
FreeCalypso Tango Module Integration Guide

Version 1.2, last edited 2020/09/10

1. TR800 hardware notes

This chapter provides some important notes about TR800 physical hardware; these notes remain equally

applicable whether you use TR800 modules in their unmodified form from iWOW or if you use FreeCalypso

Tango rebranded version.

1.1. Principal components inside the module

The TR800 module internally consists of the following 6 principal components:

Component Function Notes

TI D751749ZHH Calypso DBB Calypso Lite, 256 KiB of IRAM

TI TWL3025BGGM Iota ABB

TI TRF6151CJ GSM RF transceiver

RFMD RF3133 GSM RF PA

Epcos D1016 Quadband RF FEM Called M034 in TI Leonardo docs

Spansion S71PL064JA0 Memory IC 8 MiB of flash, 2 MiB of XRAM

The Calypso chip’s nIBOOT strapping pin is tied to GND, thus the Calypso boot ROM is always enabled,

meaning that flashing access is always allowed and there is no possibility of bricking the module.

1.2. Main interface connector

1.2.1. Physical connector part

The connector part on the TR800 module itself is Harwin M402F28005; the official mating part to be

used on customer application boards is Harwin M402M18005, but that part is no longer readily available. How

ever, an equivalent substitute connector part has been found: Panasonic AXK6F80347YG. The new part is

equivalent in form, fit and function and is used on FreeCalypso Caramel2 boards.

1.2.2. Interface signals

Aside from the two power rails VBAT and VIO and the common ground GND, every interface signal

brought out on the 80pin connector internally makes a direct connection to some Calypso or Iota ball pad,

without going through any intermediate circuits added by iWOW. (VBAT is connected to 3 power consumers

Iota, Rita and the PA; VIO is a regulated power rail produced by Iota and used by Calypso and Rita.)

Some of the interface signal descriptions given in iWOW’s TR800 Product Technical Specifications docu

ment are incorrect or misleading, or could benefit from better clarification; this section provides the necessary fac

tual corrections.

1.2.2.1. Backup power supply

Iota VBACKUP provision which TR800 brings out on interface pin 6 is described quite well in TI’s chip

set documents, but iWOW’s description is slightly misleading. This backup power supply is needed in order to

maintain RTC date and time only when the main battery (VBAT) is completely removed; if VBAT remains

present, then RTC maintains the time of day even when the chipset is in the OFF state (as defined in the chipset

documents) without needing a backup battery.



 2 

1.2.2.2. PWON control

Interface pin 18 is wired to Iota PWON. iWOW’s documentation describes it as ‘‘ON/OFF Control’’, but

the physical hardware reality is that only the SwitchON function is performed by the hardware, whereas all

SwitchOFF functions (including the possibility of using the same PWON signal to request a SwitchOFF) are

entirely up to firmware. (This fact is wellknown to veteran Calypso chipset users, but may not be obvious to

those reading iWOW’s TR800 documentation without prior Calypso chipset knowledge.)

PWON can only be driven with OC/OD drivers or with shorttoground pushbutton switches, not with

pushpull drivers! It is pulled up internally to VBAT.

1.2.2.3. RESET control

Interface pin 21 is wired to Iota nTESTRESET, also called TESTRSTz. Because these alternate names for

the internal chipset signal are rather long, simply calling this signal RESET is perfectly acceptable — as long as

its true nature is always remembered. The reset signal brought out on TR800 is ‘‘raw’’ nTESTRESET — the

TR800 differs in this aspect from the competing GTM900 modules which bring out a transistortranslated ver

sion which we call XDS_RESET instead.

The workings of this reset signal are extensively covered in TI’s chipset docs and in our Calypsotestreset

article in freecalypsodocs, but one point worth mentioning is that this special reset includes a builtin Switch

ON function, thus PWON can be considered optional when this RESET control is used.

Just like PWON, this RESET control signal can only be driven with OC/OD drivers, not the pushpull

kind, and it is pulled up to Iota UPR (which in turn comes from VBAT or VBACKUP) inside the TR800

module, following TI’s Leonardo reference design. Unlike PWON, this RESET control signal is not internally

debounced — thus it is best driven by other processors rather than pushbutton switches.

1.2.2.4. Analog audio interfaces

TR800 brings out almost all of the Iota chip’s analog audio interface pins: EAR and AUX outputs, pri

mary MIC and AUX inputs. The only Iota analog audio interface which is not brought out is the third one

intended for headset accessories, Iota signals beginning with HS.

TR800 analog audio bringout consists solely of direct signal connections between Iota ball pads and inter

face connector pins — there are NO extra circuits inserted at the module level. (TR800 differs in this aspect

from the competing GTM900 modules which insert their own extra circuits into both primary and secondary

audio input paths, extra circuits that may be undesirable in some applications.) The analog audio signal names

given in iWOW’s documentation correspond directly to actual Iota signal names, thus no extra explanation is

deemed necessary.

1.2.2.5. Calypso GPIO and multifunction pins

Interface pins 28 through 35 are wired to Calypso GPIO and multifunction pins as follows:

Interface Wired to Calypso signal

connector

pin Main function Alternate function

(powerup default)

28 MCSI_CLK GPIO11

29 GPIO1 —

30 GPIO2 —

31 GPIO3 —

32 MCSI_RXD GPIO10

33 MCSI_FSYNCH GPIO12

34 MCSI_TXD GPIO9

35 nRESET_OUT GPIO7

iWOW’s documentation gives their ‘‘logical’’ GPIO numbers that are perfectly consecutive from 1 to 8;

these are ‘‘logical’’ GPIO numbers defined by their firmware, but as one can see from the table above, they do



 3 

not correspond to physical Calypso GPIO numbers beyond the first 3. The correspondence between iWOW’s

logical GPIO numbers and Calypso physical ones for the upper 5 is as follows:

iWOW’s logical Calypso physical Alternate peripheral function

GPIO number GPIO number on the same pin

4 7 nRESET_OUT

5 9 MCSI_TXD

6 10 MCSI_RXD

7 11 MCSI_CLK

8 12 MCSI_FSYNCH

There are NO pullup or pulldown resistors on any of these nets inside the TR800 module, thus it is the

system integrator’s responsibility to ensure that each of these GPIO and multifunction pins is either driven exter

nally or configured as a Calypso output, in order to avoid floating CMOS inputs.

1.2.2.6. UART interfaces

Calypso has two UARTs, called Modem and IrDA in chip docs, and both are brought out on TR800.

UART pinout listings are always somewhat confusing because signal directions are opposite between the Calypso

chip’s perspective and the perspective of the connected external host; the following table shows both perspec

tives:

Interface Calypso UART signal Host perspective

connector (TR800 as DCE)

pin

49 RX_IRDA TxD2

50 TX_IRDA RxD2

51 RX_MODEM TxD

52 TX_MODEM RxD

53 RTS_MODEM CTS

54 CTS_MODEM RTS

There are no pullup or pulldown resistors on any of the 3 signals that are connected to Calypso UART

input pins, thus if any of them are not driven, it is the user’s responsibility to pull them up or down externally,

or tie them off if they are completely unused.

1.2.2.7. LED control output

There is a LED control output signal brought out on interface pin 55, and iWOW’s documentation calls it

LPG. However, this aspect of iWOW’s documentation is factually incorrect: the actual Calypso signal wired to

this interface pin is LT/PWL (ball L7) and not DSR_MODEM/LPG (ball D9). The actual signal that is brought

out on TR800 can be driven by Calypso using either the chip’s LT output function or the chip’s PWL output

function; the latter is generally preferred. Thus the LED control output signal under consideration is really PWL

and not LPG.

1.3. Unused Calypso signals

The following Calypso GPIO and multifunction pins are unused and left entirely unconnected (not brought

out) inside the TR800 module:

• GPIO0

• TSPDI/GPIO4

• BCLKX/GPIO6

• MCUEN1/GPIO8

• MCUEN2/GPIO13

• DSR_MODEM/LPG



 4 

Anyone who is going to write their own firmware to run on the Calypso inside the TR800 needs to configure

these GPIO and multifunction pins as dummy outputs in order to prevent floating CMOS inputs.

1.4. Antenna interface

The microcoaxial antenna connector on the TR800 module is believed to be equivalent to Hirose U.FL.

We currently use Sunridge microcoaxial cable assemblies terminated with their MCB2G plugs — this is the

arrangement used on our Caramel2 development board. The other two antenna connection options provided by

iWOW (contact pads on the side facing the application board and contact or soldering pads on the side facing

outward) have not been explored by our team yet.

2. Integration guide for FC Tango users

This chapter is intended for application designers and system integrators designing higherlevel systems

that will incorporate a FreeCalypso Tango module as a component; this chapter is officially valid only for those

users who buy FreeCalypsobranded Tango modules from Falconia Partners LLC, flashed with FC Tango

firmware rather than iWOW’s.

2.1. Two fundamental modes of application

Our FC Tango module product based on iWOW’s TR800 hardware piece supports two different classes of

applications:

• The most common class of application can be described as a slave modem: in these applications the

GSM/GPRS modem module is fully subservient to an external host, controlled via AT commands or some

other conceptually similar interface. In these applications the modem module acts as a peripheral to some

larger host system, providing GSM/GPRS functionality to the host, and it only does what the host com

mands it to do — it doesn’t do anything on its own. The vast majority of cellular modem modules on the

market including Calypsobased competitor GTM900 can function only in this ‘‘slave’’ mode, but for FC

Tango this mode of application is just one of two possibilities.

• Using the rich set of additional Calypso and Iota interface signals brought out on TR800 hardware, our

FC Tango module product can also support a different class of applications where the Calypso chip inside

the module (running custom firmware) can act a system master, controlling other peripherals via the avail

able interfaces of parallel microprocessor bus, I2C, UART and GPIO. Hybrid applications are also possi

ble where Tango acts as a UARTcontrolled peripheral to an external host in some aspects, yet at the same

time also uses its additional Calypso and Iota interfaces to control or monitor other peripherals.

2.2. Common interfaces for all applications

2.2.1. Power and ground

Recommendations given in iWOW’s TR800 Product Technical Specifications document section 2.2 are

equally applicable to our FC Tango derivative product, hence we advise our users to follow those guidelines. It

is particularly important to note that all 4 legs that protrude from the module’s metal shield MUST be soldered

to plated through holes or plated slots in the carrier board on which the module is mounted — these ground legs

provide the return path for the power supply current. The main 80pin system interface connector provides 5

pins for VBAT but only one GND pin, and that one GND pin is not sufficient to carry power supply return

current during GSM Tx bursts.

If you are going to use a fixed voltage supply to power your Tango module, as opposed to a battery that is

subject to charge and discharge cycles, it is important to note that the chipset inside the module uses only LDO

regulators and no switching converters, hence higher input voltages will increase internal heat dissipation and

potentially reduce hardware life expectancy. We recommend setting your supply voltage to somewhere between

3.5 and 3.8 V.



 5 

2.2.2. Backup power supply

In the vast majority of applications no backup battery supply is needed, and interface pin 6 (VBACKUP)

should be left unconnected. A backup battery becomes useful only if your application meets both of the follow

ing conditions:

1. You use Calypso RTC to maintain time of day, and

2. You wish this RTC time of day to be maintained when the main battery is removed.

2.2.3. PWON and RESET controls

If your application is such that the Calypso processor inside Tango will be the top level system master, not

controlled by any other processor (the arrangement found in classic cellular phone handsets), then PWON will

need to be wired to a humanoperated pushbutton switch whose other side is GND. RESET will typically not be

used in such applications, although it should be brought out to whatever your internal development interface

(firmware loading and debugging etc) happens to be.

On the other hand, if the Calypso processor and its firmware inside Tango are functionally subservient to

some higherlevel processor in your system, then it will be extremely helpful if you provide some way for your

system host processor to control the RESET input to Tango. Remember that it needs to be driven with a dedi

cated OC or OD driver, not a direct connection to some other processor’s GPIO output! Having Tango RESET

input under your host processor’s control means that you will always be able to regain control of the Calypso

from any ‘‘runaway’’ code without having to remove and reapply VBAT power — obviously a highly useful

feature.

Because Iota nTESTRESET (which is what Tango RESET input really is) includes a builtin SwitchON

function, if your system host processor is controlling this RESET line, then strictly speaking there is no need for

PWON, and it would be acceptable to leave the PWON control pin unconnected. But if you have two GPIO out

puts and two OC/OD drivers available (for example, using a 74LVC2G07 dual OD buffer IC from Nexperia),

then it is best to put both PWON and RESET inputs under your host processor’s control.

2.2.4. Calypso UARTs

Even if your application is one where the Calypso processor inside Tango is the top level system master

and does not need any UART interfaces in normal operation, you will need to bring out at least one UART to

your development interface so you can load and debug your firmware. OTOH, if your Tango module acts as a

GSM/GPRS peripheral to some larger system, then you will need at least one UART to serve as the control inter

face.

If you are going to run our standard Tango modem firmware, the Modem UART provides a standard AT

command interface complete with GSM 07.10 MUX and data capabilities, whereas the IrDA UART carries our

firmware’s debug trace interface called RVTMUX, supported by our FreeCalypso host tools. If your host system

for which Tango will act as a GSM/GPRS modem peripheral has only one UART available for communicating

with the GSM modem peripheral, we recommend that you connect the Modem UART (carrying standard AT

commands) to your internal host, and connect the IrDA UART (carrying our debug interface) to some debug

interface header or whatever is appropriate for your system, allowing external debug and development tools to be

connected.

If whatever entity you end up connecting to the Modem UART has no RTS/CTS flow control capability,

then Tango system interface pin 54 (Calypso CTS_MODEM, host RTS) should be tied to GND (do not leave it

floating!), and pin 53 (Calypso RTS_MODEM, host CTS) can be left unconnected. On the other hand, if either

of the two UART RxD (host TxD) lines may be left unconnected under some circumstances, then it needs to be

pulled up (100 kΩ resistor recommended) to the Calypso chipset’s VIO rail which is brought out on system

interface pin 9.

2.2.5. Calypso GPIOs 1 through 3

Our standard Tango modem firmware does not impose any restrictions on how these GPIOs may be used

— instead we allow the desired I/O configuration to be programmed in a nonvolatile configuration file in our

flash file system (FFS). In the initial shipping state with no pin configuration file programmed, all 3 GPIOs are



 6 

left in their powerup default state of being inputs, so there will be no driver conflict regardless of how they are

wired on any given customer’s application board. If a GPIO needs to remain as input in your application, just

leave the default configuration unchanged, or if a GPIO needs to be an output in your application, then you can

program it to be so in the pin configuration file.

There exists one traditional set of functions for these 3 GPIO pins, although it is entirely up to you

whether you wish to use these traditional GPIO functions or not:

GPIO Function

1 RI output

2 DCD output

3 DTR input

If you like the traditional GPIO functions listed above and include such GPIO wiring in your application

board design, you can program the pin configuration file with a standard configuration telling our firmware to use

these classic functions. In this case GPIO3 acting as DTR input MUST NOT be left floating! Alternatively if

you have no DTR input signal in your application, you can leave GPIO3 unconnected and program the pin

configuration file to make it into a dummy output. The other two GPIOs are outputs in the traditional

configuration, hence they can be left unconnected if they aren’t needed.

2.2.6. MCSI/GPIO multifunction pins

Calypso MCSI is a 4wire interface carrying a digital voice channel — this digital voice interface capabil

ity is a premium feature which sets FC Tango apart from the competition. The 4 pins which carry MCSI are

functionally multiplexed between MCSI and GPIO, thus MCSI is available for those applications that need it, but

is not imposed on other users.

2.2.6.1. Digital voice applications

If your application will use MCSI for digital voice, the function and direction of the 4 signals are fixed by

the combination of Calypso hardware and standard Calypso DSP code. MCSI_TXD is a Calypso output from

powerup, MCSI_RXD is always an input to Calypso, but the other two signals (MCSI_CLK and

MCSI_FSYNCH) require special attention: they become outputs during active voice calls, putting out a 520 kHz

clock and an 8 kHz frame sync, but during idle periods between calls the interface is turned off and the two sig

nals in question go HiZ.

The implication for users is that you have to treat MCSI as a PCM master (your connected logic must act

as a PCM slave, accepting the clock and frame sync from Calypso), but unless your connected logic has builtin

pullup or pulldown resistors, you will also need to put boardlevel pull resistors (we recommend 100 kΩ pull

down to GND) on MCSI_CLK and MCSI_FSYNCH nets to keep them from floating during idle periods.

2.2.6.2. Applications without digital voice

If your application won’t use digital voice (if you use the analog voice interface or if your application does

not use voice at all), then the pin configuration file in FFS should be programmed to switch these 4 multifunc

tion pins from MCSI to GPIO. You can then use these GPIOs for your own custom functions, or you can leave

all 4 MCSI/GPIO pins unconnected and program the pin configuration file to drive them as dummy outputs to

prevent floating CMOS inputs.

2.2.7. Analog audio interfaces

If your application will use any of the provided analog audio interfaces, follow Iota chip documentation

from TI. iWOW’s audio design recommendations are also good.

If your application won’t use analog audio (if you use the digital voice interface via MCSI instead, or if

your application does not use voice at all), it is perfectly acceptable to leave all analog audio interface pins

unconnected.



 7 

2.2.8. SIM socket interface

The 4 wires that connect between Tango system interface connector and the SIM socket are deemed to be

selfexplanatory. Calypso signal SIM_CD (card presence detection) is not brought out on TR800 hardware —

instead it is tied to VIO inside the module like on Leonardo, FCDEV3B and Openmoko boards.

2.3. Basic modem applications

If you are going to run our standard Tango modem firmware for GSM and GPRS, or if you are going to

be developing your own custom firmware, but your custom fw still acts as a ‘‘slave’’ modem fully subservient to

control from an external host, not acting as a system master to any other peripherals, then all other Tango inter

faces besides those detailed above should be left unconnected: they have no function in such applications.

All of these unused interfaces are module outputs, or inputs with builtin pullups, or analog signals that

are designed to tolerate the noconnect state — thus no digital inputs will be left floating.

2.4. Custom firmware applications

If you are going to connect anything to the parallel microprocessor bus interface or to the I2C interface,

you will need to write your own custom firmware code to control those peripherals; our standard Tango modem

fw does not expect anything other than builtin flash and RAM on the microprocessor bus, and it does not

configure I2C at all. You will also need to customize the firmware in order to collect any useful input from the

keypad or ADC interfaces; we do have a driver for Calypsodriven battery charging, but it is meant to be custom

ized, not a one size fits all.

2.4.1. Alternate uses for the keypad interface

If your custom application does not include an actual keypad, Calypso keypad interface can be repurposed

for other uses with custom firmware: the 5 KBC pins can be used as generalpurpose outputs, and the 5 KBR

pins can be used as activelow interrupt inputs.


