
FreeCalypso Caramel2 Status Report and User’s Guide

Version 1.1, last edited 2021/07/21

1. Caramel2 project initiative

In the early 2000s a Singapore company named iWOW Connections Pte Ltd produced a packaged Calypso

modem module which they named TR800, and they also produced a development and evaluation board for this

module. Our FreeCalypso team discovered the existence of these modules and historical development boards at

the end of 2019, and in the present time the availability situation is as follows: ‘‘bare’’ TR800 modules are still

available as a very large NOS surplus, but there is no comparable surplus of original iWOW development

boards. Our team was able to obtain just two of those original development boards (iWOW DSK), and these

two boards which we got may very well be the only ones left in the world.

However, the TR800 module itself is very good: for many years prior to our discovery of its extremely

obscure existence, we (FreeCalypso) had a strong desire to produce our own packaged Calypso module that

would have been very similar to this TR800 — but no one ever funded those ideas, hence they never came to

fruition. But now that we have discovered the existence of iWOWmade TR800 modules and given the availa

bility of a large NOS surplus of them, the right course of action became clear: we are turning this TR800

module into a bona fide FreeCalypso product by way of rebranding, and its new name is FC Tango.

In order to properly support our new FC Tango product based on iWOW TR800, we need a development

and evaluation board for it, similar to iWOW’s DSK — but unlike ‘‘bare’’ TR800 modules, those original DSK

boards are unobtainium beyond the two which our core team scored. The safest course of action (as in the best

chance of positive outcome) would be to produce a verbatim clone of iWOW’s DSK board, at least as the first

version — but we never found any design files for any version of that original board, and having only two of

those boards, we cannot afford to sacrifice any to destructive reverse engineering. Therefore, we took the alter

nate route of producing our own functional semiclone of iWOW’s board with our own entirely new PCB layout,

guided only by iWOW’s schematics and general plan of component placement. The result is our FreeCalypso

Caramel2 development board.

As part of transforming iWOW’s DSK into FC Caramel2 at the schematic level, we also made some

simplifications:

• We removed iWOW’s RS232 level shifters and DE9F connector interfaces, instead we bring out the two

Calypso UARTs in their native LVCMOS form on a 10pin header in the same pinout as implemented on

FCDEV3B.

• We removed iWOW’s power supply circuit (5V input and LDO regulator producing lower VBAT), instead

our power input is readymade VBAT via the same orange Weidmuller connector as used on previous TI

and FreeCalypso development boards CSample, DSample, Leonardo and FCDEV3B.

1.1. Antenna interface

Most GSM MS development boards feature a female SMA connector for the antenna interface; iWOW’s

DSK follows this tradition, and so does Caramel2. However, given the way in which the antenna interface

comes out of the TR800 module on a microcoaxial connector, the design of this RF interface at the development

board level becomes somewhat tricky, and the ultimately chosen approach is different between iWOW’s original

and C2:

• On iWOW’s original DSK a piece of microcoaxial cable carries the RF interface from the TR800 module

to a presumably identical microcoaxial connector on the DSK motherboard, and then a short PCB trace

(unknown if it was controlled for 50 Ω impedance or not) carries it to a vertical SMA connector.



 2 

• To avoid the extra cost of controlled impedance on our Caramel2 PCB, we took a different approach. We

use a custom microcoaxial cable assembly made for us by Sunridge; on one end of this assembly a Sun

ridge MCB2G head mates with the microcoaxial connector on the TR800 module, and the other end is our

external SMA interface. The SMA connector piece has mounting legs that secure it to our motherboard

PCB, but the RF signal path does not go through our PCB — instead the microcoaxial cable goes to the

back of this SMA connector.

The result of this arrangement is that our Caramel2 board features an SMA connector for the antenna interface

that hangs off the edge of the board, exactly the same as all previous TI and FreeCalypso development boards.

1.2. Analog audio interfaces

The choice of interface (or multiple interfaces) for analog audio on a GSM MS development board is

always a tricky question, and there is no single universally correct answer that would ideally satisfy every possi

ble use case. The approach implemented on our Caramel2 board consists of simply copying what iWOW did on

theirs: the TR800 module brings out two Iota audio channels (main and auxiliary), iWOW’s DSK brings out

each of these two audio channels to a 2.5 mm headset jack, and we do likewise.

The particular headset jack type chosen by iWOW is 4wire TRRS, as opposed to the more common

3wire TRS, and this headset interface which we’ve copied from iWOW exhibits the following key properties:

• Both main and auxiliary Iota audio outputs are differential, and our FreeCalypso headset interface (form

erly iWOW’s) brings this differential signal out natively, without giving up either leg of Iota differential

output. Two pins on the TRRS jack are used for the differential output: Tip and Ring2. The headset ear

piece (which needs to be a 32 Ω speaker) needs to be connected between these two pins as a bridgetied

load.

• iWOW’s headset features an electret condenser microphone connected between Ring1 and Sleeve pins,

with Ring1 being positive and Sleeve being ground. On the development board (both iWOW DSK and FC

Caramel2) Sleeve is the common circuit ground, whereas Ring1 is connected to a microphone input circuit.

The latter circuit has been copied unchanged from iWOW’s DSK and can be studied from schematic draw

ings (both iWOW’s and ours); it uses Iota MICBIAS output as the power source for the microphone and

feeds ACcoupled audio input to Iota MICIN & MICIP for the main audio channel, or to Iota AUXI for

the auxiliary audio channel.

So far the only physical headset that has been plugged into Caramel2 headset jacks is the original one from

iWOW, the one that came with iWOW’s DSK. The Mother’s plan is to order a batch of new FreeCalypso head

sets to be made for our community as a custom manufacture run, with a 32 Ω earpiece and an electret micro

phone connected as we require, but as of this writing, this plan has not been realized yet.

1.3. Status indicator LED

Our previous development board was FCDEV3B, and it includes one very useful feature which is an origi

nal FreeCalypso invention: a LED that shows the state of the chipsetinternal ON_nOFF signal. The

Calypso+Iota chipset has switchedon and switchedoff states, and when a developer or an enthusiast tinkerer

user works or plays with a Calypso board, it is highly useful to be able to see which state it is in. The most reli

able way to observe this state is to monitor the internal ON_nOFF signal, which is what we do on FCDEV3B,

but this internal signal is not brought out of the TR800 module, nor is it brought out on any other historical

commercial packaged module of this type that we know of.

When working with iWOW’s DSK board prior to development of Caramel2, I (Mother Mychaela) really

missed not having any way to tell reliably if the chipset is switched on or off. Replicating the ON_nOFF status

LED from FCDEV3B on Caramel2 was not possible because that internal signal is inaccessible, but our C2

board features another trick aiming at a similar goal: the yellow ‘‘STATUS’’ LED lights when the Calypso

chipset’s 13 MHz clock (which is brought out on TR800) is running, and is intended to be off when the chipset

is either switched off or in deep sleep. See §2.2 for how this idea worked out in practice.



 3 

2. Status report on the outcome

FC Caramel2 boards were physically produced and made publicly available in the waning months of 2020.

The result of various tests done since then is that most functions work as designed, but there are a few blemishes

which need to be documented.

2.1. Noise from GSM Tx in the analog audio path

The simplest and most ‘‘natural’’ way to connect a GSM antenna to a Caramel2 board is to screw that

antenna directly onto the female SMA tail hanging off the edge of the board. When the antenna is connected in

this straightforward manner, everything works great until you plug a headset (currently iWOW’s original, for

lack of our own) into the EAR/MIC jack and try to make a voice call. When you do make that test call, you

will immediately hear very severe ‘‘buzz’’ getting mixed into the audio path; more careful tests reveal that this

buzz gets mixed into both earpiece and microphone signal paths.

Further tests reveal that the interference being injected into the analog audio path comes from the radiating

element of the antenna and not from any GSM RF path elements on the Caramel2 board itself. The workaround

currently used by the Mother is to insert a long coaxial cable (the one I got is 1.8 m long, was sold as American

6 ft) between the antenna connector on the Caramel2 board and the actual antenna; with the radiating element of

the antenna moved far away, voice call audio in the headset becomes perfectly clean.

This noise susceptibility blemish of Caramel2 analog audio is very disappointing, and it came very unex

pected. Looking at iWOW’s schematics for their DSK, one can see a lot of extra filtering components in all of

the analog audio paths, and all of these circuits have been reproduced verbatim on Caramel2. iWOW’s original

DSK does not exhibit the same GSM Tx noise problem: I can screw the same antenna directly onto the vertical

SMA connector on that board, plug the exact same headset into that board’s ‘‘PHONE AUD’’ jack, and the

voice call audio is perfectly clean there. Therefore, the noisy audio problem on C2 defies my understanding.

2.2. LEDs lighting erratically from UART lines

Out of the 20 C2 boards produced in the first batch, some exhibit this erratic behaviour while others don’t

— but the actual underlying problem is inherent to the Calypso chipset itself, or more precisely, potential for

trouble arises whenever Calypso UART lines are connected to devices in a different power domain.

Just like FCDEV3B, Caramel2 brings out the two Calypso UARTs in their native LVCMOS form without

any onboard level shifting or buffering, and the canonical mode of usage is that this LVCMOS DUART inter

face is connected to some USB to dual UART adapter: at FreeCalypso HQ we use our own DUART28, but the

present problem remains exactly the same with any other adapter, such as any COTS FT2232x breakout board or

Sysmocom mvuart. The problem is this: what happens when the Calypso+Iota chipset is in its switchedoff

state, but the connected USB to DUART adapter has power (USB host connected) and puts out logic high levels

on its TxD, RTS and DTR output lines?

What happens in this scenario is that power from the USB domain feeds into the Calypso+Iota chipset’s

VIO rail (which would otherwise be at 0 V with its supplying regulator turned off) through the clamping diodes

inside the Calypso chip (these external UART outputs connect to Calypso inputs), and also through 100 kΩ resis

tors that were put in to pull up Calypso UART inputs to VIO when they are left unconnected. The current

through Calypso input clamping diodes is much greater, 1.27 mA per pin with our current DUART28 setup, com

pared to 28 µA through each 100 kΩ resistor, but the smaller current bypassing the diodes may play a role in

some secondorder effects.

Our DUART28 adapter features 2.2 kΩ series resistors on all of its outputs; these resistors were added for

the specific purpose of limiting the partial powerdown current through Calypso input clamping diodes to

1.27 mA per pin — contrast with 8 mA per pin put out by our competitor’s mvuart! Unfortunately though, as

we found out when we built our batch of C2 boards, this reduced current is still enough to cause erratic LED

behaviour on some boards.

Why do Calypsocontrolled LEDs sometimes light up erratically as a result of foreignsourced current feed

ing into VIO? We have no way of knowing exactly what happens inside the Calypso chip, but it is being sub

jected to abnormal operating conditions which it was never designed to handle (it was clearly designed with the

assumption that its VIO rail will never be powered by anything other than its ABB companion chip), and

apparently under some conditions (with unit to unit differences being one of the variables) some of the outputs



 4 

which are supposed to be at 0 V when the chipset is switched off start putting out enough voltage and/or current

to turn on connected external BJTs or FETs controlling various peripherals.

Caramel2 features a red PWL LED controlled by Calypso LT/PWL output via a BJT with bias resistors,

and a yellow STATUS LED controlled by Calypso CLK13M output via a MOSFET — see our published board

schematics. Both LEDs are supposed to be off when the chipset is switched off — but we got 4 boards on

which the red LED lights up erratically as a result of UART feeding, and one board on which the yellow LED

behaves likewise.

The same problem has also been observed on some Motorola C139 phones, albeit very rarely. These

phones have the same arrangement in that their headset jack serial port is connected to Calypso UART pins, and

when an externallypowered UART is connected to the headset jack while the phone is off, a similar scenario

occurs. On at least one phone I noticed a strange behavior in that a little bit of audible noise can be heard when

the phone is off and a poweredon USBserial cable is inserted into the headset jack; I surmise that the faint

noise is coming from the phone’s magnetic buzzer, which is slightly turned on by erratic output from Calypso on

the BU/PWT line.

The Mother’s current reasoning on the basis of our experiences with C2 is that whenever Calypso UART

inputs may be coming from a different power domain, or even from a device in the same VBAT domain that

may be on when the Calypso+Iota chipset is switched off, the correct solution is to insert LVC buffers in front

of those Calypso inputs, with the LVC buffer IC’s power supply being Calypso+Iota VIO. The special quality

of LVC buffers that matters in this case is that they are specifically designed for partial powerdown applications

with a very low Ioff spec. If we ever produce another successor board to FCDEV3B and Caramel2, we are

going to implement this LVC buffer approach, and we recommend likewise to anyone else building their own

development board around TR800 or FC Tango modules.

2.3. PPD scenario 2

Now consider the opposite partial powerdown scenario: UART lines are connected between Caramel2 and

DUART28, Caramel2 is powered and switched on (firmware running), but there is no USB host connected.

(This scenario only makes sense in the Luna configuration with LCD and keypad addons connected to Caramel2

expansion interface, running firmware built in the handset configuration.) If you are going to run your Caramel2

board in a configuration where this reverse PPD scenario is a possibility, your USB to DUART adapter needs to

be FreeCalypso DUART28, not unbuffered FT2232x or CP2105: with either of the latter adapters there will be

very high current flowing from Calypso UART outputs into powereddown I/O cells of the USBserial IC. How

ever, even with DUART28 there is a certain blemish in this PPD scenario; the details are described in the

DUART28PPDsurprise article in freecalypsodocs Hg repository, but the end effect is that Calypso UART

inputs sense continuous low (break condition) instead of continuous high, and Calypso sleep modes are precluded

as the result.

Under present conditions of ultralow demand coupled with overabundant supply, the most sensible work

around is to issue two DUART28 adapter boards (as opposed to just one) to every FreeCalypso community

member who may be operating a Caramel2+Luna configuration and who may thus encounter PPD scenario 2.

One of these two DUART28 adapter boards is to remain unmodified, and the other is to be modified as

explained in the DUART28PPDsurprise article in freecalypsodocs.

3. User’s guide for simple setups

This chapter describes a simple setup consisting of a Caramel2 board, a power supply, a DUART28

adapter and a Linux host for programming and control. The functionality achieved in this configuration is an

ATcommandcontrolled modem similar to FCDEV3B, except that the new Tangobased board is quadband

instead of triband. The more advanced Luna setup involving LCD and keypad addons is not covered in this

guide: at the present time only FC core team members have the necessary LCD addon piece, we don’t have any

more LCD modules of the original type, and the new lunalcd2 board featuring a different LCD module is still in

development.



 5 

3.1. Hardware connections

Every Caramel2 board is supplied with a power adapter that goes from universal AC to 3.6 VDC; in most

development scenarios such mainspowered operation is much more convenient than using an actual battery. We

ship our power adapters already outfitted with orange Weidmuller connectors that plug directly into our Calypso

boards; this connector can only go in one way, preventing reversed polarity.

If you received a DUART28 adapter board with your Caramel2 kit, you should have also received a

10wire ribbon cable terminated with IDC socket connectors on both ends — this cable connects the UART lines

(both Calypso UARTs) between the two boards. The shrouded header on the DUART28 board is keyed, prevent

ing connector reversal, but the orientation of the overall cable is still up to the user. Our official recommenda

tion is to orient the cable in such a way that on the DUART28 end the body of the cable will lie away from the

adapter.

The corresponding DUART connection header on Caramel2 is not shrouded, hence the user is responsible

for correct orientation. Please ensure that the polarizing tab on the cablemounted IDC socket connector lines up

with the corresponding mark on the PCB silk screen.

3.2. Indicator LEDs

Our Caramel2 board features 3 indicator LEDs: POWER (green), STATUS (yellow) and PWL (red). The

green POWER LED lights whenever batteryemulating power is present at the orange power input connector,

regardless of whether the Calypso+Iota chipset is switched on or off. The yellow STATUS LED behaves as fol

lows:

• When the Calypso+Iota chipset is switched off, the yellow LED is supposed to be off — but see §2.2.

• When the Calypso is fully running and not in deep sleep, the yellow LED will be lit solidly.

• When Calypso firmware goes into and out of deep sleep, the yellow LED will flash: it will light when

Calypso wakes up and go out when Calypso goes to sleep.

If you are running standard tangomdm firmware, as opposed to Luna, the red PWL LED should never light up

on its own — instead you can control it with AT@PWL debug command. The key hardware feature is that the

light intensity of this PWL LED is subject to smooth control via PWM: see CalypsoPWMlight article in

freecalypsodocs Hg repository.

3.3. Pushbutton controls and standard firmware operation

Our Caramel2 board features two pushbutton switches: PWON and RESET. The operation of RESET is

100% hardware, whereas the operation of PWON is split between hardware and firmware: transition from OFF to

ON state upon any press of the PWON button is a hardware function, whereas the reverse transition from ON to

OFF upon a long press of the same button is a firmware function.

Starting from an OFF state, pressing either PWON or RESET will boot the Calypso chipset and cause our

flashed firmware to run. However, if you are pressing these buttons with fingers, as opposed to driving boot con

trol signals from another processor with OC/OD drivers (see §4.3), PWON is the preferred switchon method:

PWON is debounced in the Iota chip, RESET is not.

Once our standard firmware runs on boot, it provides a standard ASCII AT command interface on the pri

mary UART and a highly vendorspecific binary packet debug and development interface (RVTMUX, formerly

proprietary to TI, now owned and maintained by FreeCalypso) on the secondary UART. The particular variant

of AT command interface that is implemented on TI and FreeCalypso modems is described in FCDEV3B User’s

Manual; if you wish to work with RVTMUX binary packet interface, you will need to download and install our

FreeCalypso host tools package on your host computer.

If you accidentally booted the board and FC modem firmware by pressing PWON or RESET without a

host computer connection, you can perform an orderly switchoff by pressing PWON, holding it down for 1 s,

and then releasing it. However, if you do have a working host computer connection, this switchoff method is

not recommended — you should implement a softwarebased shutdown sequence (AT+CFUN=0, then

AT@POFF) instead.



 6 

3.4. Running fcloadtool and related tools

FreeCalypso users are expected to be able to reflash their firmware as needed, and the tool for doing so is

fcloadtool. We also have a family of related tools: fciram and fcxram for running various RAMbased stand

alone target utilities, fcsimint for operating on SIM cards sitting in the onboard SIM socket, and the set contin

ues to grow. All of these tools operate via the Calypso chip’s boot ROM, and they can operate on the Calypso

target via either of the two UARTs. The choice of which UART to go through is generally arbitrary, but in

FreeCalypso we lean toward a convention of using the secondary UART (the one used for RVTMUX) for such

operations.

The canonical workflow for all of these tools is as follows:

1) Start with the Calypso+Iota chipset in its switchedoff state — the yellow STATUS LED should be off.

2) Run fcloadtool or other tool as appropriate, pointed to the chosen UART for the operation.

3) As the host tool keeps sending interruptboot beacons to the UART and waits for a Calypso boot ROM

response, press PWON or RESET on the board.

See §4.3 for an alternative way that does not require having a human operator pressing buttons, but instead

requires a custom patch to Linux kernel ftdi_sio driver.

When you end your fcloadtool or fcsimint session, these tools clean up with a soft poweroff, putting the

Calypso+Iota chipset back in its switchedoff state. Other workflows may require manual cleanup or RESET.

4. Advanced topics

4.1. Pin multiplexing

The Tango module that forms the core of Caramel2 brings out 8 Calypso GPIO and multifunction pins that

are subject to functional multiplexing concerns; the subject is covered in detail in the FC Tango Module Integra

tion Guide (§1.2.2.5) and in the Tangopinmux article in freecalypsodocs Hg repository. All 8 of these signals

are brought out to the expansion interface on Caramel2 (allowing arbitrary custom hardware interfacing), and two

of them (GPIO2 and GPIO3) are also wired to the DUART interface header. The latter wiring assigns GPIO2

and GPIO3 to be DCD output and DTR input, respectively. GPIO3, MCSI_RXD, MCSI_CLK and

MCSI_FSYNCH are outfitted with 100 kΩ pulldown resistors to GND; the other signals have no pull resistors

in either direction.

The default /etc/tangopinmux programming with which Caramel2 board are shipped is 83 88 00 00; this

programming assigns GPIOs 1 through 3 to be RI output, DCD output and DTR input, respectively, whereas the

4 MCSI/GPIO pins are left in the powerup default MCSI configuration. The combination of onboard pull

down resistors and firmware configuration of GPIO1 and GPIO2 as outputs ensures that none of our GPIO and

multifunction pins remain floating in the default setup.

4.2. Expansion interface

Our TR800based FC Tango module differs significantly from its contemporary competitors such as

Huawei GTM900 in that it brings out many more Calypso and Iota signals than are needed for basic modem

operation, and all of these extra signals are brought out on the 56pin expansion interface header on Caramel2,

matching iWOW’s original DSK board. Most of these signals become useful only if you are going to write your

own custom firmware or engage in lowlevel experimentation with the Calypso+Iota chipset; if you run standard

tangomdm firmware, only a few of these signals perform useful functions, as covered in the following subsec

tions.

4.2.1. RI output on GPIO1

Our default /etc/tangopinmux programming assigns Calypso GPIO1 to be RI modem control output: it is

normally high, but goes low on incoming calls. However, this extra modem control signal is not included in the

set carried between Caramel2 and DUART28 by the 10wire ribbon cable: this interface goes back to FCDEV3B,

and while we added DCD and DTR to it, using two pins which were unused and unconnected on FCDEV3B,

there was no room to squeeze in RI. (It should also be noted that DCD and DTR go back to TI’s CSample and

DSample, but the addition of RI on GPIO1 was iWOW’s invention.)



 7 

If you require or desire a working RI modem control signal, you will need to connect it with an extra

jumper wire between GPIO1 pin on the expansion interface header and RI pin on the extra header on DUART28.

4.2.2. MCSI digital voice interface

Calypso supports a PCM digital voice interface on its MCSI pins, and the 4 pins that comprise this inter

face are brought out to the expansion interface header on Caramel2. This interface is documented in the

Calypsodigitalvoice article in freecalypsodocs Hg repository, but please note that there is no existing offthe

shelf solution for connecting such interfaces to a generalpurpose computer — instead this PCM voice interface

is an avenue for custom development, likely using an FPGA.

4.3. Boot control interface

The classic workflow for firmware bootup, shutdown, reloading and recovery from hung states assumes

that a human operator is physically present to press PWON and RESET buttons on the board as needed. As one

can naturally imagine, this requirement can be unacceptable in some use cases — there are many valid use cases,

such as remote development or unattended server operation, where it becomes highly desirable or even impera

tive to control Calypso board boot and reset functions from the connected host computer, without anyone being

present to press buttons.

To support such operation, our Caramel2 board provides a 3pin header on which PWON and RESET sig

nal nets are brought out — they are the same signal nets that are shorted to GND with PWON and RESET push

button switches. These boot control signals can be driven by an external host — however, they must be driven

with OC/OD drivers, not with conventional logic outputs!

For a complete solution, our DUART28 adapter board also provides two open drain outputs called CTL1

and CTL2, meant to be connected to PWON and RESET, respectively. However, if you make these wire connec

tions between CTL1 and PWON and between CTL2 and RESET, you must also apply a custom patch to your

Linux kernel ftdi_sio driver and reprogram the DUART28 adapter’s EEPROM to the ‘C’ configuration — if you

make these wire connections without doing the other steps, your Caramel2 board will become inoperable, held

down in reset whenever the secondary UART is opened for communication. If you are not interested in applying

a local patch to your Linux kernel ftdi_sio driver, then you must leave CTL1 and CTL2 unconnected — all other

functionality will still work just fine with the standard unpatched kernel driver.

If you do go through all of the necessary steps for boot control connection from DUART28, then you gain

the ability to use Pdtr and Prts options with fcloadtool and related tools, and also with rvinterf: Prts is

equivalent to pressing PWON, and Pdtr is equivalent to pressing RESET. Standalone fcpulsedtr and fcpulse

rts utilities are also provided, doing the obvious.


