
REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 1/20

DO NOT COPY

CALYPSO MCU BOOT ROM application

Specification

CAL208

Ver 1.3

File: C:\TEMP\CAL208.doc

Department: Application Specific Product / Wireless Communications System

Originator Approval Quality
Name Francois AMAND Alain BOYADJIAN
Date 19-Oct-00 19-Oct-00
Signature

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 2/20

DO NOT COPY

HISTORY

Version Date Author Notes
Ver: 1.0 19-Oct-00 Francois AMAND 1
Ver: 1.1 12-Jul-01 Francois AMAND 2
Ver: 1.2 13-Jul-01 Francois AMAND 3
Ver: 1.3 11-Feb-02 Francois AMAND 4

NOTES :

1. Creation of the document
2. Memory mapping update (section 4.3).

Note concerning IT vector in BOOT ROM (section 4.4).
Clarification on the checksum processing (section 3.2.2.1).

3. Specification update for MCU BOOT ROM application version 2.0.0:
! Addition of code identifier (section 4.5).
! Optimization of the memory mapping (section 4.3).
! Addition of ROM code checksum processing function (section 4.5).

4. Specification update for MCU BOOT ROM application version 3.0.0:
! Correction of BUG01716 - BOOT ROM application switches from Supervisor to User mode.
! Correction of BUG01712 - Interrupt vector in BOOT ROM does not run (see section 4.4).

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 3/20

DO NOT COPY

SUMMARY

1 INTRODUCTION ..4

2 REFERENCE DOCUMENTS...4

3 BOOT APPLICATION..4

3.1 REQUIREMENTS...4
3.2 PROTOCOL...5

3.2.1 Boot procedure ...6
3.2.1.1 Detection of application in FLASH... 7
3.2.1.2 Remote RAM loader detection.. 9

3.2.2 RAM loader procedure ...10
3.2.2.1 PC – Mobile commands .. 10
3.2.2.2 RAM loader state machine (Mobile side)..13
3.2.2.3 RAM loader state machine (PC side) .. 14

3.2.2.3.1 State machine .. 14
3.2.2.3.2 PC – API interface... 15
3.2.2.3.3 File format... 15

4 BOOT ROM IMPLEMENTATION...16

4.1 FILES STRUCTURE..16
4.1.1 Inc: include files (.h)...16
4.1.2 Src: source files (.c and .s) ...16
4.1.3 obj: output directory contained the object files ..16
4.1.4 Tools: makefile and link command file ...16
4.1.5 Bin: output files ..16
4.1.6 Doc: documentation ...16

4.2 H/W CONFIGURATION ...17
4.3 MAPPING OF THE BOOT ROM CODE..18
4.4 INTERRUPT VECTORS IN BOOT ROM ...18
4.5 ROM CODE CHECKSUM AND IDENTIFIER ...19

4.5.1 ROM code identifier ...19
4.5.2 ROM code checksum ..19

4.6 RAM LOADER COMMAND ...20
4.7 CODE SIZE ...20

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 4/20

DO NOT COPY

1 Introduction
This document explains the implementation of the CALYPSO boot application. This application will
be contained in a 8kbytes of Internal ROM and executed during the boot phase according to the user
selection. The boot application will be in charge to check if the application is already programmed and
to download a FLASH programmer.

2 Reference documents

Reference
number

Specification
name

Version Description

1 CAL000 CALYPSO top level specification
2 CAL207 CALYPSO register mapping
3 SAM207 3.2 SAMSON register mapping
4 Technical memo 26-May-2000 SAMSON-How to use internal BOOT RAM?

3 BOOT Application

3.1 Requirements
! ROM code < 8Kbytes
! All 8Kbytes must be used
! Use Internal RAM for code and data (independent of the external devices (WS, buffer size,…))
! Let the possibility to use Boot ROM to contain interrupt vector
! Use UARTs to transfer data (UART_MODEM and UART_IRDA)
! Configure core for full performance (dynamic configuration)
! Automatic detection of UART module to use
! Configure the VTCXO_26MHZ bit according to the input frequency (Automatic detection thanks

to UART module)
! Have a robust protocol for the download
! The PC RAM loader application must be integrated in another FLASH programmer application

" Provide library of Windows RAM loader
! The BOOT ROM code must be associated to a specific Windows Application
! The FLASH programmer is not dependant of the boot ROM code (only reboot procedure)
! The BOOT ROM can contain the interrupt vector table
! The boot application must determinate if an application is already programmed in FLASH
! The code will not be able to be patched.

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 5/20

DO NOT COPY

3.2 Protocol
The boot application contains the following features:
! Boot on the application if no download required,
! Download a FLASH programmer in Internal RAM and execute it (RAM loader),
! Reboot the ARM if BOOT ROM code not used to contain interrupt vector or execute the new

application.

BOOT
application

FLASH checking RAM loader

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 6/20

DO NOT COPY

3.2.1 Boot procedure
The following algorithm is used during the boot step:
The timeout used to determinate if a remote RAM loader has been found depends on the VTCXO input
clock. This timeout is configured to 75ms at 13MHz. This value has been chosen in order to have a

coherent timeout both at 26MHz and 13MHz. Note that at 26MHz, the timeout becomes around 33ms.

main()

H/W Initialization

UARTs configuration

Set VTCXO_26MHZ bit

Application in
FLASH ?

Remote RAM
loader detected

?

75 ms ?

BOOT location
defined ?

Start RAM loader with
detection=FALSE

Configure ARM clock
according to VTCXO

clock

Start RAM loader with
detection=TRUE

while(1)

ARM reset according
to BOOT location

Reset
VTCXO_26MHZ bit

No

Yes

Yes

No

Yes

No

Yes

No

See section 4.2

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 7/20

DO NOT COPY

3.2.1.1 Detection of application in FLASH
The boot application must check several addresses in the FLASH in order to determinate if the FLASH
is already programmed.

The address 0000:2000 contains the BOOT ROM configuration, which corresponds to the location of
the ARM interrupt vector. The possible configurations are:

• 0x00000000: Interrupt vector in BOOT ROM.
• 0x00000001: Interrupt vector in FLASH.

If the address 0000:2000 is different to 0x00000000 or 0x00000001, the boot location is not set and
therefore the reboot can not be executed successfully: the boot application calls the RAM loader. For
more information about the mapping of the application, see section 4.3.

If the boot location is correct and corresponds to reboot in FLASH, the IRQ interrupt vector is checked
thanks to the branch (B) instruction. If values are different to 0xFFFFFFFF, the FLASH is programmed
correctly. The format of branch instruction is the following:

31 28 27 25 24 23 0
Cond 1 0 1 L Offset

In order to perform the check, the interrupt vector table is checked at the address 0000:001C. In order
to avoid any problem with the location of the BOOT ROM, these addresses will be accessed thanks to
the memory range named nCS0img: the address 0000:001C can be always read from address
0300:001C.

In the interrupt vector table, only the instruction Branch (B) can be present, and without any condition
(Link bit (L) is only used with BL instruction.). In consequence, the check of the Branch instruction is
compared to: EAXX:XXXX where XX:XXXX bits contain the offset value.
The offset value is used to determinate if an entire application is programmed, and not only the
interrupt vectors (case of the first block of the FLASH is not erased).

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 8/20

DO NOT COPY

In consequence, the following algorithm describes how to check the FLASH:

FLASH
program
med ?

Boot location
defined ?

BOOT=FLASH
?

Read 0000:001C

B instruction
?

Compute address
of B instruction

Read address of B
instruction

Reset
value ?

No

Yes

Yes

Yes

No

Yes

TRUE

No

FALSE

No

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 9/20

DO NOT COPY

3.2.1.2 Remote RAM loader detection
The following algorithm shows the procedure to use in order to detect the remote RAM loader (loader
executed on PC side):

Detect
remote
RAM
loader

Select VTCXO
selection = 26MHz

UART ID = undefined

Data on
UART_MODEM

?

Read RHR
Byte received = TRUE

Data = '<'
?

UART ID =
UART_MODEM

Data = '<'
?

Read RHR
Byte received = TRUE

Data on
UART_IRDA ?

Return TRUE
UART ID
VTCXO
selection

VTCXO =
26MHz ?

VTCXO = 13MHz VTCXO = 26MHz

Update
VTCXO_26MHZ bit

Return
FALSE

UART ID =
UART_IRDA

Command
received =

TRUE

Return
FALSE

Yes

No Yes Yes

No No

Yes

No

Yes

No

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 10/20

DO NOT COPY

3.2.2 RAM loader procedure

3.2.2.1 PC – Mobile commands
The RAM loader contained in BOOT ROM code is considered as a slave application, i.e. the RAM
loader can only receive command and send associated response in order to inform the remote
application.

PC side Mobile side
Description Command Description Response

Signalling request ‘<i’ Signalling response ‘>i’
Parameter request ‘<p[X][Y][Z][W][V]’ Parameter ACK response ‘>p[X]’

Parameter NACK response ‘>P’
Write request ‘<w[W][X][Y][Z]’ Write ACK response ‘>w’

Write NACK response ‘>W[X]’
Checksum request ‘<c[X]’ Checksum ACK response ‘>c[X]’

Checksum NACK response ‘>C[X]’
Branch request ‘<b[X]’ Branch ACK response ‘>b’

Branch NACK response ‘>B’
Abort request ‘<a’

When an ABORT request is received, the mobile changes the UART baud rate with the
default configuration and goes in SIGNALLING state. Acknowledgment is never sent to the
remote application.

Format Parameters Definition
<i None None
>i None None

X: UART baud rate to use during
download

Defined on 8 bits.

0x00 : 115200 bps
0x01 : 57600 bps
0x02 : 38400 bps
0x03 : 19200 bps
0x04 : 9600 bps
Defined on 8 bits.

7 6 2 1 0
0 PLL_MULT PLL_DIV

<p[X][Y][Z][W][V]

Y: DPLL configuration

PLL_MULT and PLL_DIV fields
correspond to the configuration to put
in DPLL register.

Nevertheless, the configuration must
not take into account the 13/26MHz
intput clock: the mobile RAM loader is
in charge to divide by 2 when 26MHz
is detected.

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 11/20

DO NOT COPY

Defined on 16 bits.

15 14 10 9 5 4 0
0 CS7 CS6 CS0

Z: wait state on external and internal
memories

CS0, CS6 and CS7 fields correspond to
the number of wait state to configure.

(MSB byte is sent in first position)
Defined on 8 bits.

7 4 3 0

W: Access factor on strobe 0 and 1

AF strobe 1 AF strobe 0
V: UART timeout configuration updated
according to the ARM clock configuration.

The timeout avoids to put the RAM loader in
a dead lock state if a command is not
received in its totality.

Defined on 32 bits.

Value 0x00000000 disables the
timeout. The command’s decoder
waits that the entire command is
received.

(MSB byte is sent in first position)
>p[X] X: Maximum block size (bytes) Defined on 16 bits, decimal value
>P None None

V: Block index Defined on 8 bits
W: Block number Defined on 8 bits, hexadecimal value
X: Number of bytes in the block Defined on 16 bits, hexadecimal value
Y: Address where the block must be written Defined on 32 bits, hexadecimal value

<w[V][W][X]
[Y][Z]

Z: Block Each data defined on 8 bits
>w None None
>W[X] X: status of the error Defined on 8 bits

0x01 : Address error
0x02 : Bad block size

<c[X] X: Checksum computed on PC side Defined on 8 bits
>c[X] X: Checksum computed on mobile side Defined on 8 bits
>C[X] X: Checksum computed on mobile side Defined on 8 bits
<b[X] X: Address of the FLASH programmer Defined on 32 bits
<a None None

In order to check that the download has been done successfully, a checksum is verified by the RAM
loader application before to branch in the downloaded application.

The checksum processing is based on the method used in MOTOROLA-S format generated by the
HEX470 utility in order to convert COFF to ASCII file.

The checksum is defined on 8 bits and corresponds to the 1’s complement of the sum of all block’s
checksum.
The block’s checksum is the 1’s complement of the sum of all data plus the block address plus the
block size plus 5.

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 12/20

DO NOT COPY

LSBAllBlock
sumBlockCheckNotsumAppliCheck

8












= ∑

() [] [] [] []
LSB

AddressAddressAddressAddressBlockSizeDataNotsumBlockCheck
8

24:3116:238:150:75



















++++++= ∑

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 13/20

DO NOT COPY

3.2.2.2 RAM loader state machine (Mobile side)
When an error occurs, the RAM loader:
! Sends a NACK response,
! Set default UART baud rate,
! Goes in SIGNALLING state.

STATE EVENT ACTION NEXT STATE
SIGNALLING_REQUEST Send(SIGNALLING_RESPONSE) SIGNALLING
PARAMETER_REQUEST &&
Bad Baud rate

Send(PARAMETER_NACK_RESPONSE) SIGNALLING

PARAMETER_REQUEST &&
Correct Baud rate

Prepare response
Send(PARAMETER_ACK_RESPONSE)
Set new baud rate

AWAIT_COMMAND_
PHASE

SIGNALLING

ABORT_REQUEST None SIGNALLING
PARAMETER_REQUEST &&
Bad Baud rate

Send(PARAMETER_NACK_RESPONSE)
Set default baud rate

SIGNALLING

PARAMETER_REQUEST &&
Correct Baud rate

Prepare response
Send(PARAMETER_ACK_RESPONSE)
Set new baud rate

AWAIT_COMMAND_
PHASE

WRITE_REQUEST &&
Bad arguments

Prepare response
Send(WRITE_NACK_RESPONSE)
Set default baud rate

SIGNALLING

WRITE_REQUEST &&
Correct arguments

Decrypt data block if necessary
Copy block in Internal RAM
Send(WRITE_ACK_RESPONSE)

COMMAND_PHASE

ABORT_REQUEST Set default baud rate SIGNALLING

AWAIT_COMMAND_
PHASE

SIGNALLING_REQUEST Send(SIGNALLING_RESPONSE) AWAIT_COMMAND_
PHASE

WRITE_REQUEST &&
Bad arguments

Prepare response
Send(WRITE_NACK_RESPONSE)
Set default baud rate

SIGNALLING

WRITE_REQUEST &&
Correct arguments

Decrypt data block if necessary
Copy block in Internal RAM
Send(WRITE_ACK_RESPONSE)

COMMAND_PHASE

CHECKSUM_REQUEST &&
Correct checksum

Prepare response
Send(CHECKSUM_ACK_RESPONSE)

BRANCH_PHASE

CHECKSUM_REQUEST &&
Bad checksum

Send(CHECKSUM_NACK_RESPONSE)
Set default baud rate

SIGNALLING

Others event Set default baud rate SIGNALLING

COMMAND_PHASE

SIGNALLING_REQUEST Send(SIGNALLING_RESPONSE) COMMAND_PHASE
BRANCH_REQUEST &&
Bad arguments

Send(BRANCH_NACK_RESPONSE)
Set default baud rate

SIGNALLING

BRANCH_REQUEST &&
Correct arguments

Send(BRANCH_ACK_RESPONSE)
Set default baud rate
Execute the FLASH programmer

SIGNALLING

ABORT_REQUEST Set default baud rate SIGNALLING
SIGNALLING_REQUEST Send(SIGNALLING_RESPONSE) BRANCH_PHASE
CHECKSUM_REQUEST Send(CHECKSUM_NACK_RESPONSE)

Set default baud rate
SIGNALLING

BRANCH_PHASE

WRITE_REQUEST Send(WRITE_NACK_RESPONSE)
Set default baud rate

SIGNALLING

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 14/20

DO NOT COPY

3.2.2.3 RAM loader state machine (PC side)
When NACK response is received, the RAM loader:
! Set default UART baud rate,
! Goes in RESET state,
! Inform the user.

3.2.2.3.1 State machine
STATE EVENT ACTION NEXT STATE

RESET USER_DOWNLOAD_REQUEST Initialise UART
Send(SIGNALLING_REQUEST)
StartTimer(SIGNALLING_TIMER)

SIGNALLING

SIGNALLING_TIMEOUT Send(SIGNALLING_REQUEST)
StartTimer(SIGNALLING_TIMER)

SIGNALLING

SIGNALLING_RESPONSE Prepare request
Send(PARAMETER_REQUEST)

AWAIT_PARAMETER

SIGNALLING

USER_ABORT_REQUEST Send(ABORT_REQUEST)
Set default baud rate

RESET

PARAMETER_ACK_RESPONSE Set new baud rate
Ready_to_write = TRUE
StartTimer(WATCHDOG_TIMER)

COMMAND_PHASE

PARAMETER_NACK_RESPONSE Inform user (ERROR) RESET

AWAIT_PARAMETER

USER_ABORT_REQUEST Send(ABORT_REQUEST)
Set default baud rate

RESET

END_OF_FILE_NOT_REACHED &&
Ready_to_write == TRUE

StopTimer(WATCHDOG_TIMER)
Prepare request
Send(WRITE_REQUEST)
Ready_to_write = FALSE
StartTimer(WATCHDOG_TIMER)

COMMAND_PHASE

END_OF_FILE_NOT_REACHED &&
Ready_to_write == FALSE

None COMMAND_PHASE

WRITE_ACK_RESPONSE StopTimer(WATCHDOG_TIMER)
Ready_to_write = TRUE
StartTimer(WATCHDOG_TIMER)

COMMAND_PHASE

WRITE_NACK_RESPONSE Inform user (ERROR)
Set default baud rate

RESET

USER_ABORT_REQUEST Send(ABORT_REQUEST)
Set default baud rate

RESET

END_OF_FILE_REACHED &&
Ready_to_write == TRUE

StopTimer(WATCHDOG_TIMER)
Prepare request
Send(CHECKSUM_REQUEST)
StartTimer(WATCHDOG_TIMER)

CHECKSUM_PHASE

END_OF_FILE_REACHED &&
Ready_to_write == FALSE

None COMMAND_PHASE

COMMAND_PHASE

WATCHDOG_TIMEOUT Set default baud rate
Inform user (ERROR)

RESET

CHECKSUM_ACK_RESPONSE StopTimer(WATCHDOG_TIMER)
Prepare request
Send(BRANCH_REQUEST)
StartTimer(WATCHDOG_TIMER)

BRANCH_PHASE

CHECKSUM_NACK_RESPONSE Inform user (ERROR)
Set default baud rate

RESET

USER_ABORT_REQUEST Send(ABORT_REQUEST)
Set default baud rate

RESET

CHECKSUM_PHASE

WATCHDOG_TIMEOUT Set default baud rate
Inform user (ERROR)

RESET

BRANCH_PHASE BRANCH_ACK_RESPONSE StopTimer(WATCHDOG_TIMER)
Set default baud rate
Inform user (SUCCESS)
StartTimer(WATCHDOG_TIMER)

RESET

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 15/20

DO NOT COPY

BRANCH_NACK_RESPONSE Set default baud rate
Inform user (ERROR)

RESET

WATCHDOG_TIMEOUT Set default baud rate
Inform user (ERROR)

RESET

USER_ABORT_REQUEST Send(ABORT_REQUEST)
Set default baud rate

RESET

SIGNALLING_TIMEOUT : 10ms
DOWNLOAD_TIMEOUT : 2mn

3.2.2.3.2 PC – API interface

RAM loader event Parameter definition Format
USER_DOWNLOAD_REQUEST Input file name String
USER_ABORT_REQUEST None Void
USER_DOWNLOAD_RESPONSE Status of the download procedure

0x00 : Success
0x01 : Bad parameters
0x02 : Error during write
0x03 : Bad checksum
0x04 : Bad address of branch
0x05 : Watchdog timer reached

8 bits

3.2.2.3.3 File format

Start address of the FLASH downloader application

MOTOROLA-S Format

The start address of the FLASH downloader application is defined thanks to the .map file.

HEX470LNK470
MOT2PRG

*.obj
*.lib

.out .m0

.map
.prg

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 16/20

DO NOT COPY

4 BOOT ROM implementation

4.1 Files structure

4.1.1 Inc: include files (.h)
! map.h: Registers and application addresses
! ram_loader.h: RAM loader include file
! serial.h: UART include file
! standard.h: global types
! arm_rst.h: ARM reset include file
! start.h: include file of the start applciation

4.1.2 Src: source files (.c and .s)
! arm_rst.c: ARM reset function. Must be downloaded in Internal RAM before execution
! bootloader.s: Entry point of the application and interrupt vector table
! download.c: function used to download ARM reset procedure in Internal RAM
! isr_ind.c: indirect call for all interrupts sources
! ram_loader.c: RAM loader state machine
! serial.c: UART functions
! start.c: main function of the boot application
! reboot_cs0.c: reboot function executable at the address 0000:0000
! indcall_ram.asm: duplicated IND_CALL ASM RTS routine used during a call thanks to a function

pointer

4.1.3 obj: output directory contained the object files
All object files are compiled according to the debug flag. Extension ‘_0’ corresponds to the
version without debug functionality. Extension ‘_1’ corresponds to the version with debug
feature.

4.1.4 Tools: makefile and link command file
! Makefile: ‘debug’ flag must be set during compilation in order to select the debug mode
! Bootrom_0.cmd: link command file used for the final application
! Bootrom_1.cmd: link command file used for debug

4.1.5 Bin: output files
This directory contains the executable files both with and without debug feature and the corresponding
final mapping file.

4.1.6 Doc: documentation

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 17/20

DO NOT COPY

4.2 H/W configuration
The H/W is reconfigured during the first step of the boot application.

The function f_initialize_hardware() is in charge to set the H/W in a stable configuration:
- All interrupts are masked,
- Watchdog timer is disabled,
- Rhea interface is configured in order to allow the access to all registers whatever the ARM clock

configuration:
- Strobe 0: access factor = 2,
- Strobe 1: access factor = 2.

- DPLL is set in bypass mode (division by 1),
- ARM uses VTCXO without division factor,
- VTCXO_26MHZ bit is reset,
- Wait-state on CS0, CS6 and CS7 configured:

- CS0: 4 WS,
- CS6: 0 WS,
- CS7: 0 WS.

The second step consists to configure the 2 UART modules:
- Baud rate : 19200 bps,
- 8 bits, no parity, 1 stop bit,
- Modem mode.

This H/W configuration will be able to be ameliorated thanks to Parameter command, which allows the
modification of ARM speed, memories wait state and rhea accesses.

The VTCXO_26MHZ bit is set in order to have a compliant clock on UART modules. This
configuration will be used to determinate the VTCXO clock thanks to data received on serial ports.

Timeout, used to determinate if a remote RAM loader is present, is measured thanks to an ARMIO
output pin in debug mode. The code is compiled in 32 bits mode with option –o2. For more
information about the value of the timeout, see start.h file.

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 18/20

DO NOT COPY

4.3 Mapping of the BOOT ROM code
Address Definition Memory

0000:0000 Interrupt vector table
0000:0020 ARM reset procedure (load address)
0000:0244 Boot program
0000:1FFE Code identifier on 16 bits

BOOT ROM

0000:2000 Boot ROM location status:
- 0x00000000: IT vector in BOOT ROM
- 0x00000001: IT vector in FLASH

0000:2004 Entry point address of the application (used
when the boot ROM contains the interrupt
vector)

External
FLASH

0080:0000 Shared memory between application and boot
ROM when interrupt vectors are contained in it.

0080:001C Run address of interrupt indirect call
0080:0038 Boot switch function (run address)
0080:0104 Data memory
0080:05C0 Stack memory (400 bytes)

0080:0750 FLASH programmer application (downloaded
thanks to RAM loader)
(Around 510.2Kbytes)

Internal
SRAM

The application programmed in FLASH must:
! Indicates the boot ROM location at a specific address in the FLASH,
! Indicates the entry point of the application at a specific address in the FLASH.
This setting is possible by defining a variable as const.

The FLASH programmer must be downloaded in the second block of 1Mbits of the Internal RAM.
This choice has been done in order to let the possibility to use 3Mbits of Internal RAM on CALYPSO
chip.

Nevertheless, the memory ranges used by the BOOT ROM application and used to download the
FLASH programmer must not be protected by the MPU in case of a reboot in the BOOT ROM is
performed thanks to a watchdog reset, because the MPU configuration is not reset on this event.

4.4 Interrupt vectors in BOOT ROM
This feature has been implemented in order to let the possibility to have the interrupt vector located in
the BOOT ROM and in consequence to decrease the time processing during occurrence of them.

Nevertheless, this feature is not functional in the current version of the BOOT ROM application.
Therefore, it is not possible to have the interrupt vector in the internal BOOT ROM.
This constraint implies that the application programmed in FLASH must force the BOOT ROM
location to 0x00000001 at the address 0000:2000.

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 19/20

DO NOT COPY

The branch instructions located in the interrupt vector table at the addresses 0000:0004 to 0000:001C
jumps directly in the Internal SRAM at the addresses 0000:001C to 0000:0034 when an interrupt
occurs (see BOOT ROM mapping in section 4.3). At this addresses, the ARM fetches the instruction
LDR PC, [PC, #-0x24] in order to put in PC the address located at the addresses 0080:0000 –
0080:0018. The offset -0x24 is used in order to take into account the ARM pipeline.

4.5 ROM code checksum and identifier

4.5.1 ROM code identifier
A ROM code identifier has been added in the ROM code in order to differentiate the different ROM
code’s version. The identifier is defined on 16 bits and located at the address 0000:1FFE.

BOOT ROM
code version

Identifier

1.0.0 Not applicable
2.0.0 0x0200
3.0.0 0x0300

Table 1: ROM code identifier.

Note: The ROM code identifier is only available from the version 2.0.0.

4.5.2 ROM code checksum
A specific function has been integrated in the BOOT ROM application in order to compute the ROM
code checksum.

The function must be called in 32 bits mode at the address specified in Table 2 and has the following
prototype:

unsigned short int f_bootrom_checksum(unsigned char b_hw_init);
The valid arguments are:

0x00: the hardware is not reconfigured before to compute the checksum.
0x01: the hardware is reconfigured (ARM sets at 13MHz).

The returned checksum is defined on 16 bits and is computed thanks to the following formula:

∑
<

=

=
2000:0000

0000:0000

][16
i

i
iBitsDataRomcksumBootRomChe

BOOT ROM
code version

Checksum Function
address

1.0.0 Not applicable Not applicable
2.0.0 0xB2BA 0000:16B8
3.0.0 0xF1E3 0000:1608

Table 2: ROM code checksum.

REF: CAL208 CALYPSO MCU BOOT ROM
application

Ver 1.3

PRELIMINARY documents contain
information on a product under development
and is issued for evaluation purposes only.
Features characteristic data and other
information are subject to change.

TI – Proprietary Information –

Strictly Private

UNDER NON DISCLOSURE
AGREEMENT

PAGE: 20/20

DO NOT COPY

Note: The ROM code checksum processing function is only available from the version 2.0.0.

4.6 RAM loader command
Command and response are decoded on the fly. Nevertheless, in order to avoid a deadlock state, a
timeout is implemented during the character reception. When a timeout occurs, the RAM loader state
machine stays in the same state and waits the next command.

Each time that a Parameter command is received in SIGNALLING or AWAIT_COMMAND states, a
new H/W configuration is performed (DPLL and WS).
Values exchanged thanks to Parameter command in order to configure the DPLL must not take into
account the VTCXO clock. Configuration PLL_MULT and PLL_DIV fields must suppose that the
VTCXO clock is 13MHz even if it is not the case. The BOOT ROM application is in charge to
configure the ARM clock according to the selection of the VTCXO frequency (13 or 26MHz).

Each time that a write command is received in AWAIT_COMMAND or COMMAND_PHASE states,
the block address is checked in order to avoid erasing the data and stack sections of BOOT ROM
application.

4.7 Code size
The BOOT ROM application is compiled in 32 bits mode with option –o2.

ROM size: 5820 bytes
RAM size: 1212 bytes
Stack size: 400 bytes

Free space: ~2000 bytes

