmer’s Manual PC(1)

NAME

pc — Pascal compiler
SYNOPSIS

pe [option] [—i name ...] name ...
DESCRIPTION

Pc is a Pascal compiler. If given an argument file ending with .p, it will compile the file and
load it into an executable file called, by default, a.out.

A program may be separated into more than one .p file. Pc will compile a number of argument
.p files into object files (with the extension .o in place of .p). Object files may then be loaded
into an executable a.our file. Exactly one object file must supply a program statement to suc-
cessfully create an executable a.out file. The rest of the files must consist only of declarations
which logically nest within the program. References to objects shared between separately com-
piled files are allowed if the objects are declared in included header files, whose names must
end with .h. Header files may only be included at the outermost level, and thus declare only
globally available objects. To allow functions and procedures to be declared, an external direc-
tive has been added, whose use is similar to the forward directive but restricted to appear only
in .h files. Function and procedure bodies may not appear in .h files. A binding phase of the
compiler checks that declarations are used consistently, to enforce the type checking rules of
Pascal.

Object files created by other language processors may be loaded together with object files
created by pc. The functions and procedures they define must have been declared in .h files
included by all the .p files which call those routines. Calling conventions are as in C, with var
parameters passed by address.

See the Berkeley Pascal User’s Manual for details.

The following options have the same meaning as in cc(1) and f77(1). See /d(1) for load-time
options.

—c Suppress loading and produce ‘.0’ file(s) from source file(s).

—g Have the compiler produce additional symbol table information for dbx(1).
—w Suppress warning messages.

—p Prepare object files for profiling, see prof(1).

—0 Invoke an object-code improver.

—S Compile the named program, and leave the assembler-language output on the
corresponding file suffixed ‘.s’. (No ‘.0’ is created.).

—o output
Name the final output file output instead of a.out.

The following options are peculiar to pc.

—C Compile code to perform runtime checks, verify assert calls, and initialize all variables to
zero as in pi.

—b Block buffer the file output.

—i Produce a listing for the specified procedures, functions and include files.

—1 Makea program listing during translation.

=s Accept standard Pascal only; non-standard constructs cause warning diagnostics.

—t directory
Use the given directory for compiler temporary files.

=z Allow execution profiling with pxp by generating statement counters, and arranging for

4th Berkeley Distribution 6 June 1983 1

PC(1) UNIX Programmer’s Manual PC(1)

the creation of the profile data file pmon.out when the resulting object is executed.

Other arguments are taken to be loader option arguments, perhaps libraries of pc compatible
routines. Certain flags can also be controlled in comments within the program as described in
the Berkeley Pascal User’s Manual.

FILES
file.p pascal source files
/usr/lib/pc0 compiler
/lib/f1 code generator
/usr/lib/pc2 runtime integrator (inline expander)
/lib/c2 peephole optimizer
/usr/lib/pc3 separate compilation consistency checker
/usr/lib/pc2.#strings text of the error messages
/usr/lib/how_pc basic usage explanation
/usr/lib/libpc.a intrinsic functions and 1/0 library
/usr/lib/libm.a math library
/lib/libc.a standard library, see intro(3)

SEE ALSO

Berkeley Pascal User’s Manual
pi(1), pxp(1), pxref(1), sdb(1)

DIAGNOSTICS
For a basic explanation do

pc

See pi(1). for an explanation of the error message format. Internal errors cause messages con-
taining the word SNARK.

AUTHORS
Charles B. Haley, William N. Joy, and Ken Thompson
Retargetted to the second pass of the portable C compiler by Peter Kessler
Runtime library and inline optimizer by M. Kirk McKusick
Separate compilation consistency checking by Louise Madrid

BUGS
The keyword packed is recognized but has no effect.

The binder is not as strict as described here, with regard to the rules about external declarations
only in “.h’ files and including .h’ files only at the outermost level. It will be made to perform
these checks in its next incarnation, so users are warned not to be sloppy.

The —z flag doesn’t work for separately compiled files.

Because the —s option is usurped by the compiler, it is not possible to pass the strip option to
the loader. Thus programs which are to be stripped, must be run through strip(1) after they are
compiled.

4th Berkeley Distribution 6 June 1983 2

PDX (1) UNIX Programmer’s Manual PDX (1)

NAME

pdx — pascal debugger

SYNOPSIS

pdx [=r] [obifile]

DESCRIPTION

Pdx is a tool for source level debugging and execution of Pascal programs. The objfile is an
object file produced by the Pascal translator pi(1). If no objfile is specified, pdx looks for a file
named ‘‘obj’’ in the current directory. The object file contains a symbol table which includes
the name of the all the source files translated by pi to create it. These files are available for
perusal while using the debugger.

If the file ““.pdxinit’” exists in the current directory, then the debugger commands in it are exe-
cuted.

The —r option causes the objfile to be executed immediately; if it terminates successfully pdx
exits. Otherwise it reports the reason for termination and offers the user the option of entering
the debugger or simply letting px continue with a traceback. If —r is not specified, pdx just
prompts and waits for a command.

The commands are:

run [args] [< filename]l [> filename)
Start executing objfile, passing args as command line arguments; < or > can be used to
redirect input or output in the usual manner.

trace [in procedure/function] [if condition]

trace source-line-number [if condition]

trace procedurelfunction [in procedure/function) [if condition)

trace expression at source-line-number [if condition]

trace variable [in procedurelfunction] [if condition]
Have tracing information printed when the program is executed. A number is associ-
ated with the command that is used to turn the tracing off (see the delete command).

The first argument describes what is to be traced. If it is a source-line-number, then the
line is printed immediately prior to being executed. Source line numbers in a file other
than the current one must be preceded by the name of the file and a colon, e.g.
“mumble.p:17”.

If the argument is a procedure or function name then every time it is called, informa-
tion is printed telling what routine called it, from what source line it was called, and
what parameters were passed to it. In addition, its return is noted, and if it’s a function
then the value it is returning is also printed.

If the argument is an expression with an at clause then the value of the expression is
printed whenever the identified source line is reached.

If the argument is a variable then the name and value of the variable is printed when-
ever it changes. Execution is substantially slower during this form of tracing.

If no argument is specified then all source lines are printed before they are executed.
Execution is substantially slower during this form of tracing.

The clause ““in procedure/function’ restricts tracing information to be printed only while
executing inside the given procedure or function.

4th Berkeley Distribution 9 February 1983 1

PDX (1) UNIX Programmer’s Manual PDX (1)

Condition is a Pascal boolean expression and is evaluated prior to printing the tracing
information,; if it is false then the information is not printed.

There is no restriction on the amount of information that can be traced.

stop if condition

stop at source-line-number [if condition]

stop in procedure/function [if condition)

stop variable [if condition]
Stop execution when the given line is reached, procedure or function called, variable
changed, or condition true.

delete command-number
The trace or stop corresponding to the given number is removed. The numbers associ-
ated with traces and stops are printed by the status command.

status [> filename]
Print out the currently active trace and stop commands.

cont Continue execution from where it stopped. This can only be done when the program
was stopped by an interrupt or through use of the stop command.

step Execute one source line.

next Execute up to the next source line. The difference between this and step is that if the
line contains a call to a procedure or function the step command will stop at the begin-
ning of that block, while the next command will not.

print expression [, expression ...]
Print out the values of the Pascal expressions. Variables declared in an outer block but
having the same identifier as one in the current block may be referenced as ‘‘block-
name . variable”.

whatis identifier
Print the declaration of the given identifier.

which identifier
Print the full qualification of the given identifer, i.e. the outer blocks that the identifier
is associated with.

assign variable expression
Assign the value of the expression to the variable.

call procedure(parameters)
Execute the object code associated with the named procedure or function.

help Print out a synopsis of pdx commands.
gripe Invokes a mail program to send a message to the person in charge of pdx.

where Print out a list of the active procedures and functions and the respective source line
where they are called.

source filename
Read pdx commands from the given filename. Especially useful when the filename has
been created by redirecting a status command from an earlier debugging session.

dump [> filename]
Print the names and values of all active data.

list [source-line-number [, source-line-number]]
list procedure/function
List the lines in the current source file from the first line number to the second

4th Berkeley Distribution 9 February 1983 2

PDX (1) UNIX Programmer’s Manual PDX (1)

inclusive. As in the editor “‘$”’ can be used to refer to the last line. If no lines are
specified, the entire file is listed. If the name of a procedure or function is given lines
n-k to n+k are listed where 7 is the first statement in the procedure or function and k
is small.

file [filename]
Change the current source file name to filename. If none is specified then the current
source file name is printed.

edit [filename]

edit procedure/function-name
Invoke an editor on filename or the current source file if none is specified. If a pro-
cedure or function name is specified, the editor is invoked on the file that contains it.
Which editor is invoked by default depends on the installation. The default can be
overridden by setting the environment variable EDITOR to the name of the desired
editor.

pi Recompile the program and read in the new symbol table information.

sh command-line
Pass the command line to the shell for execution. The SHELL environment variable
determines which shell is used.

alias new-command-name old-command-name
This command makes pdx respond to new-command-name the way it used to respond to
old-command-name.

quit Exit pdx.

The following commands deal with the program at the px instruction level rather than source
level. They are not intended for general use.

tracei [address] [if cond)
tracei [variable] [at address] [if cond]
stopi [address] [if cond)
stopi [at] [address] [if cond]
Turn on tracing or set a stop using a px machine instruction addresses.

xi address [, address]
Print the instructions starting at the first address. Instructions up to the second address
are printed.

xd address [, address)
Print in octal the specified data location(s).

FILES
obj Pascal object file
.pdxinit Pdx initialization file
SEE ALSO
pi(1), px(1)

BUGS

An Irtroduction to Pdx

Pdx does not understand sets, and provides no information about files.

4th Berkeley Distribution 9 February 1983 3

PDX (1) UNIX Programmer’s Manual PDX (1)

The whatis command doesn’t quite work for variant records.
Bad things will happen if a procedure invoked with the call command does a non-local goto.

The commands step and mext should be able to take a count that specifies how many lines to
execute.

There should be commands stepi and nexti that correspond to step and mext but work at the
instruction level.

There should be a way to get an address associated with a line number, procedure or function,
and variable.

Most of the command names are too long.
The alias facility is quite weak.

A csh-like history capability would improve the situation.

4th Berkeley Distribution 9 February 1983 4

PI(1)

NAME

UNIX Programmer’s Manual PI(1)

pi — Pascal interpreter code translator

SYNOPSIS

pi [option] [—i name ...] name.p

DESCRIPTION

Pi translates the program in the file name.p leaving interpreter code in the file o4/ in the current
directory. The interpreter code can be executed using px. Pix performs the functions of pi and
px for ‘load and go’ Pascal.

The following flags are interpreted by pi; the associated options can also be controlled in com-
ments within the program as described in the Berkeley Pascal User’s Manual.

—b Block buffer the file output.

—i Enable the listing for any specified procedures and functions and while processing any
specified include files.

=1 Make a program listing during translation.
—n Begin each listed include file on a new page with a banner line.

—p Suppress the post-mortem control flow backtrace if an error occurs; suppress statement
limit counting.

—s Accept standard Pascal only; non-standard constructs cause warning diagnostics.

—t Suppress runtime tests of subrange variables and treat assert statements as comments.
=—u Card image mode; only the first 72 characters of input lines are used.

—w Suppress warning diagnostics.

—z Allow execution profiling with pxp by generating statement counters, and arranging for
the creation of the profile data file pmon.out when the resulting object is executed.

FILES
file.p input file
file.i include file(s)
/usr/lib/pi2.*strings text of the error messages
/usr/lib/how_pi* basic usage explanation
obj interpreter code output
SEE ALSO

Berkeley Pascal User’s Manual
pix(1), px(1), pxp(1), pxref(1)

DIAGNOSTICS

For a basic explanation do

pi
In the diagnostic output of the translator, lines containing syntax errors are listed with a flag
indicating the point of error. Diagnostic messages indicate the action which the recovery
mechanism took in order to be able to continue parsing. Some diagnostics indicate only that
the input is ‘malformed.” This occurs if the recovery can find no simple correction to make the
input syntactically valid.

Semantic error diagnostics indicate a line in the source text near the point of error. Some
errors evoke more than one diagnostic to help pinpoint the error; the follow-up messages begin
with an ellipsis °...".

3rd Berkeley Distribution 8 April 1979 1

PI(1) UNIX Programmer’s Manual PI(1)

The first character of each error message indicates its class:

E Fatal error; no code will be generated.
e Non-fatal error.

w Warning — a potential problem.

s Non-standard Pascal construct warning.

If a severe error occurs which inhibits further processing, the translator will give a diagnostic
and then ‘QUIT’.

AUTHORS
Charles B. Haley, William N. Joy, and Ken Thompson
Ported to VAX-11 by Peter Kessler

BUGS
The keyword packed is recognized but has no effect.
For clarity, semantic errors should be flagged at an appropriate place in the source text, and
multiple instances of the ‘same’ semantic error should be summarized at the end of a procedure
or function rather than evoking many diagnostics.
When include files are present, diagnostics relating to the last procedure in one file may appear
after the beginning of the listing of the next.

3rd Berkeley Distribution 8 April 1979

PIX (1) UNIX Programmer’s Manual PIX (1)

NAME

pix — Pascal interpreter and executor
SYNOPSIS

pix [—blnpstuwz] [—i name ...] name.p [argument ...]
DESCRIPTION

Pix is a ‘load and go’ version of Pascal which combines the functions of the interpreter code
translator pi and the executor px. It uses pi to translate the program in the file name.p and, if
there were no fatal errors during translation, causes the resulting interpreter code to be exe-
cuted by px with the specified arguments. A temporary file is used for the object code; the file
obyj is neither created nor destroyed.

FILES
/usr/ucb/pi Pascal translator
/usr/ucb/px Pascal executor
/tmp/pix= temporary
/usr/lib/how_pix basic explanation
SEE ALSO

Berkeley Pascal User’s Manual
pi(1), px(1)

DIAGNOSTICS
For a basic explanation do

pix
AUTHORS
Susan L. Graham and William N. Joy

4th Berkeley Distribution 10 February 1983 1

PLOT (1G) UNIX Programmer’s Manual PLOT (1G)

NAME

plot — graphics filters
SYNOPSIS

plot [—Tterminal [raster]]
DESCRIPTION

These commands read plotting instructions (see plor(5)) from the standard input, and in gen-
eral produce plotting instructions suitable for a particular terminal on the standard output.

If no terminal type is specified, the environment parameter $TERM (see environ(7)) is used.
Known terminals are:

4014 Tektronix 4014 storage scope.
450 DASI Hyterm 450 terminal (Diablo mechanism).
300 DASI 300 or GSI terminal (Diablo mechanism).
300S DASI 300S terminal (Diablo mechanism).
ver Versatec D1200A printer-plotter. This version of plor places a scan-converted image in
‘/usr/tmp/raster’ and sends the result directly to the plotter device rather than to the
standard output. The optional argument causes a previously scan-converted file raster
to be sent to the plotter.
FILES
/usr/bin/tek
/usr/bin/t450
/usr/bin/t300
/usr/bin/t300s
/usr/bin/vplot
/usr/tmp/raster
SEE ALSO
plot(3X), plot(5)

BUGS
There is no lockout protection for /usr/tmp/raster.

7th Edition 18 January 1983 1

PMERGE (1) UNIX Programmer’s Manual PMERGE (1)

NAME

pmerge — pascal file merger
SYNOPSIS

pmerge name.p ...
DESCRIPTION

Pmerge assembles the named Pascal files into a single standard Pascal program. The resulting
program is listed on the standard output. It is intended to be used to merge a collection of
separately compiled modules so that they can be run through pi , or exported to other sites.

FILES

/usr/tmp/MG=* default temporary files
SEE ALSO

pe(1), pi(1),

Aucxiliary documentation Berkeley Pascal User’s Manual.
AUTHOR

M. Kirk McKusick

BUGS
Very minimal error checking is done, so incorrect programs will produce unpredictable results.
Block comments should be placed after the keyword to which they refer or they are likely to
end up in bizarre places.

4th Berkeley Distribution 18 January 1983 1

PR (1) UNIX Programmer’s Manual PR (1)

NAME
pr — print file

SYNOPSIS
pr [option] .. [file] ...

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by
a date, the name of the file or a specified header, and the page number. If there are no file
arguments, pr prints its standard input.

Options apply to all following files but may be reset between files:
-n Produce n-column output.

+n Begin printing with page n.

—h Take the next argument as a page header.

—wn For purposes of multi-column output, take the width of the page to be n characters
instead of the default 72.

—f Use formfeeds instead of newlines to separate pages. A formfeed is assumed to use up
two blank lines at the top of a page. (Thus this option does not affect the effective
page length.)

—1n Take the length of the page to be n lines instead of the default 66.
=t Do not print the 5-line header or the 5-line trailer normally supplied for each page.

—sc Separate columns by the single character ¢ instead of by the appropriate amount of
white space. A missing c is taken to be a tab.

—m Print all files simultaneously, each in one column,
Inter-terminal messages via write(1) are forbidden during a pr.

FILES
/dev/tty? to suspend messages.

SEE ALSO
cat(1)

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

4th Berkeley Distribution 18 January 1983 1

PRINT (1) UNIX Programmer’s Manual ~ PRINT(1)

NAME
print — pr to the line printer

SYNOPSIS
print file ...

DESCRIPTION
Print pr's a copy of each named file on the line printer. It is a one line shell script:

Ipr -p $=

SEE ALSO
Ipr(1), pr(1)

3rd Berkeley Distribution 24 February 1979 1

PRINTENV (1) UNIX Programmer’s Manual PRINTENV (1)

NAME

printenv — print out the environment
SYNOPSIS

printenv [name]
DESCRIPTION

Printenv prints out the values of the variables in the environment. If a name is specified, only
its value is printed.

If a name is specified and it is not defined in the environment, printenv returns exit status 1,
else it returns status 0.

SEE ALSO
sh(1), environ(7), csh(1)

3rd Berkeley Distribution 24 February 1979 1

PRMAIL (1) UNIX Programmer’s Manual PRMAIL (1)

NAME

prmail — print out mail in the post office
SYNOPSIS

prmail [user ...)
DESCRIPTION

Prmail prints the mail which waits for you, or the specified user, in the post office. The mail is
not disturbed.

FILES
/usr/spool/mail/ post office

SEE ALSO
biff (1), mail(1), from(1), binmail (1)

4th Berkeley Distribution 24 February 1979 . 1

PROF (1)

NAME

UNIX Programmer’s Manual PROF (1)

prof — display profile data

SYNOPSIS

prof [—al[=1]1[-n][-z] [=s][=v[=low[—=highl]][aout[monout..]]

DESCRIPTION

Prof interprets the file produced by the monitor subroutine. Under default modes, the symbol
table in the named object file (a.out default) is read and correlated with the profile file (mon.out
default). For each external symbol, the percentage of time spent executing between that sym-
bol and the next is printed (in decreasing order), together with the number of times that rou-
tine was called and the number of milliseconds per call. If more than one profile file is
specified, the output represents the sum of the profiles.

In order for the number of calls to a routine to be tallied, the —p option of cc, f77 or pc must
have been given when the file containing the routine was compiled. This option also arranges
for the profile file to be produced automatically.

Options are:

-a all symbols are reported rather than just external symbols.

=1 the output is sorted by symbol value.

-n the output is sorted by number of calls

-8 a summary profile file is produced in mon.sum. This is really only useful when more
than one profile file is specified.

-V all printing is suppressed and a graphic version of the profile is produced on the stan-
dard output for display by the plot(1) filters. When plotting, the numbers low and high,
by default 0 and 100, may be given to cause a selected percentage of the profile to be
plotted with accordingly higher resolution.

-2 routines which have zero usage (as indicated by call counts and accumulated time) are

FILES

nevertheless printed in the output.

mon.out for profile

a.out

for namelist

mon.sum for summary profile

SEE ALSO

monitor(3), profil(2), cc(1), plot(1G)

BUGS

Beware of quantization errors.

Is confused by f77 which puts the entry points at the bottom of subroutines and functions.

4th Berkeley Distribution 18 January 1983 1

PS (1)

NAME

UNIX Programmer’s Manual PS(1)

ps — process status

SYNOPSIS

ps [acegkistuvwx#]

DESCRIPTION

Ps prints information about processes. Normally, only your processes are candidates to be
printed by ps; specifying a causes other users processes to be candidates to be printed; specify-
ing x includes processes without control terminals in the candidate pool.

All output formats include, for each process, the process id PID, control terminal of the pro-
cess TT, cpu time used by the process TIME (this includes both user and system time), the
state STAT of the process, and an indication of the COMMAND which is running. The state is
given by a sequence of four letters, e.g. “RWNA”. The first letter indicates the runnability of
the process: R for runnable processes, T for stopped processes, P for processes in page wait, D
for those in disk (or other short term) waits, S for those sleeping for less than about 20
seconds, and I for idle (sleeping longer than about 20 seconds) processes. The second letter
indicates whether a process is swapped out, showing W if it is, or a blank if it is loaded (in-
core); a process which has specified a soft limit on memory requirements and which is exceed-
ing that limit shows >; such a process is (necessarily) not swapped. The third letter indicates
whether a process is running with altered CPU scheduling priority (nice); if the process priority
is reduced, an N is shown, if the process priority has been artificially raised then a ‘<’ is
shown; processes running without special treatment have just a blank. The final letter indicates
any special treatment of the process for virtual memory replacement; the letters correspond to
options to the vadvise(2) call; currently the possibilities are A standing for VA_ANOM, S for
VA_SEQL and blank for VA_NORM; an A typically represents a lisp(1) in garbage collection, S
is typical of large image processing programs which are using virtual memory to sequentially
address voluminous data.

Here are the options:

a asks for information about all processes with terminals (ordinarily only one’s own
processes are displayed).

c prints the command name, as stored internally in the system for purposes of accounting,
rather than the command arguments, which are kept in the process’ address space. This
is more reliable, if less informative, since the process is free to destroy the latter informa-
tion.

e Asks for the environment to be printed as well as the arguments to the command.

Asks for all processes. Without this option, ps only prints ‘‘interesting” processes.
Processes are deemed to be uninteresting if they are process group leaders. This normally
eliminates top-level command interpreters and processes waiting for users to login on free
terminals.

k causes the file /vmcore is used in place of /dev/kmem and /devimem. This is used for post-
mortem system debugging.

1 asks for a long listing, with fields PPID, CP, PRI, NI, ADDR, SIZE, RSS and WCHAN as
described below.

s Adds the size SSIZ of the kernel stack of each process (for use by system maintainers) to
the basic output format.

tx restricts output to processes whose controlling tty is x (which should be specified as
printed by ps, e.g. 3 for tty3, fco for console, 0 for ttyd0, ¢? for processes with no tty, ¢
for processes at the current tty, etc). This option must be the last one given.

u A user oriented output is produced. This includes fields USER, %CPU, NICE, SIZE, and

4th Berkeley Distribution 13 April 1983 1

PS (1)

UNIX Programmer’s Manual PS(1)

RSS as described below.

v A version of the output containing virtual memory statistics is output. This includes
fields RE, SL, PAGEIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU and %MEM. described
below.

w Use a wide output format (132 columns rather than 80); if repeated, e.g. ww, use arbi-
trarily wide output. This information is used to decide how much of long commands to

print.

X asks even about processes with no terminal.

A process number may be given, (indicated here by #), in which case the output is res-
tricted to that process. This option must also be last.

A second argument is taken to be the file containing the system’s namelist. Otherwise,
/vmunix is used. A third argument tells ps where to look for core if the k option is given,
instead of /vmcore. If a fourth argument is given, it is taken to be the name of a swap file to
use instead of the default /dev/drum.

Fields which are not common to all output formats:

USER
%CPU

PAGEIN

UID
PPID

CP

PRI
ADDR
WCHAN

name of the owner of the process

cpu utilization of the process; this is a decaying average over up to a minute of pre-
vious (real) time. Since the time base over which this is computed varies (since
processes may be very young) it is possible for the sum of all %CPU fields to exceed
100%.

(or NI) process scheduling increment (see setpriority (2))

virtual size of the process (in 1024 byte units)

real memory (resident set) size of the process (in 1024 byte units)

soft limit on memory used, specified via a call to setrlimit(2); if no limit has been
specified then shown as xx

size of text (shared program) image

size of resident (real memory) set of text

percentage of real memory used by this process.

residency time of the process (seconds in core)

sleep time of the process (seconds blocked)

number of disk i/0’s resulting from references by the process to pages not loaded in
core.

numerical user-id of process owner

numerical id of parent of process

short-term cpu utilization factor (used in scheduling)

process priority (non-positive when in non-interruptible wait)

swap address of the process

event on which process is waiting (an address in the system), with the initial part of
the address trimmed off e.g. 80004000 prints as 4000.

flags associated with process as in <sys/proc.h>:

SLOAD 000001 in core

SSYS 000002 swapper or pager process
SLOCK 000004 process being swapped out
SSWAP 000008 save area flag

STRC 000010 process is being traced

SWTED 000020 another tracing flag

SULOCK 000040 user settable lock in core
SPAGE 000080 process in page wait state
SKEEP 000100 another flag to prevent swap out

4th Berkeley Distribution 13 April 1983 2

PS(1) UNIX Programmer’s Manual PS(1)

SDLYU 000200 delayed unlock of pages

SWEXIT 000400 working on exiting

SPHYSIO 000800 doing physical i/o (bio.c)

SVFORK 001000 process resulted from vfork()
SVFDONE 002000 another vfork flag

SNOVM 004000 no vm, parent in a vfork()

SPAGI 008000 init data space on demand from inode
SANOM 010000 system detected anomalous vm behavior
SUANOM 020000 user warned of anomalous vm behavior
STIMO 040000 timing out during sleep

SDETACH 080000 detached inherited by init

SOUSIG 100000 using old signal mechanism

A process that has exited and has a parent, but has not yet been waited for by the parent is
marked <defunct>; a process which is blocked trying to exit is marked <exiting>; Ps makes
an educated guess as to the file name and arguments given when the process was created by
examining memory or the swap area. The method is inherently somewhat unreliable and in any
event a process is entitled to destroy this information, so the names cannot be counted on too

much.
FILES

/vmunix system namelist

/dev/kmem kernel memory

/dev/drum swap device

/vmcore core file

/dev searched to find swap device and tty names
SEE ALSO

kill(1), w(1)
BUGS

Things can change while ps is running; the picture it gives is only a close approximation to real-
ity.

4th Berkeley Distribution 13 April 1983 3

PTI(1) UNIX Programmer’s Manual PTI(1)

NAME

pti — phototypesetter interpreter
SYNOPSIS

pti [file ...]
DESCRIPTION

Pti shows the commands in a stream from the standard output of troff(1) using troffs —t
option, interpreting them as they would act on the typesetter. Horizontal motions shows as
counts in internal units and are marked with ‘<’ and ‘>’ indicating left and right motion.
Vertical space is called /ead and is also indicated.

SEE ALSO
troff (1)

BUGS
Too cryptic for normal users, who should use “troff —a ...”".

3rd Berkeley Distribution 24 February 1979 1

PTX (1) UNIX Programmer’s Manual PTX (1)

NAME

ptx — permuted index

SYNOPSIS

ptx [option] ... [input [output]]

DESCRIPTION

FILES

BUGS

Prx generates a permuted index to file input on file output (standard input and output default).
It has three phases: the first does the permutation, generating one line for each keyword in an
input line. The keyword is rotated to the front. The permuted file is then sorted. Finally, the
sorted lines are rotated so the keyword comes at the middle of the page. Pzx produces output
in the form:
xx "tail" "before keyword" "keyword and after” "head"
where .xx may be an nroff or troff{1) macro for user-defined formatting. The before keyword
and keyword and qfier fields incorporate as much of the line as will fit around the keyword when
it is printed at the middle of the page. Tail and head, at least one of which is an empty string
", are wrapped-around pieces small enough to fit in the unused space at the opposite end of the
line. When original text must be discarded, ‘/’ marks the spot.
The following options can be applied:
-f Fold upper and lower case letters for sorting.
=t Prepare the output for the phototypesetter; the default line length is 100 characters.
=w nUse the next argument, n, as the width of the output line. The default line length is 72
characters.
=g n Use the next argument, n, as the number of characters to allow for each gap among the
four parts of the line as finally printed. The default gap is 3 characters.

=0 only
Use as keywords only the words given in the only file.

=1 ignore
Do not use as keywords any words given in the ignore file. If the —1i and —o options
are missing, use /usr/lib/eign as the ignore file.

=b break
Use the characters in the break file to separate words. In any case, tab, newline, and
space characters are always used as break characters.

b 3 Take any leading nonblank characters of each input line to be a reference identifier (as
to a page or chapter) separate from the text of the line. Attach that identifier as a Sth
field on each output line.

The index for this manual was generated using pex.

/usr/bin/sort
/usr/lib/eign

Line length counts do not account for overstriking or proportional spacing.

7th Edition 18 January 1983 1

PWD (1) UNIX Programmer’s Manual ' PWD (1)

NAME
pwd — working directory name
SYNOPSIS
pwd
DESCRIPTION
Pwd prints the pathname of the working (current) directory.
SEE ALSO
cd(1), csh(1), getwd(3)
BUGS
In csh(1) the command dirs is always faster (although it can give a different answer in the rare
case that the current directory or a containing directory was moved after the shell descended
into it).

4th Berkeley Distribution 18 January 1983 1

PX (1) UNIX Programmer’s Manual PX (1)

NAME

px — Pascal interpreter
SYNOPSIS

px [obj [argument ...]]
DESCRIPTION

Px interprets the abstract machine code generated by pi. The first argument is the file to be
interpreted, and defaults to obj; remaining arguments are available to the Pascal program using
the built-ins argv and arge. Px is also invoked by pix when running ‘load and go’.

If the program terminates abnormally an error message and a control flow backtrace are printed.
The number of statements executed and total execution time are printed after normal termina-
tion. The p option of pi suppresses all of this except the message indicating the cause of abnor-
mal termination.

FILES
obj default object file
pmon.out profile data file
SEE ALSO

Berkeley Pascal User’s Manual
pi(1), pix(1)

DIAGNOSTICS
Most run-time error messages are self-explanatory. Some of the more unusual ones are:

Reference to an inactive file
A file other than input or output was used before a call to reset or rewrite.

Statement count limit exceeded
The limit of 500,000 executed statements (which prevents excessive looping or recur-
sion) has been exceeded.

Bad data found on integer read

Bad data found on real read
Usually, non-numeric input was found for a number. For reals, Pascal requires digits
before and after the decimal point so that numbers like .1’ or ‘21.’ evoke the second
diagnostic.

panic: Some message
Indicates a internal inconsistency detected in px probably due to a Pascal system bug.

AUTHORS
Charles B. Haley, William Joy, and Ken Thompson
VAX-11 version by Kirk McKusick

BUGS
Post-mortem traceback is not limited; infinite recursion leads to almost infinite traceback.

3rd Berkeley Distribution 8 April 1979 1

PXP(1) UNIX Programmer’s Manual PXP (1)

NAME

pxp — Pascal execution profiler
SYNOPSIS

pxp [—acdefjnstuw_] [—23456789] [=z [name ...]] name.p
DESCRIPTION

Pxp can be used to obtain execution profiles of Pascal programs or as a pretty-printer. To pro-
duce an execution profile all that is necessary is to translate the program specifying the z option
to pi or pix, to execute the program, and to then issue the command

PXp —z name.p

A reformatted listing is output if none of the ¢, t, or z options are specified; thus
pxp old.p > new.p

places a pretty-printed version of the program in ‘old.p’ in the file ‘new.p’.

The use of the following options of pxp is discussed in sections 2.6, 5.4, 5.5 and 5.10 of the
Berkeley Pascal User’s Manual.

—a Print the bodies of all procedures and functions in the profile; even those which were
never executed.

—c¢ Extract profile data from the file core.
=d Include declaration parts in a profile.

—e Eliminate include directives when reformatting a file; the include is replaced by the
reformatted contents of the specified file.

=f Fully parenthesize expressions.

=J Left justify all procedures and functions.

=n Eject a new page as each file is included; in profiles, print a blank line at the top of the
page.

=s Strip comments from the input text.

=t Print a table summarizing procedure and function call counts.

=u Card image mode; only the first 72 characters of input lines are used.

—w Suppress warning diagnostics.

=z Generate an execution profile. If no names, are given the profile is of the entire pro-
gram. If a list of names is given, then only any specified procedures or functions and the
contents of any specified include files will appear in the profile.

- Underline keywords.

=d With d a digit, 2 < d < 9, causes pxp to use d spaces as the basic indenting unit. The
default is 4.

FILES
name.p input file
name.i include file(s)
pmon.out profile data
core profile data source with —¢
/usr/lib/how_pxp information on basic usage

3rd Berkeley Distribution 8 April 1979 1

PXP (1) UNIX Programmer’s Manual PXP (1)

SEE ALSO
Berkeley Pascal User’s Manual
pi(1), px(1)

DIAGNOSTICS
For a basic explanation do

pxp
Error diagnostics include ‘No profile data in file’ with the ¢ option if the z option was not
. enabled to pi; ‘Not a Pascal system core file’ if the core is not from a px execution; ‘Program
and count data do not correspond’ if the program was changed after compilation, before
profiling; or if the wrong program is specified.

AUTHOR
William Joy

BUGS
Does not place multiple statements per line.

3rd Berkeley Distribution 8 April 1979 2

PXREF (1) UNIX Programmer’s Manual PXREF (1)

NAME
pxref — Pascal cross-reference program

SYNOPSIS
pxref [—] name

DESCRIPTION
Pxref makes a line numbered listing and a cross-reference of identifier usage for the program in
name. The optional ‘=’ argument suppresses the listing. The keywords goto and label are
treated as identifiers for the purpose of the cross-reference. Include directives are not pro-
cessed, but cause the placement of an entry indexed by ‘#include’ in the cross-reference.

SEE ALSO
Berkeley Pascal User’s Manual

AUTHOR
Niklaus Wirth

BUGS
Identifiers are trimmed to 10 characters.

3rd Berkeley Distribution . 8 April 1979 1

QUOTA (1) UNIX Programmer’s Manual QUOTA (1)

NAME
quota — display disc usage and limits

SYNOPSIS
quota [—qv] [user]

DESCRIPTION
Quota displays users’ disc usage and limits. Only the super-user may use the optional user argu-
ment to view the limits of users other than himself.
The —q flag prints a more terse message, containing only information on file systems where
usage is over quota.
If a —v flag is supplied, quota will also display user’s quotas on file systems where no storage is
allocated.
Quota reports only on file systems which have disc quotas. If guota exits with a non-zero status,
one or more file systems are over quota.

SEE ALSO
quota(2), quotaon(8)

4th Berkeley Distribution 28 July 1983 1

RANLIB(1) UNIX Programmer’s Manual RANLIB (1)

NAME

ranlib — convert archives to random libraries
SYNOPSIS

ranlib archive ...

DESCRIPTION
Ranlib converts each archive to a form which the loader can load more rapidly. Ranlib does this
by adding a table of contents called _.SYMDEF to the beginning of the archive. Ranlib uses
ar(1) to reconstruct the archive, so that sufficient temporary file space must be available in the
file system which contains the current directory.

SEE ALSO
1d(1), ar(1), lorder(1)

BUGS
Because generation of a library by ar and randomization of the library by ranlib are separate
processes, phase errors are possible. The loader, /d, warns when the modification date of a
library is more recent than the creation date of its dictionary; but this means that you get the
warning even if you only copy the library.

7th Edition 8 February 1983 1

RATFOR (1) UNIX Programmer’s Manual RATFOR (1)

NAME

ratfor — rational Fortran dialect
SYNOPSIS

ratfor [option ...] [filename ...]
DESCRIPTION

Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran. Ratfor provides
control flow constructs essentially identical to those in C:
statement grouping:

{ statement; statement; statement }
decision-making:

if (condition) statement [else statement]

switch (integer value) {

case integer: statement

[default:] statement

loops: while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)]
break
next
and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return (expression)
returns expression to caller from function

define: define name replacement

include:
include filename

Ratfor is best used with f77(1).

SEE ALSO
£77(1)
B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

7th Edition 18 January 1983 1

RCP (1C) UNIX Programmer’s Manual RCP (1C)

NAME

rcp — remote file copy

SYNOPSIS

rep filel file2
rep [—r] file ... directory

DESCRIPTION

Rcp copies files between machines. Each file or directory argument is either a remote file name
of the form ‘‘rhost:path’, or a local file name (containing no .’ characters, or a ‘/° before any
“’s.)

If the —r is specified and any of the source files are directories, rcp copies each subtree rooted
at that name; in this case the destination must be a directory.

If path is not a full path name, it is interpreted relative to your login directory on rhost. A path
on a remote host may be quoted (using \, ", or) so that the metacharacters are interpreted
remotely.

Rcp does not prompt for passwords; your current local user name must exist on rhost and allow
remote command execution via rsh(1C).

Rcp handles third party copies, where neither source nor target files are on the current machine.
Hostnames may also take the form ‘‘rhost.rname” to use rnmame rather than the current user
name on the remote host.

SEE ALSO

BUGS

ftp(1C), rsh(1C), rlogin(1C)

Doesn’t detect all cases where the target of a copy might be a file in cases where only a direc-
tory should be legal.

Is confused by any output generated by commands in a .login, .profile, or .cshrc file on the
remote host.

4th Berkeley Distribution 17 March 1982 1

REFER (1) UNIX Programmer’s Manual REFER (1)

NAME
refer — find and insert literature references in documents

SYNOPSIS
refer [—al[—bl[—cl[—ell—=fn]l[=kx][=lmn]l[—n][—pbib] [—skeys] I
—Bim][—-P][-S][file...]

DESCRIPTION
Refer is a preprocessor for nroff or troff(1) that finds and formats references for footnotes or
endnotes. It is also the base for a series of programs designed to index, search, sort, and print
stand-alone bibliographies, or other data entered in the appropriate form.

Given an incomplete citation with sufficiently precise keywords, refer will search a bibliographic
database for references containing these keywords anywhere in the title, author, journal, etc.
The input file (or standard input) is copied to standard output, except for lines between .[and
.1 delimiters, which are assumed to contain keywords, and are replaced by information from the
bibliographic database. The user may also search different databases, override particular fields,
or add new fields. The reference data, from whatever source, are assigned to a set of troff’
strings. Macro packages such as ms(7) print the finished reference text from these strings. By
default references are flagged by footnote numbers.

The following options are available:

—an Reverse the first » author names (Jones, J. A. instead of J. A. Jones). If nis omitted all
author names are reversed.

—b Bare mode: do not put any flags in text (neither numbers nor labels).

—ckeys
Capitalize (with CAPS SMALL CAPs) the fields whose key-letters are in keys.

—e Instead of leaving the references where encountered, accumulate them until a sequence
of the form

SLIST$
]

is encountered, and then write out all references collected so far. Collapse references to
same source.

—fn Set the footnote number to » instead of the default of 1 (one). With labels rather than
numbers, this flag is a no-op.

—kx Instead of numbering references, use labels as specified in a reference data line begin-
ning %x; by default x is L.

=l1m,n
Instead of numbering references, use labels made from the senior author’s last name and
the year of publication. Only the first m letters of the last name and the last n digits of
the date are used. If either m or n is omitted the entire name or date respectively is
used.

—n Do not search the default file /usr/dict/papers/Ind. If there is a REFER environment
variable, the specified file will be searched instead of the default file; in this case the —n
flag has no effect.

—=p bib
Take the next argument bib as a file of references to be searched. The default file is
searched last.

—skeys
Sort references by fields whose key-letters are in the keys string; permute reference

4th Berkeley Distribution 18 July 1983 1

REFER (1) UNIX Programmer’s Manual REFER (1)

numbers in text accordingly. Implies —e. The key-letters in keys may be followed by a
number to indicate how many such fields are used, with 4+ taken as a very large number.
The default is AD which sorts on the senior author and then date; to sort, for example,
on all authors and then title use -sA+T.

—Bim
" Bibliography mode. Take a file composed of records separated by blank lines, and turn
them into troff input. Label / will be turned into the macro .m with / defaulting to %X
and .m defaulting to .AP (annotation paragraph).

—P Place punctuation marks .,:;?! after the reference signal, rather than before. (Periods
and commas used to be done with strings.)

—S Produce references in the Natural or Social Science format.

To use your own references, put them in the format described below. They can be searched
more rapidly by running indxbib(1) on them before using refer; failure to index results in a
linear search. When refer is used with the egn, negn or tbl preprocessors refer should be first, to
minimize the volume of data passed through pipes.

The refer preprocessor and associated programs expect input from a file of refeérences composed
of records separated by blank lines. A record is a set of lines (fields), each containing one kind
of information. Fields start on a line beginning with a ““%”’, followed by a key-letter, then a
blank, and finally the contents of the field, and continue until the next line starting with *%”’.
The output ordering and formatting of fields is controlled by the macros specified for nrofftroff
(for footnotes and endnotes) or roffbib (for stand-alone bibliographies). For a list of the most
common key-letters and their corresponding fields, see addbib(1). An example of a refer entry
is given below.

EXAMPLE

FILES

%A M. E. Lesk
%T Some Applications of Inverted Indexes on the UNIX System
%B UNIX Programmer’s Manual

%V 2b

%I Bell Laboratories
%C Murray Hill, NJ
%D 1978

/usr/dict/papers directory of default publication lists
/usr/lib/refer directory of companion programs

SEE ALSO

addbib(1), sortbib(1), roffbib(1), indxbib(1), lookbib(1)

AUTHOR

BUGS

Mike Lesk

Blank spaces at the end of lines in bibliography fields will cause the records to sort and reverse
incorrectly. Sorting large numbers of references causes a core dump.

4th Berkeley Distribution 18 July 1983 2

RESET (1) UNIX Programmer’s Manual RESET (1)

NAME
reset — reset the teletype bits to a sensible state

SYNOPSIS
reset

DESCRIPTION
Reset sets the terminal to cooked mode, turns off cbreak and raw modes, turns on nl, and
restores special characters that are undefined to their default values.
This is most useful after a program dies leaving a terminal in a funny state; you have to type
“<LF>reset<LF>" to get it to work then to the shell, as <CR> often doesn’t work: often
none of this will echo.
It is a good idea to follow reset with tser(1)

SEE ALSO
stty(1), tset(1)

BUGS
Doesn’t set tabs properly; it can’t intuit personal choices for interrupt and line kill characters,
so it leaves these set to the local system standards.

4th Berkeley Distribution 18 July 1983 1

REV (1) UNIX Programmer’s Manual REV (1)

NAME
rev — reverse lines of a file

SYNOPSIS
rev [file] ...

DESCRIPTION
Rev copies the named files to the standard output, reversing the order of characters in every
line. If no file is specified, the standard input is copied.

7th Edition 18 January 1983 1

RLOGIN (1C) UNIX Programmer’s Manual RLOGIN(1C)

NAME

rlogin — remote login

SYNOPSIS

rlogin rhost [—ec] [—8] [—1 username]
rhost [—ec] [=8] [=1 username]

DESCRIPTION

Rlogin connects your terminal on the current local host system /host to the remote host system
rhost.

Each host has a file /etc/hosts.equiv which contains a list of rhost’s with which it shares account
names. (The host names must be the standard names as described in rsh(1C).) When you rlo-
gin as the same user on an equivalent host, you don’t need to give a password. Each user may
also have a private equivalence list in a file .rhosts in his login directory. Each line in this file
should contain a rhost and a username separated by a space, giving additional cases where logins
without passwords are to be permitted. If the originating user is not equivalent to the remote
user, then a login and password will be prompted for on the remote machine as in login(1). To
avoid some security problems, the .rhosts file must be owned by either the remote user or root
and may not be a symbolic link.

Your remote terminal type is the same as your local terminal type (as given in your environ-
ment TERM variable). All echoing takes place at the remote site, so that (except for delays)
the rlogin is transparent. Flow control via “S and “Q and flushing of input and output on inter-
rupts are handled properly. The optional argument —8 allows an eight-bit data path, otherwise
parity bits are stripped. A line of the form ‘. disconnects from the remote host, where 7’
is the escape character. Similarly, the line “~"Z’" (where "Z, control-Z, is the suspend charac-
ter) will suspend the rlogin session. Substitution of the delayed-suspend character (normally
"Y) for the suspend character suspends the send portion of the rlogin, but allows output from
the remote system. A different escape character may be specified by the —e option. There is
no space separating this option flag and the argument character.

SEE ALSO

FILES

BUGS

rsh(1C)

/usr/hosts/* for rhost version of the command

More terminal characteristics should be propagated.

4th Berkeley Distribution 10 February 1983 1

RM (1) UNIX Programmer’s Manual RM (1)

NAME

rm, rmdir — remove (unlink) files or directories
SYNOPSIS

m[—f][-r][=1][=]fie..

rmdir dir ...
DESCRIPTION

Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed
and a line is read from the standard input. If that line begins with ‘y’ the file is deleted, other-
wise the file remains. No questions are asked and no errors are reported when the —f (force)
option is given.

If a designated file is a directory, an error comment is printed unless the optional argument —r
has been used. In that case, rm recursively deletes the entire contents of the specified direc-
tory, and the directory itself.

If the —1 (interactive) option is in effect, rm asks whether to delete each file, and, under —r,
whether to examine each directory.

The null option — indicates that all the arguments following it are to be treated as file names.
This allows the specification of file names starting with a minus.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO
rm(1), unlink(2), rmdir(2)

4th Berkeley Distribution 1 April 1981 1

RMAIL (1) UNIX Programmer’s Manual RMAIL (1)

NAME
rmail — handle remote mail received via uucp

SYNOPSIS
rmail user ...

DESCRIPTION
Rmail interprets incoming mail received via uucp(1C), collapsing ‘“From” lines in the form
generated by binmail(1) into a single line of the form ‘‘return-path!sender”’, and passing the
processed mail on to sendmail(8).

Rmail is explicitly designed for use with uucp and sendmail.

SEE ALSO
binmail(1), uucp(1C), sendmail (8)

BUGS
Rmail should not reside in /bin.

4th Berkeley Distribution 2 April 1983 1

RMDIR (1) UNIX Programmer’s Manual RMDIR (1)
NAME
rmdir, rm — remove (unlink) directories or files
SYNOPSIS
rmdir dir ...
m([—=f][=r][=1]1[-]fie..
DESCRIPTION

Rmdir removes entries for the named directories, which must be empty.

Rm removes the entries for one or more files from a directory. If an entry was the last link to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but
neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions are printed
and a line is read from the standard input. If that line begins with ‘y’ the file is deleted, other-
wise the file remains. No questions are asked and no errors are reported when the —f (force)
option is given.

If a designated file is a directory, an error comment is printed unless the optional argument —r
has been used. In that case, rm recursively deletes the entire contents of the specified direc-
tory, and the directory itself.

If the —1i (interactive) option is in effect, rm asks whether to delete each file, and, under —r,
whether to examine each directory.

The null option — indicates that all the arguments following it are to be treated as file names.
This allows the specification of file names starting with a minus.

SEE ALSO
rm(1), unlink(2), rmdir(2)

7th Edition 1 April 1981 1

ROFFBIB (1) UNIX Programmer’s Manual ROFFBIB (1)

NAME

roffbib — run off bibliographic database

SYNOPSIS

rofibib [—e] [=h] [=nl[=o][=r][=s][=Tterm] [=x]1[=m mac] [-V][
-Qllfie...]

DESCRIPTION

FILES

Roffbib prints out all records in a bibliographic database, in bibliography format rather than as
footnotes or endnotes. Generally it is used in conjunction with sortbib:

sortbib database | roffbib

Roffbib accepts most of the options understood by nroff(1), most importantly the —T flag to
specify terminal type.

If abstracts or comments are entered following the %X field key, roffbib will format them into
paragraphs for an annotated bibliography. Several %X fields may be given if several annotation
paragraphs are desired. The —x flag will suppress the printing of these abstracts.

A user-defined set of macros may be specified after the —m option. There should be a space
between the —m and the macro filename. This set of macros will replace the ones defined in
/usr/lib/tmac/tmac.bib. The —V flag will send output to the Versatec; the —Q flag will queue
output for the phototypesetter.

Four command-line registers control formatting style of the bibliography, much like the
number registers of ms(7). The command-line argument —rN1 will number the references
starting at one (1). The flag —rV2 will double space the bibliography, while —rV1 will double
space references but single space annotation paragraphs. The line length can be changed from
the default 6.5 inches to 6 inches with the —rL6i argument, and the page offset can be set from
the default of 0 to one inch by specifying —rOli (capital O, not zero). Note: with the —V and
—Q flags the default page offset is already one inch.

/usr/lib/tmac/tmac.bib file of macros used by nrofftroff

SEE ALSO

refer(1), addbib(1), sortbib(1), indxbib(1), lookbib(1)

AUTHORS

BUGS

Greg Shenaut, Bill Tuthill

Users have to rewrite macros to create customized formats.

4th Berkeley Distribution 18 July 1983 1

RSH (1C) UNIX Programmer’s Manual RSH (1C)

NAME

rsh — remote shell

SYNOPSIS

rsh host [=1 username] [=n] command
host [=1 username] [=n] command

DESCRIPTION

FILES

Rsh connects to the specified host, and executes the specified command. Rsh copies its standard
input to the remote command, the standard output of the remote command to its standard out-
put, and the standard error of the remote command to its standard error. Interrupt, quit and
terminate signals are propagated to the remote command; rsh normally terminates when the
remote command does.

The remote username used is the same as your local username, unless you specify a different
remote name with the =1 option. This remote name must be equivalent (in the sense of
rlogin(1C)) to the originating account; no provision is made for specifying a password with a
command.
If you omit command, then instead of executing a single command, you will be logged in on the
remote host using rlogin(1C).
Shell metacharacters which are not quoted are interpreted on local machine, while quoted meta-
characters are interpreted on the remote machine. Thus the command

rsh otherhost cat remotefile > > localfile
appends the remote file remotefile to the localfile localfile, while

rsh otherhost cat remotefile "> >" otherremotefile
appends remotefile to otherremotefile.

Host names are given in the file /etc/hosts. Each host has one standard name (the first name
given in the file), which is rather long and unambiguous, and optionally one or more nick-
names. The host names for local machines are also commands in the directory /usr/hosts; if
you put this directory in your search path then the rsh can be omitted.

/etc/hosts
/usr/hosts/»

SEE ALSO

BUGS

rlogin (1C)

If you are using csh(1) and put a rsh(1C) in the background without redirecting its input away
from the terminal, it will block even if no reads are posted by the remote command. If no
input is desired you should redirect the input of rsh to /dev/null using the —n option.

You cannot run an interactive command (like rogue(6) or vi(1)); use rlogin(1C).

Stop signals stop the local rsh process only; this is arguably wrong, but currently hard to fix for
reasons too complicated to explain here.

4th Berkeley Distribution 17 March 1982 1

RUPTIME (1C) UNIX Programmer’s Manual RUPTIME (1C)

NAME

ruptime — show host status of local machines
SYNOPSIS

ruptime [—al [=11 [=¢] [—u]
DESCRIPTION

Ruptime gives a status line like uptime for each machine on the local network; these are formed
from packets broadcast by each host on the network once a minute.

Machines for which no status report has been received for 5 minutes are shown as being down.
Users idle an hour or more are not counted unless the —a flag is given.

Normally, the listing is sorted by host name. The =1, —t , and —u flags specify sorting by
load average, uptime, and number of users, respectively.

FILES
/usr/spool/rwho/whod.= data files

SEE ALSO
rwho(1C)

4th Berkeley Distribution 8 March 1982 1

RWHO (1C) UNIX Programmer’s Manual RWHO (1C)

NAME
rwho — who’s logged in on local machines

SYNOPSIS
rwho [—=a]

DESCRIPTION
The rwho command produces output similar to who, but for all machines on the local network.
If no report has been received from a machine for 5 minutes then rwho assumes the machine is
down, and does not report users last known to be logged into that machine.
If a users hasn’t typed to the system for a minute or more, then rwho reports this idle time. If
a user hasn’t typed to the system for an hour or more, then the user will be omitted from the
output of rwho unless the —a flag is given.

FILES
/usr/spool/rwho/whod.= information about other machines

SEE ALSO
ruptime(1C), rwhod(8C)

BUGS
This is unwieldy when the number of machines on the local net is large.

4th Berkeley Distribution 23 March 1982 1

SCRIPT (1) UNIX Programmer’s Manual SCRIPT (1)

NAME
script — make typescript of terminal session
SYNOPSIS
script [—a] [file]
DESCRIPTION
Script makes a typescript of everything printed on your terminal. The typescript is written to

Jfile, or appended to file if the —a option is given. It can be sent to the line printer later with
Ipr. If no file name is given, the typescript is saved in the file typescript.

The script ends when the forked shell exits.
This program is useful when using a crt and a hard-copy record of the dialog is desired, as for a
student handing in a program that was developed on a crt when hard-copy terminals are in short
supply.

BUGS
Script places everything in the log file. This is not what the naive user expects.

4th Berkeley Distribution 26 March 1982 1

SED (1) UNIX Programmer’s Manual SED (1)

NAME

sed — stream editor
SYNOPSIS

sed [—n] [—escript] [=fsfile] [file] ...
DESCRIPTION

Sed copies the named files (standard input default) to the standard output, edited according to a
script of commands. The —f option causes the script to be taken from file sfile; these options
accumulate. If there is just one —e option and no =—f’s, the flag —e may be omitted. The =n
option suppresses the default output.

A script consists of editing commands, one per line, of the following form:
[address [, address]] function [arguments]

In normal operation sed cyclically copies a line of input into a patfern space (unless there is
something left after a ‘D’ command), applies in sequence all commands whose addresses select
that pattern space, and at the end of the script copies the pattern space to the standard output
(except under —n) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a ‘§’
that addresses the last line of input, or a context address, ‘/regular expression/’, in the style of
ed(1) modified thus:

The escape sequence ‘\n’ matches a newline embedded in the pattern space.
A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern space that
matches the first address through the next pattern space that matches the second. (If the
second address is a number less than or equal to the line number first selected, only one line is
selected.) Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of the negation
function ‘" (below).

In the following list of functions the maximum number of permissible addresses for each func-
tion is indicated in parentheses.

An argument denoted fext consists of one or more lines, all but the last of which end with ‘\’ to
hide the newline. Backslashes in text are treated like backslashes in the replacement string of
an ‘s’ command, and may be used to protect initial blanks and tabs against the stripping that is
done on every script line.

An argument denoted rfile or wfile must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can be at most 10 dis-
tinct wfile arguments.

(1) a\
text
Append. Place fext on the output before reading the next input line.

(2) b label
Branch to the ¢’ command bearing the label. If label is empty, branch to the end of the
script.

(2) c\

text
Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address
range, place fext on the output. Start the next cycle.

7th Edition 18 January 1983 1

SED (1) UNIX Programmer’s Manual SED (1)

(2)d Delete the pattern space. Start the next cycle.

(2)D Delete the initial segment of the pattern space through the first newline. Start the next
cycle.

(2)g Replace the contents of the pattern space by the contents of the hold space.
()G Append the contents of the hold space to the pattern space.

(2)h Replace the contents of the hold space by the contents of the pattern space.
(2)H Append the contents of the pattern space to the hold space.

@Mi\

text
Insert. Place text on the standard output.

(2)n Copy the pattern space to the standard output. Replace the pattern space with the next
line of input.

(2)N Append the next line of input to the pattern space with an embedded newline. (The
current line number changes.)

(2)p Print. Copy the pattern space to the standard output.
(2)P Copy the initial segment of the pattern space through the first newline to the standard

output.
(1q Quit. Branch to the end of the script. Do not start a new cycle.
Q)1 rfile

Read the contents of rfile. Place them on the output before reading the next input line.

(2) s/regular expressionireplacement/flags
Substitute the replacement string for instances of the regular expression in the pattern
space. Any character may be used instead of ‘/’. For a fuller description see ed(1).
Flags is zero or more of

g Global. Substitute for all nonoverlapping instances of the regular expression
rather than just the first one.

p Print the pattern space if a replacement was made.
w wfile Write. Append the pattern space to wfileif a replacement was made.
(2) t label

Test. Branch to the ‘” command bearing the labe! if any substitutions have been made
since the most recent reading of an input line or execution of a ‘t’. If label is empty,
branch to the end of the script.

Q) w wfile
Write. Append the pattern space to wfile.

(2)x Exchange the contents of the pattern and hold spaces.

(2) y/stringl/string2/
Transform. Replace all occurrences of characters in stringl with the corresponding
character in string2. The lengths of stringl and string2 must be equal.

(2)! function
Don’t. Apply the function (or group, if function is (*) only to lines not selected by the
address(es). .

(0) : label
This command does nothing; it bears a label for ‘b’ and ‘t> commands to branch to.

(1) = Place the current line number on the standard output as a line.

7th Edition 18 January 1983 2

SED (1) UNIX Programmer’s Manual SED (1)

(2){ Execute the following commands through a matching ‘}> only when the pattern space is
selected.

0) An empty command is ignored.

SEE ALSO
ed(1), grep(1), awk(1), lex(1)

7th Edition 18 January 1983 3

SENDBUG (1) UNIX Programmer’s Manual SENDBUG (1)

NAME

sendbug — mail a system bug report to 4bsd-bugs
SYNOPSIS

sendbug [address |
DESCRIPTION

Bug reports sent to ‘4bsd-bugs@BERKELEY’ are intercepted by a program which expects bug
reports to conform to a standard format. Sendbug is a shell script to help the user compose and
mail bug reports in the correct format. Sendbug works by invoking vi(1) on a temporary copy
of the bug report format outline. The user must fill in the appropriate fields and exit vi. Send-
bug then mails the completed report to ‘4bsd-bugs@BERKELEY’ or the address specified on
the command line.

FILES
/usr/ucb/bugformat contains the bug report outline

SEE ALSO
vi(1), sendmail (8)

4th Berkeley Distribution 11 May 1983 1

SH(1) UNIX Programmer’s Manual SH (1)

NAME
sh, for, case, if, while, :, ., break, continue, cd, eval, exec, exit, export, login, read, readonly,
set, shift, times, trap, umask, wait — command language

SYNOPSIS
sh [—ceiknrstuvx] [arg] ...
DESCRIPTION

Sh is a command programming language that executes commands read from a terminal or a file.
See invocation for the meaning of arguments to the shell.

Commands.

A simple-command is a sequence of non blank words separated by blanks (a blank is a tab or a
space). The first word specifies the name of the command to be executed. Except as specified
below the remaining words are passed as arguments to the invoked command. The command
name is passed as argument O (see execve(2)). The value of a simple-command is its exit status
if it terminates normally or 200+ status if it terminates abnormally (see sigvec(2) for a list of
status values). .

A pipeline is a sequence of one or more commands separated by |. The standard output of each
command but the last is connected by a pipe(2) to the standard input of the next command.
Each command is run as a separate process; the shell waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ;, &, && or |l and optionally ter-
minated by ; or & ; and & have equal precedence which is lower than that of && and |1, &&
and 11 also have equal precedence. A semicolon causes sequential execution; an ampersand
causes the preceding pipeline to be executed without waiting for it to finish. The symbol &&
(1) causes the list following to be executed only if the preceding pipeline returns a zero (non
zero) value. Newlines may appear in a list, instead of semicolons, to delimit commands.

A command is either a simple-command or one of the following. The value returned by a com-
mand is that of the last simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed name is set to the next word in the for word list
If in word ... is omitted, in "$@" is assumed. Execution ends when there are no more
words in the list.

case word in [pattern [| pattern] ...) list ;3] ... esac
A case command executes the /ist associated with the first pattern that matches word.
The form of the patterns is the same as that used for file name generation.

if list then list [elif list then list] ... [else list] fi
The list following if is executed and if it returns zero the /ist following then is executed.
Otherwise, the list following elif is executed and if its value is zero the list following
then is executed. Failing that the else /ist is executed.

while /ist [do list] done
A while command repeatedly executes the while /ist and if its value is zero executes
the do list; otherwise the loop terminates. The value returned by a while command is
that of the last executed command in the do /ist. until may be used in place of while to
negate the loop termination test.

(list) Execute listin a subshell.

{ list } listis simply executed.

The following words are only recognized as the first word of a command and when not quoted.
if then else elif fi case in esac for while until do done { }

7th Edition 7 February 1983 1

SH(1) UNIX Programmer’s Manual SH(1)

Command substitution.
The standard output from a command enclosed in a pair of back quotes (**) may be used as °
part or all of a word; trailing newlines are removed.

Parameter substitution.]
The character $ is used to introduce substitutable parameters. Positional parameters may be
assigned values by set. Variables may be set by writing

name = value [name=value]

$ {parameter)

A parameter is a sequence of letters, digits or underscores (a name), a digit, or any of
the characters « @ # ? — $!. The value, if any, of the parameter is substituted. The
braces are required only when parameter is followed by a letter, digit, or underscore that
is not to be interpreted as part of its name. If parameter is a digit, it is a positional
parameter. If parameter is « or @ then all the positional parameters, starting with $1,
are substituted separated by spaces. $0 is set from argument zero when the shell is
invoked.

$ {parameter —word)
If parameter is set, substitute its value; otherwise substitute word.

$ {parameter= word)
If parameter is not set, set it to word; the value of the parameter is then substituted.
Positional parameters may not be assigned to in this way.

8 {parameter ? word}
If parameter is set, substitute its value; otherwise, print word and exit from the shell. If
word is omitted, a standard message is printed.

$ { parameter+word)
If paramerter is set, substitute word: otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string. (So that, for
example, echo ${d—"pwd’} will only execute pwd if d is unset.)

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.

Options supplied to the shell on invocation or by set.

The value returned by the last executed command in decimal.
The process number of this shell.

The process number of the last background command invoked.

e %

The following parameters are used but not set by the shell.

HOME The default argument (home directory) for the ¢d command.

PATH The search path for commands (see execution).

MAIL If this variable is set to the name of a mail file, the shell informs the user of
the arrival of mail in the specified file.

PS1 Primary prompt string, by default ’$ °.

PS2 Secondary prompt string, by default *> °.

IFS Internal field separators, normally space, tab, and newline.

Blank interpretation.

After parameter and command substitution, any results of substitution are scanned for internal
field separator characters (those found in $IFS) and split into distinct arguments where such
characters are found. Explicit null arguments (" or **) are retained. Implicit null arguments
(those resulting from parameters that have no values) are removed.

7th Edition 7 February 1983 2

SH (1) UNIX Programmer’s Manual SH (1)

File name generation.

Following substitution, each command word is scanned for the characters e, ? and [. If one of
these characters appears, the word is regarded as a pattern. The word is replaced with alphabet-
ically sorted file names that match the pattern. If no file name is found that matches the pat-
tern, the word is left unchanged. The character . at the start of a file name or immediately fol-
lowing a /, and the character /, must be matched explicitly.

s Matches any string, including the nuil string.

? Matches any single character.

[...1 Matches any one of the characters enclosed. A pair of characters separated by —
matches any character lexically between the pair.

Quoting.
The following characters have a special meaning to the shell and cause termination of a word
unless quoted.

: & () | < > mnewline space tab

A character may be quoted by preceding it with a \. \mewline is ignored. All characters
enclosed between a pair of quote marks (*°), except a single quote, are quoted. Inside double
quotes ("") parameter and command substitution occurs and \ quotes the characters \ * " and 8.

"$s" is equivalent to "$1 $2 ..." whereas
"$@" is equivalent to "$1" "$2"

Prompting.

When used interactively, the shell prompts with the value of PS1 before reading a command. If
at any time a newline is typed and further input is needed to complete a command, the secon-
dary prompt (§Ps2) is issued.

Input output.

Before a command is executed its input and output may be redirected using a special notation
interpreted by the shell. The following may appear anywhere in a simple-command or may pre-
cede or follow a command and are not passed on to the invoked command. Substitution occurs
before word or digit is used.

< word Use file word as standard input (file descriptor 0).

> word Use file word as standard output (file descriptor 1). If the file does not exist, it is
created; otherwise it is truncated to zero length.

>> word
Use file word as standard output. If the file exists, output is appended (by seeking to
the end); otherwise the file is created.

<< word
The shell input is read up to a line the same as word, or end of file. The resulting
document becomes the standard input. If any character of word is quoted, no interpre-
tation is placed upon the characters of the document; otherwise, parameter and com-
mand substitution occurs, \newline is ignored, and \ is used to quote the characters \'$
" and the first character of word.

< & digit
The standard input is duplicated from file descriptor digit; see dup(2). Similarly for the
standard output using > .

<& — The standard input is closed. Similarly for the standard output using > .

If one of the above is prececed by a digit, the file descriptor created is that specified by the digit
(instead of the default 0 or 1). For example,

7th Edition 7 February 1983 3

SH (1) UNIX Programmer’s Manual SH (1)

. 2>&1
creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is the empty
file (/dev/null). Otherwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input output specifications.

Environment.

The environment is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list; see execve(2) and environ(7). The shell interacts with the
environment in several ways. On invocation, the shell scans the environment and creates a
parameter for each name found, giving it the corresponding value. Executed commands inherit
the same environment. If the user modifies the values of these Dbarameters ot creates new ones,
none of these affects the environment unless the export command is used to bind the shell’s
Pparameter to the environment. The environment seen by any executed command is thus com-
posed of any unmodified name-value pairs originally inherited by the shell, plus any
modifications or additions, all cf which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with one or more
assignments to parameters. Thus these two lines are equivalent

TERM =450 cmd args
(export TERM; TERM =450; cmd args)

If the —k flag is set, all keyword arguments are placed in the environment, even if the occur
after the command name. The following prints *a=b ¢’ and ’c’:

echoa=bc

set —k

echoa=b¢

Signals.

The INTERRUPT and QUIT signals for an invoked command are ignored if the command is
followed by &; otherwise signals have the values inherited by the shell from its parent. (But
see also trap.)

Execution.

Each time a command is executed the above substitutions are carried out. Except for the ’spe-
cial commands’ listed below a new process is created and an attempt is made to execute the
command via an execve(2).

The shell parameter $PATH defines the search path for the directory containing the command.
Each alternative directory name is separated by a colon (:). The default path is :/bin:/usr/bin.
If the command name contains a /, the search path is not used. Otherwise, each directory in
the path is searched for an executable file. If the file has execute permission but is not an a.our
file, it is assumed to be a file containing shell commands. A subshell (ie., a separate process)
is spawned to read it. A parenthesized command is also executed in a subshell.

Special commands.
The following commands are executed in the shell process and except where specified no input
output redirection is permitted for such commands.

No effect; the command does nothing.
. file Read and execute commands from Jfile and return. The search path $PATH is used to
find the directory containing file.
break [n]
Exit from the enclosing for or while loop, if any. If nis specified, break # levels.
continue [n]
Resume the next iteration of the enclosing for or while loop. If n is specified, resume

7th Edition 7 February 1983 4

SH(1) UNIX Programmer’s Manual SH(1)

at the n-th enclosing loop.
cd [argl
Change the current directory to arg. The shell parameter SHOME is the default arg.
eval [arg ...]
The arguments are read as input to the shell and the resulting command(s) executed.
exec [arg ...]
The command specified by the arguments is executed in place of this shell without
creating a new process. Input output arguments may appear and if no other arguments
are given cause the shell input output to be modified.
exit [n]
Causes a non interactive shell to exit with the exit status specified by n. If n is omitted,
the exit status is that of the last command executed. (An end of file will also exit from
the shell.)
export [name ...}
The given names are marked for automatic export to the environment of subsequently-
executed commands. If no arguments are given, a list of exportable names is printed.
login [arg ...}
Equivalent to ’exec login arg ...".
read name ...
One line is read from the standard input; successive words of the input are assigned to
the variables name in order, with leftover words to the last variable. The return code is
0 unless the end-of-file is encountered.
readonly [name ...1
The given names are marked readonly and the values of the these names may not be
changed by subsequent assignment. If no arguments are given, a list of all readonly
names is printed.
set [—eknptuvx [arg...]]
—e If non interactive, exit immediately if a command fails.
—k All keyword arguments are placed in the environment for a command, not just
those that precede the command name.
—n Read commands but do not execute them.
—t Exit after reading and executing one command.
—u Treat unset variables as an error when substituting.
—v Print shell input lines as they are read.
—x Print commands and their arguments as they are executed.
-_ Turn off the —x and —v options.

These flags can also be used upon invocation of the shell. The current set of flags may
be found in $—.

Remaining arguments are positional parameters and are assigned, in order, to $1, $2,
etc. If no arguments are given, the values of all names are printed.

shift The positional parameters from $2... are renamed $1...
times Print the accumulated user and systern times for processes run from the shell.

trap [argl [n] ..

Arg is a command to be read and executed when the shell receives signal(s) n. (Note
that arg is scanned once when the trap is set and once when the trap is taken.) Trap
commands are executed in order of signal number. If arg is absent, all trap(s) n are
reset to their original values. If argis the null string, this signal is ignored by the shell
and by invoked commands. If nis 0, the command arg is executed on exit from the
shell, otherwise upon receipt of signal n as numbered in sigvec(2). Trap with no argu-
ments prints a list of commands associated with each signal number.

7th Edition 7 February 1983)

SH (1) UNIX Programmer’s Manual SH (1)

umask [nnn]
The user file creation mask is set to the octal value nnn (see umask(2)). If nnnis omit-
ted, the current value of the mask is printed.

wait [n]
Wait for the specified process and report its termination status. If 7 is not given, all
currently active child processes are waited for. The return code from this command is
that of the process waited for.

Invocation.

If the first character of argument zero is —, commands are read from $SHOME/. profile, if such a
file exists. Commands are then read as described below. The following flags are interpreted by
the shell when it is invoked.

—c string If the —c flag is present, commands are read from string.

=s If the —s flag is present or if no arguments remain then commands are read from
the standard input. Shell output is written to file descriptor 2.
| If the —i flag is present or if the shell input and output are attached to a terminal

(as told by gnty) then this shell is inferactive. In this case the terminate signal
SIGTERM (see sigvec(2)) is ignored (so that ’kill 0’ does not kill an interactive
shell) and the interrupt signal SIGINT is caught and ignored (so that wait is inter-
ruptible). In all cases SIGQUIT is ignored by the shell.

The remaining flags and arguments are described under the set command.

FILES
$HOME/. profile
/tmp/sh=*
/dev/null

SEE ALSO
csh(1), test(1), execve(2), environ(7)

DIAGNOSTICS
Errors detected by the shell, such as syntax errors cause the shell to return a non zero exit
status. If the shell is being used non interactively then execution of the shell file is abandoned.
Otherwise, the shell returns the exit status of the last command executed (see also exit).

BUGS
If << is used to provide standard input to an asynchronous process invoked by &, the shell gets
mixed up about naming the input document. A garbage file /tmp/sh+ is created, and the shell
complains about not being able to find the file by another name.

7th Edition 7 February 1983 6

SIZE (1) UNIX Programmer’s Manual SIZE (1)

NAME .
size — size of an object file
SYNOPSIS
size [object ...]
DESCRIPTION
Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their
sum in hex and decimal, of each object-file argument. If no file is specified, a.out is used.
SEE ALSO

a.out(5)

7th Edition 18 January 1983 1

SLEEP (1) UNIX Programmer’s Manual SLEEP (1)

NAME
sleep — suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to execute a command after a certain
amount of time as in:

(sleep 105; command) &
or to execute a command every so often, as in:

while true
do
command
sleep 37
done

SEE ALSO
setitimer (2), alarm (3C), sleep(3)

BUGS
Time must be less than 2,147,483,647 seconds.

7th Edition 10 February 1983 1

SOELIM (1) UNIX Programmer’s Manual SOELIM (1)

NAME

soelim — eliminate .so’s from nroff input
SYNOPSIS

soelim [file ...]
DESCRIPTION

Soelim reads the specified files or the standard input and performs the textual inclusion implied
by the nroff directives of the form

.50 somefile

when they appear at the beginning of input lines. This is useful since programs such as b/ do
not normally do this; it allows the placement of individual tables in separate files to be run as a
part of a large document.

An argument consisting of a single minus (=) is taken to be a file name corresponding to the
standard input.

Note that inclusion can be suppressed by using

s

instead of ‘., i.e.
‘so /usr/lib/tmac.s

A sample usage of soelim would be
soelim exum?.n | tbl | nroff —ms | col | Ipr

SEE ALSO

colert(1), more(1)
AUTHOR

William Joy

BUGS
The format of the source commands must involve no strangeness — exactly one blank must
precede and no blanks follow the file name.

7th Edition 16 September 1982 1

SORT (1) UNIX Programmer’s Manual SORT (1)

NAME
sort — sort or merge files

SYNOPSIS
sort [—mubdfinrtx] [4+posI [=pos2]].. [—o name] [=T directory] [name] ...

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the standard output. The
name ‘—’ means the standard input. If no input files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine
collating sequence. The ordering is affected globally by the following options, one or more of
which may appear.
b Ignore leading blanks (spaces and tabs) in field comparisons.

‘Dictionary’ order: only letiers, digits and blanks are significant in comparisons.

d

f Fold upper case letters onto lower case.

i Ignore characters outside the ASCII range 040-0176 in nonnumeric comparisons.
n

An initial numeric string, consisting of optional blanks, optional minus sign, and zero or
more digits with optional decimal point, is sorted by arithmetic value. Option n implies
option b.

r Reverse the sense of comparisons.

tx ‘Tab character’ separating fields is x.

The notation +posI = pos2 restricts a sort key to a field beginning at pos! and ending just
before pos2. Posl and pos2 each have the form m.n, optionally followed by one or more of the
flags bdfinr, where m tells a number of fields to skip from the beginning of the line and n tells
a number of characters to skip further. If any flags are present they override all the global ord-
ering options for this key. If the b option is in effect n is counted from the first nonblank in
the field; b is attached independently to pos2. A missing .n means .0; a missing — pos2 means
the end of the line. Under the —tx option, fields are strings separated by x; otherwise fields
are nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier keys compare
equal. Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

c Check that the input file is sorted according to the ordering rules; give no output unless
the file is out of sort.

m Merge only, the input files are already sorted.

(1] The next argument is the name of an output file to use instead of the standard output.
This file may be the same as one of the inputs.

The next argument is the name of a directory in which temporary files should be made.

n Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do
not participate in this comparison.

EXAMPLES
Print in alphabetical order all the unique spellings in a list of words. Capitalized words differ
from uncapitalized.

sort —u +0f 40 list
Print the password file (passwd(5)) sorted by user id number (the 3rd colon-separated field).

7th Edition 10 February 1983 1

SORT (1) UNIX Programmer’s Manual SORT (1)

sort —t: +2n /etc/passwd

Print the first instance of each month in an already sorted file of (month day) entries. The
options —um with just one input file make the choice of a unique representative from a set of
equal lines predictable.

sort —um +0 —1 dates

FILES
/usr/tmp/stme, /tmp/e first and second tries for temporary files

SEE ALSO
uniq(1), comm(1), rev(1), join(1)

DIAGNOSTICS
Comments and exits with nonzero status for various trouble conditions and for disorder
discovered under option —¢.

BUGS
Very long lines are silently truncated.

7th Edition 10 February 1983 2

SORTBIB (1) UNIX Programmer’s Manual SORTBIB (1)

NAME

sortbib — sort bibliographic database

SYNOPSIS

sortbib [—sKEYS] database ...

DESCRIPTION

Sortbib sorts files of records containing refer key-letters by user-specified keys. Records may be
separated by blank lines, or by .[and .] delimiters, but the two styles may not be mixed
together. This program reads through each database and pulis out key fields, which are sorted
separately. The sorted key fields contain the file pointer, byte offset, and length of correspond-
ing records. These records are delivered using disk seeks and reads, so sortbib may not be used
in a pipeline to read standard input.

By default, sortbib alphabetizes by the first %A and the %D fields, which contain the senior
author and date. The —s option is used to specify new X£YS. For instance, —sATD will sort
by author, title, and date, while —sA+D will sort by all authors, and date. Sort keys past the
fourth are not meaningful. No more than 16 databases may be sorted together at one time.
Records longer than 4096 characters will be truncated.

Sortbib sorts on the last word on the %A line, which is assumed to be the author’s last name.
A word in the final position, such as ‘‘jr.”’ or “‘ed.””, will be ignored if the name beforehand
ends with a comma. Authors with two-word last names or unusual constructions can be sorted
correctly by using the nroff convention “\0” in place of a blank. A %Q field is considered to be
the same as %A, except sorting begins with the first, not the last, word. Sortbib sorts on the
last word of the %D line, usually the year. It also ignores leading articles (like ““A”> or ““The’’)
when sorting by titles in the %T or %] fields; it will ignore articles of any modern European
language. If a sort-significant field is absent from a record, sortbib places that record before
other records containing that field.

SEE ALSO

refer(1), addbib(1), roffbib(1), indxbib(1), lookbib(1)

AUTHORS

BUGS

Greg Shenaut, Bill Tuthill

Records with missing author fields should probably be sorted by title.

4th Berkeley Distribution 18 July 1983 1

SPELL (1) UNIX Programmer’s Manual SPELL (1)

NAME
spell, spellin, spellout — find spelling errors
SYNOPSIS
spell [=v] [=b][=x][—=dhlist] [=s hstop] [=h spellhist] [file] ...

spellin [list]
spellout [—d] list

DESCRIPTION
Spell collects words from the named documents, and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes or suffixes)
from words in the spelling list are printed on the standard output. If no files are named, words
are collected from the standard input.

Spell ignores most troff, tbl and egn(1) constructions.

Under the —v option, all words not literally in the spelling list are printed, and plausible deriva-
tions from spelling list words are indicated.

Under the =b option, British spelling is checked. Besides preferring centre, colour, speciality,
travelled, etc., this option insists upon -ise in words like standardise, Fowler and the OED to the
contrary notwnthstandmg

Under the =x option, every plausible stem is printed with ‘=" for each word.

The spelling list is based on many sources. While it is more haphazard than an ordinary dic-
tionary, it is also more effective with proper names and popular technical words. Coverage of
the specialized vocabularies of biology, medicine and chemistry is light.

The auxiliary files used for the spelling list, stop list, and history file may be specified by argu-
ments following the —d, —s, and —h options. The default files are indicated below. Copies of
all output may be accumulated in the history file. The stop list filters out misspellings (e.g.
thier=thy —y-ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell Both expect a set of words, one per
line, from the standard input. Spellin combines the words from the standard input and the
preexisting /list file and places a new list on the standard output. If no list file is specified, the
new list is created from scratch. Spellout looks up each word from the standard input and prints
on the standard output those that are missing from (or present on, with option =—d) the hashed
list file. For example, to verify that hookey is not on the default spelling list, add it to your own
private list, and then use it with spell,

echo hookey | spellout /usr/dict/hlista
echo hookey | spellin /usr/dict/hlista > myhlist
spell —d myhlist huckfinn

FILES
/usr/dict/hlist[ab] hashed spelling lists, American & British, default for —=d
/usr/dict/hstop hashed stop list, default for =g
/dev/null history file, default for =h
/tmp/spell.$$= temporary files
/usr/lib/spell
SEE ALSO

deroff (1), sort(1), tee(1), sed(1)
BUGS
The spelling list’s coverage is uneven; new installations will probably wish to momtor the out-
put for several months to gather local additions.
British spelling was done by an American.

7th Edition 12 September 1983 1

SPLINE (1G) UNIX Programmer’s Manual SPLINE (1G)

NAME

spline — interpolate smooth curve

SYNOPSIS

spline [option] ...

DESCRIPTION
Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It
produces a similar set, which is approximately equally spaced and includes the input set, on the
standard output. The cubic spline output (R. W. Hamming, Numerical Methods for Scientists and
Engineers, 2nd ed., 349ff) has two continuous derivatives, and sufficiently many points to look
smooth when plotted, for example by graph(1G).

The following options are recognized, each as a separate argument.

—a

=k

-P

=X

SEE ALSO

Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

The constant & used in the boundary value computation
%=kl = oy

is set by the next argument. By default k = 0.

Space output points so that approximately » intervals occur between the lower and upper x
limits. (Default n = 100.)

Make output periodic, i.e. match derivatives at ends. First and last input values should
normally agree.

Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits are calcu-
lated from the data. Automatic abcissas start at lower limit (default 0).

graph(1G), plot(1G)

DIAGNOSTICS
When data is not strictly monotone in x, spline reproduces the input without interpolating extra
points.

BUGS

A limit of 1000 input points is enforced silently.

7th Edition

18 January 1983 1

SPLIT (1) UNIX Programmer’s Manual SPLIT (1)

NAME

split — split a file into pieces
SYNOPSIS

split [—=n] [file [name]]

DESCRIPTION
Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of
output files. The name of the first output file is name with aa appended, and so on lexicograph-
ically. If no output name is given, x is default.

If no input file is given, or if = is given in its stead, then the standard input file is used.

7th Edition 18 January 1983 1

STRINGS (1) UNIX Programmer’s Manual STRINGS (1)

NAME

strings — find the printable strings in a object, or other binary, file
SYNOPSIS

strings [=] [=0] [=number] file ...
DESCRIPTION

Strings looks for ascii strings in a binary file. A string is any sequence of 4 or more printing
characters ending with a newline or a null. Unless the = flag is given, strings only looks in the
initialized data space of object files. If the —o flag is given, then each string is preceded by its
offset in the file (in octal). If the = number flag is given then number is used as the minimum
string length rather than 4.

Strings is useful for identifying random object files and many other things.

SEE ALSO
od(1)

BUGS
The algorithm for identifying strings is extremely primitive

3rd Berkeley Distribution 24 February 1979 1

STRIP (1) UNIX Programmer’s Manual STRIP (1)

NAME
strip — remove symbols and relocation bits

SYNOPSIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the
assembler and loader. This is useful to save space after a program has been debugged.

The effect of strip is the same as use of the —s option of /d.

FILES
/tmp/stm? temporary file

SEE ALSO
1d(1)

7th Edition 18 January 1983 1

STRUCT (1)

NAME

UNIX Programmer’s Manual STRUCT (1)

struct — structure Fortran programs

SYNOPSIS

struct [option] ... file

DESCRIPTION

Struct translates the Fortran program specified by file (standard input default) into a Ratfor pro-
gram. Wherever possible, Ratfor control constructs replace the original Fortran. Statement
numbers appear only where still necessary. Cosmetic changes are made, including changing
Hollerith strings into quoted strings and relational operators into symbols (.e.g. ".GT." into
">"). The output is appropriately indented.

The following options may occur in any order.

- Input is accepted in standard format, i.e. comments are specified by a ¢, C, or = in
column 1, and continuation lines are specified by a nonzero, nonblank character in
column 6. Normally input is in the form accepted by f77(1)

=i Do not turn computed goto statements into switches. (Ratfor does not turn switches
back into computed goto statements.)

-a Turn sequences of else ifs into a non-Ratfor switch of the form
switch

case predl: code
case pred2: code
case pred3: code
default: code
}
The case predicates are tested in order; the code appropriate to only one case is exe-
cuted. This generalized form of switch statement does not occur in Ratfor.

=b Generate goto’s instead of multilevel break statements.

-n Generate goto’s instead of multilevel next statements.

=tn Make the nonzero integer n the lowest valued label in the output program (default 10).

=cn Increment successive labels in the output program by the nonzero integer n (default 1).

—en If nis 0 (default), place code within a loop only if it can lead to an iteration of the loop.
If nis nonzero, admit a small code segments to a loop if otherwise the loop would have
exits to several places including the segment, and the segmenti can be reached only
from the loop. ‘Small’ is close to, but not equal to, the number of statements in the
code segment. Values of n under 10 are suggested.

FILES
/tmp/structe
/usr/lib/struct/=
SEE ALSO
77(1)
BUGS

Struct knows Fortran 66 syntax, but not full Fortran 77.

If an input Fortran program contains identifiers which are reserved words in Ratfor, the struc-
tured version of the program will not be a valid Ratfor program.

The labels generated cannot go above 32767.

If you get a goto without a target, try —e .

7th Edition

18 January 1983 1

STTY (1) UNIX Programmer’s Manual STTY (1)

NAME

stty — set terminal options
SYNOPSIS

stty [option ...]
DESCRIPTION

Sty sets certain I/0 options on the current output terminal, placing its output on the diagnostic
output. With no argument, it reports the speed of the terminal and the settings of the options
which are different from their defaults. With the argument *‘all”, all normally used option set-
tings are reported. With the argument ‘‘everything’’, everything sty knows about is printed.
The option strings are selected from the following set:

even allow even parity input

—even disaliow even parity input

odd allow odd parity input

—odd disallow odd parity input

raw raw mode input (ne input processing (erase, kill, interrupt, ...); parity bit passed
back)

—raw negate raw mode

cooked same as ‘—raw’

cbreak make each character available to read(2) as received; no erase and kill processing,
but all other processing (interrupt, suspend, ...) is performed

—cbreak make characters available to read only when newline is received

=nl allow carriage return for new-line, and output CR-LF for carriage return or new-line
nl accept only new-line to end lines

echo echo back every character typed

—echo do not echo characters

Icase map upper case to lower case

—lcase do not map case

tandem enable flow control, so that the system sends out the stop character when its internal
queue is in danger of overflowing on input, and sends the start character when it is
ready to accept further input

—tandem disable flow control

—tabs replace tabs by spaces when printing

tabs preserve tabs

ek set erase and kill characters to # and @

For the following commands which take a character argument ¢, you may also specify c as the

“u” or ‘“‘undef™’, to set the value to be undefined. A value of *“"x’’, a 2 character sequence, is

also interpreted as a control character, with ““*?>* representing delete.

erase ¢ set erase character to ¢ (default ‘#’, but often reset to "H.)
kill ¢ set kill character to ¢ (default ‘@, but often reset to “U.)

intr ¢ set interrupt character to ¢ (default DEL or "? (delete), but often reset to "C.)

quit ¢ set quit character to ¢ (default control \.) ’

start ¢ 2t start character to ¢ (default control Q.)

stop ¢ set stop character to ¢ (defauit control S.)

eof ¢ set end of file character to ¢ (default control D.)

brk ¢ set break character to ¢ (default undefined.) This character is an extra wakeup caus-

ing character.
cr0 crl cr2 cr3

select style of delay for carriage return (see ioct/(2))
ni0 nll ni2 ni3

select style of delay for linefeed
tab0 tabl tab2 tab3

4th Berkeley Distribution 11 May 1981 1

STTY (1) UNIX Programmer’s Manual STTY (1)

select style of delay for tab
I0 fi1 select style of delay for form feed
bsO bs1 select style of delay for backspace

tty33 set all modes suitable for the Teletype Corporation Model 33 terminal.

tty37 set all modes suitable for the Teletype Corporation Model 37 terminal.

vt05 set all modes suitable for Digital Equipment Corp. VTO0S5 terminal

dec set all modes suitable for Digital Equipment Corp. operating systems users; (erase,

kill, and interrupt characters to “?, "U, and “C, decctlq and ‘“‘newcst’’.)
tn300 set all modes suitable for a General Electric TermiNet 300

ti700 set all modes suitable for Texas Instruments 700 series terminal
tek set all modes suitable for Tektronix 4014 terminal
0 hang up phone line immediately

50 75 110 134 1506 200 300 600 1200 1800 2400 4800 9600 exta extb
Set terminal baud rate to the number given, if possible. (These are the speeds sup-
ported by the DH-11 interface).

A teletype driver which supports the job control processing of csh(1) and more functionality
than the basic driver is fully described in #zy(4). The following options apply only to it.

new Use new driver (switching flushes typeahead).
ert Set options for a CRT (crtbs, ctlecho and, if >= 1200 baud, crterase and crtkill.)
crths Echo backspaces on erase characters.

prterase For printing terminal echo erased characters backwards within ¢“\>> and *‘/”’.

crterase Wipe out erased characters with ‘‘backspace-space-backspace.”

—crterase Leave erased characters visible; just backspace.

crtkill Wipe out input on like kill ala crterase.

—crtkill Just echo line kill character and a newline on line kill.

ctlecho Echo control characters as "X’ (and delete as ““*?”°.) Print two backspaces follow-
ing the EOT character (control D).

—ctlecho Control characters echo as themselves; in cooked mode EOT (control-D) is not
echoed.

decctly After output is suspended (normally by °S), only a start character (normally “Q) will
restart it. This is compatible with DEC’s vendor supplied systems.

—decctlq After output is suspended, any character typed will restart it; the start character will
restart output without providing any input. (This is the default.)

tostop Background jobs stop if they attempt terminal output.

—tostop Output from background jobs to the terminal is allowed.

tilde Convert ““™ to *“*”’ on output (for Hazeltine terminals).

—tilde Leave poor ‘™ alone.

flusho Output is being discarded usually because user hit control O (internal state bit).

—flusho Output is not being discarded.

pendin Input is pending after a switch from cbreak to cooked and will be re-input when a
read becomes pending or more input arrives (internal state bit).

—pendin Input is not pending.

intrup Send a signal (SIGTINT) to the terminal control process group whenever an input
record (line in cooked mode, character in cbreak or raw mode) is available for read-
ing.

—intrup Don’t send input available interrupts.

mdmbuf Start/stop output on carrier transitions (not implemented).

—mdmbuf
Return error if write attempted after carrier drops.

litout Send cutput characters without any processing.

4th Berkeley Distribution 11 May 1981 2

STTY (1) UNIX Programmer’s Manual STTY (1)

—litout Do normal output processing, inserting delays, etc.

nohang Don’t send hangup signal if carrier drops.

—nohang Send hangup signal to control process group when carrier drops.
etxack Diablo style etx/ack handshaking (not implemented).

The following special characters are applicable only to the new teletype driver and are not nor-
mally changed.

susp ¢ set suspend process character to ¢ (default control Z).

dsusp ¢ set delayed suspend process character to ¢ (default control Y).
rprnt ¢ set reprint line character to ¢ (default control R).

flush ¢ set flush output character to ¢ (default control O).

werase ¢ set word erase character to ¢ (default control W).

Inext ¢ set literal next character to ¢ (default control V).

SEE ALSO
ioctl(2), tabs(1), tset(1), tty(4)

4th Berkeley Distribution 11 May 1981 3

STYLE(1) UNIX Programmer’s Manual STYLE(1)

NAME

style — analyze surface characteristics of a document
SYNOPSIS

style[=ml] [-mm] [=al[=e]l[=lnum][=rnum][=p][=P]fie...
DESCRIPTION

Style analyzes the surface characteristics of the writing style of a document. It reports on reada-
bility, sentence length and structure, word length and usage, verb type, and sentence openers.
Because style runs deroff before looking at the text, formatting header files should be included
as part of the input. The default macro package —ms may be overridden with the flag —mm.
The flag —ml, which causes deroff to skip lists, should be used if the document contains many
lists of non-sentences. The other options are used to locate sentences with certain characteris-
tics.

-a print all sentences with their length and readability index.

=e print all sentences that begin with an expletive.

-p print all sentences that contain a passive verb.

=1num print all sentences longer than num.

=rnum print all sentences whose readability index is greater than num.
=P print parts of speech of the words in the document.

SEE ALSO
deroff (1), diction(1)

BUGS
Use of non-standard formatting macros may cause incorrect sentence breaks.

7th Edition 18 January 1983 : 1

Su(1) UNIX Programmer’s Manual Su (1)

NAME

su — substitute user id temporarily
SYNOPSIS

su[—f][—1/[userid]
DESCRIPTION

Su demands the password of the specified userid, and if it is given, changes to that userid and
invokes the Shell sA(1) or csh(1) without changing the current directory. The user environ-
ment is unchanged except for HOME and SHELL, which are taken from the password file for
the user being substituted (see environ(7)). The new user ID stays in force until the Shell
exits.

If no userid is specified, ‘root’ is assumed. To remind the super-user of his responsibilities, the
Shell substitutes ‘#’ for its usual prompt.

The —f option prevents csh (1) from executing the .cshre file; thus making su start up faster.
The — option simulates a full login.

SEE ALSO
sh(1), csh(1)

BUGS
Local administrative rules cause restrictions to be placed on who can su to ‘root’, even with the
root password. These rules vary from site to site.

3rd Berkeley Distribution 16 November 1979 1

SUM (1) UNIX Programmer’s Manual SUM (1)

NAME
sum — sum and count blocks in a file

SYNOPSIS
sum file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of
blocks in the file. It is typically used to look for bad spots, or to validate a file communicated
over some transmission line.

SEE ALSO
we(1)

DIAGNOSTICS
‘Read error’ is indistinguishable from end of file on most devices; check the block count.

7th Edition 18 January 1983 1

SYMORDER (1) UNIX Programmer’s Manual SYMORDER (1)

NAME

symorder — rearrange name list
SYNOPSIS

symorder orderlist symbolfile
DESCRIPTION

Orderlist is a file containing symbols to be found in symbolfile, 1 symbol per line.

Symbolfile is updated in place to put the requested symbols first in the symbol table, in the
order specified. This is done by swapping the old symbols in the required spots with the new
ones. If all of the order symbols are not found, an error is generated.

This program was specifically designed to cut down on the overhead of getting symbols from
/vmunix.

SEE ALSO
nlist(3)

3rd Berkeley Distribution 20 October 1979 1

SYSLINE (1) UNIX Programmer’s Manual SYSLINE (1)

NAME

sysline — display system status on status line of a terminal

SYNOPSIS

sysline [—bedehDilmpgrsj] [+N]

DESCRIPTION

sysline runs in the background and periodically displays system status information on the status
line of the terminal. Not all terminals contain a status line. Those that do include the h19,
concept 108, Ann Arbor Ambassador, vt100, Televideo 925/950 and Freedom 100. If no flags
are given, sysiine displays the time of day, the current load average, the change in load average
in the last 5 minutes, the number of users (followed by a ‘u’), the number of runnable process
(followed by a ‘r’)[VAX onlyl, the number of suspended processes (followed by a ‘s’) [VAX
onlyl, and the users who have logged on and off since the last status report. Finally, if new
mail has arrived, a summary of it is printed. If there is unread mail in your mailbox, an aster-
isk will appear after the display of the number of users. The display is normally in reverse
video (if your terminal supports this in the status line) and is right justified to reduce distrac-
tion. Every fifth display is done in normal video to give the screen a chance to rest.

If you have a file named .who in your home directory, then the contents of that file is printed
first. One common use of this feature is to alias chdir, pushd, and popd to place the current
directory stack in ~/.who after it changes the new directory.

The following flags may be given on the command line.

=b Beep once every half hour and twice every hour, just like those obnoxious watches you
keep hearing.

-c Clear the status line for 5 seconds before each redisplay.
=d Debug mode -- print status line data in human readable format

—e Print out only the information. Do not print out the control commands necessary to
put the information on the bottom line. This option is useful for putting the output of
sysline onto the mode line of an emacs window.

=D Print out the current day/date before the time.

=h Print out the host machine’s name after the time [VAX only].

-1 Don’t print the names of people who log in and out.

=m Don’t check for mail.

-p Deon’t report the number of process which are runnable and suspended.

-1 Don’t display in reverse video.

+N Update the status line every N seconds. The default is 60 seconds.

-q Don’t print out diagnostic messages if something goes wrong when starting up.

=i Print out the process id of the sysline process onto standard output upon startup. With
this information you can send the alarm signal to the sysline process to cause it to
update immediately. sysline writes to the standard error, so you can redirect the stan-
dard output into a file to catch the process id.

=3 Print."short" form of line by left-justifying iffescapes are not allowed in the status line.
Some terminals (the Televideos and Freedom 100 for example) do not allow cursor
movement (or other "intelligent" operations) in the status line. For these terminals,
sysline normally uses blanks to cause right-justification. This flag will disable the adding
of the blanks.

—j Force the sysline output to be left justified even on terminals capable of cursor

4th Berkeley Distribution 23 March 1981 1

SYSLINE (1) UNIX Programmer’s Manual SYSLINE (1)

movement on the status line.

If you have a file .syslinelock in your home directory, then sysline will not update its statistics
and write on your screen, it will just go to sieep for a minute. This is useful if you want to
momentarily disable sysline. Note that it may take a few seconds from the time the lock file is
created until you are guaranteed that sysline will not write on the screen.

FILES
/etc/utmp names of people who are logged in
/dev/kmem contains process table [VAX only]
${HOME)/.who information to print on bottom line
${HOME)/ .syslinelock when it exists, sysline will not print
AUTHORS

John Foderaro
Tom Ferrin converted it to use termcap.
Mark Horton added terminfo capability.

BUGS
If you interrupt the display then you may find your cursor missing or stuck on the status line.
The best thing to do is reset the terminal.
If there is too much for one line, the excess is thrown away.

4th Berkeley Distribution 23 March 1981 2

TABS (1) UNIX Programmer’s Manual TABS (1)

NAME
tabs — set terminal tabs
SYNOPSIS
tabs [=n] [terminal]
DESCRIPTION
Tabs sets the tabs on a variety of terminals. Various terminal names given in term(7) are
recognized; the default is, however, suitable for most 300 baud terminals. If the —n flag is
present then the left margin is not indented as is normal.
SEE ALSO
stty(1), term(7)
BUGS
It’s much better to use rser(1).

7th Edition 18 January 1983 1

TAIL (1) UNIX Programmer’s Manual TAIL (1)

NAME
tail — deliver the last part of a file

SYNOPSIS
tail [£number(lbe][fr] 1 [file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is
named, the standard input is used.
Copying begins at distance -+number from the beginning, or —number from the end of the
input. Number is counted in units of lines, blocks or characters, according to the appended
option 1, b or ¢. When no units are specified, counting is by lines.
Specifying r causes tail to print lines from the end of the file in reverse order. The default for r
is to print the entire file this way. Specifying f causes tail to not quit at end of file, but rather
wait and try to read repeatedly in hopes that the file will grow.

SEE ALSO
dd(1)

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length.

Various kinds of anomalous behavior may happen with character special files.

4th Berkeley Distribution 18 January 1983 1

TALK (1) UNIX Programmer’s Manual TALK (1)

NAME
talk — talk to another user
SYNOPSIS
talk person [ttyname]
DESCRIPTION
Talk is a visual communication program which copies lines from your terminal to that of
another user.
If you wish to talk to someone on you own machine, then person is just the person’s login
name. If you wish to talk to a user on another host, then person is of the form :
host!luser or
host.user or
host:user or
user@ host
though host@ user is perhaps preferred.
If you want to talk to a user who is logged in more than once, the ftyname argument may be
used to indicate the appropriate terminal name.
When first called, it sends the message
Message from TalkDaemon@his_machine...
talk: connection requested by your_name@your_machine.
talk: respond with: talk your_name@your_machine
to the user you wish to talk to. At this point, the recipient of the message should reply by typ-
ing
talk your_name@your_machine
It doesn’t matter from which machine the recipient replies, as long as his login-name is the
same. Once communication is established, the two parties may type simultaneously, with their
output appearing in separate windows. Typing control L will cause the screen to be reprinted,
while your erase, kill, and word kill characters will work in talk as normal. To exit, just type
your interrupt character; falk then moves the cursor to the bottom of the screen and restores
the terminal.
Permission to talk may be denied or granted by use of the mesg command. At the outset talk-
ing is allowed. Certain commands, in particular nroff and pr(1) disallow messages in order to
prevent messy output.
FILES
/etc/hosts to find the recipient’s machine
/etc/utmp to find the recipient’s tty
SEE ALSO

mesg(1), who(1), mail(1), write(1)

4th Berkeley Distribution 27 June 1983 1

TAR (1)

NAME

UNIX Programmer’s Manual TAR (1)

tar — tape archiver

SYNOPSIS

tar [key] [name ...]

DESCRIPTION

Tar saves and restores multiple files on a single file (usually a magnetic tape, but it can be any
file). Tar’s actions are controlled by the key argument. The key is a string of characters con-
taining at most one function letter and possibly one or more function modifiers. Other argu-
ments to tar are file or directory names specifying which files to dump or restore. In all cases,
appearance of a directory name refers to the files and (recursively) subdirectories of that direc-

tory.

The function portion of the key is specified by one of the following letters:

r
X

P

The named files are written on the end of the tape. The ¢ function implies this.

The named files are extracted from the tape. If the named file matches a directory
whose contents had been written onto the tape, this directory is (recursively)
extracted. The owner, modification time, and mode are restored (if possible). If no
file argument is given, the entire content of the tape is extracted. Note that if multiple
entries specifying the same file are on the tape, the last one overwrites all earlier.

The names of the specified files are listed each time they occur on the tape. If no file
argument is given, all of the names on the tape are listed.

The named files are added to the tape if either they are not already there or have been
modified since last put on the tape.

Create a new tape; writing begins on the beginning of the tape instead of after the last
file. This command implies r.

On output, tar normally places information specifying owner and modes of directories
in the archive. Former versions of tar, when encountering this information will give
error message of the form

"<name>/: cannot create".
This option will suppress the directory information.

This option says to restore files to their original modes, ignoring the present umask(2).
Setuid and sticky information will also be restored to the super-user.

The following characters may be used in addition to the letter which selects the function

desired.
0,..9

7th Edition

This modifier selects an alternate drive on which the tape is mounted. The default
is drive 0 at 1600 bpi, which is normally /dev/rmt8.

Normally far does its work silently. The v (verbose) option make far type the name
of each file it treats preceded by the function letter. With the t function, the ver-
bose option gives more information about the tape entries than just their names.

Tar prints the action to be taken followed by file name, then wait for user
confirmation. If a word beginning with ‘y’ is given, the action is done. Any other
input means don’t do it.

Tar uses the next argument as the name of the archive instead of /dev/rmt?. If the
name of the file is ‘—’, tar writes to standard output or reads from standard input,
whichever is appropriate. Thus, far can be used as the head or tail of a filter chain.
Tar can also be used to move hierarchies with the command

cd fromdir; tar cf - . | (cd todir; tar xf -)

13 January 1983 1

TAR (1) UNIX Programmer’s Manual TAR (1)

b Tar uses the next argument as the blocking factor for tape records. The default is 20
(the maximum). This option should only be used with raw magnetic tape archives
(See f above). The block size is determined automatically when reading tapes (key
letters ‘x” and ‘t’).

1 tells rar to complain if it cannot resolve all of the links to the files dumped. If this is
not specified, no error messages are printed.

m tells rar not to restore the modification times. The modification time will be the
time of extraction.

h Force tar to follow symbolic links as if they were normal files or directories. Nor-
mally, tar does not follow symbolic links.

B Forces input and output blocking to 20 blocks per record. This option was added so
that far can work across a communications channel where the blocking may not be
maintained.

If a file name is preceded by —C, then rar will perform a chdir(2) to that file name. This allows
multiple directories not related by a close common parent to be archived using short relative
path names. For example, to archive files from /usr/include and from /etc, one might use

tar ¢ -C /usr include -C / etc

Previous restrictions dealing with tar’s inability to properly handle blocked archives have been
lifted.

FILES
/dev/rmt?
/tmp/tar=

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

BUGS
There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The current limit on file name length is 107 characters.
There is no way to selectively follow symbolic links.

7th Edition 13 January 1983 2

TBL (1) UNIX Programmer’s Manual TBL (1)

NAME
tbl — format tables for nroff or troff

SYNOPSIS
thl [files] ...

DESCRIPTION
Thl is a preprocessor for formatting tables for nroff or trofi(1). The input files are copied to the
standard output, except for lines between and are reformatted. Details are given in the tbi(1)
reference manual.

EXAMPLE
As an example, letting \t represent a tab (which should be typed as a genuine tab) the input

.TS

css

ccs

ccc

Inn.

Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\t3087\t3.74
Bernardsville\t2018\t3.30
Bound Brook\t3425\t3.04
Branchburg\t1644\t3.49
Bridgewater\t7897\t3.81
Far Hills\t240\t3.19

.TE

yields

Household Population
Town Households
Number Size
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04

Branchburg 1644 3.49
Bridgewater 7897 3.81
Far Hills 240 3.19

If no arguments are given, bl reads the standard input, so it may be used as a filter. When b/
is used with egn or negn the tbl command should be first, to minimize the volume of data
passed through pipes.

SEE ALSO
troff (1), eqn(1)
M. E. Lesk, TBL.

7th Edition 7 February 1983 1

TC(1) UNIX Programmer’s Manual TC(1)

NAME
tc — photoypesetter simulator

SYNOPSIS
te[—t][=sN][—pL]I[file]

DESCRIPTION
Tc interprets its input (standard input default) as device codes for a Graphic Systems photo-
typesetter (cat). The standard output of rc is intended for a Tektronix 4015 (a 4014 terminal
with ASCII and APL character sets). The sixteen typesetter sizes are mapped into the 4014’s
four sizes; the entire TROFF character set is drawn using the 4014’s character generator, using
overstruck combinations where necessary. Typical usage:

troff —t file | tc

At the end of each page tc waits for a newline (empty line) from the keyboard before continu-
ing on to the next page. In this wait state, the command e will suppress the screen erase before
the next page; sN will cause the next N pages to be skipped; and lline will send line to the
shell.
The command line options are:
-t Don’t wait between pages; for directing output into a file.
=sN Skip the first N pages.
=pL Set page length to L. L may include the scale factors p (points), i (inches), ¢ (centime-
ters), and P (picas); default is picas.
‘=Iw' Multiply the default aspect ratio, 1.5, of a displayed page by /w.
SEE ALSO
troff (1), plot(1G)

BUGS
Font distinctions are lost. .
1c’s character set is limited to ASCII in just one size.
The aspect ratio option is unbelievable.

7th Edition 18 January 1983 1

TEE(1) UNIX Programmer’s Manual TEE (1)

NAME

tee — pipe fitting
SYNOPSIS

tee [—i][—allfile]..
DESCRIPTION

Tee transcribes the standard input to the standard output and makes copies in the files. Option
—1 ignores interrupts; option —a causes the output to be appended to the files rather than
overwriting them.

7th Edition 18 January 1983 1

TELNET (1C) UNIX Programmer’s Manual TELNET (1C)

NAME

telnet — user interface to the TELNET protocol

SYNOPSIS

telnet [host [port]]

DESCRIPTION

BUGS

Telnet is used to communicate with another host using the TELNET protocol. If telner is
invoked without arguments, it enters command mode, indicated by its prompt (‘“‘telnet>""). In
this mode, it accepts and executes the commands listed below. If it is invoked with arguments,
it performs an open command (see below) with those arguments.

Once a connection has been opened, felnet enters input mode. In this mode, text typed is sent
to the remote host. To issue felnet commands when in input mode, precede them with the rel-
net “‘escape character’ (initially **]’). When in command mode, the normal terminal editing
conventions are available.

The following commands are available. Only enough of each command to uniquely identify it
need be typed.

open host [port]
Open a connection to the named host. If the no port number is specified, telner will
attempt to contact a TELNET server at the default port. The host specification may be
either a host name (see hosts(5)) or an Internet address specified in the ‘‘dot nota-
tion”.

close Close a TELNET session and return to command mode.

quit Close any open TELNET session and exit felner.

z Suspend telner. This command only works when the user is using the csh(1).

escape [escape-char]
Set the telnet ‘“‘escape character””. Control characters may be specified as >’ followed
by a single letter; e.g. “‘control-X”’ is **X".

status Show the current status of telner. This includes the peer one is connected to, as well as
the state of debugging.

options
Toggle viewing of TELNET options processing. When options viewing is enabled, all
TELNET option negotiations will be displayed. Options sent by telner are displayed as
“SENT", while options received from the TELNET server are displayed as “RCVD”’.

crmod Toggle carriage return mode. When this mode is enabled any carriage return characters
received from the remote host will be mapped into a carriage return and a line feed.
This mode does not affect those characters typed by the user, only those received. This
mode is not very useful, but is required for some hosts that like to ask the user to do
local echoing.

? [command]
Get help. With no arguments, telnet prints a help summary. If a command is specified,
telnet will print the help information available about the command only.

This implementation is very simple because rlogin (1C) is the standard mechanism used to com-
municate locally with hosts.

4th Berkeley Distribution 18 July 1983 1

TEST (1) UNIX Programmer’s Manual TEST (1)

NAME
test — condition command

SYNOPSIS
test expr

DESCRIPTION
test evaluates the expression expr, and if its value is true then returns zero exit status; other-
wise, a non zero exit status is returned. fesf returns a non zero exit if there are no arguments.

The following primitives are used to construct expr.

—rfile true if the file exists and is readable.

—w file true if the file exists and is writable.

—ffile true if the file exists and is not a directory.

—d file true if the file exists exists and is a directory.

—s file true if the file exists and has a size greater than zero.

—t [fildes]
true if the open file whose file descriptor number is fildes (1 by default) is associated
with a terminal device.

—z sl true if the length of string s/ is zero.

—n sl true if the length of the string s/ is nonzero.
sl = s2 true if the strings s/ and s2 are equal.

sl 1= s2 true if the strings s/ and s2 are not equal.

sl true if s/ is not the null string.

nl —eq n2
true if the integers nl and n2 are algebraically equal. Any of the comparisons —ne,
—gt, —ge, —It, or —le may be used in place of —eq.

These primaries may be combined with the following operators:
! unary negation operator

-a binary and operator

-0 binary or operator

(expr)
parentheses for grouping.

—a has higher precedence than —o. Notice that all the operators and flags are separate argu-
ments to fest. Notice also that parentheses are meaningful to the Shell and must be escaped.

SEE ALSO
sh(1), find(1)

7th Edition 18 January 1983 1

TIME (1) UNIX Programmer’s Manual TIME (1)

NAME

time — time a command
SYNOPSIS

time command

DESCRIPTION
The given command is executed; after it is complete, time prints the elapsed time during the
command, the time spent in the system, and the time spent in execution of the command.
Times are reported in seconds.

On a PDP-11, the execution time can depend on what kind of memory the program happens to
land in; the user time in MOS is often half what it is in core.

The times are printed on the diagnostic output stream.
Time is built in to csh(1), using a different output format.

BUGS
Elapsed time is accurate to the second, while the CPU times are measured to the 100th second.
Thus the sum of the CPU times can be up to a second larger than the elapsed time.

Time is a built-in command to csh(1), with a much different syntax. This command is available
as ‘‘/bin/time” to csh users.

4th Berkeley Distribution 18 January 1983 1

TIP (1C) UNIX Programmer’s Manual TIP (1C)

NAME

tip, cu — connect to a remote system

SYNOPSIS

tip [—v] [—speed] system-name
tip [—v] [—speed] phone-number
cu phone-number [—t] [—s speed] [-a acul [—1linel [—#]

DESCRIPTION

Tip and cu establish a full-duplex connection to another machine, giving the appearance of
being logged in directly on the remote cpu. It goes without saying that you must have a login
on the machine (or equivalent) to which you wish to connect. The preferred interface is tip.
The cuinterface is included for those people attached to the ‘‘call UNIX’ command of version
7. This manual page describes only tip.

Typed characters are normally transmitted directly to the remote machine (which does the
echoing as well). A tilde (‘) appearing as the first character of a line is an escape signal, the
following are recognized:

“D". Drop the connection and exit (you may still be logged in on the remote machine).
~¢ [namel Change directory to name (no argument implies change to your home directory).

-1 Escape to a shell (exiting the shell will return you to tip).

> Copy file from local to remote. Tip prompts for the name of a local file to transmit.

< Copy file from remote to local. Tip prompts first for the name of the file to be sent,
then for a command to be executed on the remote machine.

“p from[10]
Send a file to a remote UNIX host. The put command causes the remote UNIX sys-
tem to run the command string ‘‘cat > 'to’"’, while tipsends it the *‘from™ file. If
the *‘to”’ file isn’t specified the ‘‘from” file name is used. This command is actually
a UNIX specific version of the *“*>"" command.

“t from[t0]
Take a file from a remote UNIX host. As in the put command the ‘“‘to” file defaults
to the ‘‘from’’ file name if it isn’t specified. The remote host executes the command
string ‘‘cat *from’;echo "A’" to send the file to ip.

7 Pipe the output from a remote command to a local UNIX process. The command
string sent to the local UNIX system is processed by the shell.

“# Send a BREAK to the remote system. For systems which don’t support the neces-
sary iocil call the break is simulated by a sequence of line speed changes and DEL
characters.

s Set a variable (see the discussion below).

Y/ Stop tip (only available with job control).

=2 Get a summary of the tilde escapes

Tip uses the file /etc/remote to find how to reach a particular system and to find out how it
should operate while talking to the system; refer to remore(5) for a full description. Each sys-
tem has a default baud rate with which to establish a connection. If this value is not suitable,
the baud rate to be used may be specified on the command line, e.g. *‘tip -300 mds™".

When tip establishes a connection it sends out a connection message to the remote system; the
default value, if any, is defined in /etc/remote.

4th Berkeley Distribution 18 July 1983 1

TIP (1C) UNIX Programmer’s Manual TIP (1C)

When tip prompts for an argument (e.g. during setup of a file transfer) the line typed may be
edited with the standard erase and kill characters. A null line in response to a prompt, or an
interrupt, will abort the dialogue and return you to the remote machine.

Tip guards against multiple users connecting to a remote system by opening modems and termi-
nal lines with exclusive access, and by honoring the locking protocol used by uucp(1C).

During file transfers fjp provides a running count of the number of lines transferred. When
using the "> and "< commands, the “‘eofread’” and ‘‘eofwrite’’ variables are used to recognize
end-of-file when reading, and specify end-of-file when writing (see below). File transfers nor-
mally depend on tandem mode for flow control. If the remote system does not support tandem
mode, ‘‘echocheck’ may be set to indicate fip should synchronize with the remote system on
the echo of each transmitted character.

When rip must dial a phone number to connect to a system it will print various messages indi-
‘cating its actions. 7ip supports the DEC DN-11 and Racal-Vadic 831 auto-call-units; the DEC
DF02 and DFO03, Ventel 212+, Racal-Vadic 3451, and Bizcomp 1031 and 1032 integral call
unit/modems.

VARIABLES

Tip maintains a set of variables which contro! its operation. Some of these variable are read-
only to normal users (root 1s allowed to change anything of interest). Variables may be
dispiayed and set through the ‘‘s™ escape. The syntax for variables is patterned after vi(1) and
Mail(1). Supplying “all”” as an argument to the set command displays all variables readable by
the user. Alternatively, the user may request display of a particular variable by attaching a ‘?’
to the end. For example ‘‘escape?” displays the current escape character.

Variables are numeric, string, character, or boolean values. Boolean variables are set merely by
specifying their name; they may be reset by prepending a ‘!’ to the name. Other variable types
are set by concatenating an ‘=" and the value. The entire assignment must not have any
blanks in it. A single set command may be used to interrogate as well as set a number of vari-
ables. Variables may be initialized at run time by placing set commands (without the **7s”
prefix in a file .ziprc in one’s home directory). The —v option causes tip to display the sets as
they are made. Certain common variables have abbreviations. The following is a list of com-
mon variables, their abbreviations, and their default values.

beautify
(bool) Discard unprintable characters when a session is being scripted; abbreviated be.

baudrate
(num) The baud rate at which the connection was established; abbreviated ba.

dialtimeout)
(num) When dialing a phone number, the time (in seconds) to wait for a connection to
be established; abbreviated dial.

echocheck
(bool) Synchronize with the remote host during file transfer by waiting for the echo of
the last character transmitted; default is off

eofread
(str) The set of characters which signify and end-of-tranmission during a "< file
transfer command; abbreviated eoft.

eofwrite
(str) The string sent to indicate end-of-transmission during a ~> file transfer command;
abbreviated egfw.

eol
(str) The set of characters which indicate an end-of-line. Tip will recognize escape

4th Berkeley Distribution 18 July 1983 2

TIP (1C) UNIX Programmer’s Manual TIP (1C)

characters only after an end-of-line.

escape
(char) The command prefix (escape) character; abbreviated es; default value is ‘™.

exceptions .
(str) The set of characters which should not be discarded due to the beautification
switch; abbreviated ex; default value is ““\t\n\f\b"".

force
(char) The character used to force literal data transmission; abbreviated fo, default
value is ‘*"P".

framesize
(num) The amount of data (in bytes) to buffer between file system writes when receiv-
ing files; abbreviated fr.

host
(str) The name of the host to which you are connected; abbreviated ho.

prompt
(char) The character which indicates and end-of-line on the remote host; abbreviated
pr; default value is ‘\n’. This value is used to synchronize during data transfers. The
count of lines transferred during a file transfer command is based on recipt of this char-
acter.

raise
(bool) Upper case mapping mode; abbreviated ra; default value is off. When this mode
is enabled, all lower case letters will be mapped to upper case by fip for transmission to
the remote machine.

raisechar
(char) The input character used to toggle upper case mapping mode; abbreviated rc,
default value is *"A’.

record
(str) The name of the file in which a session script is recorded; abbreviated rec; default
value is “‘tip.record”’.

script
(bool) Session scripting mode; abbreviated sc; default is off When scriptis true, tip will
record everything transmitted by the remote machine in the script record file specified
in record. If the beautify switch is on, only printable ASCII characters will be included
in the script file (those characters betwee 040 and 0177). The variable exceptions is
used to indicate characters which are an exception to the normal beautification rules.

tabexpand
(bool) Expand tabs to spaces during file transfers; abbreviated tab, default value is
false. Each tab is expanded to 8 spaces.

verbose

(bool) Verbose mode; abbreviated verb;, default is frue. When verbose mode is
enabled, tip prints messages while dialing, shows the current number of lines
transferred during a file transfer operations, and more.

SHELL
(str) The name of the shell to use for the ~! command; default value is *“/bin/sh"", or
taken from the environment.

HOME
(str) The home directory to use for the "c command; default value is taken from the

4th Berkeley Distribution 18 July 1983 3

TIP (1C) UNIX Programmer’s Manual TIP (1C)

environment.

FILES
/etc/remote global system descriptions
/etc/phones global phone number data base
${REMOTE) private system descriptions
${PHONES} private phone numbers
~/.tiprc initialization file.
/usr/spool/uucp/LCK..* lock file to avoid conflicts with wucp
DIAGNOSTICS
Diagnostics are, hopefully, self explanatory.
SEE ALSO

remote(5), phones(5)

BUGS
The full set of variables is undocumented and should, probably, be paired down.

4th Berkeley Distribution 18 July 1983 4

TK (1) UNIX Programmer’s Manual TK (1)

NAME

tk — paginator for the Tektronix 4014
SYNOPSIS

tk [=t][=N][—=pL][file]
DESCRIPTION

The output of tk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines to fit on
the screen, divides the screen into N columns, and contributes an eight space page offset in the
(default) single-column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. Teletype Model 37 half- and reverse-line sequences are interpreted and plotted. At
the end of each page tk waits for a newline (empty line) from the keyboard before continuing
on to the next page. In this wait state, the command !command will send the command to the
shell.

The command line options are:

-t Don’t wait between pages; for directing output into a file.

=N Divide the screen into‘ N columns and wait after the last column.

=pL Set page length to L lines.

SEE ALSO
pr(1)

7th Edition 18 January 1983 1

TOUCH (1) UNIX Programmer’s Manual TOUCH (1)

NAME

touch — update date last modified of a file
SYNOPSIS

touch [—c] [=f] file ...
DESCRIPTION

Touch attempts to set the modified date of each file. If a file exists, this is done by reading a
character from the file and writing it back. If a file does not exist, an attempt will be made to
create it unless the —c option is specified. The —f option will attempt to force the touch in
spite of read and write permissions on a file.

SEE ALSO
utimes(2)

7th Edition 18 January 1983 1

TP (1)

NAME

UNIX Programmer’s Manual TP (1)

tp — manipulate tape archive

SYNOPSIS

tp [key] [name ...]

DESCRIPTION

Tp saves and restores files on DECtape or magtape. Its actions are controlled by the key argu-
ment. The key is a string of characters containing at most one function letter and possibly one
or more function modifiers. Other arguments to the command are file or directory names
specifying which files are to be dumped, restored, or listed. In all cases, appearance of a direc-
tory name refers to the files and (recursively) subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r

The named files are written on the tape. If files with the same names already exist,
they are replaced. ‘Same’ is determined by string comparison, so ‘./abc’ can never be
the same as ‘/usr/dmr/abc’ even if ‘/usr/dmr’ is the current directory. If no file argu-
ment is given, ‘.’ is the default. ’

updates the tape. u is like r, but a file is replaced only if its modification date is later
than the date stored on the tape; that is to say, if it has changed since it was dumped.
u is the default command if none is given.

deletes the named files from the tape. At least one name argument must be given.
This function is not permitted on magtapes.

extracts the named files from the tape to the file system. The owner and mode are
restored. If no file argument is given, the entire contents of the tape are extracted.

lists the names of the specified files. If no file argument is given, the entire contents
of the tape is listed.

The following characters may be used in addition to the letter which selects the function

desired.
m
0,...,7

7th Edition

Specifies magtape as opposed to DECtape.

This modifier selects the drive on which the tape is mounted. For DECtape, x is
default; for magtape ‘0’ is the default.

Normally #p does its work silently. The v (verbose) option causes it to type the
name of each file it treats preceded by the function letter. With the t function, v
gives more information about the tape entries than just the name.

means a fresh dump is being created; the tape directory is cleared before beginning.
Usable only with r and u. This option is assumed with magtape since it is impossible
to selectively overwrite magtape.

Errors reading and writing the tape are noted, but no action is taken. Normally,
errors cause a return to the command level.

Use the first named file, rather than a tape, as the archive. This option currently
acts like m; i.e. r implies ¢, and neither d nor u are permitted.

causes #p to pause before treating each file, type the indicative letter and the file
name (as with v) and await the user’s response. Response y means ‘yes’, so the file
is treated. Null response means ‘no’, and the file does not take part in whatever is
being done. Response x means ‘exit’; the p command terminates immediately. In
the x function, files previously asked about have been extracted already. With r, u,
and d no change has been made to the tape.

18 January 1983 deprecated 1

TP(1) UNIX Programmer’s Manual TP (1)

FILES
/dev/tap?
/dev/rmt?
SEE ALSO
ar(1), tar(1)
DIAGNOSTICS
Several; the non-obvious one is ‘Phase error’, which means the file changed after it was
selected for dumping but before it was dumped.

BUGS
A single file with several links to it is treated like several files.

Binary-coded control information makes magnetic tapes written by # difficult to carry to other
machines; far(1) avoids the problem.

7th Edition 18 January 1983 deprecated 2

TR (1)

NAME

UNIX Programmer’s Manual TR (1)

tr — translate characters

SYNOPSIS

tr [—cds] [stringl [string2 1]

DESCRIPTION

Tr copies the standard input to the standard output with substitution or deletion of selected
characters. Input characters found in stringl are mapped into the corresponding characters of
string2. When string2 is short it is padded to the length of stringl by duplicating its last charac-
ter. Any combination of the options —cds may be used: —c complements the set of characters
in stringl with respect to the universe of characters whose ASCII codes are 01 through 0377
octal; —d deletes all input characters in stringl; —s squeezes all strings of repeated output char-
acters that are in string2 to single characters.

In either string the notation a— b means a range of characters from a to 4 in increasing ASCII
order. The character ‘\’ followed by 1, 2 or 3 octal digits stands for the character whose ASCII
code is given by those digits. A ‘\’ followed by any other character stands for that character.
The following example creates a list of all the words in ‘filel” one per line in ‘file2’, where a
word is taken to be a maximal string of alphabetics. The second string is quoted to protect ¢\’
from the Shell. 012 is the ASCII code for newline.

tr —cs A—Za—z "\012" <filel >file2

SEE ALSO

BUGS

ed(1), ascii(7), expand(1)

Won’t handle ASCII NUL in stringl or string2; always deletes NUL from input.

7th Edition 18 January 1983 1

TRMAN (1) UNIX Programmer’s Manual TRMAN (1)

NAME

trman — translate version 6 manual macros to version 7 macros
SYNOPSIS

trman [file]
DESCRIPTION

Trman reads the input file, which should be nroff/troff input and attempts to translate the ver-
sion 6 manual sections therein to version 7 format. It is largely successful, but seems to have
trouble with indented paragraphs and complicated font control. You should expect to have to
fix up long sections by hand somewhat.

SEE ALSO
man(7)

BUGS

3rd Berkeley Distribution 24 February 1979 1

TROFF (1) UNIX Programmer’s Manual TROFF (1)

NAME

troff, nroff — text formatting and typesetting
SYNOPSIS

troff [option] ... [file] ...

nroff [option] ... [file] ..
DESCRIPTION

FILES

Troff formats text in the named files for printing on a Graphic Systems C/A/T phototypesetter;

nroff is used for for typewriter-like devices. Their capabilities are described in the NroffiTrofff

user’s manual.

If no file argument is present, the standard input is read. An argument consisting of a single

minus (—) is taken to be a file name corresponding to the standard input. The options, which

may appear in any order so long as they appear before the files, are:

—olist Print only pages whose page numbers appear in the comma-separated /ist of numbers
and ranges. A range N—M means pages N through M; an initial —N means from
the beginning to page N; and a final N— means from N to the end.

=nN Number first generated page N.

—sN Stop every N pages. Nrofff will halt prior to every N pages (default N=1) to allow
paper loading or changing, and will resume upon receipt of a newline. Troff will stop
the phototypesetter every N pages, produce a trailer to allow changing cassettes, and
resume when the typesetter’s start button is pressed.

—mname Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

—raN Set register a (one-character) to N.

=i Read standard input after the input files are exhausted.

—q Invoke the simultaneous input-output mode of the rd request.

Troff only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

-w Wait until phototypesetter is available, if currently busy.

=b Report whether the phototypesetter is busy or available. No text processing is done.

—-a Send a printable ASCII approximation of the results to the standard output.

—pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elapsed time.

=Ffontdir

The directory fontdir contains the font width tables instead of the default directory
/usr/lib/fonts. This option can be used to produce output for devices besides the
phototypesetter.

If the file /usr/admitracct is writable, troff keeps phototypesetter accounting records there. The
integrity of that file may be secured by making troff'a ’set user-id’ program.

/tmp/ta* temporary file
/usr/lib/tmac/tmac.» standard macro files
/usr/lib/term/=* terminal driving tables for nroff’
/usr/lib/font/« font width tables for troff’
/dev/cat phototypesetter

/usr/adm/tracct accounting statistics for /dev/cat

7th Edition 7 February 1983 1

TROFF (1) UNIX Programmer’s Manual TROFF (1)

SEE ALSO
J. F. Ossanna, NrofflTroff user’s manual
B. W. Kernighan, 4 TROFF Tutorial
eqn(1), tbl(1), ms(7), me(7), man(7), col(1)

7th Edition 7 February 1983 2

TRUE (1) UNIX Programmer’s Manual TRUE (1)

NAME
true, false — provide truth values

SYNOPSIS
true
false

DESCRIPTION

True and false are usually used in a Bourne shell script. They test for the appropriate status
"true” or "false" before running (or failing to run) a list of commands.

EXAMPLE
while true
do
command list
done
SEE ALSO
csh(1), sh(1), false(1)
DIAGNOSTICS

True has exit status zero.

7th Edition 11 January 1982 1

TSET (1) UNIX Programmer’s Manual TSET (1)

NAME

tset — terminal dependent initialization

SYNOPSIS

tset [options] [—m [ident] [test baudrate]:type] ... [type]

reset ...

DESCRIPTION

Tset sets up your terminal when you first log in to a UNIX system. It does terminal dependent
processing such as setting erase and kill characters, setting or resetting delays, sending any
sequences needed to properly initialized the terminal, and the like. It first determines the npe
of terminal involved, and then does necessary initializations and mode settings. The type of
terminal attached to each UNiX port is specified in the /etc/rytype database. Type names for ter-
minals may be found in the termcap(5) database. If a port is not wired permanently to a
specific terminal (not hardwired) it will be given an appropriate generic identifier such as dialup.

In the case where no arguments are specified, fser simply reads the terminal type out of the
environment variable TERM and re-initializes the terminal. The rest of this manual concerns
itself with mode and environment initialization, typically done once at login, and options used
at initialization time to determine the terminal type and set up terminal modes.

When used in a startup script (.profile for sh(1) users or .login for csh(1) users) it is desirable to
give information about the type of terminal you will usually use on ports which are not
hardwired. These ports are identified in /etc/tyrype as dialup or plugboard or arpanet, etc. To
specify what terminal type you usually use on these ports, the —m (map) option flag is fol-
lowed by the appropriate port type identifier, an optional baud rate specification, and the termi-
nal type. (The effect is to ‘““map’’ from some conditions to a terminal type, that is, to tell rset
“If I'm on this kind of port, guess that I'm on that kind of terminal™.) If more than one map-
ping is specified, the first applicable mapping prevails. A missing port type identifier matches
all identifiers. Any of the alternate generic names given in termcap may be used for the
identifier.

A baudrate is specified as with sry(1), and is compared with the speed of the diagnostic output
(which should be the control terminal). The baud rate test may be any combination of: >, @,
<, and !, @ means ‘‘at’’ and ! inverts the sense of the test. To avoid problems with metachar-
acters, it is best to place the entire argument to —m within **”" characters; users of csh(1)
must also put a **\"” before any “‘!"’ used here.
Thus

tset —m ‘dialup>300:adm3a’ -m dialup:dw2 -m "plugboard:?adm3a’
causes the terminal type to be set to an adm3a if the port in use is a dialup at a speed greater
than 300 baud; to a dw2 if the port is (otherwise) a dialup (i.e. at 300 baud or less). (NOTE:
the examples given here appear to take up more than one line, for text processing reasons.
When you type in real tset commands, you must enter them entirely on one line.) If the gpe
finally determined by tser begins with a question mark, the user is asked if s/he really wants
that type. A null response means to use that type; otherwise, another type can be entered
which will be used instead. Thus, in the above case, the user will be queried on a plugboard
port as to whether they are actually using an adm3a.

If no mapping applies and a final fype option, not preceded by a —m, is given on the command
line then that type is used; otherwise the identifier found in the /etc/uytype database will be
taken to be the terminal type. This should always be the case for hardwired ports.

It is usually desirable to return the terminal type, as finally determined by tser, and information
about the terminal’s capabilities to a shell’'s environment. This can be done using the —
option; using the Bourne shell, sh(1):

4th Berkeley Distribution 16 October 1982 1

TSET (1) UNIX Programmer’s Manual TSET (1)

export TERM; TERM ="tset — options..."
or using the C shell, csh(1):
setenv TERM ‘tset - options..."
With cshit is convenient to make an alias in your .cshrc:

alias tset ‘setenv TERM ‘tset — \!x*
Either of these aliases allow the command

tset 2621
to be invoked at any time from your login csh. Note to Bourne Shell users: It is not possible
to get this aliasing effect with a shell script, because shell scripts cannot set the environment of
their parent. (If a process could set its parent’s environment, none of this nonsense would be
necessary in the first place.)

These commands cause sef to place the name of your terminal in the variable TERM in the
environment; see environ(7).

Once the terminal type is known, tsef engages in terminal driver mode setting. This normally
involves sending an initialization sequence to the terminal, setting the single character erase
(and optionally the line-kill (full line erase)) characters, and setting special character delays.
Tab and newline expansion are turned off during transmission of the terminal initialization
sequence.

On terminals that can backspace but not overstrike (such as a CRT), and when the erase charac-
ter is the default erase character (‘#’ on standard systems), the erase character is changed to
BACKSPACE (Control-H). '

The options are:
—ec set the erase character to be the named character con all terminals, the default being

the backspace character on the terminal, usually "H. The character ¢ can either be
typed directly, or entered using the hat notation used here.

—kc is similar to —e but for the line kill character rather than the erase character; ¢ defaults
to "X (for purely historical reasons). The kill characters is left alone if —k is not
specified. The hat notation can also be used for this option.

- The name of the terminal finally decided upon is output on the standard output. This
is intended to be captured by the shell and placed in the environment variable TERM.

—n On systems with the Berkeley 4BSD tty driver, specifies that the new tty driver modes
should be initialized for this terminal. For a CRT, the CRTERASE and CRTKILL
modes are set only if the baud rate is 1200 or greater. See tty(4) for more detail.

-1 suppresses transmitting terminal initialization strings.
—Q suppresses printing the “‘Erase set to’" and ‘‘Kill set to’* messages.

If tset is invoked as reset, it will set cooked and echo modes, turn off cbreak and raw modes,
turn on newline translation, and restore special characters to a sensible state before any termi-
nal dependent processing is done. Any special character that is found to be NULL or *“*—1 is
reset to its default value.

This is most useful after a program dies leaving a terminal in a funny state. You may have to
type ** <LF>reset<LF>"" to get it to work since <CR> may not work in this state. Often none of
this will echo.

EXAMPLES

These examples all assume the Bourne shell and use the - option. If you use csh, use one of
the variations described above. Note that a typical use of tsetin a .profile or .login will also use
the —e and —k options, and often the —n or —Q options as well. These options have not

4th Berkeley Distribution 16 October 1982 2

TSET (1) UNIX Programmer’s Manual TSET (1)

been included here to keep the examples small. (NOTE: some of the examples given here
appear to take up more than one line, for text processing reasons. When you type in real rser
commands, you must enter them entirely on one iine.)

At the moment, you are on a 2621. This is suitable for typing by hand but not for a .profile,
unless you are alwayson a 2621.

export TERM; TERM ="tset — 2621"

You have an hl9 at home which you dial up on, but your office terminal is hardwired and
known in /etc/ttytype.

export TERM; TERM ="tset — —m dialup:h19"

You have a switch which connects everything to everything, making it nearly impossible to key
on what port you are coming in on. You use a vt100 in your office at 9600 baud, and dial up to
switch ports at 1200 baud from home on a 2621. Sometimes you use someone elses terminal at
work, so you want it to ask you to make sure what terminal type you have at high speeds, but
at 1200 baud you are always on a 2621. Note the placement of the question mark, and the
quotes to protect the greater than and question mark from interpretation by the shell.

export TERM; TERM ="tset — —m ’switch>1200:?vt100° —m ’switch< =1200:2621"

All of the above entries will fall back on the terminal type specified in /etc/ttytype if none of the
conditions hold. The following entry is appropriate if you always dial up, always at the same
baud rate, on many different kinds of terminals. Your most common terminal is an adm3a. It
always asks you what kind of terminal you are on, defaulting to adm3a.

export TERM; TERM ="tset — ?adm3a’

If the file /erc/tytype is not properly installed and you want to key entirely on the baud rate, the
following can be used:

export TERM; TERM="tset — —m *>1200:vt100° 2621°

Here is a fancy example to illustrate the power of tset and to hopelessly confuse anyone who
has made it this far. You dial up at 1200 baud or less on a concept100, sometimes over switch
ports and sometimes over regular dialups. You use various terminals at speeds higher than
1200 over switch ports, most often the terminal in your office, which is a vt100. However,
sometimes you log in from the university you used to go to, over the ARPANET:; in this case
you are on an ALTO emulating a dm2500. You also often log in on various hardwired ports,
such as the console, all of which are properly entered in /erc/ttytype. You want your erase char-
acter set to control H, your kill character set to control U, and don’t want fser to print the
“‘Erase set to Backspace, Kill set to Control U’ message.

export TERM; TERM="tset —e —k"U —Q — —m ’switch< =1200:concept100’ —m
*switch:?vt100’ —m dialup:concept100 —m arpanet:dm2500°
FILES

/etc/ttytype port name to terminal type mapping database
/etc/termcap terminal capability database

SEE ALSO
csh(1), sh(l), stty(1), ttytype(5), termcap(5), environ(7)

AUTHORS
Eric Allman
David Wasley
Mark Horton

BUGS

4th Berkeley Distribution 16 October 1982 3

TSET (1) UNIX Programmer’s Manual TSET (1)

The tser command is one of the first commands a user must master when getting started on a
UNIX system. Unfortunately, it is one of the most complex, largely because of the extra effort
the user must go through to get the environment of the login shell sef. Something needs to be
done to make all this simpler, either the login(1) program should do this stuff, or a default shell
alias should be made, or a way to set the environment of the parent should exist.

4th Berkeley Distribution 16 October 1982 4

TSORT (1) UNIX Programmer’s Manual TSORT (1)

NAME
tsort — topological sort

SYNOPSIS
tsort [file]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent with a partial
ordering of items mentioned in the input file. If no file is specified, the standard input is
understood.
The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different
items indicate ordering. Pairs of identical items indicate presence, but not ordering.

SEE ALSO
lorder(1)

DIAGNOSTICS '
Odd data: there is an odd number of fields in the input file.

BUGS
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file.

7th Edition 18 January 1983 1

TTY (1) UNIX Programmer’s Manual TTY (1)

NAME
tty — get terminal name
SYNOPSIS
tty [-s]
DESCRIPTION
Ty prints the pathname of the user’s terminal unless the —s (silent) is given. In either case,
the exit value is zero if the standard input is a terminal and one if it is not.
DIAGNOSTICS
‘not a tty’ if the standard input file is not a terminal.

7th Edition 10 February 1983 1

UL (1) UNIX Programmer’s Manual UL (1)

NAME

ul — do underlining
SYNOPSIS

ul [=i] [=t terminal] [name...]
DESCRIPTION

Ul reads the named files (or standard input if none are given) and translates occurrences of
underscores to the sequence which indicates underlining for the terminal in use, as specified by
the environment variable TERM. The =t option overrides the terminal kind specified in the
environment. The file /etc/termcap is read to determine the appropriate sequences for underlin-
ing. If the terminal is incapable of underlining, but is capable of a standout mode then that is
used instead. If the terminal can overstrike, or handles underlining automatically, u/ degen-
erates to cat(1). If the terminal cannot underline, underlining is ignored.

The =1 option causes u/ to indicate underlining onto by a separate line containing appropriate
dashes ‘—’; this is useful when you want to look at the underlining which is present in an nroff
output stream on a crt-terminal.

SEE ALSO
man(1), nroff (1), colert(1)

AUTHOR
Mark Horton wrote ul. The —1 option was originally a option of the editor ex(1), then an jul
command.

BUGS
Nroff usually outputs a series of backspaces and underlines intermixed with the text to indicate
underlining. No attempt is made to optimize the backward motion.

4th Berkeley Distribution 18 January 1983 1

UNIQ (1) UNIX Programmer’s Manual UNIQ (1)

NAME

uniq — report repeated lines in a file
SYNOPSIS

uniq { —udc [+n]1 [=n 1] [input [output]]
DESCRIPTION

Unig reads the input file comparing adjacent lines. In the normal case, the second and succeed-
ing copies of repeated lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort(1). If the —u flag is used, just
the lines that are not repeated in the original file are output. The —d option specifies that one
copy of just the repeated lines is to be written. The normal mode output is the union of the
—u and —d mode outputs.

The =c option supersedes —u and =d and generates an output report in default style but with
each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

-n The first n fields together with any blanks before each are ignored. A field is defined
as a string of non-space, non-tab characters separated by tabs and spaces from its
neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(1), comm(1)

7th Edition 10 February 1983 1

UNITS (1) UNIX Programmer’s Manual UNITS (1)

NAME

units — conversion program

SYNOPSIS

units

DESCRIPTION

FILES

BUGS

Units converts quantities expressed in various standard scales to their equivalents in other
scales. It works interactively in this fashion:

You have: inch

You want: cm
» 2.54000e+00
/ 3.93701e—01

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign:

You have: 15 pounds force/in2
You want: atm

» 1.0206%+00

/ 9.79730e—01

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rankine, but not
Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recog-
nized, together with a generous leavening of exotica and a few constants of nature including:

pi ratio of circumference to diameter
c speed of light

e charge on an electron

g acceleration of gravity

force sameasg

mole Avogadro’s number

water pressure head per unit height of water
au astronomical unit

‘Pound’ is a unit of mass. Compound names are run together, e.g. ‘lightyear’. British units
that differ from their US counterparts are prefixed thus: ‘brgallon’. Currency is denoted ‘belgi-
umfranc’, ‘britainpound’, ...

For a complete list of units, ‘cat /usr/lib/units’.

/usr/lib/units

Don’t base your financial plans on the currency conversions.

7th Edition 18 January 1983 1

UPTIME (1) UNIX Programmer’s Manual UPTIME (1)

NAME
uptime — show how long system has been up
SYNOPSIS
uptime
DESCRIPTION
Uptime prints the current time, the length of time the system has been up, and the average
number of jobs in the run queue over the last 1, 5 and 15 minutes. It is, essentially, the first
line of a w(1) command.
FILES
/vmunix system name list
SEE ALSO
w(l)

3rd Berkeley Distribution 13 November 1979 1

USERS (1) UNIX Programmer’s Manual USERS (1)

NAME
users — compact list of users who are on the system

SYNOPSIS
users

DESCRIPTION
Users lists the login names of the users currently on the system in a compact, one-line format.

FILES
/etc/utmp

SEE ALSO
who(1)

3rd Berkeley Distribution January 1

UUCP (1C) UNIX Programmer’s Manual UUCP (1C)

NAME

uucp, uulog — unix to unix copy

SYNOPSIS

uucp [option] ... source-file ... destination-file
uulog [option] ...

DESCRIPTION

FILES

Uucp copies files named by the source-file arguments to the destination-file argument. A file
name may be a path name on your machine, or may have the form

system-name!pathname

where ‘system-name’ is taken from a list of system names which uucp knows about. Shell
metacharacters ?+[] appearing in the pathname part will be expanded on the appropriate system.

Pathnames may be one of
) a full pathname;

) a pathname preceded by ~user, where user is a userid on the specified system and is
replaced by that user’s login directory;

3) anything else is prefixed by the current directory.

If the result is an erroneous pathname for the remote system the copy will fail. If the
destination-file is a directory, the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission and gives 0666 read and write per-
missions (see chmod(2)).

The following options are interpreted by uucp.

=d Make all necessary directories for the file copy.

-c Use the source file when copying out rather than copying the file to the spool directory.
—m Send mail to the requester when the copy is complete.

Uulog maintains a summary log of wucp and wux(1C) transactions in the file
‘/usr/spool/uucp/LOGFILE’ by gathering information from partial log files named
‘/usr/spool/uucp/LOG.=.?’. It removes the partial log files.

The options cause uulog to print logging information:
—ssys Print information about work involving system sys.

—uuser
Print information about work done for the specified user.

/usr/spool/uucp - spool directory
/usr/lib/uucp/+ - other data and program files

SEE ALSO

uux(1C), mail(1)
D. A. Nowitz, Uucp Implementation Description

WARNING

The domain of remotely accessible files can (and for obvious security reasons, usually should)
be severely restricted. You will very likely not be able to fetch files by pathname; ask a respon-
sible person on the remote system to send them to you. For the same reasons you will prob-
ably not be able to send files to arbitrary pathnames.

4th Berkeley Distribution 18 January 1983 1

UUCP (1C) UNIX Programmer’s Manual UUCP (1C)

BUGS
All files received by uucp will be owned by uucp.
The —m option will only work sending files or receiving a single file. ‘(Receiving multiple files
specified by special shell characters ?+[] will not activate the —m option.)

4th Berkeley Distribution 18 January 1983 2

UUENCODE (1C) UNIX Programmer’s Manual UUENCODE (1C)

NAME

uuencode,uudecode — encode/decode a binary file for transmission via mail

SYNOPSIS

uuencede [source] remotedest | mail sys1!sys2!..!decode
uudecode [file]

DESCRIPTION

Uuencode and uudecode are used to send a binary file via uucp (or other) mail. This combina-
tion can be used over indirect mail links even when uusend(1C) is not available.

Uuencode takes the named source file (default standard input) and produces an encoded version
on the standard output. The encoding uses only printing ASCII characters, and includes the
mode of the file and the remotedest for recreation on the remote system.

Uudecode reads an encoded file, strips off any leading and trailing lines added by mailers, and
recreates the original file with the specified mode and name.

The intent is that all mail to the user ‘“‘decode’’ should be filtered through the uudecode pro-
gram. This way the file is created automatically without human intervention. This is possible
on the uucp network by either using sendmail or by making rmail be a link to Mail instead of
mail, In each case, an alias must be created in a master file to get the automatic invocation of
uudecode.

If these facilities are not available, the file can be sent to a user on the remote machine who
can uudecode it manually.

The encode file has an ordinary text form and can be edited by any text editor to change the
mode or remote name.

SEE ALSO

uuencode(5), uusend(1C), uucp(1C), uux(1C), mail(1)

AUTHOR

BUGS

Mark Horton

The file is expanded by 35% (3 bytes become 4 plus control information) causing it to take
longer to transmit.

The user on the remote system who is invoking uudecode (often uucp) must have write permis-
sion on the specified file.

4th Berkeley Distribution 1 June 1980 1

UUSEND (1C) UNIX Programmer's Manual UUSEND (1C)

NAME

uusend — send a file to a remote host

SYNOPSIS

uusend [—m mode] sourcefile sysl!sys2!..'remotefile

DESCRIPTION

Uusend sends a file to a given location on a remote system. The system need not be directly
connected to the local system, but a chain of uucp(1C) links needs to connect the two systems.

If the —m option is specified, the mode of the file on the remote end will be taken from the
octal number given. Otherwise, the mode of the input file will be used.

The sourcefile can be *“—’, meaning to use the standard input. Both of these options are pri-
marily intended for internal use of uusend.

The remotefile can include the “userid syntax.

DIAGNOSTICS

If anything goes wrong any further away than the first system down the line, you will never
hear about it.

SEE ALSO

uux(1C), uucp(1C), uuencode (1)

AUTHOR

BUGS

Mark Horton

This command shouldn’t exist, since uucp should handle it.
All systems along the line must have the uusend command available and allow remote execu-
tion of it.

Some uucp systems have a bug where binary files cannot be the input to a uux command. If
this bug exists in any system along the line, the file will show up severly munged.

4th Berkeley Distribution 1 May 1980 1

Uuux (1C) UNIX Programmer’s Manual Uux (1)

NAME

uux — unix to unix command execution

SYNOPSIS

wux [=] command-string

DESCRIPTION

Uux will gather 0 or more files from various systems, execute a command on a specified system
and send standard output to a file on a specified system.

The command-string is made up of one or more arguments that look like a shell command line,
except that the command and file names may be prefixed by system-name!. A null system-
name is interpreted as the local system.

File names may be one of
(1) a full pathname;

(2) a pathname preceded by ~xocr; where xxx is a userid on the specified system and is
replaced by that user’s login directory;

(3) anything else is prefixed by the current directory.

The ‘— option will cause the standard input to the uux command to be the standard input to
the command-string.

For example, the command
uux "!diff usg!/usr/dan/f1 pwba!/a4/dan/f1 > !fi.diff"

will get the f1 files from the usg and pwba machines, execute a diff command and put the
results in f1.diff in the local directory.

Any special shellv characters such as <>;| should be quoted either by quoting the entire
command-string, or quoting the special characters as individual arguments.

FILES
/usr/spool/uucp spool directory
/usr/lib/uucp/= other data and programs
SEE ALSO
uucp(1C)

D. A. Nowitz, Uucp Implementation Description

WARNING

BUGS

An installation may, and for security reasons generally will, limit the list of commands execut-
able on behalf of an incoming request from uwx. Typically, a restricted site will permit little
other than the receipt of mail via uux.

Only the first command of a shell pipeline may have a system-name!. All other commands are
executed on the system of the first command.

The use of the shell metacharacter » will probably not do what you want it to do.

The shell tokens << and >> are not implemented.

There is no notification of denial of execution on the remote machine.

4th Berkeley Distribution 18 January 1983 1

VFONTINFO (1) UNIX Programmer’s Manual VFONTINFO (1)

NAME

vfontinfo — inspect and print out information about UNIX fonts
SYNOPSIS

vfontinfo [—v] fontname [characters]
DESCRIPTION

Vfontinfo allows you to examine a font in the UNIX format. It prints out all the information in
the font header and information about every non-null (width > 0) glyph. This can be used to
make sure the font is consistent with the format.

The fontname argument is the name of the font you wish to inspect. It writes to standard out-
put. If it can’t find the file in your working directory, it looks in /usr/lib/ufont (the place most of
the fonts are kept).
The characters, if given, specify certain characters to show. If omitted, the entire font is
shown.
If the —v (verbose) flag is used, the bits of the glyph itself are shown as an array of X’s and
spaces, in addition to the header information.

SEE ALSO

vpr(1), vfont(5)
The Berkeley Font Catalog

AUTHORS
Mark Horton
Andy Hertzfeld

4th Berkeley Distribution 11 April 1980 1

VGRIND (1) UNIX Programmer’s Manual VGRIND (1)

NAME

vgrind — grind nice listings of programs

SYNOPSIS

vgrind [=f 1 [=11 —=t]l[-n][=x][=WI][—=sn][—hheader] [—dfile][
—llanguage] name ...

DESCRIPTION

Vgrind formats the program sources which are arguments in a nice style using troff(1) Com-
ments are placed in italics, keywords in bold face, and the name of the current function is listed
down the margin of each page as it is encountered.

Vgrind tuns in two basic modes, filter mode or regular mode. In filter mode vgrind acts as a
filter in a manner similar to tb/(1). The standard input is passed directly to the standard output
except for lines bracketed by the troff-like macros:

.vS - starts processing
.VE - ends processing

These lines are formatted as described above. The output from this filter can be passed to troff
for output. There need be no particular ordering with egn(1) or 5/(1).

In regular mode vgrind accepts input files, processes them, and passes them to troff(1) for out-
put.

In both modes vgrind passes any lines beginning with a decimal point without conversion.
The options are:

—-f forces filter mode

= forces input to be taken from standard input (default if —f is specified)

-t similar to the same option in troff causing formatted text to go to the standard output
-n forces no keyword bolding

-x outputs the index file in a “‘pretty”’ format. The index file itself is produced whenever
vgrind is run with a file called index in the current directory. The index of function
definitions can then be run off by giving vgrind the —x option and the file index as argu-
ment.

—W forces output to the (wide) Versatec printer rather than the (narrow) Varian

-s specifies a point size to use on output (exactly the same as the argument of a .ps)
=h specifies a particular header to put on every output page (default is the file name)
—-d specifies an alternate language definitions file (default is /usr/lib/vgrindefs)

-1 specifies the language to use. Currently known are PASCAL (—1p), MODEL (—1m),C
(=Ic or the default), CSH (—Ilcsh), SHELL (—Ish), RATFOR (—Ir), and ICON

(—1D).
FILES
index file where source for index is created
/usr/lib/tmac/tmac.vgrind macro package
/usr/lib/vfontedpr preprocessor
/usr/lib/vgrindefs language descriptions
AUTHOR

Dave Presotto & William Joy

4th Berkeley Distribution 3 August 1983 1

VGRIND (1) UNIX Programmer’s Manual VGRIND (1)

SEE ALSO
vip(1), vtroff(1), vgrindefs(5)

BUGS
Vfontedpr assumes that a certain programming style is followed:

For C — function names can be preceded on a line only by spaces, tabs, or an asterisk. The
parenthesized arguments must also be on the same line.

For PASCAL — function names need to appear on the same line as the keywords Jfunction or
procedure.

For MODEL — function names need to appear on the same line as the keywords is beginproc.

If these conventions are not followed, the indexing and marginal function name comment
mechanisms will fail.

More generally, arbitrary formatting styles for programs mostly look bad. The use of spaces to
align source code fails miserably; if you plan to vgrind your program you should use tabs. This
is somewhat inevitable since the font used by vgrind is variable width.

The mechanism of ctags in recognizing functions should be used here.

4th Berkeley Distribution 3 August 1983 2

VvI(1) UNIX Programmer’s Manual VI(1)

NAME

vi — screen oriented (visual) display editor based on ex
SYNOPSIS

vil—ttag] [=r][4+command] [=1] [=wn] name ...
DESCRIPTION

Vi (visual) is a display oriented text editor based on ex(1). Ex and vi run the same code; it is
possible to get to the command mode of ex from within vi and vice-versa.
The Vi Quick Reference card and the Introduction to Display Editing with Vi provide full details on
using vi.
FILES
See ex(1).
SEE ALSO
ex (1), edit (1), “Vi Quick Reference’’ card, ‘‘An Introduction to Display Editing with Vi”.
AUTHOR
William Joy
Mark Horton added macros to visual mode and is maintaining version 3
BUGS
Software tabs using “T work only immediately after the autoindent.
Left and right shifts on intelligent terminals don’t make use of insert and delete character
operations in the terminal.
The wrapmargin option can be fooled since it looks at output columns when blanks are typed.
If a long word passes through the margin and onto the next line without a break, then the line
won’t be broken.
Insert/delete within a line can be slow if tabs are present on intelligent terminals, since the ter-
minals need help in doing this correctly.

Saving text on deletes in the named buffers is somewhat inefficient.

The source command does not work when executed as :source; there is no way to use the
:append, :change, and :insert commands, since it is not possible to give more than one line of
input to a : escape. To use these on a :global you must Q to ex command mode, execute
them, and then reenter the screen editor with vi or open.

3rd Berkeley Distribution 2 December 1979 1

VLP (1)

NAME

UNIX Programmer’s Manual VLP (1)

vlp — Format Lisp programs to be printed with nroff, vtroff, or troff

SYNOPSIS

vlp [=p pointsize] [=d 1 [=f1 [=11 [—v][=T titlel] filel [=T title2?] file2 ...

DESCRIPTION

Vip formats the named files so that they can be run through nroff, vtroff, or troff to produce
listings that line-up and are attractive. The first non-blank character of each line is lined-up
vertically, as in the source file. Comments (text beginning with a semicolon) are printed in
italics. Each function’s name is printed in bold face next to the function. This format makes
Lisp code look attractive when it is printed with a variable width font.

Normally, vip works as a filter and sends its output to the standard output. However, the —v
switch pipes the output directly to vtroff. If no files are specified, then vip reads from the stan-
dard input.

The following options are available:

The —p switch changes the size of the text from its default value of 8 points to ohe of

i 4
6, 8, 10, or 12 points. Once set, the point size is used for all subsequent files. This
point size does not apply to embedded text (see —fbelow).

-d The —a switch puts vip into debugging mode.

-f Vip has a filtered mode in which all lines are passed unmodified, except those lines
between the directives .Ls and .Le. This mode can be used to format Lisp code that is
embedded in a document. The directive .Ls takes an optional argument that gives the
point size for the embedded code. If not size is specified, the size of the surrounding
text is used.

=1 The =1 switch prevents vip from placing labels next to functions. This switch is useful
for embedded Lisp code, where the labels would be distracting.

-v This switch cause vip to send its output to vtroff rather than the standard output.

=T A title to be printed on each page may be specified by using the =T switch. The =T
switch applies only to the next file name given. Titles are not printed for embedded
text (see —f, above). This switch may not be used if vip is reading from the standard
input.

FILES
/usr/lib/vlpmacs troff/nroff macros

AUTHOR
Originally written by John K. Foderaro, with additional changes by Kevin Layer and James
Larus.

SEE ALSO

vgrind (1), lisp(1)

BUGS

vip transforms \ into \\ so that it will be printed out. Hence, troff commands cannot be embed-
ded in Lisp code.

4th Berkeley Distribution 14 July 1983 1

VMSTAT (1) UNIX Programmer’s Manual VMSTAT (1)

NAME

vmstat — report virtual memory statistics
SYNOPSIS

vmstat [—fs] [interval [count]]
DESCRIPTION

Vmstat delves into the system and normally reports certain statistics kept about process, virtual
memory, disk, trap and cpu activity. If given a —f argument, it instead reports on the number
of forks and vforks since system startup and the number of pages of virtual memory involved in
each kind of fork. If given a —s argument, it instead prints the contents of the sum structure,
giving the total number of several kinds of paging related events which have occurred since
boot.

If none of these options are given, vmstat will report in the first line a summary of the virtual
memory activity since the system has been booted. If interval is specified, then successive lines
are summaries over the last interval seconds. ‘‘vmstat 5> will print what the system is doing
every five seconds; this is a good choice of printing interval since this is how often some of the
statistics are sampled in the system; others vary every second, running the output for a while
will make it apparent which are recomputed every second. If a count is given, the statistics are
repeated count times. The format fields are:

Procs: information about numbers of processes in various states.

r in run queue
b blocked for resources (i/o, paging, etc.)
w runnable or short sleeper (< 20 secs) but swapped

Memory: information about the usage of virtual and real memory. Virtual pages are considered
active if they belong to processes which are running or have run in the last 20 seconds. A
‘‘page’’ here is 1024 bytes.

avm active virtual pages
fre size of the free list

Page: information about page faults and paging activity. These are averaged each five seconds,
and given in units per second.

re page reclaims (simulating reference bits)

pi pages paged in

po pages paged out

fr pages freed per second

de anticipated short term memory shortfall

ST pages scanned by clock algorithm, per-second

up/hp/rk: Disk operations per second (this field is system dependent). Typically paging will be
split across several of the available drives. The number under each of these is the unit number.

Faults: trap/interrupt rate averages per second over last 5 seconds.

in (non clock) device interrupts per second
sy system calls per second
cs cpu context switch rate (switches/sec)

Cpu: breakdown of percentage usage of CPU time

us user time for normal and low priority processes
sy system time
id cpu idle

4th Berkeley Distribution 26 April 1981 1

VMSTAT (1) UNIX Programmer’s Manual VMSTAT (1)

FILES
/dev/kmem, /vmunix

SEE ALSO

The sections starting with ‘‘Interpreting system activity’’ in Installing and Operating 4.2bsd.
AUTHORS

William Joy and Ozalp Babaoglu

BUGS
There should be a screen oriented program which combines vmstat and ps(1) in real time as
well as reporting on other system activity.

4th Berkeley Distribution 26 April 1981 2

VPR (1) UNIX Programmer’s Manual VPR (1)

NAME
vpr, vprm, vpq, vprint — raster printer/plotter spooler

SYNOPSIS
vpr [-WI[-1][—-v][—t[-1234font]] [—w]l[—wwidth] [—m] [name ...]
vprm [id ...] [filename ...] [owner ...]
vpq
vprint [=W] file ...

DESCRIPTION
Vpr causes the named files to be queued for printing or typeset simulation on one of the avail-
able raster printer/plotters. If no files are named, the standard input is read. By default the
input is assumed to be line printer-like text. For very wide plotters, the input is run through
the filter /usr/lib/sidebyside giving it an argument of —w106 which arranges it four pages adjacent
with 90 column lines (the rest is for the left margin). Since there are 8 lines per inch in the
default printer font, vpr thus produces 86 lines per page (the top and bottom lines are left
blank).

The following options are available:

| Print the input in a more literal manner. Page breaks are not inserted, and
most control characters (except format effectors: \n, \f, etc.) are printed (many
control characters print special graphics not in the ASCII character set.) Tab
and underline processing is still done. If this option is not given, control char-
acters which are not format effectors are ignored, and page breaks are inserted
after an appropriate number of lines have been printed on a page.

-W Queues files for printing on a wide output device, if available. Normally, files
are queued for printing on a narrow output device.

—1234 Specifies a font to be mounted on font position i The daemon will construct a
.railmag file referencing /usr/lib/vfont/name.size.

-m Report by mail(1) when printing is complete.

—-W (Applicable only to wide output devices.) Do not run the input through sideby-

side. Such processing has been done already, or full (440 character) printer
width is desired.

—wwidth Use width widthrather than 90 for sidebyside.

—-v Use the filter Jusr/lib/vrast to convert the vectors to raster. The named files
must be a parameter and vector file (in that order) created by plot(3X) rou-
tines.

—t Use the filter /usr/lib/vcat to typeset the input on the printer/plotter. The input

must have been generated by troff(1) run with the —t option. This is not nor-
mally run directly to wide output devices, since it is wasteful to run only one
page across. The program viroff(1) is normally used and arranges, using vsort
for printing to occur four pages across, conserving paper.

Vprm removes entries from the raster device queues. The id, filename or owner should be that
reported by vpg. All appropriate files will be removed. Both queues are always searched. The
id of each file removed from the queue will be printed.

Vpg prints the queues. Each entry in the queue is printed showing the owner of the queue
entry, an identification number, the size of the entry in characters, and the file which is to be
printed. The idis useful for removing a specific entry from the printer queue using vprm

4th Berkeley Distribution 27 July 1983 1

VPR (1) UNIX Programmer’s Manual VPR (1)

Vprint is a shell script which pr’s a copy of each named file on one of the electrostatic
printer/plotters. The files are normally printed on a narrow device; —W option causes them to
be printed on a wide device.

FILES
/usr/spool/v?d/* device spool areas
/usr/lib/v?d daemons
/usr/lib/vpd Versatec daemon
/usr/lib/vpf filter for printer simulation
/usr/lib/ *vcat filter for typeset simulation
/usr/lib/vrast filter for plot
/usr/lib/sidebyside filter for wide output

SEE ALSO

troff (1), vfont(5), vp(4), pti(1), vtroff(1), plot(3X)

BUGS
The 1’s (one’s) and I's (lower-case el’s) in a Benson-Varian’s standard character set look very
similar; caution is advised.

A versatec’s hardware character set is rather ugly. Vprint should use one of the constant width
fonts to produce prettier listings.

4th Berkeley Distribution 27 July 1983 2

VTROFF (1) UNIX Programmer’s Manual VTROFF (1)

NAME

vtroff — troff to a raster plotter

SYNOPSIS

vtroff [—w] [—F majorfont] [=123 minorfont] [—llength] [—x] troff arguments

DESCRIPTION

Viroffruns troff(1) sending its output through various programs to produce typeset output on a
raster plotter such as a Benson-Varian or or a Versatec. The —W option specifies that a wide
output device be used; the default is to use a narrow device. The —1 (lower case 1) option
causes the output to be split onto successive pages every length inches rather than the default
117, .

The default font is a Hershey font. If some other font is desired you can give a —F argument
and then the font name. This will place normal, italic and bold versions of the font on posi-
tions 1, 2, and 3. To place a font only on a single position, you can give an argument of the
form —n and the minor font name. A .r will be added to the minor font name if needed.
Thus “‘vtroff —ms paper> will set a paper in the Hershey font, while “‘vtroff —F nonie —ms
paper” will set the paper in the (sans serif) nonie font. The —x option asks for exact simula-
tion of photo-typesetter output. (I.e. using the width tables for the C.A.T. photo-typesetter)

FILES
/usr/lib/tmac/tmac.vcat default font mounts and bug fixes
/usr/lib/fontinfo/* fixes for other fonts
/usr/lib/ vfont directory containing fonts

SEE ALSO

BUGS

troff (1), vfont(5), vpr(1)

Since some macro packages work correctly only if the fonts named R, I, B, and S are mounted,
and since the Versatec fonts have different widths for individual characters than the fonts found
on the typesetter, the following dodge was necessary: If you don’t use the *“.fp”* troff directive
then you get the widths of the standard typesetter fonts suitable for shipping the output of troff
over the network to the computer center A machine for phototypesetting. If, however, you
remount the R, 1, B and S fonts, then you get the width tables for the Versatec.

4th Berkeley Distribution 28 August 1980 1

VWIDTH (1) UNIX Programmer’s Manual VWIDTH (1)

NAME

vwidth — make troff width table for a font

SYNOPSIS

vwidth fontfile pointsize > ftxx.c
cc -¢ ftxx.c mv ftxx.o /usr/lib/font/ftxx

DESCRIPTION

Vwidth translates from the width information stored in the vfont style format to the format
expected by troff. Troff wants an object file in a.out(5) format. (This fact does not seem to be
documented anywhere.) Troff should look directly in the font file but it doesn’t.

Vwidth should be used after editing a font with fed(1). It is not necessary to use vwidth unless
you have made a change that would affect the width tables. Such changes include numerically
editing the width field, adding a new character, and moving or copying a character to a new
position. It is nor always necessary to use vwidth if the physical width of the glyph (e.g. the
number of columns in the bit matrix) has changed, but if it has changed much the logical width
should probably be changed and vwidth run.

Vwidth produces a C program on its standard output. This program should be run through the
C compiler and the object (that is, the .o file) saved. The resulting file should be placed in
/usr/lib/font in the file ftxx where is a one or two letter code that is the logical (internal to
troff) font name. This name can be found by looking in the file /usr/lib/fontinfo/framex
where fhame is the external name of the font.

SEE ALSO

BUGS

fed(1), vfont(5), troff(1), vtroff(1)

Produces the C file using obsolete syntax that the portable C compiler complains about.

3rd Berkeley Distribution 4 March 1980 1

w(1)

NAME

UNIX Programmer’s Manual W (1)

w — who is on and what they are doing

SYNOPSIS

wl=h][—s][user]

DESCRIPTION

FILES

W prints a summary of the current activity on the system, including what each user is doing.
The heading line shows the current time of day, how long the system has been up, the number
of users logged into the system, and the load averages. The load average numbers give the
number of jobs in the run queue averaged over 1, 5§ and 15 minutes.

The fields output are: the users login name, the name of the tty the user is on, the time of day
the user logged on, the number of minutes since the user last typed anything, the CPU time
used by all processes and their children on that terminal, the CPU time used by the currently
active processes, the name and arguments of the current process.

The —h flag suppresses the heading. The —s flag asks for a short form of output. In the short
form, the tty is abbreviated, the login time and cpu times are left off, as are the arguments to
commands. =1 gives the long output, which is the default.

If a user name is included, the output will be restricted to that user.

/etc/utmp
/dev/kmem
/dev/drum

SEE ALSO

who(1), finger(1),.ps(1)

AUTHOR

BUGS

Mark Horton

The notion of the ‘‘current process’ is muddy. The current algorithm is ‘‘the highest num-
bered process on the terminal that is not ignoring interrupts, or, if there is none, the highest
numbered process on the terminal””. This fails, for example, in critical sections of programs
like the shell and editor, or when faulty programs running in the background fork and fail to
ignore interrupts. (In cases where no process can be found, w prints “—"’.)

The CPU time is only an estimate, in particular, if someone leaves a background process run-
ning after logging out, the person currently on that terminal is ‘‘charged” with the time.
Background processes are not shown, even though they account for much of the load on the
system.

Sometimes processes, typically those in the background, are printed with null or garbaged argu-
ments. In these cases, the name of the command is printed in parentheses.

W does not know about the new conventions for detection of background jobs. It will some-
times find a background job instead of the right one.

4th Berkeley Distribution 15 August 1980 1

WAIT (1) UNIX Programmer’s Manual WAIT (1)
NAME
wait — await completion of process
SYNOPSIS
wait
DESCRIPTION

Wait until all processes started with & have completed, and report on abnormal terminations.

Because the wair(2) system call must be executed in the parent process, the Shell itself exe-
cutes wait, without creating a new process.

SEE ALSO
sh(1)

BUGS
Not all the processes of a 3- or more-stage pipeline are children of the Shell, and thus can’t be
waited for. (This bug does not apply to csh(1).)

7th Edition 18 January 1983 1

WALL (1) UNIX Programmer’s Manual WALL (1)

NAME
wall — write to all users

SYNOPSIS
wall

DESCRIPTION
Wall reads its standard input until an end-of-file. It then sends this message, preceded by
‘Broadcast Message ...", to all logged in users.

The sender should be super-user to override any protections the users may have invoked.

FILES
/dev/tty?
/etc/utmp

SEE ALSO
mesg(1), write(1)

DIAGNOSTICS
‘Cannot send to ...” when the open on a user’s tty file fails.

4th Berkeley Distribution 18 January 1983 1

wcC(1) UNIX Programmer’s Manual WC (1)

NAME
wc — word count
'SYNOPSIS
we [—lwe] [name ...]
DESCRIPTION
We counts lines, words and characters in the named files, or in the standard input if no name
appears. A word is a maximal string of characters delimited by spaces, tabs or newlines.

If an argument beginning with one of ‘‘lwc’’ is present, the specified counts (lines, words, or
characters) are selected by the letters I, w, or ¢. The default is —lwe.

BUGS

4th Berkeley Distribution 1 June 1983 1

WHAT (1) UNIX Programmer’s Manual WHAT (1)

NAME
what — show what versions of object modules were used to construct a file

SYNOPSIS
what name ...

DESCRIPTION
What reads each file and searches for sequences of the form ““@(#)" as inserted by the source
code control system. It then prints the remainder of the string after this marker, up to a null
character, newline, double quote, or ‘> character.

BUGS
As SCCS is not licensed with UNIX/32V, this is a rewrite of the whar command which is part
of SCCS, and may not behave exactly the same as that command does.

4th Berkeley Distribution 18 January 1983 1

WHATIS (1) UNIX Programmer’s Manual WHATIS (1)

NAME

whatis — describe what a command is
SYNOPSIS

whatis command ...
DESCRIPTION

Whatis looks up a given command and gives the header line from the manual section. You can
then run the man(1) command to get more information. If the line starts ‘name(section) ...’
you can do ‘man section name’ to get the documentation for it. Try ‘whatis ed’ and then you
should do ‘man 1 ed’ to get the manual.

Whatis is actually just the —f option to the man(1) command.

FILES
/usr/lib/whatis Data base

SEE ALSO
man(1), catman(8)

AUTHOR
William Joy

4th Berkeley Distribution 18 January 1983 1

WHEREIS (1) UNIX Programmer’s Manual WHEREIS (1)

NAME

whereis — locate source, binary, and or manual for program
SYNOPSIS

whereis [=sbm] [—u] [=SBM dir ... —f] name ...

DESCRIPTION

Whereis locates source/binary and manuals sections for specified files. The supplied names are
first stripped of leading pathname components and any (single) trailing extension of the form
“ext”, e.g. *.c”. Prefixes of ‘‘s.”” resulting from use of source code control are ‘also dealt
with. Whereis then attempts to locate the desired program in a list of standard places. If any of
the —b, —s or —m flags are given then whereis searches only for binaries, sources or manual
sections respectively (or any two thereof). The —u flag may be used to search for unusual
entries. A file is said to be unusual if it does not have one entry of each requested type. Thus
“‘whereis -m -u *’* asks for those files in the current directory which have no documentation.

Finally, the =B —M and —S flags may be used to change or otherwise limit the places where
whereis searches. The —f file flags is used to terminate the last such directory list and signal the
start of file names.

EXAMPLE

FILES

The following finds all the files in /usr/bin which are not documented in /usr/man/manl with
source in /usr/src/cmd:

cd /usr/ucb
whereis —u —M /usr/man/manl —S /usr/src/cmd —f *

/usr/src/*
/usr/{doc,man}/*
/lib, /etc, /usr/{lib,bin,ucb,old,new,local}

AUTHOR

BUGS

William Joy

Since the program uses chdir(2) to run faster, pathnames given with the =M —S and —B
must be full; i.e. they must begin with a *‘/>’,

3rd Berkeley Distribution 24 February 1979 1

WHICH (1) UNIX Programmer’s Manual WHICH (1)

NAME

which — locate a program file including aliases and paths (csh only)
SYNOPSIS

which [name] ...
DESCRIPTION

Which takes a list of names and looks for the files which would be executed had these names
been given as commands. Each argument is expanded if it is aliased, and searched for along
the user’s path. Both aliases and path are taken from the user’s .cshre file.

FILES
~/.cshrc source of aliases and path values

DIAGNOSTICS
A diagnostic is given for names which are aliased to more than a single word, or if an execut-
able file with the argument name was not found in the path.

BUGS
Must be executed by a csh, since only csh’s know about aliases.

3rd Berkeley Distribution 10 October 1979 1

WHO (1) UNIX Programmer’s Manual WHO (1)

NAME
who — who is on the system

SYNOPSIS
who [who-file] [am I]

DESCRIPTION
Who, without an argument, lists the login name, terminal name, and login time for each
current UNIX user.

Without an argument, who examines the /etc/utmp file to obtain its information. If a file is
given, that file is examined. Typically the given file will be /usr/adm/wtmp, which contains a
record of all the logins since it was created. Then who lists logins, logouts, and crashes since
the creation of the wtmp file. Each login is listed with user name, terminal name (with */dev/’
suppressed), and date and time. When an argument is given, logouts produce a similar line
without a user name. Reboots produce a line with ‘x’ in the place of the device name, and a
fossil time indicative of when the system went down.

With two arguments, as in ‘who am I’ (and also ‘who are you’), who tells who you are logged
in as.

FILES
/etc/utmp

SEE ALSO
getuid(2), utmp(5)

7th Edition 18 January 1983 1

WHOAMI (1) UNIX Programmer’s Manual WHOAMI (1)

NAME
whoami — print effective current user id

SYNOPSIS
whoami

DESCRIPTION
Whoami prints who you are. It works even if you are su’d, while ‘who am i’ does not since it
uses /etc/utmp.

FILES
/etc/passwd Name data base

SEE ALSO
who (1)

3rd Berkeley Distribution 24 February 1979 1

WRITE (1) UNIX Programmer’s Manual WRITE (1)

NAME

write — write to another user

SYNOPSIS

write user [ttyname]

DESCRIPTION

Write copies lines from your terminal to that of another user. When first called, it sends the
message

Message from yoursystem!yourname yourttyname...

The recipient of the message should write back at this point. Communication continues until
an end of file is read from the terminal or an interrupt is sent. At that point write writes ‘EOT’
on the other terminal and exits.

If you want to write to a user who is logged in more than once, the ttyname argument may be
used to indicate the appropriate terminal name.

Permission to write may be denied or granted by use of the mesg command. At the outset writ-
ing is allowed. Certain commands, in particular nroff and pr(1) disallow messages in order to
prevent messy output.

If the character ‘!” is found at the beginning of a line, wrife calls the shell to execute the rest of
the line as a command.

The following protocol is suggested for using write: when you first write to another user, wait
for him to write back before starting to send. Each party should end each message with a dis-
tinctive signal— (o) for ‘over’ is conventional—that the other may reply. (oo) for ‘over and
out’ is suggested when conversation is about to be terminated.

FILES
/etc/utmp to find user
/bin/sh to execute ‘!’
SEE ALSO

mesg(1), who(1), mail(1)

7th Edition 18 January 1983 1

XSEND (1) UNIX Programmer’s Manual XSEND (1)

NAME
xsend, xget, enroll — secret mail

SYNOPSIS
xsend person
xget
enroll

DESCRIPTION
These commands implement a secure communication channel; it is like mail(1), but no one can
read the messages except the intended recipient. The method embodies a public-key cryptosys-
tem using knapsacks.
To receive messages, use enroll; it asks you for a password that you must subsequently quote in
order to receive secret mail.

To receive secret mail, use xget. It asks for your password, then gives you the messages.

To send secret mail, use xsend in the same manner as the ordinary mail command. (However,
it will accept only one target). A message announcing the receipt of secret mail is also sent by
ordinary mail.

FILES
/usr/spool/secretmail/=.key: keys
/usr/spool/secretmail/«.[0-9]: messages

SEE ALSO
mail (1)

BUGS
It should be integrated with ordinary mail. The announcement of secret mail makes traffic
analysis possible.

7th Edition 18 January 1983 1

XSTR (1) UNIX Programmer’s Manual XSTR (1)

NAME

xstr — extract strings from C programs to implement shared strings
SYNOPSIS

xstr [—c] [—](file]
DESCRIPTION

Xstr maintains a file strings into which strings in component parts of a large program are hashed.
These strings are replaced with references to this common area. This serves to implement
shared constant strings, most useful if they are also read-only.

The command
xstr —c¢ name

will extract the strings from the C source in name, replacing string references by expressions of
the form (&xstr[number]) for some number. An appropriate declaration of xstr is prepended to
the file. The resulting C text is placed in the file x.c, to then be compiled. The strings from
this file are placed in the strings data base if they are not there already. Repeated strings and
strings which are suffices of existing strings do not cause changes to the data base.

After all components of a large program have been compiled a file xs.c declaring the common
xstr space can be created by a command of the form

xstr

This xs.c file should then be compiled and loaded with the rest of the program. If possible, the
array can be made read-only (shared) saving space and swap overhead.

Xstr can also be used on a single file. A command

xstr name
creates files x.c and xs.c as before, without using or affecting any strings file in the same direc-
tory.

It may be useful to run xstr after the C preprocessor if any macro definitions yield strings or if
there is conditional code which contains strings which may not, in fact, be needed. Xsir reads
from its standard input when the argument ‘—’ is given. An appropriate command sequence
for running xstr after the C preprocessor is:

cc —E name.c| xstr —¢ —
€e —c¢ X.C
mv X.0 name.o

Xstr does not touch the file strings unless new items are added, thus make can avoid remaking
xs.0 unless truly necessary.

FILES
strings Data base of strings
X.C Massaged C source
Xs.C C source for definition of array ‘xstr’
/tmp/xs* Temp file when ‘xstr name’ doesn’t touch strings-
SEE ALSO
mkstr(1)
AUTHOR
William Joy
BUGS

If a string is a suffix of another string in the data base, but the shorter string is seen first by xstr
both strings will be placed in the data base, when just placing the longer one there will do.

3rd Berkeley Distribution 24 February 1979 1

YACC (1) UNIX Programmer’s Manual YACC(1)

NAME

yacc — yet another compiler-compiler
SYNOPSIS

yace [—vd] grammar
DESCRIPTION

Yacc converts a context-free grammar into a set of tables for a simple automaton which exe-
cutes an LR(1) parsing algorithm. The grammar may be ambiguous; specified precedence rules
are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program yyparse.
This program must be loaded with the lexical analyzer program, yylex, as well as main and yyer-
ror, an error handling routine. These routines must be supplied by the user; Lex(1) is useful
for creating lexical analyzers usable by yacc.

If the —v flag is given, the file y.ourpur is prepared, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the grammar.

If the —d flag is used, the file y.tab.h is generated with the define statements that associate the
yace-assigned ‘token codes’ with the user-declared ‘token names’. This allows source files other
than y.tab.c to access the token codes.

FILES
y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.acts temporary files
/usr/lib/yaccpar parser prototype for C programs

SEE ALSO
lex(1)
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974.
YACC — Yer Another Compiler Compiler by S. C. Johnson.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a
more detailed report is found in the y.ourpur file. Similarly, if some rules are not reachable
from the start symbol, this is also reported.

BUGS
Because file names are fixed, at most one yacc process can be active in a given directory at a
time.

7th Edition 18 January 1983 1

YES (1) UNIX Programmer’s Manual YES (1)

NAME

yes — be repetitively affirmative
SYNOPSIS

yes [expletive]
DESCRIPTION

Yes repeatedly outputs ‘‘y”’, or if expletive is given, that is output repeatedly. Termination is by
rubout.

4th Berkeley Distribution 18 January 1983 : 1

AARDVARK (6) UNIX Programmer’s Manual AARDVARK (6)

NAME
aardvark — yet another exploration game

SYNOPSIS
/usr/games/aardvark

DESCRIPTION
Aardvark is yet another computer fantasy simulation game of the adventure/zork genre. This
one is written in DDL (Dungeon Definition Language) and is intended primarily as an example
of how to write a dungeon in DDL.

FILES
/usr/games/lib/ddirun ddl interpreter
/usr/games/lib/aardvarkinternal form of aardvark dungeon

AUTHOR
Mike Urban, UCLA

4th Berkeley Distribution 1 February 1983 1

ADVENTURE (6) UNIX Programmer’s Manual ADVENTURE (6)

NAME

adventure — an exploration game
SYNOPSIS

/usr/games/adventure
DESCRIPTION

The object of the game is to locate and explore Colossal Cave, find the treasures hidden there,
and bring them back to the building with you. The program is self-describing to a point, but
part of the game is to discover its rules.

To terminate a game, type ‘quit’; to save a game for later resumption, type ‘suspend’.

BUGS
Saving a game creates a large executable file instead of just the information needed to resume
the game.

7th Edition 1 February 1983 1

ARITHMETIC (6) UNIX Programmer’s Manual ARITHMETIC (6)

NAME

arithmetic — provide drill in number facts

SYNOPSIS

/usr/games/arithmetic [+—x/] [range]

DESCRIPTION

Arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the
answer is correct, it types back *“Right!”, and a new problem. If the answer is wrong, it replies
“What?”, and waits for another answer. Every twenty problems, it publishes statistics on
correctness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; 4+ —x/ respec-
tively cause addition, subtraction, multiplication, and division problems to be generated. One
or more characters can be given; if more than one is given, the different types of problems will
be mixed in random order; default is 4+ —

Range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors, and
quotients will be less than or equal to the value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the respon-
dent makes a mistake, the numbers in the problem which was missed become more likely to
reappear.

As a matter of educational philosophy, the program will not give correct answers, since the
learner should, in principle, be able to calculate them. Thus the program is intended to provide
drill for someone just past the first learning stage, not to teach number facts de novo. For
almost all users, the relevant statistic should be time per problem, not percent correct.

7th Edition 1 February 1983 1

BACKGAMMON (6) UNIX Programmer’s Manual BACKGAMMON (6)

NAME
backgammon — the game
SYNOPSIS
/usr/games/backgammon
DESCRIPTION

This program does what you expect. It will ask whether you need instructions.

7th Edition 1 February 1983 1

BANNER (6) UNIX Programmer’s Manual BANNER (6)
NAME
banner — print large banner on printer
SYNOPSIS
/usr/games/banner [—wn] message ...
DESCRIPTION

Banner prints a large, high quality banner on the standard output. If the message is omitted, it
prompts for and reads one line of its standard input. If —w is given, the output is scrunched
down from a width of 132 to n, suitable for a narrow terminal. If n is omitted, it defaults to
80.

The output should be printed on a hard-copy device, up to 132 columns wide, with no breaks
between the pages. The volume is enough that you want a printer or a fast hardcopy terminal,
but if you are patient, a decwriter or other 300 baud terminal will do.

BUGS
Several ASCII characters are not defined, notably <, >, [, 1,\, , _, {, }, |, and =. Also, the
characters ", ’, and & are funny looking (but in a useful way.)
The —w option is implemented by skipping some rows and columns. The smaller it gets, the
grainier the output. Sometimes it runs letters together.

AUTHOR

Mark Horton

3rd Berkeley Distribution 1 February 1983 1

BCD (6) UNIX Programmer’s Manual

NAME
bed — convert to antique media

SYNOPSIS
/usr/games/bed text

DESCRIPTION

Bed converts the literal text into a form familiar to old-timers.

SEE ALSO
dd(1)

7th Edition 1 February 1983

BCD (6)

BOGGLE (6) UNIX Programmer’s Manual BOGGLE (6)

NAME

boggle — play the game of boggle

SYNOPSIS

/usr/games/boggle [+ 1 [++]

DESCRIPTION

This program is intended for people wishing to sharpen their skills at Boggle (TM Parker
Bros.). If you invoke the program with 4 arguments of 4 letters each, (e.g. ‘‘boggle appl epie
moth erhd”) the program forms the obvious Boggle grid and lists all the words from
/usr/dict/words found therein. If you invoke the program without arguments, it will generate a
board for you, let you enter words for 3 minutes, and then tell you how well you did relative to
/usr/dict/words.

The object of Boggle is to find, within 3 minutes, as many words as possible in a 4 by 4 grid of
letters. Words may be formed from any sequence of 3 or more adjacent letters in the grid. The
letters may join horizontally, vertically, or diagonally. However, no position in the grid may be
used more than once within any one word. In competitive play amongst humans, each player is
given credit for those of his words which no other player has found.

In interactive play, enter your words separated by spaces, tabs, or newlines. A bell will ring
when there is 2:00, 1:00, 0:10, 0:02, 0:01, and 0:00 time left. You may complete any word
started before the expiration of time. You can surrender before time is up by hitting break’.
While entering words, your erase character is only effective within the current word and your
line kill character is ignored.

Advanced players may wish to invoke the program with 1 or 2 +’s as the first argument. The

first + removes the restriction that positions can only be used once in each word. The second
+ causes a position to be considered adjacent to itself as well as its (up to) 8 neighbors.

4th Berkeley Distribution 1 February 1983 1

CANFIELD (6) UNIX Programmer’s Manual CANFIELD (6)

NAME

canfield, cfscores — the solitaire card game canfield

SYNOPSIS

/usr/games/canfield
/usr/games/cfscores

DESCRIPTION

FILES

BUGS

If you have never played solitaire before, it is recommended that you consult a solitaire instruc-
tion book. In Canfield, tableau cards may be built on each other downward in alternate colors.
An entire pile must be moved as a unit in building. Top cards of the piles are available to be
able to be played on foundations, but never into empty spaces.

Spaces must be filled from the stock. The top card of the stock also is available to be played on
foundations or built on tableau piles. After the stock is exhausted, tableau spaces may be filled
from the talon and the player may keep them open until he wishes to use them.

Cards are dealt from the hand to the talon by threes and this repeats until there are no more
cards in the hand or the player quits. To have cards dealt onto the talon the player types ’ht’ for
his move. Foundation base cards are also automatically moved to the foundation when they
become available.

The command ’c’ causes canfield to maintain card counting statistics on the bottom of the
screen. When properly used this can greatly increase ones chances of winning.

The rules for betting are somewhat less strict than those used in the official version of the
game. The initial deal costs $13. You may quit at this point or inspect the game. Inspection
costs $13 and allows you to make as many moves as is possible without moving any cards from
your hand to the talon. (the initial deal places three cards on the talon; if all these cards are
used, three more are made available.) Finally, if the game seems interesting, you must pay the
final installment of $26. At this point you are credited at the rate of $5 for each card on the
foundation; as the game progresses you are credited with $5 for each card that is moved to the
foundation. Each run through the hand after the first costs $5. The card counting feature costs
$1 for each unknown card that is identified. If the information is toggled on, you are only
charged for cards that became visible since it was last turned on. Thus ihe maximum cost of
information is $34. Playing time is charged at a rate of $1 per minute.

With no arguments, the program cfscores prints out the current status of your canfield account.
If a user name is specified, it prints out the status of their canfield account. If the —a flag is
specified, it prints out the canfield accounts for all users that have played the game since the
database was set up.

/usr/games/canfield the game itself
/usr/games/cfscores the database printer
/usr/games/lib/cfscores the database of scores

It is impossible to cheat.

AUTHORS

Originally written: Steve Levine
Further random hacking by: Steve Feldman, Kirk McKusick, Mikey Olson, and Eric Allman.

4th Berkeley Distribution 1

CHESS (6) UNIX Programmer’s Manual CHESS (6)

NAME
chess — the game of chess

SYNOPSIS
/usr/games/chess

DESCRIPTION
Chess is a computer program that plays class D chess. Moves may be given either in standard
(descriptive) notation or in algebraic notation. The symbol ‘+’ is used to specify check; ‘0-0’
and ‘0-0-0’ specify castling. To play black, type ‘first’; to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program’s reply.

FILES
/usr/lib/chess binary image to run in compatibility mode

DIAGNOSTICS
The most cryptic diagnostic is ‘eh?’ which means that the input was syntactically incorrect.

BUGS
Pawns may be promoted only to queens.

7th Edition 1 February 1983 1

CHING (6) UNIX Programmer’s Manual CHING (6)

NAME

ching — the book of changes and other cookies

SYNOPSIS

/usr/games/ching [hexagram]

DESCRIPTION

The I Ching or Book of Changes is an ancient Chinese oracle that has been in use for centuries
as a source of wisdom and advice.

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each sym-
bolized by a particular arrangement of six straight (———) and broken (— —) lines. These
lines have values ranging from six through nine, with the even values indicating the broken
lines.

Each hexagram consists of two major sections. The Judgement relates specifically to the matter
at hand (E.g., ‘‘It furthers one to have somewhere to go.”’) while the Image describes the gen-
eral attributes of the hexagram and how they apply to one’s own life (““Thus the superior man
makes himself strong and untiring.”).

When any of the lines have the values six or nine, they are moving lines; for each there is an
appended judgement which becomes significant. Furthermore, the moving lines are inherently
unstable and change into their opposites; a second hexagram (and thus an additional judge-
ment) is formed.

Normally, one consults the oracle by fixing the desired question firmly in mind and then casting
a set of changes (lines) using yarrow—stalks or tossed coins. The resulting hexagram will be
the answer to the question.

Using an algorithm suggested by S. C. Johnson, the UNIX oracle simply reads a question from
the standard input (up to an EOF) and hashes the individual characters in combination with the
time of day, process id and any other magic numbers which happen to be lying around the sys-
tem. The resulting value is used as the seed of a random number generator which drives a
simulated coin—toss divination. The answer is then piped through nroff for formatting and will
appear on the standard output.

For those who wish to remain steadfast in the old traditions, the oracle will also accept the
results of a personal divination using, for example, coins. To do this, cast the change and then
type the resulting line values as an argument.

The impatient modern may prefer to settle for Chinese cookies; try fortune(6).

SEE ALSO

It furthers one to see the great man.

DIAGNOSTICS

BUGS

The great prince issues commands,
Founds states, vests families with fiefs.
Inferior people should not be employed.

‘Waiting in the mud
Brings about the arrival of the enemy.

If one is not extremely careful,
Somebody may come up from behind and strike him.
Misfortune.

4th Berkeley Distribution 1 February 1983 1

CRIBBAGE (6) UNIX Programmer’s Manual CRIBBAGE (6)

NAME

cribbage — the card game cribbage
SYNOPSIS

/usr/games/cribbage [—req] name ...
DESCRIPTION

Cribbage plays the card game cribbage, with the program playing one hand and the user thg
other. The program will initially ask the user if the rules of the game are needed — if so, it
will print out the appropriate section from According to Hoyle with more (1).

Cribbage options include:

-=e When the player makes a mistakes scoring his hand or crib, provide an explanation of
the correct score. (This is especially useful for beginning players.)

=q Print a shorter form of all messages — this is only recommended for users who have
played the game without specifying this option.

-r Instead of asking the player to cut the deck, the program will randomly cut the deck.

Cribbage first asks the player whether he wishes to play a short game (“‘once around”’, to 61) or
a long game (“‘twice around”’, to 121). A response of ‘s’ will result in a short game, any other
response will play a long game.

At tue start of the first game, the program asks the player to cut the deck to determine who
gets the first crib. The user should respond with a number between 0 and § 1, indicating how
many cards down the deck is to be cut. The player who cuts the lower ranked card gets the first
crib. If more than one game is played, the loser of the previous game gets the first crib in the
current game.

For each hand, the program first prints the player’s hand, whose crib it is, and then asks the
player to discard two cards into the crib. The cards are prompted for one per line, and are
typed as explained below.

After discarding, the program cuts the deck (if it is the player’s crib) or asks the player to cut
the deck (if it’s its crib); in the later case, the appropriate response is a number from 0 to 39
indicating how far down the remaining 40 cards are to be cut.

After cutting the deck, play starts with the non-dealer (the person who doesn’t have the crib)
leading the first card. Play continues, as per cribbage, until all cards are exhausted. The pro-
gram keeps track of the scoring of all points and the total of the cards on the table.

After play, the hands are scored. The program requests the player to score his hand (and the
crib, if it is his) by printing out the appropriate cards (and the cut card enclosed in brackets).
Play continues until one player reaches the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent to typing the lowest legal
value; when cutting the deck this is equivalent to choosing the top card.

Cards are specified as rank followed by suit. The ranks may be specified as one of: ‘a’, ‘2°, 3°,
‘@, 5,06, T, 8, 9, v, Y, ‘g, and ‘K, or alternatively, one of: “ace”, “‘two’’, “‘three”’,
“fOul'”, “ﬁve”, “Six”, “Seven”, “eight”, “nine”, “ten”, “jﬂck”, uqueenn’ and “king”.
Suits may be specified as: ‘s’, ‘h’, ‘d’, and ‘c’, or alternatively as: ‘“‘spades’’, “‘hearts”, “‘dia-
monds™, and “clubs”. A card may be specified as: <rank> * *° <suit>, or: <rank> ‘“ of
<suit>. If the single letter rank and suit designations are used, the space separating the suit
and rank may be left out. Also, if only one card of the desired rank is playable, typing the rank
is sufficient. For example, if your hand was ‘“2H, 4D, 5C, 6H, JC, KD” and it was desired to
discard the king of diamonds, any of the following could be typed: “‘k”’, “king”, “‘kd”’, “k 4,
“k of d, “king d’, “king of d”, “k diamonds”’, “k of diamonds”, ‘“‘king diamonds”’, or
“‘king of diamonds”’.

4th Berkeley Distribution 1 February 1983 1

CRIBBAGE (6) UNIX Programmer’s Manual CRIBBAGE (6)

FILES
/usr/games/cribbage

AUTHORS
Earl T. Cohen wrote the logic. Ken Arnold added the screen oriented interface.

~ 4th Berkeley Distribution 1 February 1983 2

DOCTOR (6) UNIX Programmer’s Manual DOCTOR (6)

NAME

doctor — interact with a psychoanalyst
SYNOPSIS

/usr/games/doctor
DESCRIPTION

Doctor is a lisp-language version of the legendary ELIZA program of Joseph Weizenbaum. This
script "simulates” a Rogerian psychoanalyst. Type in lower case, and when you get tired or
bored, type your interrupt character (either control-C or Rubout). Remember to type two car-
riage returns when you want it to answer.

In order to run this you must have a Franz Lisp system in /usr/ucb/lisp.

AUTHORS
Adapted for Lisp by Jon L White, moved to Franz by John Foderaro, from an original script by
Joseph Weizenbaum.

4th Berkeley Distribution 1 February 1983 1

FISH (6) UNIX Programmer’s Manual FISH (6)

NAME
fish — play “Go Fish”

SYNOPSIS
/usr/games/fish

DESCRIPTION ‘

Fish plays the game of ‘“‘Go Fish’’, a childrens’ card game. The Object is to accumulate ‘books’
of 4 cards with the same face value. The players alternate turns; each turn begins with one
player selecting a card from his hand, and asking the other player for all cards of that face
value. If the other player has one or more cards of that face value in his hand, he gives them
to the first player, and the first player makes another request. Eventually, the first player asks
for a card which is not in the second player’s hand: he replies ‘GO FISH!’ The first player then
draws a card from the ‘pool” of undealt cards. If this is the card he had last requested, he
draws again. When a book is made, either through drawing or requesting, the cards are laid
down and no further action takes place with that face value.
To play the computer, simply make guesses by typing a, 2, 3, 4, 5, 6, 7, 8, 9, 10, j, q, or k
when asked. Hitting return gives you information about the size of my hand and the pool, and
tells you about my books. Saying ‘p’ as a first guess puts you into ‘pro’ level; The default is
pretty dumb.

4th Berkeley Distribution 1 February 1983 1

FORTUNE (6) UNIX Programmer’s Manual FORTUNE (6)

NAME

fortune — print a random, hopefully interesting, adage

SYNOPSIS

/usr/games/fortune [—] [—wslao]

DESCRIPTION
Fortune with no arguments prints out a random adage. The flags mean:

=w Waits before termination for an amount of time calculated from the number of characters

=s
=1
]
-a
FILES

in the message. This is useful if it is executed as part of the logout procedure to guaran-
tee that the message can be read before the screen is cleared.

Short messages only.

Long messages only.

Choose from an alternate list of adages, often used for potentially offensive ones.
Choose from either list of adages.

/usr/games/lib/fortunes.dat

AUTHOR

Ken Arnold

4th Berkeley Distribution 1 February 1983 1

HANGMAN (6) UNIX Programmer’s Manual HANGMAN (6)

NAME

hangman — Computer version of the game hangman
SYNOPSIS

/usr/games/hangman
DESCRIPTION

In hangman, the computer picks a word from the on-line word list and you must try to guess it.
The computer keeps track of which letters have been guessed and how many Wrong guesses
you have made on the screen in a graphic fashion.

FILES
/usr/dict/words On-line word list

AUTHOR
Ken Arnold

4th Berkeley Distribution 1 February 1983 1

MILLE (6) UNIX Programmer’s Manual MILLE (6)

NAME
mille — play Mille Bournes

SYNOPSIS
/usr/games/mille [file]

DESCRIPTION
Mille plays a two-handed game reminiscent of the Parker Brother’s game of Mille Bournes with
you. The rules are described below. If a file name is given on the command line, the game
saved in that file is started.

When a game is started up, the bottom of the score window will contain a list of commands.

They are:
P Pick a card from the deck. This card is placed in the ‘P’ slot in your hand.
D Discard a card from your hand. To indicate which card, type the number of the card in

the hand (or ““P” for the just-picked card) followed by a <RETURN> or <SPACE>.
The <RETURN or <SPACE> is required to allow recovery from typos which can be
very expensive, like discarding safeties.

U Use a card. The card is again indicated by its number, followed by a <RETURN> or
<SPACE>.

(o] Toggle ordering the hand. By default off, if turned on it will sort the cards in your
hand appropriately. This is not recommended for the impatient on slow terminals.

Q Quit the game. This will ask for confirmation, just to be sure. Hitting <DELETE>
(or <RUBOUT>) is equivalent.

S Save the game in a file. If the game was started from a file, you will be given an oppor-
tunity to save it on the same file. If you don’t wish to, or you did not start from a file,
you will be asked for the file name. If you type a <RETURN> without a name, the
save will be terminated and the game resumed.

Redraw the screen from scratch. The command "L (control ‘L’) will also work.

w Toggle window type. This switches the score window between the startup window (with
all the command names) and the end-of-game window. Using the end-of-game window
saves time by eliminating the switch at the end of the game to show the final score.
Recommended for hackers and other miscreants.

w

If you make a mistake, an error message will be printed on the last line of the score window,
and a bell will beep.

At the end of each hand or game, you will be asked if you wish to play another. If not, it will
ask you if you want to save the game. If you do, and the save is unsuccessful, play will be
resumed as if you had said you wanted to play another hand/game. This allows you to use the
“S” command to reattempt the save.

AUTHOR
Ken Arnold
(The game itself is a product of Parker Brothers, Inc.)

SEE ALSO
curses(3X), Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold

CARDS
Here is some useful information. The number in parentheses after the card name is the
number of that card in the deck:

4th Berkeley Distribution 1 February 1983 1

MILLE (6) UNIX Programmer’s Manual MILLE (6)

Hazard Repair Safety

Out of Gas (2) Gasoline (6) Extra Tank (1)
Flat Tire (2) Spare Tire (6) Puncture Proof (1)
Accident (2) Repairs (6) Driving Ace (1)
Stop (4) Go (14) Right of Way (1)

Speed Limit (3) End of Limit (6)

25 = (10), 50 — (10), 75 — (10), 100 — (12), 200 — (4)

RULES
Object: The point of game is to get a total of 5000 points in several hands. Each hand is a race
to put down exactly 700 miles before your opponent does. Beyond the points gained by putting
down milestones, there are several other ways of making points.

Overview: The game is played with a deck of 101 cards. Distance cards represent a number of
miles traveled. They come in denominations of 25, 50, 75, 100, and 200. When one is played,
it adds that many miles to the player’s trip so far this hand. Hazard cards are used to prevent
your opponent from putting down Distance cards. They can only be played if your opponent
has a Go card on top of the Battle pile. The cards are Out of Gas, Accident, Flat Tire, Speed
Limit, and Stop. Remedy cards fix problems caused by Hazard cards played on you by your
opponent. The cards are Gasoline, Repairs, Spare Tire, End of Limit, and Go. Safety cards
prevent your opponent from putting specific Hazard cards on you in the first place. They are
Extra Tank, Driving Ace, Puncture Proof, and Right of Way, and there are only one of each in
the deck.

Board Layout: The board is split into several areas. From top to bottom, they are: SAFETY
AREA (unlabeled): This is where the safeties will be placed as they are played. HAND: These
are the cards in your hand. BATTLE: This is the Battle pile. All the Hazard and Remedy
Cards are played here, except the Speed Limit and End of Limit cards. Only the top card is
displayed, as it is the only effective one. SPEED: The Speed pile. The Speed Limit and End of
Limit cards are played here to control the speed at which the player is allowed to put down
miles. MILEAGE: Miles are placed here. The total of the numbers shown here is the distance
traveled so far.

Play: The first pick alternates between the two players. Each turn usually starts with a pick
from the deck. The player then plays a card, or if this is not possible or desirable, discards one.
Normally, a play or discard of a single card constitutes a turn. If the card played is a safety,
however, the same player takes another turn immediately.

This repeats until one of the players reaches 700 points or the deck runs out. If someone
reaces 700, they have the option of going for an Extension, which means that the play continues
until someone reaches 1000 miles.

Hazard and Remedy Cards: Hazard Cards are played on your opponent’s Battle and Speed
piles. Remedy Cards are used for undoing the effects of your opponent’s nastyness.

Go (Green Light) must be the top card on your Battle pile for you to play any mileage,
unless you have played the Right of Way card (see below).

Stop is played on your opponent’s Go card to prevent them from playing mileage until they
play a Go card.

Speed Limit is played on your opponent’s Speed pile. Until they play an End of Limit they
can only play 25 or 50 mile cards, presuming their Go card allows them to do even that.

End of Limit is played on your Speed pile to nullify a Speed Limit played by your opponent.

Out of Gas is played on your opponent’s Go card. They must then play a Gasoline card, and
then a Go card before they can play any more mileage.

4th Berkeley Distribution 1 February 1983 2

MILLE (6) UNIX Programmer’s Manual MILLE (6)

Flat Tire is played on your opponent’s Go card. They must then play a Spare Tire card, and
then a Go card before they can play any more mileage.

Accident is played on your opponent’s Go card. They must then play a Repairs card, and
then a Go card before they can play any more mileage.

Safety Cards: Safety cards prevent your opponent from playing the corresponding Hazard cards
on you for the rest of the hand. It cancels an attack in progress, and always entitles the player to
an extra turn.

Right of Way prevents your opponent from playing both Stop and Speed Limit cards on you.
It also acts as a permanent Go card for the rest of the hand, so you can play mileage as long as
there is not a Hazard card on top of your Battle pile. In this case only, your opponent can play
Hazard cards directly on a Remedy card besides a Go card.

Extra Tank When played, your opponent cannot play an QOut of Gas on your Battle Pile.

Puncture Proof When played, your opponent cannot play a Flat Tire on your Battle Pile.

Driving Ace When played, your opponent cannot play an Accident on your Battle Pile.

Distance Cards: Distance cards are played when you have a Go card on your Battle pile, or a
Right of Way in your Safety area and are not stopped by a Hazard Card. They can be played in
any combination that totals exactly 700 miles, except that you cannot play more than two 200
mile cards in one hand. A hand ends whenever one player gets exactly 700 miles or the deck
runs out. In that case, play continues until neither someone reaches 700, or neither player can
use any cards in their hand. If the trip is completed after the deck runs out, this is called
Delayed Action.

Coup Fourré: This is a French fencing term for a counter-thrust move as part of a parry to an
opponents attack. In Mille Bournes, it is used as follows: If an opponent plays a Hazard card,
and you have the corresponding Safety in your hand, you play it immediately, even before you
draw. This immediately removes the Hazard card from your Battle pile, and protects you from
that card for the rest of the game. This gives you more points (see ‘‘Scoring’’ below).

Scoring: Scores are totaled at the end of each hand, whether or not anyone completed the trip.
The terms used in the Score window have the following meanings:
Milestones Played: Each player scores as many miles as they played before the trip ended.
Each Safety: 100 points for each safety in the Safety area.
All 4 Safeties: 300 points if all four safeties are played.
Each Coup Fouré: 300 points for each Coup Fouré accomplished.

The following bonus scores can apply only to the winning player.
Trip Completed: 400 points bonus for completing the trip to 700 or 1000.
Safe Trip: 300 points bonus for completing the trip without using any 200 mile cards.
Delayed Action: 300 points bonus for finishing after the deck was exhausted.
Extension: 200 points bonus for completing a 1000 mile trip.
Shut-Out: 500 points bonus for completing the trip before your opponent played any
mileage cards.

Running totals are also kept for the current score for each player for the hand (Hand Total),
the game (Overall Total), and number of games won (Games).

4th Berkeley Distribution 1 February 1983 3

MONOP (6) UNIX Programmer’s Manual MONOP (6)

NAME

monop — Monopoly game
SYNOPSIS

/usr/games/monop | file]
DESCRIPTION

Monop is reminiscent of the Parker Brother’s game Monopoly, and monitors a game between 1
to 9 users. It is assumed that the rules of Monopoly are known. The game follows the stan-
dard rules, with the exception that, if a property would go up for auction and there are only two
solvent players, no auction is held and the property remains unowned.

The game, in effect, lends the player money, so it is possible to buy something which you can-
not afford. However, as soon as a person goes into debt, he must ‘“fix the problem”, i.e.,
make himself solvent, before play can continue. If this is not possible, the player’s property
reverts to his debtee, either a player or the bank. A player can resign at any time to any person
or the bank, which puts the property back on the board, unowned.

Any time that the response to a question is a string, e.g., a name, place or person, you can type
‘?’ to get a list of valid answers. It is not possible to input a negative number, nor is it ever
necessary.

A Summary of Commands:

quit: quit game: This allows you to quit the game. It asks you if you’re sure.

print: print board: This prints out the current board. The columns have the following
meanings (column headings are the same for the where, own holdings, and hold-
ings commands):

Name The first ten characters of the name of the square
Own The. number of the owner of the property.

Price The cost of the property (if any)

Mg This field has a ‘#’ in it if the property is mortgaged

If the property is a Utility or Railroad, this is the number of such owned by
the owner. If the property is land, this is the number of houses on it.

Rent Current rent on the property. If it is not owned, there is no rent.

where: where players are: Tells you where all the players are. A ‘s’ indicates the current
player.

own holdings:
List your own holdings, i.e., money, get-out-of-jail-free cards, and property.

holdings: holdings list: Look at anyone’s holdings. It will ask you whose holdings you wish to
look at. When you are finished, type ‘““‘done”.

shell: shell escape: Escape to a shell. When the shell dies, the program continues where
you left off.

mortgage: mortgage property: Sets up a list of mortgageable property, and asks which you wish
to mortgage.

unmortgage:
unmortgage property: Unmortgage mortgaged property.

buy: buy houses: Sets up a list of monopolies on which you can buy houses. If there is

4th Berkeley Distribution 1 February 1983 1

MONOP (6) UNIX Programmer’s Manual MONOP (6)
more than one, it asks you which you want to buy for. It then asks you how many
for each piece of property, giving the current amount in parentheses after the pro-
perty name. If you build in an unbalanced manner (a disparity of more than one
house within the same monopoly), it asks you to re-input things.

sell: sell houses: Sets up a list of monopolies from which you can sell houses. it operates
in an analogous manner to buy

card: card for jail: Use a get-out-of-jail-free card to get out of jail. If you’re not in jail, or
you don’t have one, it tells you so.

pay: pay for jail: Pay $50 to get out of jail, from whence you are put on Just Visiting.
Difficult to do if you’re not there.

trade: This allows you to trade with another player. It asks you whom you wish to trade
with, and then asks you what each wishes to give up. You can get a summary at the
end, and, in all cases, it asks for confirmation of the trade before doing it.

resign: Resign to another player or the bank. If you resign to the bank, all property reverts
to its virgin state, and get-out-of-jail free cards revert to the deck.

save: save game: Save the current game in a file for later play. You can continue play
after saving, either by adding the file in which you saved the game after the monop
command, or by using the restore command (see below). It will ask you which file
you wish to save it in, and, if the file exists, confirm that you wish to overwrite it.

restore: restore game: Read in a previously saved game from a file. It leaves the file intact.

roll: Roll the dice and move forward to your new location. If you simply hit the
<RETURN> key instead of a command, it is the same as typing roil.

AUTHOR

Ken Arnold
FILES

/usr/games/lib/cards.pck Chance and Community Chest cards
BUGS

No command can be given an argument instead of a response to a query.

4th Berkeley Distribution 1 February 1983 2

NUMBER (6) UNIX Programmer’s Manual NUMBER (6)

NAME

number — convert Arabic numerals to English
SYNOPSIS
‘ /usr/games/number
DESCRIPTION

Number copies the standard input to the standard output, changing each decimal number to a
fully spelled out version.

7th Edition - 1 February 1983 1

QUIZ (6) UNIX Programmer’s Manual QUIZ (6)

NAME

quiz — test your knowledge

SYNOPSIS

/usr/games/quiz [—1 file] [—t] [categoryl category2]

DESCRIPTION

FILES

BUGS

Quiz gives associative knowledge tests on various subjects. It asks items chosen from category!
and expects answers from category2. If no categories are specified, quiz gives instructions and
lists the available categories.

Quiz tells a correct answer whenever you type a bare newline. At the end of input, upon inter-
rupt, or when questions run out, quiz reports a score and terminates.

The =t flag specifies ‘tutorial’ mode, where missed questions are repeated later, and material is
gradually introduced as you learn.

The —1 flag causes the named file to be substituted for the default index file. The lines of
these files have the syntax:

line = category newline | category *’ line

category = alternate | category { alternate

alternate = empty | alternate primary

primary = character | ‘[’ category ‘]’ | option

option = ‘{’ category ‘}’
The first category on each line of an index file names an information file. The remaining
categories specify the order and contents of the data in each line of the information file. Infor-
mation files have the same syntax. Backslash ‘\’ is used as with s#(1) to quote syntactically
significant characters or to insert transparent newlines into a line. When either a question or its
answer is empty, quiz will refrain from asking it.

/usr/games/quiz.k/*

The construct ‘alab’ doesn’t work in an information file. Use ‘a{b}’.

7th Edition 1 February 1983 1

RAIN (6) UNIX Programmer’s Manual RAIN (6)

NAME
rain — animated raindrops display
. SYNOPSIS
/usr/games/rain

DESCRIPTION
Rain’s display is modeled after the VAX/VMS program of the same name. The terminal has to
be set for 9600 baud to obtain the proper effect.
As with all programs that use termcap, the TERM environment variable must be set (and
exported) to the type of the terminal being used.

FILES
/etc/termcap

AUTHOR
Eric P. Scott

4th Berkeley Distribution 1 February 1983 1

ROGUE (6) UNIX Programmer’s Manual ROGUE (6)

NAME

rogue — Exploring The Dungeons of Doom

SYNOPSIS

/usr/games/rogue [=r 1 [save_file] [=8] [=d]

DESCRIPTION

Rogue is a computer fantasy game with a new twist. It is crt oriented and the object of the
game is to survive the attacks of various monsters and get a lot of gold, rather than the puzzle
solving orientation of most computer fantasy games.

To get started you really only need to know two commands. The command ? will give you a
list of the available commands and the command / will identify the things you see on the
screen.

To win the game (as opposed to merely playing to beat other people high scores) you must
locate the Amulet of Yendor which is somewhere below the 20th level of the dungeon and get
it out. Nobody has achieved this yet and if somebody does, they will probably go down in his-
tory as a hero among heros.

When the game ends, either by your death, when you quit, or if you (by some miracle) manage
to win, rogue will give you alist of the top-ten scorers. The scoring is based entirely upon how
much gold you get. There is a 10% penalty for getting yourself killed.

If save_file is specified, rogue will be restored from the specified saved game file. If the —r
option is used, the save game file is presumed to be the default.

The —s option will print out the list of scores.
The —d option will kill you and try to add you to the score file.
For more detailed directions, read the document 4 Guide to the Dungeons of Doom.

AUTHORS
Michael C. Toy, Kenneth C. R. C. Arnold, Glenn Wichman
FILES
/usr/games/lib/rogue_roll Score file
“/rogue.save Default save file
SEE ALSO
Michael C. Toy and Kenneth C. R. C. Arnold, 4 guide to the Dungeons of Doom
BUGS

Probably infinite. However, that Floating Eyes sometimes transfix you permanently is not a
bug. It’s a feature.

4th Berkeley Distribution 3 April 1983 1

SNAKE (6) . UNIX Programmer’s Manual SNAKE (6)

NAME
snake, snscore — display chase game
SYNOPSIS
/usr/games/snake [—wn] [—1n]
/usr/games/snscore
DESCRIPTION

FILES

BUGS

Snake is a display-based game which must be played on a CRT terminal from among those sup-
ported by vi(1). The object of the game is to make as much money as possible without getting
eaten by the snake. The —1 and —w options allow you to specify the length and width of the
field. By default the entire screen (except for the last column) is used.

You are represented on the screen by an I. The snake is 6 squares long and is represented by
S’s. The money is $, and an exit is #. Your score is posted in the upper left hand corner.

You can move around using the same conventions as vi(1), the h, j, k, and 1 keys work, as do
the arrow keys. Other possibilities include:

sefc These keys are like hjkl but form a directed pad around the d key.

HIKL These keys move you all the way in the indicated direction to the same row or column
as the money. This does nor let you jump away from the snake, but rather saves you
from having to type a key repeatedly. The snake still gets all his turns.

SEFC Likewise for the upper case versions on the left.

ATPB These keys move you to the four edges of the screen. Their position on the keyboard
is the mnemonic, e.g. P is at the far right of the keyboard.

X This lets you quit the game at any time.

p Points in a direction you might want to go.

w Space warp to get out of tight squeezes, at a price.

! Shell escape

"z Suspend the snake game, on systems which support it. Otherwise an interactive shell is

started up.

To earn money, move to the same square the money is on. A new $ will appear when you earn
the current one. As you get richer, the snake gets hungrier. To leave the game, move to the
exit (#).

A record is kept of the personal best score of each player. Scores are only counted if you leave
at the exit, getting eaten by the snake is worth nothing.

As in pinball, matching the last digit of your score to the number which appears after the game
is worth a bonus.

To see who wastes time playing snake, run /usrigames/snscore .

/usr/games/lib/snakerawscores database of personal bests
/usr/games/lib/snake.log log of games played
/usr/games/busy program to determine if system too busy

When playing on a small screen, it’s hard to tell when you hit the edge of the screen.

The scoring function takes into account the size of the screen. A perfect function to do this
equitably has not been devised.

4th Berkeley Distribution 1 February 1983 1

TREK (6) UNIX Programmer’s Manual TREK (6)

NAME
trek — trekkie game

SYNOPSIS
/usr/games/trek [[—a] file]

DESCRIPTION
Trek is a game of space glory and war. Below is a summary of commands. For complete docu-
mentation, see Trek by Eric Allman.

If a filename is given, a log of the game is written onto that file. If the —a flag is given before
the filename, that file is appended to, not truncated.

The game will ask you what length game you would like. Valid responses are ‘‘short”,
“medium”, and ‘“‘long”’. You may also type ‘‘restart’’, which restarts a previously saved game.
You will then be prompted for the skill, to which you must respond ‘‘novice’’, “‘fair’’, *‘good”’,
‘“‘expert”’, ‘“‘commadore’’, or ‘‘impossible’’. You should normally start out with a novice and
work up.

In general, throughout the game, if you forget what is appropriate the game will tell you what it
expects if you just type in a question mark.

AUTHOR
Eric Allman
SEE ALSO
/usr/doc/trek
COMMAND SUMMARY
abandon capture
cloak up/down
computer request; ... damages
destruct dock
help impulse course distance
Irscan move course distance

phasers automatic amount
phasers manual amt]l coursel spreadl ...
torpedo course [yes] angle/no

ram course distance rest time

shell shields up/down
srscan [yes/no]

status terminate yes/no
undock visual course

warp warp_factor

4th Berkeley Distribution 1 February 1983 1

WORM (6) UNIX Programmer’s Manual WORM (6)

NAME

worm — Play the growing worm game

SYNOPSIS

/usr/games/worm [size]

DESCRIPTION

BUGS

In worm, you are a little worm, your body is the "o"’s on the screen and your head is the "@".
You move with the hjkl keys (as in the game snake). If you don’t press any keys, you continue
in the direction you last moved. The upper case HIKL keys move you as if you had pressed
several (9 for HL and 5 for JK) of the corresponding lower case key (unless you run into a
digit, then it stops).

On the screen you will see a digit, if your worm eats the digit is will grow longer, the actual
amount longer depends on which digit it was that you ate. The object of the game is to see
how long you can make the worm grow.

The game ends when the worm runs into either the sides of the screen, or itself. The current
score (how much the worm has grown) is kept in the upper left corner of the screen.

The optional argument, if present, is the initial length of the worm.

If the initial length of the worm is set to less than one or more than 75, various strange things
happen.

4th Berkeley Distribution 2 April 1981 1

WORMS (6) UNIX Programmer’s Manual WORMS (6)

NAME

worms — animate worms on a display terminal
SYNOPSIS

/usr/games/worms [—field] [—length #] [—number #] [—trail]
DESCRIPTION

Brian Horn (cithep!bdh) showed me a TOPS-20 program on the DEC-2136 machine called
WORM, and suggested that I write a similar program that would run under Unix. I did, and no
apologies.

—field makes a "field" for the worm(s) to eat; —trail causes each worm to leave a trail behind
it. You can figure out the rest by yourself.

FILES

/etc/termcap
AUTHOR

Eric P. Scott
SEE ALSO

Snails, by Karl Heuer

BUGS
The lower-right-hand character position will not be updated properly on a terminal that wraps at
the right margin.

Terminal initialization is not performed.

4th Berkeley Distribution 1 February 1983 1

WUMP (6) UNIX Programmer’s Manual WUMP (6)

NAME
wump — the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
Wump plays the game of ‘Hunt the Wumpus.” A Wumpus is a creature that lives in a cave with
several rooms connected by tunnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bot-
tomless Pits. There are also Super Bats which are likely to pick you up and drop you in some
random room.

The program asks various questions which you answer one per line; it will give a more detailed
description if you want.

This program is based on one described in People’s Computer Company, 2, 2 (November 1973).

7th Edition 1 February 1983 1

ZORK (6) UNIX Programmer’s Manual ZORK (6)

NAME
zork — the game of dungeon

SYNOPSIS
/usr/games/zork

DESCRIPTION
Dungeon is a computer fantasy simulation based on Adventure and on Dungeons & Dragons,
originally written by Lebling, Blank, and Anderson of MIT. In it you explore a dungeon made
up of various rooms, caves, rivers, and so on. The object of the game is to collect as much
treasure as possible and stow it safely in the trophy case (and, of course, to stay alive.)

Figuring out the rules is part of the game, but if you are stuck, you should start off with ‘‘open
mailbox’’, “‘take leaflet”’, and then “‘read leaflet’’. Additional useful commands that are not
documented include:

quit (to end the game)
lemd (the usual shell escape convention)

> (to save a game)

< (to restore a game)
FILES

/usr/games/lib/d+

4th Berkeley Distribution 1 February 1983 1

INTRO(7) UNIX Programmer’s Manual INTRO(7)

NAME
miscellaneous — miscellaneous useful information pages

DESCRIPTION
This section contains miscellaneous documentation, mostly in the area of text processing macro
packages for troff(1).

ascii map of ASCII character set
environ user environment

eqnchar special character definitions for eqn
hier file system hierarchy

mailaddr mail addressing description

man macros to typeset manual pages
me macros for formatting papers

ms macros for formatting manuscripts
term conventional names for terminals

4th Berkeley Distribution 9 February 1983 1

ASCII(7)

NAME

ascii — map of ASCII character set

SYNOPSIS

cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, to be printed as needed. It contains:

000 nul|001 soh
010 bs |011 ht
020 dle|021 dcl
030 can|031 em
040 sp |041 !
050 ([o51)
060 0 |061 1
070 8 |071 9
100 @ (101 A
110 H [111 I
120 P [121 Q
130 X [131 Y
140 * [141 a
150 h [151 i
160 p [161 q
170 x [171 y
00 nul| 01 soh
08 bs | 09 ht
10 dle| 11 dcl
18 can| 19 em
20 sp | 21 !
28 (|29)
30 031 1
38 8|39 9
40 @] 41 A
48 H | 49 1
50 P| 51 Q
58 X |59 Y
60 " | 61 a
68 h | 69 i
70 p| 71 q
7 x| 79 y
FILES
/usr/pub/ascii

7th Edition

UNIX Programmer’s Manual

002 stx
012 nl
022 dc2
032 su
042 "
052 =
062 2
072
102
112
122
132
142
152
162
172

NN -

02 stx
O0a nl

12 dc2
la sub
22 "

2a =

32
3a
42
4a
52
5a
62
6a
72
Ta

[]

NN --

003
013
023
033
043
053
063
073
103
113
123
133

1143

153
163
173

03
0b
13
1b
23
2b
33
3b
43
4b
53
5b
63
6b
73
7o

etx
vt

dc3
esc

—~—n RO ~RO W+

etx
vt

dc3
esc

—xo —URO w4

004
014
024
034
044
054
064
074
104
114
124
134
144
154
164
174

04
Oc
14
1c
24
2c
34
3c
44
4c
54
Sc
64
6¢c
74
Tc

eot
np
dcé
fs
$

—e—a - HEOA S

eot

—
ond8
H

—e—a—HEOA S

005 enq
015 cr

025 nak
035
045
055
065
075
105
115
125
135
145
155
165
175

(]
(]

—cBo—cZmlw]|XR

05 enq
0d cr

15 nak
1d
25
2d
35
3d
45
4d
55
5d
65
6d
75

(]
w

—~cHo—CZmlw]| R

d

1 February 1983

006
016
026
036
046
056
066
076
106
116
126
136
146
156
166
176

06
Oe
16
le
26
2e
36
3e
46
4e
56
Se
66
6e
76
Te

ack
so
syn
rs
&

1< B L ZmMYV o

ack

[
(=]

syn

o

1< 8- HrgZMV o

007
017
027
037
047
057
067
077
107
117
127
137
147
157
167
177

07
of
17
1f
27
2f
37
3f
47
4f
57
5f
67
6f
71
f

bel
si
etb
us

g0Qwa~ -

del

ASCII(7)

ENVIRON (7)

NAME

UNIX Programmer’s Manual ENVIRON (7)

environ — user environment

SYNOPSIS

extern char eeenviron;

DESCRIPTION

An array of strings called the ‘environment’ is made available by execve(2) when a process
begins. By convention these strings have the form ‘name=value’. The following names are
used by various commands:

PATH

HOME
TERM

SHELL

The sequence of directory prefixes that sh, time, nice(1), etc., apply in searching for
a file known by an incomplete path name. The prefixes are separated by ‘.
Login(1) sets PATH=:/usr/ucb:/bin:/usr/bin.

A user’s login directory, set by login(1) from the password file passwd(5).

The kind of terminal for which output is to be prepared. This information is used
by commands, such as nroff or plot(1G), which may exploit special terminal capa-
bilities. See /fetc/termcap (termcap(5)) for a list of terminal types.

The file name of the users login shell.

TERMCAP The string describing the terminal in TERM, or the name of the termcap file, see

EXINIT
USER

termcap(5) ,termcap(3X).
A startup list of commands read by ex(1), edit(1), and vi(1).
The login name of the user.

PRINTER The name of the default printer to be used by lpr(1), Ipg(1), and lprm(1).

Further names may be placed in the environment by the export command and ‘name = value’
arguments in sh(1), or by the setenv command if you use csh(1). Arguments may also be
placed in the environment at the point of an execve(2). It is unwise to conflict with certain
sh(1) variables that are frequently exported by *.profile’ files: MAIL, PS1, PS2, IFS.

SEE ALSO

csh(1), ex(1), login(1), sh(1), execve(2), system(3), termcap(3X), termcap(5)

4th Berkeley Distribution S February 1983 1

EQNCHAR (7) UNIX Programmer’s Manual EQNCHAR (7)

NAME
ennchar — special character definitions for eqn

SYNOPSIS
enn /usr/pub/eqnchar [files] | troff [options]
negn /usr/pub/eqnchar [files] | nroff [options]
DESTRTPTION
Egncaur contains troff and nroff character definitions for constructing characters that are not
available on the Graphic Systems typesetter. These definitions are primarily intended for use

with er. and negn. It contains definitions for the following characters
ciplus ® I I square 0O
citimes ® langle < circle o
wig -~ rangle > blot]
-wig = hbar A bullet °
> wig > ppd 1 prop o«
< wig < <-> iad empty 2
=wig = <=> - member €
star " |< 24 nomem ¢
bigstar % |> > cup U
=dot = ang L cap al
orsign \ rang L incl C
andsign N\ 3dot subset c
=del A thf supset D
oppA v quarter Vs Isubset c
oppE 3 Jquarter ¥ Isupset 2
angstrom A degree °

FILES
/usr/pub/eqnchar

SEE ALSO

troff(1), eqn(1)

3rd Berkeley Distribution 1 February 1983 1

HIER (7) UNIX Programmer’s Manual
NAME
hier — file system hierarchy
DESCRIPTION
The following outline gives a quick tour through a representative directory hierarchy.
/ root
/vmunix
the kernel binary (UNIX itself)
/lost+found
directory for connecting detached files for fsck(8)
/dev/ devices (4)
MAKEDEV
shell script to create special files
MAKEDEV.local
site specific part of MAKEDEV
console
main console, tty(4)
ttye terminals, try(4)
hpe disks, hp(4)
rhpe raw disks, Ap(4)
ups UNIBUS disks up(4)
/bin/ utility programs, cf /usr/bin/ (1)
as assembler
cc C compiler executive, cf /lib/ccom, /lib/cpp, /lib/c2
csh C shell
/lib/ object libraries and other stuff, cf /usr/lib/
libc.a system calls, standard 1/0, etc. (2,3,35)
ccom C compiler proper.
cpp C preprocessor
c2 C code improver
/etc/ essential data and maintenance utilities; sect (8)

dump dump program dump(8)
passwd password file, passwd(5)
group group file, group(5)
motd message of the day, login(1)
termcap :
description of terminal capabilities, fermcap(5)
ttytype table of what kind of terminal is on each port, tytype(5)
mtab mounted file table, mtab(5)
dumpdates
dump history, dump(8)
fstab file system configuration table fstab(5)
disktab disk characteristics and partition tables, disktab(5)
hosts host name to network address mapping file, hosts(5)
networks
network name to network number mapping file, networks(5)
protocols
protocol name to protocol number mapping file, protocols(5)
services

4th Berkeley Distribution 1 February 1983

HIER (7)

HIER (7)

/sys/

UNIX Programmer’s Manual HIER (7)

network services definition file, services(5)
remote names and description of remote hosts for ip(1C), remote(5)
phones private phone numbers for remote hosts, as described in phones(5)
ttys properties of terminals, ttys(5)
getty part of login, getty(8)
init the parent of all processes, init(8)
rc shell program to bring the system up
rc.local site dependent portion of rc
cron the clock daemon, cron(8)
mount mount(8)

system source

h/ header (include) files
acct.h accr(5)
stath star(2)

sys/ machine independent system source
init_main.c
uipc_socket.c
ufs_syscalls.c

conf/ sne configuration files
GENERIC

net/ general network source
netinet/
DARPA Internet network source
netimp/
network code related to use of an IMP
if_imp.c
if_imphost.c
if_imphost.h

vax/ source specific to the VAX
locore.s
machdep.c

vaxuba/
device drivers for hardware which resides on the UNIBUS
uba.c
dh.c
up.c

vaxmba/
device drivers for hardware which resides on the MASBUS
mba.c
hp.c
ht.c

vaxif network interface drivers for the VAX
if_en.c
if_ec.c

4th Berkeley Distribution 1 February 1983 2

HIER (7) UNIX Programmer’s Manual HIER (7)

if_vv.c

/tmp/ temporary files, usually on a fast device, cf /usr/tmp/
ee used by ed(1)
ctme used by cc(1)

/ust/ general-pupose directory, usually a mounted file system
adm/ administrative information
wtmp login history, utmp(5)
messages
hardware error messages
tracct phototypesetter accounting, troff{1)
lpacct line printer accounting lpr(1)
vaacct, vpacct
varian and versatec accounting vpr(1), vtrof(1), pac(8)
/usr /bin
utility programs, to keep /bin/ small
tmp/ temporaries, to keep /tmp/ small
stme used by sort(1)
raster used by plor(1G)
dict/ word lists, etc.
words principal word list, used by look(1)
spellhist
history file for spell(1)
games/
hangman
lib/ library of stuff for the games
quiz.k/ what quiz(6) knows
index category index
africa countries and capitals

include/
standard #include files
a.out.h object file layout, a.out(5)
stdio.h standard 1/0, intro(3S)
math.h (3M)

sys/ system-defined layouts, cf /sys/h
net/ symbolic link to sys/net
machine/

symbolic link to sys/machine

lib/ object libraries and stuff, to keep /lib/ small
atrun scheduler for ar(1)
lint/ utility files for lint
lint[12}
subprocesses for lint(1)
Hlib-lc dummy declarations for /lib/libc.a, used by lint(1)
llib-lm dummy declarations for /lib/libc.m

4th Berkeley Distribution 1 February 1983 3

HIER (7) UNIX Programmer’s Manual

struct/ passes of struct(1)

tmac/ macros for troff(1)
tmac.an
macros for man(7)
tmac.s macros for ms(7)

font/ fonts for troff(1)
ftR Times Roman
ftB Times Bold

uucp/ programs and data for uucp(1C)
L.sys remote system names and numbers
uucico the real copy program

units conversion tables for units(1)
eign list of English words to be ignored by ptx(1)
/usr/ man/
volume 1 of this manual, man(1)

man0/ general
intro introduction to volume 1, ms(7) format
XX template for manual page

manl/ chapter 1
as.1
mount.lm

catl/ preformatted pages for section 1

msgs/ messages, cf msgs(1)
bounds highest and lowest message
new/ binaries of new versions of programs
preserve/
editor temporaries preserved here after crashes/hangups
public/ binaries of user programs - write permission to everyone
spool/ delayed execution files
at/ used by ar(1)
lpd/ used by lpr(1)
lock present when line printer is active
cfe copy of file to be printed, if necessary
dfe daemon control file, pd(8)
tfe transient control file, while /pr is working
uucp/ work files and staging area for uucp(1C)
LOGFILE
summary log
LOG.» log file for one transaction
mail/ mailboxes for mail(1)
name mail file for user name
name.lock
lock file while name is receiving mail
secretmail/
like mail/

4th Berkeley Distribution 1 February 1983

HIER (7)

HIER (7) UNIX Programmer’s Manual HIER (7)

uucp/ work files and staging area for uucp(1C)

LOGFILE

summary log
LOG.+ log file for one transaction
mqueue/
mail queue for sendmail(8)
wd initial working directory of a user, typically wd is the user’s login name

.profile set environment for sk(1), environ(7)
.project

what you are doing (used by (finger(1))
.cshrc startup file for csh(1)
.exrc startup file for ex(1)
.plan what your short-term plans are (used by finger(1))
.netrc startup file for various network programs
.MSgSIC

startup file for msgs(1)
.mailrc startup file for mail(1)
calendar

user’s datebook for calendar(1)

doc/ papers, mostly in volume 2 of this manual, typically in ms(7) format

as/ assembler manual
c C manual

/usr/ src/
source programs for utilities, etc.
bin/ source of commands in /bin
as/ assembler
arc source for ar(1)

usr.bin/
source for commands in /usr/bin
troff/ source for nroffand troff(1)
font/ source for font tables, /usr/lib/font/
ftR.c Roman

term/ i;rminal characteristics tables, /usr/lib/term/
tab300.c
DASI 300

ucb source for programs in /usr/ucb
games/ source for /usr/games
lib/ source for programs and archives in /lib
libe/ C runtime library
csu/ startup and wrapup routines needed with every C program
crt0.s regular startup
mert0.s modified startup for cc —p
sys/ system calls (2)
access.s
brk.s

stdio/ standard 1/0 functions @39)

4th Berkeley Distribution 1 February 1983 5

HIER (7) UNIX Programmer’s Manual HIER (7)

fgets.c
fopen.c

gen/ ;:;iher functions in (3)
abs.c

net/ network functions in (3N)
gethostbyname.c

local/ source which isn’t normally distributed
new/ source for new versions of commands and library routines
old/ source for old versions of commands and library routines
ucb/ binaries of programs developed at UCB

edit editor for beginners
ex command editor for experienced users

mail mail reading/sending subsystem
man on line documentation

pi Pascal translator
pPx Pascal interpreter
vi visual editor

SEE ALSO
1s(1), apropos(1), whatis(1), whereis(1), finger(1), which(1), ncheck(8), find(1), grep(1)

BUGS =

The position of files is subject to change without notice.

4th Berkeley Distribution 1 February 1983 6

MAILADDR (7) UNIX Programmer’s Manual MAILADDR (7)

NAME
mailaddr — mail addressing description

DESCRIPTION
Mail addresses are based on the ARPANET protocol listed at the end of this manual page.
These addresses are in the general format

user@domain
where a domain is a hierarchical dot separated list of subdomains. For example, the address
eric@monet.Berkeley. ARPA

is normally interpreted from right to left: the message should go to the ARPA name tables
(which do not correspond exactly to the physical ARPANET), then to the Berkeley gateway,
after which it should go to the local host monet. When the message reaches monet it is
delivered to the user “‘eric”’.

Unlike some other forms of addressing, this does not imply any routing. Thus, although this
address is specified as an ARPA address, it might travel by an alternate route if that was more
convenient or efficient. For example, at Berkeley the associated message would probably go
directly to monet over the Ethernet rather than going via the Berkeley ARPANET gateway.
Abbreviation. Under certain circumstances it may not be necessary to type the entire domain
name. In general anything following the first dot may be omitted if it is the same as the
domain from which ‘'you are sending the message. For example, a user on
“‘calder.Berkeley. ARPA” could send to “‘eric@monet’’ without adding the ‘‘.Berkeley. ARPA™
since it is the same on both sending and receiving hosts.

Certain other abbreviations may be permitted as special cases. For example, at Berkeley
ARPANET hosts can be referenced without adding the ‘. ARPA” as long as their names do not
conflict with a local host name. ’

Compatibility. Certain old address formats are converted to the new format to provide compati-
bility with the previous mail system. In particular,

host:user
is converted to
user@host
to be consistent with the rcp(1C) command.
Also, the syntax:
host!user
is converted to:
user@host. UUCP

This is normally converted back to the ‘‘hostluser’® form before being sent on for compatibility
with older UUCP hosts.

The current implementation is not able to route messages automatically through the UUCP net-
work. Until that time you must explicitly tell the mail system which hosts to send your mes-
sage through to get to your final destination.

Case Distinctions. Domain names (i.e., anything after the “‘@"’ sign) may be given in any mix-
ture of upper and lower case with the exception of UUCP hostnames. Most hosts accept any
mixture of case in user names, with the notable exception of MULTICS sites.

Differences with ARPA Protocols. Although the UNIX addressing scheme is based on the ARPA
mail addressing protocols, there are some significant differences.

4th Berkeley Distribution 1

MAILADDR (7) UNIX Programmer’s Manual MAILADDR (7)

At the time of this writing the only ‘‘top level” domain defined by ARPA is the “.ARPA”
domain itself. This is further restricted to having only one level of host specifier. That is, the
only addresses that ARPA accepts at this time must be in the format ‘‘user@host. ARPA”
(where “‘host”’ is one word). In particular, addresses such as:

eric@monet.Berkeley. ARPA

are not currently legal under the ARPA protocols. For this reason, these addresses are con-
verted to a different format on output to the ARPANET, typically:

eric%monet@Berkeley. ARPA

Route-addrs. Under some circumstances it may be necessary to route a message through several
hosts to get it to the final destination. Normally this routing is done automatically, but some-
times it is desirable to route the message manually. An address that shows these relays are
termed “‘route-addrs.” These use the syntax:

< @hosta, @hostb:user@hostc>

This specifies that the message should be sent to hosta, from there to hostb, and finally to
hostc. This path is forced even if there is a more efficient path to hostc.

Route-addrs occur frequently on return addresses, since these are generally augmented by the
software at each host. It is generally possible to ignore all but the ‘‘user@host” part of the
address to determine the actual sender.

Postmaster. Every site is required to have a user or user alias designated ‘‘postmaster’’ to which
problems with the mail system may be addressed.

CSNET. Messages to CSNET sites can be sent to ‘“‘user.host@UDel-Relay”’.

BERKELEY
The following comments apply only to the Berkeley environment.

Host Names. Many of the- old familiar host names are being phased out. In particular, single
character names as used in Berknet are incompatible with the larger world of which Berkeley is
now a member. For this reason the following names are being obsoleted. You should notify
any correspondents of your new address as soon as possible.

OLD NEW j ingvax ucbingres
p ucbcad T arpavax ucbarpa
vV csvax ucbernie

n ucbkim y ucbcory

The old addresses will be rejected as unknown hosts sometime in the near future.
What's My Address? If you are on a local machine, say monet, your address is
yourname @monet.Berkeley. ARPA

However, since most of the world does not have the new software in place yet, you will have to
give correspondents slightly different addresses. From the ARPANET, your address would be:

yourname%monet@Berkeley. ARPA
From UUCP, your address would be:
ucbvax!yourname%monet

Computer Center. The Berkeley Computer Center is in a subdomain of Berkeley. Messages to
the computer center should be addressed to:

user%host. CC@Berkeley. ARPA

4th Berkeley Distribution 2

MAILADDR (7) UNIX Programmer’s Manual MAILADDR (7)

The alternate syntax:
user@host.CC
may be used if the message is sent from inside Berkeley.

For the time being Computer Center hosts are known within the Berkeley domain, i.e., the
““.CC” is optional. However, it is likely that this situation will change with time as both the
Computer Science department and the Computer Center grow.

Bitnet. Hosts on bitnet may be accessed using:

user@host.BITNET
SEE ALSO
mail(1), sendmail(8); Crocker, D. H., Standard for the Format of Arpa Internet Text Messages,
RFC822.

4th Berkeley Distribution 3

MAN(7) UNIX Programmer’s Manual MAN (7)

NAME

man — macros to typeset manual
SYNOPSIS .

nroff —man file ...

troff —man file ...

DESCRIPTION
These macros are used to lay out pages of this manual. A skeleton page may be found in the
file /usr/man/man0/xx.

Any text argument ¢ may be zero to six words. Quotes may be used to include blanks in a
‘word’. If text is empty, the special treatment is applied to the next input line with text to be
printed. In this way .I may be used to italicize a whole line, or .SM followed by .B to make
small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is
reset to default value upon reaching a non-indented paragraph. Default units for indents i are
ens.

Type font and size are reset to default values before each paragraph, and after processing font
and size setting macros.

These strings are predefined by —man:
\¢*R ‘@’ ‘(Reg)’ in nroff.
\eS Change to default type size.

FILES

/usr/lib/tmac/tmac.an

/usr/man/man0/xx
SEE ALSO

troff (1), man(1)
BUGS

Relative indents don’t nest.
REQUESTS
Request Cause If no Explanation

Break Argument
B¢ no r=n.tle Text tis bold.
Bl ¢ no t=n.tl. Join words of ¢ alternating bold and italic.
BR ¢ no t=n.tl. Join words of ¢ alternating bold and Roman.
.DT no .5ili.. Restore default tabs.
HP i yes i=p.i.e Set prevailing indent to i. Begin paragraph with hanging indent.
gt no r=n.tl. Text tis italic.
B¢ no r=ntl Join words of falternating italic and bold.
IPxi yes x="" Same as .TP with tag x.
IR ¢ no r=n.tl. Join words of ¢ alternating italic and Roman.
.LP yes - Same as .PP.
PDd no d=4v Interparagraph distance is d.
.PP yes - Begin paragraph. Set prevailing indent to .5i.
.RE yes - End of relative indent. Set prevailing indent to amount of starting .RS.
.RB ¢ no r=n.tl. Join words of ¢ alternating Roman and bold.
RIt¢ no t=ntl. Join words of ¢alternating Roman and italic.
.RS i/ yes i=p.i. Start relative indent, move left margin in distance i. Set prevailing
indent to .5i for nested indents.

SH ¢ yes r=n.tl. Subhead.

7th Edition 7 March 1983 1

MAN (7)

SM ¢

no

TH ncxvmyes

TP

yes

t=n.t.l

i=p.i.

UNIX Programmer’s Manual MAN (7)

Text tis small.

Begin page named 7 of chapter c; x is extra commentary, e.g. ‘local’, for
page foot center; v alters page foot left, e.g. ‘4th Berkeley Distribution’;
m alters page head center, e.g. ‘Brand X Programmer’s Manual’. Set
prevailing indent and tabs to .5i.

Set prevailing indent to i. Begin indented paragraph with hanging tag
given by next text line. If tag doesn’t fit, place it on separate line.

e n.t.l. = next text line; p.i. = prevailing indent

7th Edition

7 March 1983 2

ME(7) UNIX Programmer’s Manual ME (7)

NAME
me — macros for formatting papers

SYNOPSIS
proff —me [options] file ...
troff —me [options] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a canned formatting facility for tech-
nical papers in various formats. When producing 2-column output on a terminal, filter the
output through col(1).

The macro requests are defined below. Many nroff and troff requests are unsafe in conjunction
with this package, however these requests may be used with impunity after the first .pp:

.bp begin new page
.br break output line here
.spn insert n spacing lines
Isn (line spacing) n=1 single, n=2 double space
.na no alignment of right margin
.cen center next n lines
.uln underline next n lines
.sz +n add n to point size
Output of the egn, negn, refer, and tbi(1) preprocessors for equations and tables is acceptable as
input.
FILES
/usr/lib/tmac/tmac.e
/usr/lib/me/=
SEE ALSO
eqn(1), troff(1), refer(1), tbl(1)
—me Reference Manual, Eric P. Allman
Writing Papers with Nroff Using —me
REQUESTS
In the following list, “‘initialization” refers to the first .pp, .Ip, .ip, .np, .sh, or .uh macro. This
list is incomplete; see The —me Reference Manual for interesting details.

Request Initial Cause Explanation

Value Break
c - yes Begin centered block
.(d - no Begin delayed text
(f - no Begin footnote
.a - yes Begin list
(q - yes Begin major quote
(x x - no Begin indexed item in index x
(z - no Begin floating keep
Je - yes End centered block
Jd - yes End delayed text
B} - yes End footnote
B)| - yes End list
Ja - yes End major quote
Jx - yes End index item
Jz - yes End floating keep
++ mH - no Define paper section. m defines the part of the paper, and can be C (chapter),

A (appendix), P (preliminary, e.g., abstract, table of contents, etc.), B

3rd Berkeley Distribution 16 November 1979 1

ME(7)

+cT
dc

2c

.EN
EQ xy

.TE

.TH

TS x
.ac A N

bx
.ba +n

.be

.bi x

.bx x

ef ‘Xyz
.eh'xy7
fo'Xyz
.hx

he 'Xy7Z
.hl

dx
ipxy
Ip

Jo

.np
.of 'xXy7
.oh‘xXy?7
.pd

-PP

I

re

.sC

shnx '

sk
sz +n
.th

ux
.uh
Xp X

O et s 0

no
no
no

vove
voor

vorr

vorr

no

sere

veer

no
yes

no

no
10p
no
no

yes
yes
yes
yes
yes

yes
yes
yes

no

no
yes

yes
no
no
no
no
no
no
no
yes
no
yes
yes
no

yes
no
no
yes
yes
no
no
no

yes

no
no
no
yes
no
yes
no

UNIX Programmer’s Manual ME(7)

(bibliography), RC (chapters renumbered from page one each chapter), or RA
(appendix renumbered from page one).

Begin chapter (or appendix, etc., as set by .++). Tis the chapter title.

One column format on a new page.

Two column format.

Space after equation produced by egn or negn.

Precede equation; break out and add space. Equation number is y. The
optional argument x may be 7 to indent equation (default), L to left-adjust the
equation, or C to center the equation.

End table.
End heading section of table.
Begin table; if x is H table has repeated heading.

Set up for ACM style output. A4 is the Author’s name(s), N is the total
number of pages. Must be given before the first initialization.

Frint x in boldface; if no argument switch to boldface.

Augments the base indent by n. This indent is used to set the indent on regular
text (like paragraphs).

Begin new column

Print x in bold italics (nofill only)

Print x in a box (nofill only).

Set evenfootertox y z

Set even headertox y z

Set footertox y z

Suppress headers and footers on next page.

Set headertox y z

Draw a horizontal line

Italicize x; if x missing, italic text follows.

Start indented paragraph, with hanging tag x. Indentation is y ens (default 5).
Start left-blocked paragraph.

Read in a file of local macros of the form .sx. Must be given before
initialization.

Start numbered paragraph.

Set odd footertox y z

Set odd headertox y z

Print delayed text.

Begin paragraph. First line indented.

Roman text follows.

Reset tabs to default values.

Read in a file of special characters and diacritical marks. Must be given before
initialization.

Section head follows, font automatically bold. # is level of section, x is title of
section.

Leave the next page blank. Only one page is remembered ahead.

Augment the point size by n points.

Produce the paper in thesis format. Must be given before initialization.

Begin title page.

Underline argument (even in trof). (Nofill only).

Like .sh but unnumbered.

Print index x.

3rd Berkeley Distribution 16 November 1979 2

MS (7) UNIX Programmer’s Manual . MS(7)

NAME
ms — text formatting macros

SYNOPSIS
nroff —ms [options] file ...
trof —ms [options] file ...

DESCRIPTION

This package of nroff and trofff macro definitions provides a formatting facility for various styles
of articles, theses, and books. When producing 2-column output on a terminal or lineprinter,
or when reverse line motions are needed, filter the output through co/(1). All external —ms
macros are defined below. Many nroff and troff requests are unsafe in conjunction with this
package. However, the first four requests below may be used with impunity after initialization,
and the last two may be used even before initialization:

.bp begin new page

.br break output line

.spn insert n spacing lines

.cen center next n lines

Isn line spacing: n=1 single, n=2 double space

.na no alignment of right margin
Font and point size changes with \f and \s are also allowed; for example, ‘‘\flword\fR** will
italicize word. Output of the b/, egn, and refer (1) preprocessors for equations, tables, and
references is acceptable as input.

FILES
/usr/lib/tmac/tmac.x
/usr/lib/ms/x.?7?
SEE ALSO
eqn(1), refer(1), tbl(1), troff(1)
REQUESTS

Macro Initial Break? Explanation
Name Value Reset?

.AB x - y begin abstract; if x=no don’t label abstract
.AE e y end abstract

Al - y author’s institution

AM —_ n better accent mark definitions

AU - y author’s name

Bx — n embolden x; if no x, switch to boldface

.B1 = y begin text to be enclosed in a box

B2 - y end boxed text and print it

BT date n bottom title, printed at foot of page

BX x - n print word x in a box

.CM if t n cut mark between pages

.CT = v,y chapter title: page number moved to CF (TM only)
.DA x if n n force date x at bottom of page; today if no x
.DE - y end display (unfilled text) of any kind
DSxy 1 y begin display with keep; x=I,L,C,B; y =indent
IDy 8n,51 y indented display with no keep; y =indent
.LD = y left display with no keep

.CD - y centered display with no keep

.BD = y block display; center entire block

.EF x - n even page footer x (3 part as for .t1)

.EH x - n even page header x (3 part as for .tl)

4th Berkeley Distribution 18 July 1983 1

Ms (7)

.EN -
EQxy -
FE

FS x -
.HD undef
JIx -
IPxy =
Xxy -

LG -
.LP -
.MC x -
.ND x ift
NHxy -

.OF x -
.OH x -

.P1 if TM
.PP -
PT -% -
PX x -

.RE 5n
.RP x -

.SH —
.SM -
.TA 8n,5n
.TC x -
.TE =
.TH -
.TL -
T™ off
TS x -
UL x -
UX x -
XAxy -

XSxy -

4th Berkeley Distribution

BepB<<BDODBBBR<%
<

B
< <

P
<

y’y

<

<

<

BEBN<Y<<S<S<NDEYD<<<<Bp
<

UNIX Programmer’s Manual

end displayed equation produced by egn

break out equation; x=L,I,C; y =equation number
end footnote to be placed at bottom of page
numbered footnote paragraph; may be redefined
start footnote; x is optional footnote label

optional page header below header margin

italicize x; if no x, switch to italics

indented paragraph, with hanging tag x; y =indent
index words x y and so on (up to § levels)

end keep of any kind

begin floating keep; text fills remainder of page
begin keep; unit kept together on a single page
larger; increase point size by 2

left (block) paragraph.

multiple columns; x =column width

no date in page footer; x is date on cover

numbered header; x =level, x=0 resets, x =S sets to y
set point size back to normal

odd page footer x (3 part as for .tl)

odd page header x (3 part as for .tl)

print header on 1st page

paragraph with first line indented

page title, printed at head of page

print index (table of contents); x =no suppresses title
quote paragraph (indented and shorter)

return to Roman font

retreat: end level of relative indentation

released paper format; x=no stops title on 1st page
right shift: start level of relative indentation

section header, in boldface

smaller; decrease point size by 2

set tabs to 8n 16n ... (nroff) 5n 10n ... (troff)

print table of contents at end; x =no suppresses title
end of table processed by tb/

end multi-page header of table

title in boldface and two points larger

UC Berkeley thesis mode

begin table; if x=H table has multi-page header
underline x, even in troff

UNIX; trademark message first time; x appended
another index entry; x=page or no for none; y =indent
end index entry (or series of .IX entries)

paragraph with first line exdented, others indented
begin index entry; x =page or no for none; y =indent
one column format, on a new page

begin two column format

beginning of refer reference

end of unclassifiable type of reference

N= 1:journal-article, 2:book, 3:book-article, 4:report

18 July 1983

MsS (7)

MS(7) UNIX Programmer’s Manual MS(7)

REGISTERS
Formatting distances can be controlled in —ms by means of built-in number registers. For

example, this sets the line length to 6.5 inches:
ar LL 6.5i

Here is a table of number registers and their default values:
Name Register Controls Takes Effect Default

PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL

FL footnote length next .FS 5.5i

PD paragraph distance paragraph 1v (if n), .3v (if t)
DD display distance displays 1v (if n), .5v (if t)
PI paragraph indent paragraph 5n

QI quote indent next QP Sn

FI footnote indent next .FS 2n

PO page offset next page 0 (if n), ~1i (if t)
HM header margin next page li
FM footer margin next page li

FF footnote format next .FS 0 (1, 2, 3 available)

When resetting these values, make sure to specify the appropriate units. Setting the line length
to 7, for example, will result in output with one character per line. Setting FF to 1 suppresses
footnote superscripting; setting it to 2 also suppresses indentation of the first line; and setting it
to 3 produces an .IP-like footnote paragraph.
Here is a list of string registers available in —ms; they may be used anywhere in the text:

Name String’s Function

*Q quote (" in nroff, * in troff’)

\esU unquote (" in nrof >’ in troff)

\e— dash (-- in nroff, — in troff)

*(MO month (month of the year)

*(DY day (current date)

\ee automatically numbered footnote
\e* acute accent (before letter)

\e' grave accent (before letter)

\en circumflex (before letter)

\s, cedilla (before letter)

\s: umlaut (before letter)

\e-~ tilde (before letter)

When using the extended accent mark definitions available with .AM, these strings should
come after, rather than before, the letter to be accented.

BUGS
Floating keeps and regular keeps are diverted to the same space, so they cannot be mixed
together with predictable results.

4th Berkeley Distribution 18 July 1983 3

TERM (7) UNIX Programmer’s Manual TERM (7)

NAME
term — conventional names for terminals

DESCRIPTION
Certain commands use these terminal names. They are maintained as part of the shell environ-
ment (see sh(1),environ(7)).

adm3a Lear Seigler Adm-3a

2621 Hewlett-Packard HP262? series terminals

hp Hewlett-Packard HP264? series terminals

c100 Human Designed Systems Concept 100

h19 Heathkit H19

mime Microterm mime in enhanced ACT IV mode

1620 DIABLO 1620 (and others using HyType II)

300 DASI/DTC/GSI 300 (and others using HyType I)

33 TELETYPE® Model 33

37 TELETYPE Model 37

43 TELETYPE Model 43

735 Texas Instruments TI735 (and TI725)

745 Texas Instruments TI745

dumb terminals with no special features

dialup a terminal on a phone line with no known characteristics
network a terminal on a network connection with no known characteristics
4014 Tektronix 4014

vt52 Digital Equipment Corp. VTS52

The list goes on and on. Consult /etc/termcap (see termcap(5)) for an up-to-date and locally

correct list.

Commands whose behavior may depend on the terminal either consult TERM in the environ-

ment, or accept arguments of the form —Tterm, where ferm is one of the names given above.
SEE ALSO

stty(1), tabs(1), plot(1G), sh(1), environ(7) ex(1), clear(1), more(1), ul(l), tset(1),

termcap(5), termcap(3X), ttytype(5)

troff (1) for nroff

BUGS
The programs that ought to adhere to this nomenclature do so only fitfully.

4th Berkeley Distribution 1 February 1983 1

B T I T

o

[f] .';?

=y

