

Department: MSLP Design / Wireless Communication Systems

	Originator	Originator	Approval	Approval	Quality
Name	Jean-Christophe	Lorenzo	Philippe	Marc	Deborah
	JIGUET	INDIANI	PERNEY	COUVRAT	ROUCHOUSE
Date	7-mar-2001				
Signature					

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 1/81

HISTORY

Version	Date	Author	Notes
Ver: 1.0	23-June-2000	Jean-Christophe JIGUET	1
Ver: 1.2	07 -mar-2001	Jean-Christophe JIGUET	2,3,4
Ver: 2.0	14 -sep-2001	Jean-Christophe JIGUET	5, - ,17

Notes :

(1) Original draft

(2) Update VRPC state machine , state and timing

(3) Add quiescent consumption in BACKUP, OFF, SLEEP, ACTIV mode

(4) Update according to PG1.0 functionnality

(5) Change VRDBB, VRRTC output value (1.8-1.5-1.3 V)

(6) Change max ESR for external regulator output

(7) Update MAX current consumption in ACTIV & SLEEP mode

(8) Change BaseBand downlink TSNR (downto -82 db)

(9) Change LDO max voltage output value in sleep mode

(10) Update Min & Max values for BUL I&Q common mode voltage VVMID

(11) Update ADIN1 & ADIN2 Min & Max output current values

(12) Remove RSU check in VRPC

(13) Add POP cancelation function in VOICE output

(14) Add Sleep mode on VRABB

(15) Update digital input and output electrical characteristics

(16) Add TAP private instructions

(17) Modify bit orders BCCTL1 , BCIONF, BBCTL in register cross-reference

UNDER NON DISCLOSURE AGREEMENT

PAGE: 2/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

TABLE OF CONTENTS REFERENCE DOCUMENTS 1. 2. GLOSSARY .5 3. FUNCTIONAL DESCRIPTION 6 3.1 General description _____ 6 3.2 ABB block diagram _____ 7 3.3 Caracteristics 8 3.3.1 Absolute maximum over operating free-air temperature range 8 3.3.2 Electrical characteristics digital inputs and outputs 9 3.4 Blocks description 11 3.4.1 Voiceband Codec (VBC) 11 3.4.2 Baseband Codec (BBC)_____ 19 Voltage Regulation (VREG) 3.4.3 25 3.4.4 Reference Voltage / Power on Control (VRPC) 32 3.4.5 Battery charger Interface (BCI) 37 Monitoring ADC (MADC) ____ 3.4.6 39 3.4.7 Clock generator (CKG) ____ 40 3.4.8 Automatic Frequency control (AFC) ____ 41 3.4.9 Automatic Power Control (APC) 42 3.4.10 Auxiliary DAC (ADAC) 43 SIM card interface (SIM) 3.4.11 _43 Auxiliary Current Driver (ACD) 3.4.12 44 3.4.13 Internal bus and interrupt controller (IBIC) _45 Baseband Serial Port (BSP)_____ Time serial port (TSP)_____ 3.4.14 45 3.4.15 47 3.4.16 Micro-controller serial port (USP) _48 Test access port (TAP) 3.4.17 49 Public instructions 3.4.18 _____ 49 3.4.19 Private instructions: _____50 4. DATA AND ADDRESS FORMAT 51 PIN DESCRIPTIONS 5. 52 6. REGISTERS CROSS-REFERENCE 56 6.1 Page 0 _____56 6.2 Page 1 57 7. VOICE REGISTERS _____ 58 7.1 Voice band Control Register : VBCR _____58 Voice band pop cancellation register : VPOP _____59 7.2 Voice band Control Register : VBUR _____ 60 7.3 7.4 Voice Band Downlink Register: VBDR 61 BASEBAND REGISTERS 8. *62*

UNDER NON DISCLOSURE AGREEMENT

PAGE: 3/81

information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain

REF: TWL3014

8.1 Baseband uplink registers	62
8.2 Baseband control registers	65
9. VRPC REGISTERS	66
	68
	00
10.1 Battery charger current/voltage dac register:	68
10.2 Battery charging Control registers	68
10.3 Battery charging configuration registers	69
11. MADC REGISTERS	70
11.1 Monitoring ADC Control	70
11.2 Monitoring ADC output register	71
11.2.1 ADC_STATUS	71
11.2.2 Battery voltage register: VBATREG (MADC RAM)	71
11.2.3 Charger battery voltage register: VCHGREG (MADC RAM)	71
11.2.4 Charger battery voltage register: VBKPREG (MADC RAM)	/1 71
11.2.6 Battery type register: ADIN1REG (MADC RAM)	73
11.2.7 Battery temperature register: ADIN2REG (MADC RAM)	73
11.2.8 ADIN3REG (MADC RAM)	73
11.2.9 ADIN4REG (MADC RAM)	73
12. CKG REGISTERS	74
12.1 Block power up / down selection	74
12.2 Power up / down status	75
13. AFC REGISTERS_	_76
14. APC REGISTERS	77
15 AUXDAC REGISTERS	79
	70
	/9
17. AUXILIARY DRIVER REGISTERS	79
18. INTERNAL BUS AND INTERRUPT CONTROL REGISTERS	80
18.1 Interrupt 2 mask and status	80
18.2 Page selection	80
19. TEST ACCESS PORT REGISTERS	81
19.1 TAP control	81
19.2 TAP instruction register	81

UNDER NON DISCLOSURE AGREEMENT

PAGE: 4/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

1. REFERENCE DOCUMENTS

2. GLOSSARY

ABB	Analog BaseB and chip, part of the TI solution
ACD	Auxiliary Drivers.
ADAC	Auxiliary DAC.
AFC	Automatic Frequency Control.
APC	Automatic Power Control.
BBC	Base Band Codec.
BBS	Backup Battery Switch
BCC	Battery Charger Control.
BDL	Base band DownLink.
BSP	Base Band Serial Port.
BUL	Base band UpLink.
CKG	Clock Generator.
DBB	DigitalBaseBand chip, part of the TI solution
IBC	Internal Bus Controller.
JTAG	Joined Test Action Group.
LDO	Low Drop Out regulator.
MADC	Monitoring Analog to Digital Converter.
SIM	Subscriber Identity Module
TAP	Test Access Port.
TPU	Time Processing Unit.
TSP	Time Serial Port.
USP	controller Serial Port.
VBC	Voice Band Codec.
VREG	Voltage Regulation .
VRPC	Voltage Reference / Power Control.
VSP	Voice Serial Port

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 5/81

3. FUNCTIONAL DESCRIPTION

3.1 General description

TWL3014 is an analog baseband device (ABB) which, together with a digital baseband device (DBB), is part of a TI DSP solution intended for digital cellular telephone applications including GSM 900, DCS 1800 and PCS 1900 standards (dual band capability).

The TWL3014 device along with TWL3015 also forms the analog baseband solution for dual-mode (GSM / WCDMA) applications.

It includes a complete set of baseband functions to perform the interface and processing of voice signals, interface and processing of baseband in-phase (I) and quadrature (Q) signals which support single-slot and multi-slot mode, associated auxiliary RF control features, supply voltage regulation, battery charging control and switch ON/OFF system analysis.

ABB interfaces with the digital baseband device through a set of digital interfaces dedicated to the main functions of DBB, a baseband serial port (BSP) and a voiceband serial port (VSP) to communicate with the DSP core (LEAD), a micro-controller serial port to communicate with the micro-controller core and a time serial port (TSP) to communicate with the time processing unit (TPU) for real time control.

ABB meets JTAG testability standard (IEEE Std 1131.1-1990) through a standard test access port (TAP) and boundary scan.

ABB includes also on chip voltage reference, under voltage detection and power-on reset circuits.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 6/81

UNDER NON DISCLOSURE AGREEMENT

PAGE: 7/81

information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain

3.3 Caracteristics

3.3.1 Absolute maximum over operating free-air temperature range

(Unless otherwise noted) ^①

Parameter	Conditions	Min	Тур	Max	Units
Supply voltage range VCHG	0	-0.3		6.8	V
Supply voltage range VBAT, VCx	0	-0.3		6.8	V
Voltage on input pins(par type)	0	-0.3		Vdd+0.3	V
Peak output current at pin VRDBB	4		4	240	mA
Peak output current at pin VRMEM				240	mA
Peak output current at pin VRIO				100	mA
Peak output current at pin VRA BB				150	mA
Peak output current at pin VRRTC				20	uA
Peak output current on all other pins		-5.0		5.0	mA
Maximum junction temperature Tj				150	°C
Storage temperature range Tstg		-65		150	°C

[®] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damages to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[®] Voltage specified with respect to VSS (pins GNDD, GNDA, REFGND, GNDAV, GNDL)

Dissipation rating table

Package	TA < 25°C	DERATING FACTOR	TA = 70°C	TA = 85°C
	POWER RATING	ABOVE TA=25°C	POWER RATING	POWER RATING
GGM	2083 mW	16.7 mW/°C	1333 mW	1083 mW

Recommended operating conditions

Parameter	Conditions	Min	Тур	Max	Units
Main battery supply voltage, VCx		3.0	3.6	5.5	V
Backup Battery supply voltage VBACKUP		2.2®	3.0	3.2	V
Charger supply voltage VCHG		4.8		6.8	V
Supply voltage on GNDD, GNDA, GNDAV, REFGND, GNDL (VSS)			0		V
Operating temperature range TA		-25		85	°C

^① Min level to keep device above POR level

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 8/81

Ver 2.0

3.3.2 Electrical characteristics digital inputs and outputs

Over recommended operating free-air temperature range (unless otherwise noted)

Parameter	Pins	Conditions	Min	Тур	Max	Units
Low level output voltage,	ONNOFF,RESPWON Z	Iol = 10ua			0.2 * VRRTC	V
VOL	Other outputs	Iol = 1ma			0.2 * VRIO	
High level output voltage,	ONNOFF,RESPWON Z	Ioh = -10ua	0.8 * VRRTC			V
VOH	Other outputs	Ioh = -1ma	0.8 * VRIO			
Low level in put voltage, VIL	PWON, RPWON				0.3 * VBAT	
	TESTRSTZ				0.3 * UPR	V
	ITWAKEUP, CK32K				0.3 * VRRTC	v
	Other inputs				0.3 * VRIO	
High level input voltage, VIH	PWON, RPWON		0.7 * VBAT			
	TESTRESETZ		0.7 * UPR			V
	ITWAKEUP, CK32K		0.7 * VRRTC			v
	Other inputs		0.7*VRIO			
Low level input current, IIL	Standard and pull- down inputs	Vi = 0V	-1			uA
III. I I.	Pull-up inputs		-20			
High level input current, liH	inputs				1	uA
	Pull-down inputs				20	
Capacitor output load	All outputs	P P			25	pF

Digital inputs and outputs (except SIMIO, SIMRST, SIMCK)

Digital inputs and outputs (only SIMIO, SIMRST, SIMCK)

Pin	Parameters	Conditions	Min	Тур	Max	Units
SIMCK	VOH	SIMLEN=1, VRIO & VRSIM are set , Ioh = 20ua	0.7 * VRSIM			
	VOL	SIMLEN=1 VRIO & VRSIM are set , Iol = -20ua			0.2 * VRSIM	v
	VOL	SIMLEN=0 VRIO & VRSIM are not set , Iol = - lma			0.2 * VRSIM	
	VOH	SIMLEN=1, VRIO & VRSIM are set , Ioh = 200ua	0.8 * VRSIM			
SIMRST	VOL	SIMLEN=1 VRIO & VRSIM are set , Iol = -200ua			0.2 * VRSIM	v
	VOL	SIMLEN=0 VRIO & VRSIM are not set , Iol = - lma			0.2 * VRSIM	
SIMIO	VOH	SIMLEN=1, DBBIO=VRIO VRIO & VRSIM are set , Ioh = 20ua	0.7 * VRSIM			v

UNDER NON DISCLOSURE AGREEMENT

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

REF: TWL3014

TOP

		CIMIEN 1 DADIO CNDD			
	VOL	SIMLEN=1, DBBIO= GNDD VRIO & VRSIM are set Iol = -1ma		0.3	
Capacitor load	All outputs			30	p F

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 10/81

3.4 Blocks description

3.4.1 Voiceband Codec (VBC)

The voice coder/decoder (codec) circuit processes analog audio components in the uplink path and transmits this signal to DSP speech coder through the voice serial port (VSP). In the downlink path the codec converts the digital samples of speech data received form the DSP via the voice serial port into analog audio signal.

Additional functions such as programmable gain, volume control and side-tone are performed into the voice band codec.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 11/81

UPLINK PATH

Global characteristics					
Parameter	Conditions	Min	Тур	Max	Units
Maximum Input Range	Inputs 3 dBm0 (Maximum digital		32.5		mVrms
(MICIP-MICIN)	sample amplitude with PGA gain				
	set to 0dB)				
Nominal Ref.level (MICIP-MICIN)			-10		dBm0
Differential Input Resistance			36		KΩ
(MICIP-MICIN)					
Micro amplifier gain (MIC)			25.6		d B
Parameter	Conditions	Min	Тур	Max	Units
Maximum Input Range (HSMIC)	Inputs 3 dBm0 (Maximum digital		78		mVrms
	sample amplitude with PGA gain				
	set to 0dB)				
Nominal Ref. level (HSMIC)			-10		dBm0
Micro amplifier gain (HSMIC)			18		d B
Parameter	Conditions	Min	Тур	Max	Units
Maximum Input Range (AUXI)	Inputs 3 dBm0 (Maximum digital		365		mVrms
	sample amplitude with PGA gain				
	set to 0dB)				
Nominal Reference level at AUXI			-10		dBm0
Auxiliary gain amplifier	VBDFAUXG = 0		4.6		dB
	VBDFAUXG = 1		28.2		d B
Input Resistance at AUXI	VBDFAUXG = 0	100	170	245	KΩ
Parameter	Conditions	Min	Тур	Max	Units
DC level at MICBIAS	MICBIAS=0		2.0		Volt
	MICBIAS=1		2.5		Volt
DC level at HSMICBIAS	MICBIAS=0		2.0		Volt
	MICBIAS=1		2.5		Volt
Current capability at MICBIAS		0		2	mA
Current canability at HSMICBIAS		0		2	mA

The MICBIAS and HSMICBIAS outputs are multipexed, only one is avalaible at the same time.

The AUXI and HSMIC inputs are multiplexed.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 12/81

Parameter	Conditions	Min	Тур	Max	Units
	VULPGA code 10000 -12dB	-12.5	-12	-11.5	d B
	VULPGA code 10111 -11dB	-11.5	-11	-10.5	d B
	VULPGA code 11000 -10dB	-10.5	-10	-9.5	dB
	VULPGA code 11001 -9dB	-9.5	-9	-8.5	dB
	VULPGA code 11010 -8dB	-8.5	-8	-7.5	d B
	VULPGA code 11011 -7dB	-7.5	-7	-6.5	d B
	VULPGA code 00000 -6dB	-6.5	-6	-5.5	d B
	VULPGA code 00001 -5dB	-5.5	-5	-4.5	d B
	VULPGA code 00010 -4dB	-4.5	-4	-3.5	d B
	VULPGA code 00011 -3dB	-3.5	-3	-2.5	d B
	VULPGA code 00100 -2dB	-2.5	-2	-1.5	d B
	VULPGA code 00101 -1dB	-1.5	-1	5	d B
PGA absolute gain	VULPGA code 00110 0dB	-0.5	0	0.5	dB
e e e e e e e e e e e e e e e e e e e	VULPGA code 00111 1dB	0.5	1	1.5	dB
	VULPGA code 01000 2dB	1.5	2	2.5	dB
	VULPGA code 01001 3dB	2.5	3	3.5	dB
	VULPGA code 01010 4dB	3.5	4	4.5	dB
	VULPGA code 01011 5dB	4.5	5	5.5	dB
	VULPGA code 01100 6dB	5.5	6	6.5	dB
	VULPGA code 10001 7dB	6.5	7	7.5	dB
	VULPGA code 10010 8dB	7.5	8	8.5	dB
	VULPGA code 10011 9dB	8.5	9	9.5	dB
	VULPGA code 10100 10dB	9.5	10	10.5	dB
	VULPGA code 10101 11dB	10.5	11	11.5	dB
	VULPGA code 10110 12dB	11.5	12	12.5	dB
	RESET value and others cases	-6.5	-6	-5.5	dB
Power supply rejection	0Hz—100kHz		40		dB

UNDER NON DISCLOSURE AGREEMENT

PAGE: 13/81

information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain

REF: TWL3014

Frequency response

Frequency response					
Parameter	Conditions	Min	Тур	Max	Units
	<= 100 Hz			-20	d B
	100 Hz to 200 Hz			-10	d B
	300 Hz to 400 Hz	-2	0	+1	d B
Frequency Response	400 Hz to 3300 Hz	-1	0	+1	d B
Relative to reference gain at 1kHz	3300 Hz to 3400 Hz	-2	0	+1	d B
	4000 Hz to 4600 Hz			-17	d B
	4600 Hz to 6000 Hz			-40	d B
	>= 6000 Hz			-45	d B
Psophometric SNR					

Psophometric SNR

Parameter	Conditions	Min	Тур	Max	Units
	3 dBm0	35			d B
	0 dBm0	40			d B
Psophometric SNR	-5dBm0	42			dB
	-10dBm0	45			dB
	-20dBm0	42			dB
	-30dBm0	40			dB
	-40dBm0	30			dB
	-45dBm0	25			dBm0
Maximum idle channel noise				-72	dB
Crosstalk with the downlink path	Downlink path loaded at			-66	
4	33 Ohms				
		- í			
Gain characteristics					

Gain characteristics

Parameter	Conditions	Min	Тур	Max	Units
Absolute gain error	at 0 dBm0 and 1kHhz	-1		1	dB
	at -10dBm0 and 1kHz	-11		-9	
	3dBm0	-0.25		0.25	dB
	0dBm0	-0.25		0.25	dB
Gain Tracking Error	-5dBm0	-0.25		0.25	dB
Relative to -10dBm0 reference	-20dBm0	-0.25		0.25	dB
level	-30dBm0	-0.25		0.25	dB
	-40dBm0	-0.35		0.35	dB
	-45dBm0	-0.50		0.50	dB
Number of meaningful output bits	PGA set to 0 dB		13		Bit

UNDER NON DISCLOSURE AGREEMENT

PAGE: 14/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

DOWNLINK PATH

Output load conditions

Output load conditions					
Parameter	Conditions	Min	Тур	Max	Units
Differential Minimum resistive load at (EARP-EARN) : R//	Output swing 3.9 Vpp Output swing 1.5		120 33		Ohms Ohms
Differential Maximum capacitor load at (EARP- EARN): C//	тр			100	pF
Common Mode Minimum resistive load at EARP or EARN			200 K		Ω
Common Mode Maximum capacitor load at EARP or EARN				10	pF
Parameter	Conditions	Min	Тур	Max	Units
Minimum output resistive load at (HSO) : R//			32		Ohms
Maximum capacitor load at (HSO): C//				100	p F
Coupling capacitor load at (HSO): C			22		u F
Parameter	Conditions	Min	Тур	Max	Units
Differential Minimum output resistive load at (AUXOP-AUXON) : R//	MI	1	1.2		kOhms
Differential Maximum capacitor load at (AUXOP-AUXON): C//				100	p F
Common Mode Minimum resistive load at AUXOP or AUXON			200		kOhms
Common Mode Maximum capacitor load at AUXOP or AUXON				10	pF
	r				

UNDER NON DISCLOSURE AGREEMENT

PAGE: 15/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Global characteristics					
Parameter	Conditions	Min	Тур	Max	Units
Maximum Output swing	5% distortion and 120 Ohms	3.1	3.92		Vpp
(EARP-EARN)	5% distortion and 33 Ohms	1.2	1.5		Vpp
Earphone amplifier gain			1		d B
Earphone amplifier state in			Hi-Z		
power down					
Parameter	Conditions	Min	Тур	Max	Units
Maximum output swing	5% distortion maximum,	1.6	1.96		Vpp
at (AUXOP-AUXON)	Load = 1Kohms				
Auxiliary amplifier gain (AUXO)			-5		d B
AUXO amplifier state in power			Hi-Z		
down					
Parameter	Conditions	Min	Тур	Max	Units
Maximum output swing	5% distortion maximum,	1.6	1.96		Vpp
at (HSO)	Load = 32 ohms				
Auxiliary amplifier gain (HSO)			-5		d B
HSO amplifier state in power			Hi-Z		
down					
Parameter	Conditions	Min	Тур	Max	Units
Power supply rejection			40		d B

UNDER NON DISCLOSURE AGREEMENT

PAGE: 16/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Volume Control Gain

(Rload = 120 ohms)

/					
Parameter	Conditions	Min	Тур	Max	Units
	VOCTL code 010	-1	0	1	d B
	VOCTL code 110	-7	-6	-5	d B
Default and reference	VOCTL code 000	-13	-12	-11	d B
	VOCTL code 100	-19	-18	-17	d B
	VOCTL code 011	-25	-24	-23	d B
Mute	VOCTL code 101,001,111			-40	d B

PGA Gain Step

(Rload = 120 ohms)

PGA Gain Step (Rload = 120 ohms)					
Parameter	Conditions	Min	Тур	Max	Units
Default	VDLPGA code 0000 -6dB	-6.5	-6	-5.5	d B
	VDLPGA code 0001 -5dB	-5.5	-5	-4.5	d B
	VDLPGA code 0010 -4dB	-4.5	-4	-3.5	dB
	VDLPGA code 0011 -3dB	-3.5	-3	-2.5	d B
	VDLPGA code 0100 -2dB	-2.5	-2	-1.5	d B
	VDLPGA code 0101 -1dB	-1.5	-1	-0.5	d B
Reference	VDLPGA code 0110 0dB	-0.5	0	0.5	d B
	VDLPGA code 0111 1dB	0.5	1	1.5	d B
	VDLPGA code 1000 2dB	1.5	2	2.5	d B
	VDLPGA code 1001 3dB	2.5	3	3.5	d B
	VDLPGA code 1010 4dB	3.5	4	4.5	d B
	VDLPGA code 1011 5dB	4.5	5	5.5	d B
	VDLPGA code 1100 6dB	5.5	6	6.5	d B
	other cases	-6.5	-6	-5.5	d B

Sidetone Gain Step

(Rload = 120 ohms)

Parameter	Conditio	ns	Min	Тур	Max	Units
	VDLST code 1101	-23dB	-24	-23	-22	d B
	VDLST code 1100	-20dB	-21	-20	-19	d B
	VDLST code 0110	-17dB	-18	-17	-16	d B
	VDLST code 0010	-14dB	-15	-14	-13	d B
	VDLST code 0111	-11dB	-12	-11	-10	d B
	VDLST code 0011	-8dB	-9	-8	-7	d B
Reference	VDLST code 0000	-5dB	-6	-5	-4	d B
	VDLST code 0100	-2dB	-3	-2	-1	d B
	VDLST code 0001	1dB	0	1	2	d B
	VDLST code 0101	1dB	0	1	2	d B
	VDLST code 1000	MUTE			-66	d B
	other cases	MUTE			-66	d B

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 17/81

Frequency response (Rload = 120 ohms)					
Parameter	Conditions	Min	Тур	Max	Units
Frequency Response	<= 50 Hz			-10	d B
relative to reference gain at 1kHz	50 Hz to 160 Hz			-3	d B
	300 Hz to 400 Hz	-2	0	+1	d B
	400 Hz to 3300 Hz	-1	0	+1	d B
	3300 Hz to 3400 Hz	-2	0	+1	d B
	4000 Hz to 4600 Hz			-17	d B
	4600 Hz to 6000 Hz	4		-40	d B
	>= 6000 Hz			-45	d B

These values are given without the external coupling capacitor.

Psophometric SNR (Rload = 120 ohms)

These values are given without the extern	and coupling cupacitori				
Psophometric SNR					
(Rload = 120 ohms)					
Parameter	Conditions	Min	Тур	Max	Units
Psophometric SNR	3 dBm0	35			d B
	0 dBm0	45			d B
	-5dBm0	52			d B
	-10dBm0	57			d B
	-20dBm0	54			d B
	-30dBm0	52			dB
	-40dBm0	42			d B
	-45dBm0	37			d B
Maximum idle channel noise				-86	dBm0
Crosstalk with the uplink path				-66	dB

Gain characteristics

(Rload = 120 ohms)

Parameter	Conditions	Min	Тур	Max	Units
Absolute gain err or	at 0 dBm0 and 1kHhz	-1	0	1	dB
	at -10dBm0 and 1kHz	-11	-10	-9	d B
Gain Tracking Error	3dBm0	-0.25		0.25	d B
	0dBm0	-0.25		0.25	d B
	-5dBm0	-0.25		0.25	d B
	-10dBm0(reference)		0		d B
	-20dBm0	-0.25		0.25	d B
	-30dBm0	-0.25		0.25	dB
	-40dBm0	-0.35		0.35	d B
	-45dBm0	-0.50		0.50	dB
Number of meaningful output	PGA and VOCTL set to 0 dB		14		Bit
bits					

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 18/81

3.4.2 Baseband Codec (BBC)

The baseband codec is composed of a baseband uplink path (BUL), which modulates the bursts of data coming from the DSP via the baseband serial port (BSP) and to be transmitted at the antenna. A GMSK modulator according to GSM specification 5,04 performs modulation. The GMSK modulator implemented in digital technique generates Inphase (I) and Quadrature (Q) components which are converted into analog baseband by two 10 bits DACs and then filtered by third order low-pass filters. The baseband uplink path includes secondary functions such as DC offset calibration and I/Q gain unbalance.

Second part of baseband codec is the baseband downlink path (BDL) which converts the baseband analog I & Q components coming from the RF receiver into digital samples and filters these resulting signals through a digital FIR to isolate the desired data from the adjacent channels. During reception of burst I & Q digital data are sent to the DSP via the baseband serial port (BSP) at a rate of 270.833 kHz. The baseband downlink includes a DC offset calibration.

Timing windows of the BUL and BDL are controlled through the Time Serial Port (TSP) by the TPU of DBB and [BULON, BULENA, BDLON, BDLENA] are accessible through the pins TEST[1..4] programmed by a specific test mode.

Implementation of baseband codec allows full-duplex operation. Multislot is supported in uplink and downlink.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 19/81

TOP

UPLINK PATH

DC characteristics

(Output differential load 10 KÙ // 47 pF for BULIP-BULIN and BULQP-BULQN

)					
Parameter	Conditions	Min	Тур	Max	Units
I and Q DAC resolution			10		bit
Voltage reference BBVREF [®]			1.75		V
Dynamic range on each output	Centered on VVMID		BBVREF		Vpp
	SELMID[2,1,0]=000	VRABB / 2	VRABB / 2	VRABB / 2	V
		_5%		+5%	
	SELMID[2,1,0]=001	1.30	1.35	1.40	V
VVMID	SELMID[2,1,0]=010	1.40	1.45	1.50	V
	SELMID[2,1,0]=011	VREF	VREF	VREF	V
		-5%		+5%	
	SELMID[2,1,0]=1xx	1.20	1.25	1.30	V
Offset error after calibration		-9		9	mV
I and Q output state in power down			HiZ		
I and Q output state in power down			HiZ		

^① internal reference

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 20/81

AC characteristics

Parameter	Conditions	Min	Тур	Max	Units
	OUTLEV[2,1,0]=000		2x		
			BBVREF		
	OUTLEV[2,1,0]=010		2.56		
	OUTLEV[2,1,0]=001		1.86		
Differential output dynamic range	OUTLEV[2,1,0]=011		0.93		Vpp
BUEIF - BUEIM OF BUEQF - BUEQM	OUTLEV[2,1,0]=100		2.1		
	OUTLEV[2,1,0]=101		2.1		
	OUTLEV[2,1,0]=110		2.33		
	OUTLEV[2,1,0]=111		2.33		

Parameter	Conditions	Min	Тур	Max	Units
Absolute gain error relative to V _{VREF}	Measured on 67.7kHz sine	-1.5		1.5	DB
	wave				
Gain matching between channels I and	Measured on 67.7kHz	-0.5	0.0	0.5	DB
Q					
Phase matching between channels I and	Sine wave	-0.5	0.0	0.5	Deg
Q					
Modulation spectrum mask.	100 kHz			0.5	DBc
Measured by average of FFT's	200 kHz			-34	DBc
On random modulated bursts	250 kHz			-37	DBc
using a Blackman-Harris window	400 kHz			-65	DBc
with 30 kHz bandwidth	600 kHz			-72	DBc
	800 kHz			-72	DBc

Timing characteristics

Parameter	Conditions	Min	Тур	Max	Units
Setup time , BULON \uparrow to BULCAL \uparrow		15			μS
Pulse duration BULCAL high		132			μS
Setup time , BULCAL \downarrow to BULENA \uparrow		2			¹⁄₄-bit
Pulse duration BULENA high	N effective duration of		N - 32		¹∕₄bit [©]
	burst				
Modulation hold time after BULENA \downarrow			32		¹⁄₄bit ©
Hold time BULON after BULENA \downarrow		32			¹⁄₄bit ©
Modulator input to output delay	From BULENA \uparrow to mid of		2.5		¹⁄₄bit [©]
	1st bit				

Values in above table are given for system information only.

^① Bit is relative to GSM bit = 1/270.833 kHz.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 21/81

DOWNLINK PATH

General characteristics

General characteristics					
Parameter	Conditions	Min	Тур	Max	Units
Dynamic range on each input			BBVREF		Vpp
Differential input dynamic range	BDLIP-BDLIM or		2x BBVREF		Vpp
	BDLQP-BDLQM				
Differential input resistance	BDLIP-BDLIM or	130	200	270	KΩ
	BDLQP-BDLQM				
Differential input capacitance	BDLIP-BDLIM or		4		PF
	BDLQP-BDLQM	4			
Single ended input resistance to	BDLIP or BDLIM or	70	110	150	KΩ
ground	BDLQP or BDLQM				
Single ended input capacitance to			8		pF
ground					
External input common mode voltage		0.8	VRABB/2	VRABB	V
0				-0.8	
Range of digital ouput data samples		-32768		+32767	
I and Q input state in power down			HiZ		

⁽¹⁾ Min and Max value will limited the Dynamic range on each input (see Analog IO electrical characteristics)

DC characteristics

Parameter	Conditions	Min	Тур	Max	Units
Offset error after calibration		-25		25	LSB ^①
		-7.5		7.5	mV⊘
		,			

¹⁰ The LSB corresponds to the one of the ADC that is specified as 82dB dynamic range (\pm 5792), which means 13.3 bits, but the output data bits are transmitted through the BSP in a 16 bit word format. The maximum/minimum code on a 16 bits word is \pm 32767.

Therefore, one LSB of the ADC corresponds to a value of 32768/5792=5.65 on the 16 bit output serial words on Q & I.

The maximum digital output code is 32767 for an input of -3 dbm0 without clipping. For an input signal from -3 dbm0 to 0 dbm0, the output of digital filter is clipped to 32767 code.

^{\odot} Analog value of the LSB is 1.75V/5792 = 0.3 mV.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 22/81

AC characteristics					
Parameter	Conditions	Min	Тур	Max	Units
Gain matching between channels	Measured on 18 kHz	-0.5	0.0	0.5	d B
Delay matching between channels	Sine wave	-16	0.0	16	n s
	800 Hz	0.0		0.35	
	18 kHz (ref)		0		
	35 kHz	-0.4		0.25	
	59 kHz	-0.4		0.30	
_	68 kHz	-0.7		0.30	
Frequency response	81 kHz	-3		0.0	ID
of the total downlink path	97 kHz	-6		-3	dB
ith values related to 18 kHz	110 kHz			-8	
	120 kHz			-15	
	135 kHz			-35	
	200 kHz			-45	
	> 200 kHz			-45	
	-45 dBm0	37			
	-40 dBm0	42			
Signal to poice ratio on 200 kHz	-30 dBm0	52			
bandwidth	-20 dBm0	62			dB
buildwidth	-10 dBm0	72			
	-6 dBm0	72			
4					
Idle channel noise 0-200 kHz				-82	dBm0 ①
Gain tracking error at 18 kHz	-6 dBm0	-0.25		0.25	
with reference at-10dBm	-10 dBm0	-0.25		0.25	
	-20 dBm0	-0.25		0.25	
	-30 dBm0	-0.25		0.25	dB
	-40 dBm0	-0.25		0.25	
	-50 dBm0	-0.50		0.50	
Group delay	0 Hz to 100kHz		28		μS

\sim -.

^(D) 0 dBm0 is defined as a differential input signal of 2xBBVREF

Timing characteristics

Parameter	Conditions	Min	Тур	Max	Units
Setup time , BDLON \uparrow to BDLCAL \uparrow		5			μS
Pulse duration BDLCAL high		60			μS
Setup time , BDLCAL \downarrow to BDLENA \uparrow		>0			1/4-bit
Pulse duration BDLENA high	N effective duration of		N		1/4-bit
	burst				0
Setup time after BDLENA [↑] before				32.7	μS
DATA valid					
Hold time DATA valid after BDLENA \downarrow				3.7	μS
Hold time BDLON high after BDLENA \downarrow		3.7			μS

Values in the above table are given for system information only

^① Bit is relative to GSM bit = 1/270.833 kHz.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 23/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 24/81

3.4.3 Voltage Regulation (VREG)

Several low-dropout (LDO) regulators perform linear regulation to supply analog and digital baseband circuits.

The LDO (VRDBB) generates programmable supply voltage (1.8V, 1.5V, and 1.3V, programmable by register bits) for the digital core of DBB. The battery supplies it.

The LDO (VRABB) generates the supply voltage (2.8V) for the analog functions of ABB. The battery supplies it.

The LDO (VRIO) generates, from the battery, the supply voltage (2.8V) for the digital core of ABB and the digital I/O's of DBB and ABB. The battery supplies it.

The LDO (VRMEM) generates, from the battery, the supply voltages (1.8V, 2.8V, programmable by VLMEM pin) for DBB memory interfaces I/O's. The battery supplies it.

The LDO (VRRAM) generates, from the battery, the supply voltages (1.8V, 2.8V, programmable by VLMEM pin) for DBB memory interfaces I/O's. The battery supplies it. The output blocks reverse current when the regulator is OFF.

The LDO (VRRTC) generates programmable supply voltage (1.8V, 1.5V or 1.3V, programmable by register bits and by an external pin) for the following blocks of DBB (real time clock and 32khz oscillator). It is supplied by UPR and is always ON.

The LDO (VRSIM) generates, from the battery, the supply voltages (1.8V, 2.9V, programmable by register bit) for SIMCARD interfaces I/O's. The battery supplies it.

The backup battery switch (BBS) generates at its output an uninterrupted power rail (UPR) of which purpose is to supply continuously the minimum necessary circuitry of the power-control functions either from the main battery or from the backup battery. This uninterrupted power rail is connected to the external pin UPR for decoupling purpose.

VRABB, VRDBB, VRIO, VRMEM, VRRAM are enable by the VRPC switch on/off sequences. VRDBB, VRIO, VRMEM, VRRAM, VRSIM have 3 functional modes ON, SLEEP and OFF. VRABB has 2 functional modes ON and OFF. VRSIM is enabled/disabled by a register bit.

The outputs VRABB, VRDBB, VRIO, VRMEM, VRSIM are not blocking the reverse current when the regulators are OFF.

The default value for all the programmable LDO are the value set by a VRPC register after a PORZ (see VRPC block description and VRPC register).

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 25/81

UNDER NON DISCLOSURE AGREEMENT

PAGE: 26/81

information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain

REGULATOR RDBB

(With 10uF decoupling capacitor[®] connected between VRDBB and VSS)

Parameter	Conditions	Min	Тур	Max	Units
Input voltage VCDBB		3.00	VBAT	5.5	V
Output Voltage VRDBB	VDBB1,VDBB0 = '10' (Default if VLRTC='1')	1.65	1.80	1.95	V
	VDBB1,VDBB0 = '00'(Default	1.35	1.50	1.65	
	VDBB1,VDBB0 = '01' [©]	1.24	1.30	1.36	
Rated output current Iout	Activ mode			120	mA
	Sleep mode			1	
Load regulation	Iout = max to 0			100	mV
Line regulation	Input voltage = 1.55V to 5.5V @ Iout = max VDBB1,VDBB0 = '00'			50	mV
Response time	Iout step from 0 to Iout max Iout step from Iout max to 0 @ VRDBB = final +/- 3%		10		μs
Turn-on time	from RDBBEN = 0 to 1 @ Iout = max, VRDBB=final +/-3%		.2		ms
Ripple rejection	f=100Hz @ Iout max		55		dB
	f=500kHz @Iout max		35		d B
Quiescent current	Activ mode		150		uA
	Sleep mode		20		
	Disable		1		

[©] 0.01 Ù <ESR < 0.3 Ù. [©] With input sense pins VSDBB connected externally to VRDBB output.

REGULATOR RRAM

(With 4.7uF decoupling capacitor[®] connected between VRRAM and VSS)

Parameter	Conditions	Min	Тур	Max	Units
Input voltage VCRAM [©]		3.0	VBAT	5.5	v
	Activ mode, VLMEM = VCMEM	2.7	2.8	2.9	V
Output Voltage	Activ mode, VLMEM = VSS	1.65	1.8	1.95	
VRRAM	Sleep mode, VLMEM = VCMEM	2.7	2.85	3.0	
	Sleep mode, VLMEM = VSS	1.65	1.85	2.0	
Rated output current Iout	Activ mode			50	mA
	Sleep mode			1	
Load regulation	Iout = max to 0			100	mV
Line regulation	Input voltage = 3.0V to 5.5V @ Iout = max			50	mV
Response time	Iout step from 0 to Iout max Iout step from Iout max to 0 @ VRMEM = final +/- 3%		10		μs
Turn-on time	from RMEMEN = 0 to 1 @ Iout = max, VRMEM =final +/-3%		.2		ms
Ripple rejection	f=100Hz @ Iout max		55		dB
	f=500kHz @Iout max		35		
Quiescent current	Activ mode		150		uА
	Sleep mode		20		
	Disable		1		
^① 0.01 Ù <esr 0.3="" <="" <sup="" ù.="">② Two in</esr>	put pins to reduce input dropout				

UNDER NON DISCLOSURE AGREEMENT

PAGE: 27/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

REGULATOR RMEM

(With 4.7uF decoupling capacitor[®] connected between VRMEM and VSS)

Parameter	Conditions	Min	Тур	Max	Units
Input voltage VCMEM1, VCMEM2 [©]		3.0	VBAT	5.5	V
	Activ mode , VLMEM = VCMEM	2.7	2.8	2.9	V
Output Voltage	Activ mode , VLMEM = VSS	1.65	1.8	1.95	
VRMEM	Sleep mode, VLMEM = VCMEM	2.7	2.85	3.0	
	Sleep mode, VLMEM = VSS	1.65	1.85	2.0	
Rated output current Iout	Activ mode			60	mA
	Sleep mode			1	
Load regulation	Iout = max to 0			100	mV
Line regulation	Input voltage = 3.0V to 5.5V @ Iout = max			50	mV
Response time	Iout step from 0 to Iout max Iout step from Iout max to 0 @ VRMEM = final +/- 3%		10		μs
Turn-on time	from RMEMEN = 0 to 1 @ Iout = max, VR2OUT =final +/-3%		.2		ms
Ripple rejection	f=100Hz @ Iout max		55		dB
	f=500kHz @Iout max		35		
Quiescent current	Activ mode		150		uА
	Sleep mode		20		
	Disable		1		

 $\ensuremath{\mathbb{O}}$ 0.01 \grave{U} <ESR < 0.3 $\grave{U}.$

[©] Two input pins to reduce input dropout

REGULATOR RABB

(With 4.7uF decoupling capacitor[®] connected between VRABB and VSS)

Parameter	Conditions	Min	Тур	Max	Units
Input voltage VCABB		3.0	VBAT	5.5	V
Output voltage VRABB	Activ mode	2.7	2.8	2.9	V
	Sleep mode	2.7	2.85	3.0	
Rated output current lout	Activ mode			80	mA
	Sleep mode			1	
Load regulation	Iout = max to 0			100	mV
Line regulation	Input voltage = 3.0V to 5.5V @ Iout = max			50	mV
Response time	Iout step from 0 to Iout max				
	Iout step from Iout max to 0		10		μs
	@ VRABB = final +/- 3%				
Turn-on time	from RABBEN = 0 to 1		.2		ms
	@ Iout = max, Vout = final $+/-3\%$				
Ripple rejection	f=100Hz @ Iout max		55		dB
	f=500kHz @Iout max		35		
Quiescent current	Enable		150		uA
	Disable		1		

0 0.01 \grave{U} <ESR < 1 $\grave{U}.$

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 28/81

REGULATOR RIO

(With 10uF decoupling capacitor[®] connected between VRIO and VSS) CAUTION: VRIO supplies ABB digital IO and ABB digital core.

Parameter	Conditions	Min	Тур	Max	Units	
Input voltage VCIO1, VCIO2 ^②		3.0	VBAT	5.5	v	
Output Voltage VRIO1, VRIO2 ³	Activ mode	2.7	2.8	2.9	V	
	Sleep mode	2.7	2.85	3.0		
Rated output current lout	Activ mode			100	mA	
	Sleep mode			1		
Load regulation	Iout = max to 0			100	mV	
Line regulation	Input voltage = 3.0V to 5.5V @ Iout = max			50	mV	
Response time	Iout step from 0 to Iout max				μs	
	Iout step from Iout max to 0		10			
	@ VRIO = final +/- 3%					
Turn-on time	from RIOEN = 0 to 1		.5		ms	
	@ Iout = max,					
	VRIO=final +/-3%					
Ripple rejection	f=100Hz @ Iout max		55		d B	
	f=500kHz @Ioutmax		35			
Quiescent current	Enable		150		uA	
	Sleep		20			
	Disable		1			

0 0.01 \grave{U} <ESR < 1.0 $\grave{U}.$

[©] Two input pins to reduce input dropout

³ Two output pins to reduce output dropout

RSIM

(With 1uF decoupling capacitor[®] connected between VRSIM and VSS)

Parameter	Conditions	Min	Тур	Max	Units
Input voltage VCIO1, VCIO2 [©]		3.0	VBAT	5.5	V
Output Voltage	SIMSEL = '1'	2.7	2.85	3.0	v
VRSIM	SIMSEL = '0'	1.65	1.8	1.95	
Rated output current Iout	Activ mode			10	mA
	Sle ep mode			1	
Load regulation	Iout = max to 0			100	mV
Line regulation	Input voltage = 3.0V to 5.5V @ Iout = max			50	mV
Response time	Iout step from 0 to Iout max Iout step from Iout max to 0 @ VRSIM = final +/- 3%		10		μs
Turn-on time	from RSIMEN = 0 to 1 @ Iout = max, VRSIM =final +/-3%		.2		ms
Ripple rejection	f=100Hz @ Iout max		55		d B
	f=500kHz @Iout max		35		
Quiescent current	Activ mode		150		uA
	Sleep mode		20		
	Disable		1		

^① 0.01 Ù <ESR < 0.3 Ù.

[©] Two input pins to reduce input d ropout

UNDER NON DISCLOSURE AGREEMENT

PAGE: 29/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 30/81

<u>UPR</u>

(With 1.0uF decoupling capacitor[®] connected between UPR and VSS)

Parameter	Conditions	Min	Тур	Max	Units
Input voltage VBAT			VBAT		V
Input voltage VBACKUP			VBCK		V
Output Voltage UPR	VBAT > 2.8		VBAT		V
	VBAT < 2.8 & VBAT > VBACKUP		VBA T		
	VBAT < 2.8 & VBAT < VBACKUP		VBCK		

 $@ \ 0.1$ \grave{U}
ESR < 0.5 $\grave{U}.$

REGULATOR RRTC

(With 1.0uF decoupling capacitor[®] connected between VRRTC and VSS)

Parameter	Conditions	Min	Тур	Max	Units
Input voltage VCRTC			UPR		V
Output Voltage VRRTC	VRTC1,VRTC0 = '10' (Default if VLRTC= '1')	1.65	1.80	1.95	V
	VRTC1,VRTC0 = '00' (Default if VLRTC= '0')	1.35	1.50	1.65	
	VRTC1,VRTC0 = '01'	1.24	1.30	1.36	
Rated output current Iout				10	uА
Load regulation	from Iout =max to Iout=0			100	mV
Line regulation	Input voltage = 3.0V to 5.5V @ Iout = max			50	mV
Response time	Iout step from 0 to Iout max		100		u s
	Iout step from Iout max to 0 @ VR RTC = final $\pm 4.3\%$				
Turn-on time	Lout step from 0 to Lout max		0.5		ms
	Iout step from Iout max to 0		0.5		1115
	@ VRRTC = final +/- 3%				
Ripple rejection	f=100Hz @ Iout max		55		dB
	f=500kHz @ Iout max		35		
Quiescent current	Enable		2		uA
0.1 Ù <esr 0.5="" <="" td="" ù.<=""><td></td><td></td><td></td><td></td><td></td></esr>					

[®] 0.1 Ù <ESR < 0.5 Ù.

Parameter	Conditions	Min	Тур	Max	Units
Input voltage VCRTC			UPR		V
PORZ high threshold		2.5	2.65	2.8	V
PORZ low threshold		1.9	2.1	2.3	V

 $^{\odot}\,$ RRTC as 2 exclusive modes: REGULATOR or POWER ON RESET generator.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 31/81

3.4.4 Reference Voltage / Power on Control (VRPC)

Band gap reference

An integrated band-gap generates a reference voltage. This reference is available on an external pin for external filtering purpose only. This filtered reference is internally used for analog functions.

The external resistor connected between pin IBIAS and REFGND sets, from the band-gap voltage, the value of the bias currents of the analog functions.

(with 0.1uF decoupling	capacitor connected betwee	n VREF and REFGND)
(

Conditions	Min	Тур	Max	Units
3AT = 3.6V	1.16	1.185	1.20	V
BAT = 3.6V		VREF		V
3. 3. T	Conditions AT = 3.6V AT = 3.6V BIAS = 100 kU 1%	ConditionsMin $AT = 3.6V$ 1.16 $AT = 3.6V$ 1.18 $BIAS = 100 \text{ kU} 1\%$	ConditionsMinTyp $AT = 3.6V$ 1.161.185 $AT = 3.6V$ VREF $BIAS = 100 \text{ kU } 1\%$	Conditions Min Typ Max AT = 3.6V 1.16 1.185 1.20 AT = 3.6V VREF VREF

DAC and ADC in ABB are references towards VREF value.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 32/81

Power on Control

The VRPC block is in charge to control the Power ON, Power OFF, Switch On, and Switch OFF sequences.

Even in Switch OFF state some blocks functions are performed. These "permanent" functions are functions, which insure the wake-up of the mobile such as ON/OFF button detection or charger detection.

Interrupt INT1 are generated at power-down detection when abnormal voltage conditions are detected.

Interrupt INT2 are generated on some PWON, RPWON, Charger plug, ITWAKEUP events.

Mode Definition

- NOBAT : Batteries (MAIN or BACK UP) are not efficient to supply ABB or DBB. PORZ is maintained low, All ABB registers are reseted, DBB is reseted.
- BACKUP : BACKUP battery is used to supply UPR, only VRRTC is enable supplied by UPR, 32KHZ is available, all switch on conditions are masked. Part of ABB is reseted (see register bits definition), DBB is reseted.
- OFF : MAIN battery is used to supply UPR, VRRTC is available supplied by UPR, 32KHZ is available. VRDBB, VRMEM, VRRAM, VRIO, VRSIM supplied by MAIN battery can be in sleep mode (using MSKOFF register) or are disable. VRABB is disable. Part of ABB is reseted (see register bits definition), DBB is reseted.
- SLEEP : MAIN battery is used to supply UPR, VRRTC is available supplied by UPR, 32KHZ is available. VRDBB, VRMEM, VRRAM, VRIO, VRSIM supplied by MAIN battery can be in sleep mode (using MSKSLP register) or are disable. VRABB is disable. All ABB blocks are forced in power down mode, but power on block configuration is kept when ABB return in ACTIV mode.

: MAIN battery is used to supply UPR, VRRTC is available supplied by UPR, 32KHZ is available. VRDBB, VRMEM, VRRAM, VRIO, VRABB are enable and under DBB control, VRSIM is under DBB control.

ACTIV

UNDER NON DISCLOSURE AGREEMENT

PAGE: 33/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Ver 2.0

UNDER NON DISCLOSURE AGREEMENT

PAGE: 34/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Note	
CK32K	: Provided by DBB, is available sometimes after that VRTC
	is regulated. VRPC state machine is clock by CK32K and
	as its asynchronous reset PORZ.
Т	: CK32K period
PORZ	: ABB internal signal, Power On Reset, activ low, reset VRPC.
ABBRSTZ	: ABB internal signal, Analog Baseband Reset, activ low, reset all ABB
	blocks (except VRPC)
RESPWONZ	: DBB RTC reset, is equal to the boolean function : PORZ and
	TESTRSTZ.
MBATLOW	: State of VBAT>2.8 comparator (describe in UPR specification part)

Debouncing

PWON and RPWON are debounce in the VRPC hardware. The counter used is the same that count all others VRPC timing events, the debouncing has the lowest VRPC priority and can be done only on one signal at a time.

Parameter	Conditions	Value	Units
NDEB	Debouncing on PWON and RPWON	1022	Т

Switch On Timing Table

The state machine waiting times are variable depending on the switch on configuration:

Parameter	Conditions	Value	Units
NBG	Switch on from OFF	1010	Т
	Switch on from SLEEP	130	Т
NLD1	Switch on from OFF	21	Т
	Switch on from SLEEP	7	Т
NLD2	Switch on from OFF	11	Т
	Switch on from SLEEP	7	Т

Consumption in dedicated mode

Parameter	Conditions	Min	Тур	Max	Units
BACKUP	From Backup battery 3.2V @ 25C CK32 on	1.65	2.35	3.25	uA
	From Backup battery 3.2V @ 85C CK32 on	1.75	2.5	3.5	uA
OFF	From Main battery 5.5V @ 25C CK32 on, LDO off	10	25	55	uA
	From Main battery 5.5V @ 85C CK32 on , LDO off	10	30	75	uА
SLEEP	From Main battery 5.5V @ 25C CK32 on, CK13M off, all block off.		100	150	uA
	From Main battery 5.5V @ 85C CK32 on, CK13M off, all block off.		130	200	uA
ACTIV (no external load on LDO)	From Main battery 5.5V CK32 on, CK13M off , all block off.		800	1500	uA

UNDER NON DISCLOSURE AGREEMENT

PAGE: 35/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

From Main battery 5.5V CK32 on, CK13M on , all block off.	1500	3000	u A
Backup battery charge is disable and Main battery precharge is disable			

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 36/81
3.4.5 Battery charger Interface (BCI)

The main function of the ABB Charger interface is the charging control of either a 1-cell Li-ion Battery or 3-serie Ni-MH/Ni-Cd cell batteries with the support of the micro controller (DBB).

The battery monitoring uses the 10 bit ADC converter from the MADC to measure the battery voltage, battery temperature, battery type, battery charge current, battery charger input voltage.

The magnitude of the charging current is set by the 10 bits of a programming register converted by an 10 bit Digital to Analog Converter, whose output sets the reference input of the charging current control loop.

The battery charger interface performs also some auxiliary functions. They are battery precharge and back-up battery charge if it is rechargeable.

The battery charger interface is under registers control. These registers can be programmed either through the BSP or through the USP.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 37/81

BCI (Battery Charger Interface)

VBAT = 3.6V unless otherwise specified

Parameter (main battery charge)	Conditions	Min	Тур	Max	Units
VCHG input voltage range		4.8 ^①		6.8	V
	CHEN='0', VCHG=6.8V,	VCHG-			V
ICTL output voltage swing	I(ICTL) = -10uA	0.3			v
icit output voltage swing	CHEN='1', VCHG=6.8V, MESBAT=0			0.8	V
	I(ICTL) = +10uA				v
	CHEN='1', VCHG=6.8V, MESBAT=1	VCHG-			v
	I(ICTL) = +10uA	0.3			v
Current to voltage conversion slope ^②	Rs=0.2 Ù		2		mV /
	(VRABB-VBAT) from 0.1V to 0.17V				mA
Current to voltage conversion offset [@]	Rs=0.2 Ù		0.2		V
Current to voltage conversion offset	Rs=0.2 Ù		12.6		mV
calibration step: OFFSTEP @					
Parameter (main battery precharge)	Conditions	Min	Тур	Max	Units
Precharge charging current ³	VBAT = 0.5V			100	mΔ
	VBAT = 3.6V			100	шд
Battery voltage at precharge end	VBAT open	3.4	3.6	3.9	V
Parameter (MADC)	Conditions	Min	Тур	Max	Units
VCHG to MADC input attenuation	VCHG from 4.0V to 6.8V	0.15	0.20	0.30	V/V
VBACKUP to MADC input attenuation	VBACKUP from 2.2V to 5.5V	0.2	0.25	0.35	V/V
VBAT to MADC input attenuation	VBAT from 3.0V to 5.5V	0.2	0.25	0.35	V/V
ADIN2 DC current source	R(IBIAS)=100k Ù , ADIN2=1V				
for temperature measurement	8 possibles ranges (Register				
	BCICTL1, bits THSENS2-0)				
	Code = 0	8		14	
	Code = 1	15		24	
	Code = 2	25		34	uA
	Code = 3	35		43	
	Code = 4	44		52	
	Code = 5	53		62	
	Code = 6	62		72	
	Code = 7	72		82	
ADIN1 DC current source for battery	R(IBIAS)=100k Ù, ADIN1= 1V	8		12	μA
identification					
Parameter (backup battery charge)	Conditions	Min	Тур	Max	Units
Back-up battery charging current	VBACKUP=2.8V, BBCHEN = 1	250	500	800	uA
End back-up battery charging voltage	VBACKUP open	3.0		3.6	V

^① The max voltage value of the charging device is 7V (process limitation). The min voltage value of the charging device is: **VBATMAX** + **diode drop** + **0.2ohm resistor drop** + **VDC drop**. When VBATMAX is the max voltage value of the battery (4.2V for Li-ion battery). For example to charge Li-ion battery with 1A fast current charge, the min voltage value of the charging device must be 5.1V.

[©] MADC output code = (VCCS-VBATS) * 10 + offset

³ The current is programmable by an external resistor.

[®] Calibration can be made through BCICONF register, to the natural offset can be added a positive offset from 0 to 15*OFFSTEP.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 38/81

3.4.6 Monitoring ADC (MADC)

The monitoring ADC consists in a 10-bit analog to digital converter combined with a nine inputs analog multiplexer. Out of the 8 inputs 4 are available externally, the 4 remaining being dedicated to main battery voltage, back up battery voltage, charger voltage and charger current monitoring. On the tree available as standard inputs intended for battery temperature, batteries type measurements. Conversion requests, input/output channels and results reading can be done either through the BSP or through the USP. The STARTADC bit through the TSP interface can also control the start of conversion.

General characteristics

Parameter	Conditions	Min	Тур	Max	Units
Resolution			10		Bit
MADC Voltage reference			1.75		V
Input leakage current ADINx				1	uA
Differential non linearity		-2		+2	LSB
Integral non linearity	Best fitting	-2		+2	LSB
Input Range		0		1.75	V

AC characteristics

Parameter	Conditions	Min	Тур	Max	Units
Running frequency F			1		MHz
Clock period T=1/F			1		u s
Conversion time			16*T		u s
(16*T = delay before the sampling of			+		
the analog input)			8.5*T		

UNDER NON DISCLOSURE AGREEMENT

PAGE: 39/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

3.4.7 Clock generator (CKG)

The clock generator generates the system clocks needed by the internal functions. They are derived from the CK13M master clock provided by DBB to ABB.

In low power mode some functions such as VRPC are maintained alive by using the low power clock, CK32K, generated by the RTC of the DBB.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 40/81

3.4.8 Automatic Frequency control (AFC)

The automatic frequency control function (AFC) consists of a DAC optimized for highresolution DC conversion. The AFC digital interface includes two registers that can be written or read using either the BSP or the USP under the arbitration of IBC. The content of these registers controls a 13-bit DAC, operating at a sampling frequency of 2.165 MHz (or 1.08 MHz, 541 kHz, 270 kHz setting correctly the AFCCTLADD register), whose purpose is to correct frequency shifts of the voltage-controlled oscillator to maintain the GSM 13 MHz master clock frequency in a 0.1 PPM range.

The AFC value is programmed with registers AUXAFC1 (which contains the 10 LSB) and AUXAFC2 (which contains the 3 MSB). The three MSB are fed to the DAC through AUXAFC2 whose content is updated with the content of a shadow register when LSBs are written in AUXAFC1, so proper operation of the AFC is ensured by writing the MSB first and then the LSBs.

The monotonicity is ensured by the structure of the DAC made with $\Sigma - \Delta$ digital modulators followed by an analog FIR which performs one bit digital to analog conversion and low pass filtering. Further low pass filtering is provided by the RC formed by the internal output resistor (25 k Ω) and an external capacitor (33 nF). However most of the filtering is ensured by the voltage-controlled oscillator of which high quality factor provide a very low frequency low pass filtering.

Power on of the AFC is controlled by bit AFCON of PWDNRG register The automatic frequency control provides a 13-bit accuracy and a 2.0 V dynamic range.

Parameter	Conditions	Min	Тур	Max	Units
DAC resolution			13		Bit
Sampling frequency	AFCCTLADD reg ='00'		2.165		MHz
	AFCCTLADD reg ='01'		1.08		MHz
	AFCCTLADD reg ='10'		541		kHz
	AFCCTLADD reg ='11'		270		kHz
LSB value		250		340	u V
Integral non linearity	(0 to 75% range)	-1		+1	LSB
Differential non linearity	(0 to 75% range)	-1		+1	LSB
Settling time			100		u s

DAC 13 characteristics

Output characteristics ^①

Parameter	Conditions	Min	Тур	Max	Units
Output voltage at code min				45	mV
Output voltage at code max		2.0	2.4	2.8	V
Output voltage in power-down			0		V
Output resistance		15.6	22.5	29	Kohms

^① Recommended load on pin AFC: 33nF

UNDER NON DISCLOSURE AGREEMENT

PAGE: 41/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

3.4.9 Automatic Power Control (APC)

Purpose of the Automatic Power Control (APC) is to generate an envelope signal to control the power ramping up, ramping down and power level of the radio burst. The APC structure is intended to support single slot and multislot transmission with smooth power transition when consecutive bursts are transmitted at different power level.

It includes a DAC and a RAM in which the shape of the edges (ramp-up and rampdown) of the envelope signals are stored digitally. This envelope signal is converted to analog by a 10 bits digital to analog converter.

Timing of the APC is generated internally and depends of the real time signals coming from the TSP and the content of two registers which control the relative position of the envelope signal versus the modulated I & Q.

Conditions	Min	Тур	Max	Units
		10		Bit
Best fitting line	-1		+1	lsb
	-1		+1	lsb
		5		μ_{S}
	Conditions Best fitting line	Conditions Min Best fitting line -1 -1 -1	ConditionsMinTyp1010Best fitting line-1-1-15	ConditionsMinTypMaxImage: Description of the second s

DAC 10 characteristics

Parameter	Conditions	Min	Тур	Max	Units
Output voltage with code max		2	2.2	2.4	V
Offset voltage floor	AUXAPC=0 APCOFF=0		120	200	mV
Offset voltage adjustment			128	150	mV
Offset voltage adjustment step			2	2.3	mV
Output impedance in power down				150	Ω
Output voltage in power down				50	mV

Output stage characteristics ⁽¹⁾

⁽¹⁾ Recommended load on pin APC : $50pF max // 10 k^{\Omega} min$

Timings

Parameter	Conditions	Min	Тур	Max	Units
delay BULENA [↑] to ramp-up start		2		1025	1/4-bit
delay BULENA ↓ to ramp -down start		2		1025	1/4-bit
ramp-up duration		0		16	1/2-bit
ramp-down duration		0		16	1/2-bit
modulation after BULENA \downarrow			32		1/4-bit

UNDER NON DISCLOSURE AGREEMENT

PAGE: 42/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

3.4.10 Auxiliary DAC (ADAC)

The auxiliary DAC is a general purpose 10 bits digital to analog converter.

Output stage characteristics [®]

Parameter	Conditions	Min	Тур	Max	Units
DAC resolution			10		Bit
Integral non linearity	Best fitting line	-1		+1	LSB
Differential non linearity		-1		+1	LSB
Settling time			10		μ _S
Output voltage with code max		2.0	2.2	2.4	V
Output voltage with code min		0.18	0.24	0.3	V
Output impedance in power down			200		kΩ
DC power supply sensitivity			1		%
	// 1010				P.

 $^{\odot}$ Recommended load on pin DAC : 50pF max // 10 k $^{\Omega}$ min

3.4.11 SIM card interface (SIM)

The Sim Card digital interface in ABB insures the translation of logic levels between DBB and Sim Card, for the transmission of 3 different signals: a clock derived from a clock elaborated in DBB, to the Sim-Card (DBBSCK \Rightarrow SIMCK), a reset signal from DBB to the Sim Card (DBBSRST \Rightarrow SIMRST), and serial data from DBB to the Sim Card (DBBSIO \Leftrightarrow SIMIO) and vice-versa.

The SIM card interface can be programmed to drive a 1.8V or 3V Sim Card.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 43/81

3.4.12 Auxiliary Current Driver (ACD)

Auxiliary drivers are provided

LEDA is dedicated for paging indication.

LEDB is dedicated for LCD backlight and Keypad backlight.

LEDC is dedicated for charging indication with hardware switch on.

Parameter	Conditions	Min	Тур	Max	Units
LEDC drive current				10	mA
LEDA drive current	Current sink			10	mA
LEDB drive current	Current sink			150	mA
LEDC Output high level voltage				VCHG	V
LEDA, LEDB Output high level voltage				VBAT	V
LEDA, LEDC Output low level voltage	I = drive current max			0.4	V
LEDB Output low level voltage	I = drive current max			0.7	V

LEDC is controlled in BCI registers. When ABB is in OFF or SLEEP mode, the LEDC control follows the precharge state. When ABB is in ACTIV mode, the LEDC control is given by a register bit (in BCI register).

LEDA, LEDB is controlled in a dedicated register. LEDA needs CK32K clock to be fully functional LEDB needs CK13M clock to be fully functional

The 3 led drivers are connected internally to 2 ground pads, GNDL1 and GNDL2. The LEDB driver has 2 input pads (LEDB1, LEDB2) due to high current sinked.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 44/81

3.4.13 Internal bus and interrupt controller (IBIC)

Read and write access to all internal registers being possible via both the BSP and USP, purpose of the internal bus controller is to arbitrate the access on the internal bus and to direct the read data to the proper serial port. During reception of a burst the internal bus controller assign the transmit part of the BSP to the baseband downlink to transfer the I & Q samples to the DSP.

This block also handles the internal interrupts generated by the MADC, BCI and VRPC blocks and generates the micro-controller interrupt signal INT2.

3.4.14 Baseband Serial Port (BSP)

The baseband serial port is a bi-directional (transmit/receive) serial port. Both received and transmit operations are double buffered and permit a continuous communication stream. Format is 16 bit data packet with frame synchronization.

The CK13M master clock is used for as clock for both transmit and receive.

The baseband serial port allows read and writes access of all internal registers under the arbitration of the internal bus controller. But its transmit path is allocated to baseband downlink during burst reception for I & Q data transmission.

In the receive mode the frame signal, BFSR, is generated by DBB. In the transmit mode the frame signal, BFSX, is generated by ABB.

BSP access are not allowed when ACTIVMCLK='0'.

BSP interface timings requirements

Parameter	Conditions	Min	Тур	Max	Units
tsu3 BFSR setup time before CK13M↓			20		n s
th3 BFSR hold time after CK13M↓			20		n s
tsu4 BDR setup time before CK13M \downarrow			20		n s
th4 BDR hold time after CK13M \downarrow			20		n s
td2 BFSX delay from CK13M↓			20		n s
td3 BDX delay after CK13M↓			20		n s

Note : T = CK13M clock period = 77ns

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 45/81

ТОР

Single Operation Mode

In the single mode operation the synchronization pulses, BFSR or BFSX, are generated one CK13M period before the first data bit (the MSB or bit15).

Adjacent Operations Mode (GMSK burst)

In the adjacent operations mode the first transmission is same as in the single operation mode. But for the following words the synchronization pulse is synchronous with the last bit (the LSB or bit0) from the previous word.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 46/81

information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain

3.4.15 Time serial port (TSP)

Purpose of the time serial port is to control in real time the radio activation windows of ABB which are BUL power-on, BUL calibration, BUL transmit, BDL power-on, BDL calibration and BDL receive and the ADC conversion start.

These real time control signals are processed by the TPU of DBB and transmitted serially to ABB via the TSP, which consists in a very simple two pins serial port. One pin is an enable (TEN) the other one the data receive (TDR). The master clock CK13M divided by 2 is used as clock for this serial port.

TSP interface timings requirements

Parameter	Conditions	Min	Тур	Max	Units
t1 TEN \downarrow setup time before CK13M \uparrow		0		T/2	n s
t2 TDR valid after TEN \downarrow			Т		n s
t3 Bit duration			2T		n s
t4 Data duration			14T		n s
t5 TEN low hold time after last bit			Т		n s
t6 TEN setup time (low to high) before CK13M high				T/2	n s

Note : T = CK13M clock period = 77ns

UNDER NON DISCLOSURE AGREEMENT

PAGE: 47/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

3.4.16 Micro-controller serial port (USP)

The micro-controller serial port is a standard synchronous serial port. It consists in three terminals, data transmit (UDX), data receive (UDR) and port enable (UEN). The clock signal is the CK13M master clock.

Transfers are initiated by the external micro-controller which push data into the USP via UDR while synchronously data contained in the transmit buffer of the USP are pushed out via UDX.

The mic ro-controller serial port allows read and write access of all internal registers under the arbitration of the internal bus controller.

Between to consecutive USP access, there must be a minimum of 8 CK13M or CK32K rising edge (depending of ACTIVMCLK status).

USP interface timings requirements

Parameter	Conditions	Min	Тур	Max	Units
tsu1 UEN setup delay before CK13M↑			20		n s
th1 UEN hold after CK13M [↑] - (CK13M period - t1)			50		n s
tsu2 UDR setup delay before CK13M low			20		n s
th2 UDR hold after CK13M↓			20		n s
td1 UDX delay after CK13M↓			20		n s
Time between continuous words		8			Т

Note : T = CK13M clock period = 77ns (ACTIVMCLK='1') or T = CK32K (ACTIVMCLK='0')

TEXAS INSTRUMENTS

UNDER NON DISCLOSURE AGREEMENT

PAGE: 48/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

3.4.17 Test access port (TAP)

The test access port (TAP) meets JTAG testability standard (IEEE Std1131.1-1990). TAP allows public instructions set of JTAG standard and also private instructions to configure the device in special modes for test or debug purpose.

Four pins are dedicated to the TAP (TCK, TMS, TDI, TDO).

JTAG Interface timings requirements

Parameter	Conditions	Min	Тур	Max	Units
Setup time TMS to TCK [↑]		20			n s
Setup time TDI to TCK [↑]		20			n s
Delay time TDO from TCK ↑				20	n s

JTAG ID Code

Variant	Part Number	Manufacturer	LSB
0000	0000 0000 0110 0110	0000 0010 111	1

3.4.18 Public instructions

As defined in IEEE Std1149.1 the public instructions are:

NAME	OPCODE	DESCRIPTION
BYPASS	111111 (63)	Connects the by-pass register between TDI and TDO
EXTEST	000000 (00)	Connects the boundary scan register between TDI & TDO. This mode
		allows to capture the state of the inputs pins and to force the state of
		the output pins. (For example it can be used for printed circuit board connections test)
IDCODE	000001 (01)	Connects the identification register between TDI and TDO. This is the
		default configuration at reset.
SAMPLE/	000010 (02)	Connects the boundary scan register between TDI & TDO. This mode
PRELOAD		allows to capture a snapshot of the state of the I/O's of the device.
INTEST	001001 (09)	Connects the boundary scan register between TDI & TDO. This mode
		allows to force the internal system input signals via the parallel latches
		of the boundary register and to capture internal system outputs. (This
		mode can be used for device internal test independently of the state
		of its input pins). The internal master clock is derived from TCK and is
		active in the Run-Test-Idle state of the state machine to allow single
		step operation of the device.
	-	

UNDER NON DISCLOSURE AGREEMENT

PAGE: 49/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

3.4.19 Private instructions:

A private instructions set exists for the specific test features.

In addition to the *public* instruction set, ABB chip contains a set of *private* instructions, in order to put the device in the various test configurations.

The private instructions set connects specific internal signals to the four dedicated pins TEST1, TEST2, TEST3 and TEST4. These pins are I/O's, set to INPUTS by default, and have pull-up devices to insure a driven state to the internal bus in this case.

CONFIG NAME	OPCODE	DESCRIPT	FION								
BSPLOOP	000111 (07)	The data written to any register is automatically sent back (read) by the Bus Controller.									
		the Bus Controller. Connects the output of the Voice Serial Interface to its input. This is									
VSPLOOP	001010 (10)	Connects the output of the Voice Serial Interface to its input. This is done in the Filter.									
		done in the Filter. AECA test: connects the internal data bus (bit7 to bit0) directly to the									
AFCTEST	010000 (16)	AFCA test: connects the internal data bus (bit7 to bit0) directly to the									
		input of the AFCA.									
MADCTEST	010010 (18)	Connects TEST pin on the MADC outputs									
		1-O ADC_END_IT 3-1 Not used									
		2-O ADC_END_IT 4-I Not used									
TSPADC	010101 (21)	Connects Baseband window control signals on the test pins.									
		1-I Not used 3-O BULENA									
		2-I Not used	4-0	STARTADC							
TSPUP	010111 (23)	Connects Baseband window control s	ignals	on the test pins							
		1-I Not used	BULON								
		2-I Not used 4-O BULENA									
TSPDN	011000 (24)	Connects Baseband window control s	Connects Baseband window control signals on the test pins								
		1-I Not used	BDLON								
		2-I Not used	4-0	BDLENA							
TSPENA	011010 (26)	Connects Baseband window control s	ignals	on the test pins.							
		1-I Not used	3-0	BULENA							
		2-I Not used	4-0	BDLENA							
TSPTEST1	011101 (29)	Connects Baseband window control s	ignals	on the test pins.							
		1-O BULON	3-0	BDLON							
		2-O BULENA	4-0	BDLENA							
TSPTEST2	011110 (30)	Connects Baseband window control s	ignals	and the ADC conversion							
		start bit on the test pins.	-								
		1-O BULCAL	3-0	STARTADC							
		2-O BDLCAL	4-I	Not used							
APCRAMP	011111 (31)	Connects Ramp window control signa	ls on tl	he test pins.							
		1-I External RAMP pulse	3-0	CKAPC							
		2-I Not used	4-0	BULDRAMP internal							

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 50/81

4. DATA AND ADDRESS FORMAT

Writing or reading registers via a serial interface is done by transferring 16 bit words to the serial interface.

Internal Registers Operations

Each word is split in three fields.

Data											Addres	s		R/W	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	A4	A3	A2	A1	A0	1 / 0

Writing to internal registers:

Bit 0	: At 0 (zero) it indicates a write operation.
Bit 1 to 5	: This field shall contain the address of the register to be accessed.
Bit 6 to 15	: This field shall contain the data to be written into the internal register.

Reading from internal registers:

Bit 0: At 1 (one) it indicates a read operation.Bit 1 to 5: This field shall contain the address of the register to be accessed.

Bit 6 to 15 : This filed don't care in a read request operation.

Baseband Burst Operations

During reception of a burst, transfer of radio data from the downlink baseband codec is

done via the TX part of the BSP serial interface in the following 16

bit word format.

						Da	ıta								I/Q
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

As the I/Q samples are coded with 16 bit words, the data rate is 8.66 Mbps (or 270833 * 16 * 2). As the digital clock MCLK is 13 MHz, the transfer will done at 13 Mbps in burst mode: during burst reception the DSP serial interface will be idled about 33% of the time.

Address format

Because the number of registers is greater than 32, the ABB internal address bus will have **6** bits. But with each word only **5** address bits are transmitted by the Baseband Serial Port or by the Micro controller Serial Port. So a page register has been added. Through this register the **MSB** from the internal address can be set to 1 or to 0 **independently** for and by each serial port. The write access address to this 'page selection' register is **1** from **page 0** or **1**. It has no read access.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 51/81

5. PIN DESCRIPTIONS

UNDER NON DISCLOSURE AGREEMENT

PAGE: 52/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

4

VRPC: 11 Pins	Туре	Description	Supplies	Comment	Pin #
RPWON	DIGIN	Remote Power On (Other than button)	VBAT / GNDD	Pull-up	62
PWON	DIGIN	On button input	VBAT / GNDD	Pull-up	61
ITWAKEUP	DIGIN	Auxiliary power on input	VRRTC / GNDD		6
INT1	DIGIO	Fast interrupt (INT1)	VRIO / GNDD		41
RESPWONZ	DIGOUT	Digital BaseBand Reset (@ power on reset)	VRRTC / GNDD		8
ONNOFF	DIGOUT	Digital BaseBand Reset (@ each switch on)	VRRTC / GNDD		11
VREF	ANIO	Reference voltage (1.2V)	VCABB / REFGND		80
REFGND	ANIO	Reference voltage ground	REFGND		82
IBIAS	ANIO	Bias current reference resistor (100K)	VCABB / REFGND		81
TESTRESETZ	DIGIN	RESET input for test mode only	UPR / GNDD	Pull-up	54
CK32K	DIGIN	32Khz clock input	VRRTC / GNDD		10
VBC : 12 Pins	Туре	Description	Supplies	Comment	Pin #
MICIP	ANIN	Microphone 1 amplifier input (+)	VRABB / GNDAV		45
MICIN	ANIN	Microphone 1 amplifier input (-)	VRABB / GNDAV		46
MICBIAS	ANOUT	Microphone bias supply	VRABB / GNDAV		48
HSO	ANOUT	Headset 32 ohm driver (single ended)	VRABB / GNDA		53
HSMICP	ANIN	Headset Microphone amplifier input (single ended)	VRABB / GNDAV		44
HSMICBIAS	ANOUT	Headset Microphone bias supply	VRABB / GNDAV		47
AUXOP	ANOUT	Auxiliary hands free amplifier output (+)	VRABB / GNDA		49
AUXON	ANOUT	Auxiliary hands free amplifier output (-)	VRABB / GNDA		50
AUXI	ANIN	Auxiliary hands free signal input	VRABB / GNDAV		43
GNDAV	ANIO	MICBIAS and AUXI ground	REFGRND		42
EARP	ANOUT	Earphone amplifier output (+)	VRABB / GNDA		51
EARN	ANOUT	Earphone amplifier output (-)	VRABB / GNDA		52
ADAC: 1 Pin	Туре	Description	Supplies	Comment	Pin #
DAC	ANOUT	Auxiliary 10 bit DAC output	VRABB / REFGND		33
AFC:1 Pin	Туре	Description	Supplies	Comment	Pin #
AFC	ANOUT	Automatic frequency control DAC output	VRABB / GNDA		31
APC:1 Pins	Туре	Description	Supplies	Comment	Pin #
APC	ANOUT	Automatic power control DAC output	VRABB / GNDA		32
BBC : 8 Pins	Туре	Description	Supplies	Comment	Pin #
BDLQM	ANIN	Quadrature input (Q-) baseband codec downlink	VRABB / GNDA		65
BDLQP	ANIN	Quadrature input (Q+) baseband codec downlink	VRABB / GNDA		64
BDLIM	ANIN	In-phase input (I-) baseband codec downlink	VRABB / GNDA		59
BDLIP	ANIN	In-phase input (I-) baseband codec downlink	VRABB / GNDA		60
BULQM	ANOUT	Quadrature output (Q-) baseband codec uplink	VRABB / GNDA		73
BULQP	ANOUT	Quadrature output (Q+) baseband codec uplink	VRABB / GNDA		72
BULIM	ANOUT	In-phase output (I-) baseband codec uplink	VRABB / GNDA		69
BULIP	ANOUT	In-phase output (I+) baseband codec uplink	VRABB / GNDA		70

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 53/81

MADC: 4 Pins	Type	Description	Supplies	Comment	Pin #
ADIN1	ANIN	Monitoring ADC input 1 (Battery temp)	VRABB / GNDA	comment	85
ADIN2	ANIN	Monitoring ADC input 2 (Battery type)	VRABB / GNDA		84
ADIN3	ANIN	Monitoring ADC input 3 (Spare)	VRABB / GNDA		83
ADIN4	ANIN	Monitoring ADC input 4	VRABB / GNDA		86
1		Monitoring The Chipar			00
BCI: 6 Pins	Type	Description	Supplies	Comment	Pin #
VBAT	ANIN	Battery voltage input	VBAT / GNDA	Comment	94
VCHG	ANIN	Charger voltage sense input	VCHG / GNDA		89
ICTL	ANOUT	Charger current control	VCHG / GNDA		87
VBATS		Battery voltage sense input	VBAT / GNDA		91
VCCS		Charger transistor sense	VCHG / GNDA		92
PCHG		Battery Precharge Current	VCHG / GNDA		90
	1				
SIM: 6 Pins	Type	Description	Supplies	Comment	Pin #
DBBSCK	DIGIN	Sim card clock shifter input	VRIO / GNDD		17
DBBSIO	DIGIO	Sim card io shifter to/from DBB	VRIO / GNDD		13
DBBSRST	DIGIN	Sim card reset shifter input	VRIO / GNDD		18
SIMCK	DIGOUT	Sim card clock shifter output	VRSIM / GNDD		96
SIMIO	DIGIO	Sim card io shifter to/from SIMCARD	VRSIM / GNDD	V	98
SIMRST	DIGOUT	Sim card reset shifter output	VRSIM / GNDD		93
VREG: 23 Pins	Type	Description	Supplies	Comment	Pin #
GNDD	PWIO	Power ground return for	GNDD	comment	97
01122	1 11 10	VRDBB, VRTC, VRMEM, VRIO, VRRAM	OT DD		
VCDBB	PWIN	Regulator DBB input	VBAT / GNDD		25
VRDBB	PWOUT	Regulator DBB output	VRDBB / GNDD		24
VSDBB	ANIN	Regulator DBB input feedback	VRDBB / GNDD		23
VCIO1	PWIN	Regulator IO input 1	VBAT / GNDD		99
VCIO2	PWIN	Regulator IO input 2	VBAT / GNDD		100
VRIO1	PWOUT	Regulator IO output 1	VRIO / GNDD		1
VRIO2	PWOUT	Regulator IO output 2	VRIO / GNDD		2
VRSIM	PWOUT	Regulator SIM output	VRSIM / GNDD		95
VCMEM	PWIN	Regulator MEM input	VBAT / GNDD		20
VCRAM	PWIN	Regula tor RAM input	VBAT / GNDD		15
VLMEM	DIGIN	Regulator MEM output selection bit	VBAT / GNDD		16
VRMEM	PWOUT	Regulator MEM output	VRMEM / GNDD		19
VRRAM	PWOUT	Regulator RAM output	VRRAM / GNDD		14
GNDA	PWIO	Power ground return for VRABB	GNDA		57
VCABB	PWIN	Regulator ABB input	VBAT / GNDD		56
VRABB	PWOUT	Regulator ABB output	VRABB / GNDD		55
VBACKUP	PWIN	Backup battery input	VBACKUP /		9
			GNDD		
UPR	PWOUT	Uninterrupted power rail output	VBAT /		3
			VBACKUP		
			GNDD		
VRRTC	PWOUT	Regulator RTC output	VRRTC / GNDD		7
VLRTC	DIGIN	Regulator RTC output selection bit	UPR / GNDD		4
VXRTC	ANIN	Regulator RTC auxiliary output	VRRTC / GNDD		5
TESTV	ANOUT	Regulator RDBB, RIO, RABB, RMEM, RRAM output	VBAT / GNDD		58
		sense (Decement for text guardes)			
		(Reserved for test purpose)			
Tot al Pins	100				

UNDER NON DISCLOSURE AGREEMENT

PAGE: 54/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Package 100 GGM (TOP VIEW)

Index Mark

		GGM			GGM				GGM			GGM
PIN#	_	BALL#	 PIN#		BALL#	1.6	PIN#		BALL#	PIN#	_	BALL#
1	-	B2	26	-	J2		51	-	J9	76	-	B9
2	-	B1	27	-	K2		52	-	J10	77	-	A9
3	-	C2	28	-	J3		53	-	H9	78	-	B8
4	-	C3	29	-	H3		54	-	H8	79	-	C8
5	-	C1	30	-	K3		55	-	H10	80	-	A8
6	-	D2	31	-	J4		56	-	G9	81	-	B7
7	-	D1	32	-	K4		57	-	G10	82	-	A7
8	-	D3	33	-	H4		58	-	G8	83	-	C7
9	-	E1	34	-	K5		59	-	F10	84	-	A6
10	-	E2	35	-	J5		60	-	F9	85	-	B6
11	-	E3	36	-	H5		61	-	F8	86	-	C6
12	-	E4	37	-	G5		62	-	F7	87	-	D6
13	- (E5	38	-	F5		63	-	F6	88	-	E6
14	-	F 1	39	-	K6		64	-	E10	89	-	A5
15	-	F2	40	-	J6		65	-	E9	90	-	B5
16		F3	41	-	H6		66	-	E8	91	-	C5
17	-	F4	42	-	G6		67	-	E7	92	-	D5
18	-	G4	43	-	G7		68	-	D7	93	-	D4
19	- 1	G1	44	-	K7		69	-	D10	94	-	A4
20	-	G2	45	-	J7		70	-	D9	95	-	B4
21	-	G3	46	-	H7		71	-	D8	96	-	C4
22	-	H1	47	-	K8		72	-	C10	97	-	A3
23	-	H2	48	-	J8		73	-	C9	98	-	B3
24	-	J1	49	-	K9		74	-	B10	99	-	A2
25	-	K1	50	-	K10		75	-	A10	100	-	A1

UNDER NON DISCLOSURE AGREEMENT

PAGE: 55/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

6.1 Page 0

Pg	Ad	Registers	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	-	-	-	-	-	-	-	-	-	-	-
00	1	PAGEREG	-	-	-	-	-	-	BSPP1	BSPP0	UCP1	UCP0
0	2	APCDEL1	DELD4	DELD3	DELD2	DELD1	DELD0	DELU4	DELU3	DELU2	DELU1	DELU0
0	3	BULDATA1/2	BIT0	//	//	11	//	//	11	. //	N.	BIT159
0	4	TOGBR1	MADCS	MADCR	AFCS	AFCR	ADACS	ADACR	VDLS	VDLR	VULS	VULR
0	5	TOGBR2	-	-	-	IAPCTR	IBFPT2	IBFPT1	ACTS	ACTR	KEEPS	KEEPR
0	6	VBDR	-	-		VOLCTL2	VOLCTL1	VOLCTL0	VDLPG 3	VDLPG 2	VDLPG 1	VDLPG 0
0	7	AUXAFC1	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	8	AUXAFC2	-	-		-	-	-	-	BIT12	BIT11	BIT10
0	9	AUXAPC	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	10	APCRAM	DW0	to	DW15	//	//	//	//	UP-0	to	UP15
0	11	APCOFF	-	-		-	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	12	AUXDAC	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	13	MADCCTRL	-	-	-	ADIN3	ADIN2	ADIN1	VBKP	ICHG	VCHG	VBAT
0	14	-	-	-	-	-	-	-	-	-	-	-
0	15	VBATREG	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	16	VCGHREG	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	17	ICGHREG	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	18	VBKPREG	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
0	19	ADIN1REG	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
0	20	ADIN2 REG	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	21	ADIN3REG	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	22	ADIN4REG	BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
0	23		-	-	-	-	-	-	-	-	-	-
0	24	MADCSTATUS	-	-	-	-	-	-	-	-	-	ADCBUSY
0	25	CHGREG	CHG9	CHG8	CHG7	CHG6	CHG5	CHG4	CHG3	CHG2	CHG1	CHG0
0	26	ITMASKREG	-	-	-	-	ADCND	-	CHRGER	PUSHOF	REMOT	-
$0 \mathbb{O}$	27	ITSTATREG	-	-	-	-	ADCND	-	CHRGER	PUSHOF	REMOT	-
0	28	BCICTL1	-	RSV	TYPEN	THEN	THSENS2	THSENS1	THSENS0	-	DACNBUF	MESBAT
0	29	BCICTL2	RSV	RSV	PREOFF	CGAIN4	LEDC	CHDISPA	CLIB	CHPASSPA	CHIV	CHEN
0	30	VRPCDEV	-	-	-	-	-	-	-	-	DEVSLP	DEVOFF
0	31	VRPCSTS	-	-	-	CHGPRE	ONMRFLT	ONREFLT	CHGSTS	ITWSTS	ONRSTS	ONBSTS

0 This register as two addresses one in page 0 and the same in page 1.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

DO NOT COPY

PAGE: 56/81

6.2	2 Pa	age 1										
Pg	Ad	Registers	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	0	-	-	-	-	-	-	-	-		-	-
10	1	PAGEREG	-	-	-	-	-	-	BSPP1	BSPP0	UCP1	UCP0
1	2	BULIOFF	-	ULIOFF8	ULIOFF7	ULIOFF6	ULIOFF5	ULIOFF4	ULIOFF3	ULIOFF2	ULIOFF1	ULIOFF0
1	3	BULQOFF	-	ULQOFF8	ULQOFF7	ULQOFF6	ULQOFF5	ULQOFF4	ULQOFF3	ULQOFF2	ULQOFF1	ULQOFF0
1	4	BULQDAC	ULQD9	ULQD8	ULQD7	ULQD6	ULQD5	ULQD4	ULQD3	ULQD2	ULQD1	ULQD0
1	5	BULIDAC	ULID9	ULID7	ULID7	ULID6	ULID5	ULID4	ULID3	ULID2	ULID1	ULID0
1	6	BBCTL	EXTCAL	OUTLV 2	OUTLV 1	OUTLV 0	MSLOT	BBMOD	BALOOP	SLVMI2	SLVMI1	SLVMI0
1	7	VBUR	DXEN	VDLST3	VDLST2	VDLSTI	VDLST0	VULPG4	VULPG 3	VULPG2	VULPG 1	VULPG0
1	8	VBCR1	VFBYP	VBDFAUXG	VSYNC	VCLKM	VALOOP	MICBIA	VULSW I	VBUZ	VDLEAR	VDLAUX
1	9	PWDNRG	-	-	-	ACTCLK	KEEPON	MADCON	AFCON	ADACON	VDLON	VULON
1	10	VBPOP	-	AUXAUTO	AUXCHG	AUXDIS	EARAUTO	EARCHG	EARDIS	HSOAUTO	HSOCHG	HSODIS
1	11	VBCR2	-	-		-	-	-	-	MICNAUX	VDLHSO	MICBIASEL
1	12	APCOUT	APC9	APC8	APC7	APC6	APC5	APC4	APC3	APC2	APC1	APC0
1	13	BCICONF	-	BBSEL1	BBSEL0	MESBB	BBCHGEN	OFFEN	OFFSN3	OFFSN2	OFFSN1	OFFSN0
1	14	BULGCAL	-	QAG3	QAG2	QAG1	QAG0	-	IAG3	IAG2	IAG1	IAG0
1	15	-	-	-	-	-	-	-	-	-	-	-
1	16	-	-	-	-	-	-	-	-	-	-	-
1	17	-	-	-		-	-	-	-	-	-	-
1	18	-	-	-	-	-	-	-	-	-	-	-
1	19	TAPCTL	-	-	-	-	-	-	-	-	-	TAPEN
1	20	TAPREG	HEAD3	HEAD2	HEAD1	HEAD0	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
1	21	AFCCTLADD	-	-	-		-	-	-	AFCBYP	AFCK1	AFCK0
1	22	AFCOUT	-	-	DOUT7	DOUT6	DOUT5	DOUT4	DOUT3	DOUT2	DOUT1	DOUT0
1	23	VRPCSIM	-	-	-	- ·	-	-	SIMLEN	SIMRSU	SIMEN	SIMSEL
1	24	ACDLED	-	-	-	-	-	-	-	-	LEDB	LEDA
1	25		-	-		-	-	-	-	-	-	-
1	26	APCDEL2	DELD9	DELD8	DELD7	DELD6	DELD5	DELU9	DELU8	DELU7	DELU6	DELU5
10	27	ITSTATREG	-		-	-	ADCND	-	CHRGER	PUSHOF	REMOT	-
1	28		-	-	-	-	-	-	-	-	-	-
1	29	VRPCMSK2	<u> </u>	-	-	-	-	-	-	-	MSKOFF ABB	MSKSLP ABB
1	30	VRPCCFG	-	RRTC1	RRTC0	RDBB1	RDBB0	SLPDLY4	SLPDLY3	SLPDLY2	SLPDLY1	SLPDLY0
1	31	VRPCMSK1	MSKOFF SIM	MSKOFF DBB	MSKOFF RAM	MSKOFF MEM	MSKOFF IO	MSKSLP SIM	MSKSLP DBB	MSKSLP RAM	MSKSLP MEM	MSKSLP IO

 ${}^{\textcircled{0}}$ This register as two addresses one in page 0 and the same in page 1.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 57/81

7. VOICE REGISTERS

7.1 Voice band Control Register : VBCR

Name :	VBCR	1	Descri	ption :	Voice b	and cont	trol regi	ster 1			Addr	ess :	8	Page :	1	R/W
VFBYP	VBDFAUX G	VSYNC	VCLKMOD E	VALOOP	MICBIAS	VULSWIT	VBUZ	VDLEAR	VDLAUX	0	1	0		0	0	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		K	ACCESS	ΤY	YPE		
0	0	0	0	0	0	0	0	0	0		<	VALUE	AT	RESET		

VDLAUX	:	Enable the auxiliary output amplifier if the VDLON bit is 1
VDLEAR	:	Enable the Ear amplifier, if the VDLON bit is 1
VBUZ	:	When this bit is set, the Auxiliary and Ear stage are powered down even if VDLAUX or VDLEAR
		are 1.
VULSWITCH	:	Enables the auxiliary input if 0 enables MICIN if 1 (and bit VULON is 1).
MICBIAS	:	When MICBIAS=0, the analog bias for the electric microphone and external decoupling is driven
		to 2V; when the value is 1 the bias is to 2.5V.
VALOOP	:	When this bit is set to 1, the internal analog loop of the output samples is sent to the audio input
		terminal. To avoid saturation of the analog path in this mode you must set:
		PGA downlink = -6 dB , PGA uplink = 0 dB , Volume = 0 dB and Sidetone = MUTE
VCLKMODE	:	When cleared to 0, this bit allows selection of the VCK in burst mode. When set to 1, this bit
		allows selection of the VCK in continuous mode.
VSYNC	:	When the bit VSYNC is set to one, The Digital Modulator, the digital Voice Serial Port and the
		Digital Filter can be reseted externally using VDR input. At the reset using VDR, the Filter will set
		VSYNC to '0'.
VBDFAUXG	:	When the bit VBDFAUXG is set to '0', the gain of AUXIN amplifier is 4.6dB, when se
		gain of AUXIN amplifier is 28.2dB.
VFBYP	:	When the bit VFBYP is set at '0', the filter is not bypassed. If set at '1', the filter is bypassed.

Name :	VBCR	2	Descri	ption :	Voice b	and con	trol regis	ster 2			Addre	ess: 1	1 Page	e: 1	R/W
-	-	-	-		-		MICNAUX	VDLHSO	MICBIASEL	0	1	0	1	1	1/0
R	R	R	R	R	R	R	R/W	R/W	R/W		< A	CCESS	TYPE		
0_	0	0	0	0	0	.0	0	0	0		< \	ALUE A	AT RESET		

MICBIASEL
When bit is set at '1' the HSMICBIAS is active else the MICBIAS is active.
Enable the head set output amplifier if the VDLON bit is '1'
When bit is set at '1' the HSMIC input is used else it is the AUXI input (those inputs are multiplexed in ABB)

UNDER NON DISCLOSURE AGREEMENT

PAGE: 58/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

7.2 Voice band pop cancellation register : VPOP

Name :	VPOP		Descrip	tion : V	voice ba	nd pop	cancella	ion	4	Add	dress :	10 P	age: 1	R/W
-	AUXAUTO	AUXCHG	AUXDIS	EARAUTO	EARCHG	EARDIS	HSOAUTO	HSOCHG	HSODIS	0 1	0	1	0	1/0
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	<	ACCESS	TYPE	SFT	
xx xxDIS		=	AUX / l Enable This bit	EAR / H the disc has NC	ISO, or harge of effect or w	ne of the of the ex when xx hen VD	e VDL ou ternal ca CHG is LON is s	itputs. pacitor set to '1 et to '0'						
XXCHO	7 J	:	Enable This bit Mode A This bit VDLON This bit the corr	the char has NC AUTO is set a rise is clear espondi	rge of th effect utomation red auto ng VDI	ically to matical cxx is O	LXX is se nal capac DLON is '1' whe ly to '0' N	ito i sitor (up s set to '(n when	to VRA 0' Moc This VDI Writ	ABB / 2) le NORMA bit has NO Lxx is set to ' le access En	L effect w 1' able/Dis	when the	e corresj ne charge	oonding 9.
XXAU	ТО	:	write a '1' mea '0'	ns that 3	ave NO	function	nality rur	ns in AU in NORM	TOMA MAL mo	ΓIC mode ode				

UNDER NON DISCLOSURE AGREEMENT

PAGE: 59/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

TOP

						Ŭ														
Name : VB	BUR		Desci	ript	ion : V	oice	e ban	d uplii	nk r	egist	er			Ad	dress :	7	Pag	ge :	1	R/W
DXEN VDL	ST3	VDLST2	VDLST	T1	VDLST0	VUI	PG4	VULPG3	VL	JLPG2	VULPG	VU	LPG0 0	()	1		1	1	1/0
R/W R/	W	R/W	R/W	V	R/W	R	W	R/W		R/W	R/W	R	/W	<	ACCES:	S 1	TYPE			
0 0)	0	0		0		0	0		0	0		0	<	VALUE	E A	TRE	SET		
DXEN VDSLT[3-	0]	:	When norm Side	n bit al n ton	t DXEI node. e level:	N is s.	set a	ut'1'th	ie V	DX s	signal i	s in l	Mute mod	le. If D	•XEN =	'0'	, the	VD	X is in	1-
VULPO[4-	UJ	•	Gam	ort	ne voic	eu	лпк	. progra	annn	nable	gam a	mpn	lier (-12d	ы ю+		110	id su	ep) se	e Tab	le
VULPG 4		VULPG	i 3	V	ULPG 2	:	VU	ILPG 1		VUL	PG 0	R	elative Gai	n						
1		0			0			0			0		-12dB							
1		0			1			1			1		-11dB							
1		1			0			0			0		-10dB							
1		1			0			0			1		-9dB							
1		1			0			1			0		-8dB							
1		1			0			1			1		-7dB							
0		0			0			0			0		-6dB							
0		0			0			0			1		-5dB							
0		0			0			1			0		-4dB	71						
0		0			0			1			1		-3dB							
0		0			1			0			0		-2dB							
0		0			1			0			1		-1dB							
0		0			1			1			0		0dB							
0		0			1			1			1		1dB							
0		1		4	0			0			0		2dB							
0		1			0			0			1		3dB							
0		1			0			1	1		0		4dB							
0		1		-	0			1	Ţ		1		5dB							
0		1			1			0	1		0		6dB							
1		0			0			0			1		7dB							
1		0			0			1			0		8dB							
1		0		-	0			1	T	/	1		9dB							
1		0		-	1			0	-		0		10dB							
1		0		-	1			0			1		11dB							
1		0		-	1			1			0		12dB							
					-						•	1	.202							
						L i			i				、 .	i						
VDLST3		VDLST	2	V	DLST 1		VL	LSIO			Rela	ative C	ain							
1	_	1		_	0			1			-	23dE	3							
1	_	1		_	0			0			-	20dE	3							
0		1		_	1			0				17dE	3							
0		0			1			0			-	14dE	3							
0		1			1			1			-	11dE	3							
0		0			1			1				-8dB								
0		0			0			0				-5dB								
0		1			0			0				-2dB								
0	4	0			0			1				1 dB								
0		1			0			1				1 dB								
1		0			0			0				MUTE								
1		0			0			1				MUTE								
1		0			1			0				MUTE								
1		0			1			1				MUTE								
1		1			1			0				MUTE	=							

7.3 Voice band Control Register : VBUR

UNDER NON DISCLOSURE AGREEMENT

PAGE: 60/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

TOP

1 1 1 1 MUTE

Name :	VBDR		Descrip	tion : V	Voice ba	und dow	nlink re	gister			A	ddress	: 6	Page	: 0	R/W
-	-	-	VOLCTL2	VOLCTL1	VOLCTL0	VDLPG3	VDLPG2	VDLPG1	VDLPG0	0	0	1		1	0	1/0
R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		< /	ACCESS	TYPE	2		
0	0	0	0	0	0	0	0	0	0		< \	ALUE	AT I	RESET		

VDLPG[3-0] : Gain of the Voice downlink programmable gain amplifier (-6dB to +6dB in 1 dB steps).

VOCTL[2-0] : Volume control (0,-6,-12,-18,-14, Mute).

VDLPG 3	VDLPG 2	VDLPG 1	VDLPG 0	Relative Gain
0	0	0	0	-6dB
0	0	0	1	-5dB
0	0	1	0	-4dB
0	0	1	1	-3dB
0	1	0	0	-2dB
0	1	0	1	-1dB
0	1	1	0	0dB
0	1	1	1	1dB
1	0	0	0	2dB
1	0	0	1	3dB
1	0	1	0	4dB
1	0	1	1	5dB
1	1	0	0	6dB
1	1	0	1	-6dB
1	1	1	0	-6dB
1	1	1	1	-6dB

VOLCTL2	VOLCTL1	VOLCTL0	Relative Gain
0	1	0	0dB
1	1	0	-6dB
0	0	0	-12dB
1	0	0	-18dB
0	1	1	-24dB
1	0	1	Mute
0	0	1	Mute
1	1	1	Mute

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 61/81

8. BASEBAND REGISTERS

8.1 Baseband uplink registers

Name :	BULIO	FF De	escriptio	on : Base	eband U			A	Address :	2 Pag	e: 1	R/W			
-	UILOFF8	ULIOFF7	ULIOFF6	ULIOFF5	ULIOFF4	ULIOFF3	ULIOFF2	ULIOFF1	ULIOFF0	0	0	0	1	0	1/0
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		<	ACCESS T	YPE		
0	0	1	1	1	1	1	1	1	1		<	VALUE A1	Γ RESET		

ULIOFF [8-0]

: Value of the offset on I channel.

W access is disabled during offset calibration (BULCAL high).

Nam	e : BUL	QOFF I	Descript	ion : Ba	seband	er		A	ddress :	3 Page	: 1	R/W			
-	ULQOFF8	ULQOFF7	ULQOFF6	ULQOFF5	ULQOFF4	ULQOFF3	ULQOFF2	ULQOFF1	ULQOFF0	0	0	0	1	1	1/0
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		<	ACCESS	TYPE		
0	0	1	1	1	1	1	1	1	1		<	VALUE	AT RESET		

ULQOFF [8-0]

: Value of the offset on Q channel.

W access is disabled during offset calibration (BULCAL high).

Nam	ie : BUL!	ÍDAC D	escripti	on : Bas	eband U	Jplink I			Ad	ldress :	5 Pag	e: 1	R/W		
ULIDACS) ULIDAC8	ULIDAC7	ULIDAC6	ULIDAC5	ULIDAC4	ULIDAC3	ULIDAC2	ULIDAC1	ULIDAC0	0	0	1	0	1	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		< A	ACCESS	TYPE		
0	1	1	1.		1		1	1	1		< V	VALUE	AT RESET		

ULIDAC [9-0] : Data applied digital to analog converter of I channel. Write is disabled during modulation.

Name :	BULQI	DAC	Descri	ption : H	Baseban	d Uplinl	k Q DAO	Cregist	er		Ad	ldress :	4 Pag	ge: 1	R/W
ULQDAC9	ULQDAC8	ULQDAC7	ULQDAC6	ULQDAC5	ULQDAC4	ULQDAC3	ULQDAC2	ULQDAC1	ULQDAC0	0	0	1	0	0	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		< A	ACCESS	TYPE		
0	0	0	0	0	0	0	0	0	0		< \	ALUE A	AT RESET		

ULQDAC [9-0] : Data applied digital to analog converter of Q channel. Write is disabled during modulation.

Name : Calibra	BULGC tion	CAL	Descri	ption : E	Baseban	d Uplini	k Absolı	ıte Gain			Ac	ldress :	14 Pa	age : 1	R/W
-	QAG3	QAG2	QAG1	QAG0	-	IAG3	IAG2	IAG1	IAG0	0	1	1	1	0	1/0
R	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W		< /	ACCESS	TYPE		
0	0	0	0	0	0	0	0	0	0		< 1	VALUE A	AT RESET		

[I,Q]AG[3:0]

0000

1111

1110

1101

IAG [3-0] QAG [3-0]

: Absolute Gain calibration for I DAC

: Absolute Gain calibration for Q DAC

[I,Q]AG[3:0]	Relative Gain
0000	0dB
0001	+0.27dB
0010	+0.53dB
0011	+0.78dB

	+0.78dB	
Į	TEXAS STRUMENTS	

UNDER NON DISCLOSURE AGREEMENT

Relative Gain

0dB

-0.27dB

-0.56dB

-0.85dB

PAGE: 62/81

information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain

REF: TWL3014

TOP

-1.16dB -1.48dB -1.80dB

														_	-
Name	e : BULI	DATA1	Descri	iption :	Basebar	nd Uplin	k Data l	Buffer 1		Ad	dress :	3 Page	: 0 (16	5	W
				-		-				words)					
BIT0	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	BIT8	BIT9	0	0	0	1	1	0
BIT10	BIT11	BIT12	BIT13	BIT14	BIT15	BIT16	BIT17	BIT18	BIT19	0	0	0	1	1	0
BIT20	BIT21	BIT22	BIT23	BIT24	BIT25	BIT26	BIT27	BIT28	BIT29	0	0	0	1	1	0
BIT30	BIT31	BIT32	BIT33	BIT34	BIT35	BIT36	BIT37	BIT38	BIT39	0	0	0	1	1	0
BIT40	BIT41	BIT42	BIT43	BIT44	BIT45	BIT46	BIT47	BIT48	BIT49	0	0	0	1	1	0
BIT50	BIT51	BIT52	BIT53	BIT54	BIT55	BIT56	BIT57	BIT58	BIT59	0	0	0	1	1	0
BIT60	BIT61	BIT62	BIT63	BIT64	BIT65	BIT66	BIT67	BIT68	BIT69	0	0	0	1	1	0
BIT70	BIT71	BIT72	BIT73	BIT74	BIT75	BIT76	BIT77	BIT78	BIT79	0	0	0	1	1	0
BIT80	BIT81	BIT82	BIT83	BIT84	BIT85	BIT86	BIT87	BIT88	BIT89	0	0	0	1	1	0
BIT90	BIT91	BIT92	BIT93	BIT94	BIT95	BIT96	BIT97	BIT98	BIT99	0	0	0	1	1	0
BIT100	BIT101	BIT102	BIT103	BIT104	BIT105	BIT106	BIT107	BIT108	BIT109	0	0	0	1	1	0
BIT110	BIT111	BIT112	BIT113	BIT114	BIT115	BIT116	BIT117	BIT118	BIT119	0	0	0	1	1	0
BIT120	BIT121	BIT122	BIT123	BIT124	BIT125	BIT126	BIT127	BIT128	BIT129	0	0	0	1	1	0
BIT130	BIT131	BIT132	BIT133	BIT134	BIT135	BIT136	BIT137	BIT138	BIT139	0	0	0	1	1	0
BIT140	BIT141	BIT142	BIT143	BIT144	BIT145	BIT146	BIT147	BIT148	BIT149	0	0	0	1	1	0
BIT150	BIT151	BIT152	BIT153	BIT154	BIT155	BIT156	BIT157	BIT158	BIT159	0	0	0	1	1	0
W	W	W	W	W	W	W	W	W	W		< A	CESS TY	/PE		
1	1	1	1	1	1	1	1	1	1		< V	ALUE AT	RESET		

BIT0 to BIT159 : Bits composing the sequence of the burst to be send. BIT 0 is transmitted first. For a normal burst, burst buffer should be loaded as follows :

- Bit0 to Bit 3
 - : 4 guard bits . : 3 tail bits.
- Bit4 to Bit 6 : 58 data bits.
- Bit7 to Bit 64 Bit 65 to Bit 90 Bit 91 to Bit 148
- : 26 training sequence bits.
- : 58 data bits.
- : 3 tail bits.
- Bit 149 to bit 151 Bit 152 to bit 159 : 8 guard bits.

At reset and after each transmission the burst buffer is re-initialized with guard bits (all bits at 1).

Name	: BULI	DATA2	Descri	iption :	Baseban	nd Uplin	k Data l	Buffer 2		Ad words)	ldress :	3 Page	: 0 (16	5	W
BITO	BIT1	BIT2	BIT3	BIT/	BIT5	BIT6	BIT7	BITS	BITO	0	0	0	1	1	0
BIT10	BIT11	BIT12	BIT13	BIT14	BIT15	BIT16	BIT17	BIT18	BIT10	0	0	0	1	1	0
BIT20	BIT21	BIT22	BIT23	BIT24	BIT25	BIT26	BIT27	BIT28	BIT70	0	0	0	1	1	0
BIT30	BIT31	BIT32	BIT33	BIT34	BIT25	BIT36	BIT27 BIT37	BIT38	BIT39	0	0	0	1	1	0
BIT40	DIT/1	DIT32	DIT33	DIT 44	DIT45	DIT30	DIT/7	DITIO	DIT/0	0	0	0	1	1	0
BIT50	BIT51	BIT52	BIT53	BIT54	BIT55	BIT56	BIT57	BIT58	BIT50	0	0	0	1	1	0
BIT60	BIT61	BIT62	BIT63	BIT64	BIT65	BIT66	BIT67	BIT68	BIT60	0	0	0	1	1	0
BIT70	BIT71	BIT72	BIT73	BIT74	BIT75	BIT76	BIT77	BIT78	BIT79	0	0	0	1	1	0
DIT70	DITV1	DIT/2 DIT/2	DIT/3	DIT 94	DIT 75	DIT/0	DIT/7	DITIO	DITYO	0	0	0	1	1	0
BITOO	DIT01	DIT02	DIT03	DIT04	DIT05	DIT60	DIT07	DITOS	DITO	0	0	0	1	1	0
BIT100	BIT101	BIT102	BIT103	BIT 94 BIT 104	BIT105	BIT50 BIT106	BIT107	BIT 108	BIT55 BIT100	0	0	0	1	1	0
BIT110	BIT111	BIT112	BIT103	BIT114	BIT105	BIT116	BIT107	BIT100	BIT10	0	0	0	1	1	0
BIT120	DIT121	DIT12	DIT122	DIT114	DIT125	DIT10	DIT117	DIT139	DIT117	0	0	0	1	1	0
BIT120	DIT121	DIT122	DIT123	DIT124	DIT125	DIT120	DIT127	DIT120	DIT129	0	0	0	1	1	0
BIT130	DIT1/1	DIT132	DIT133	DIT134	DIT135	DIT130	DIT137	DIT130	DIT139	0	0	0	1	1	0
BIT140	DIT151	DIT142	DIT143	DIT144	DIT143	DIT140 DIT156	DIT14/	DIT140	DIT149	0	0	0	1	1	0
W	W	W	W 811133	W	W 100	W 511130	W/	W 511136	W 511139	0		VTEE T		1	0
1 I	1	1		1	1	vV 1	1	1	vV 1		< AC	LLE AT	ITE DECET		

TEXAS NETRUMENTS

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 63/81

The BULDATA2 register is use for multislots modulation, while data in BULDATA1 are modulated and transmit in a GSM slot, data are write in BULDATA2. At the following slot, data from BULDATA2 are transmit while data are write in BULDATA1.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 64/81

TOP

		_			-					1					
Name :	BBCTL	Des	cription	: Baset	band co	odec cor	trol reg	gister			Address	: 6	Page :	1	R/W
EXTCAL	OUTLEV2	OUTLEV1	OUTLEV0	MSLOT	BBMOD	BALOOP	SELVMID	2 SELVMID1	SELVMIDO	0 0	1	TVDE	1	0	1/0
R/W	R/W	R/W	R/W 0	R/W	R/W	R/W	R/W	R/W	R/W	<	VALUE	AT F	RESET		
EXTC	CAL	11	: Dow (dif	nlink au ferential	uto cal: l (IN,IF	ibration) are sh	mode. orted ,	When 0 i (QN,QP)	nternal are shor	autocalibrat ted) when 1	ion external	calib	ration.		
SLL V	MID [2-(<u>'</u>]	. Sele	et the v		output	comme	in mode e	JI Daseb	and upmik.					
			SE	ELVMID2	S	ELVMID.	1 S.	ELVMID0	Outp	out common n	iode				
				0		0		0		VRABB / 2					
				0		0		1		1.35 V					
				0		1		0		1.45 V					
				0		1		1		VREF					
				1		0		0		1.25					
				1		0		1		1.25					
				1		1		0		1.25					
				1		1		1		1.25					
MSLO OUTL	DT .EV[2:0]		: when	n 1, moo ct the v	lulator alue of	is in m	ultislot seband	mode output le	vel.						
		- 1	0	UTLEV2		OUTLEV	/1	OUTLEV	/0	Output level(V	(pp)				
				0		0		0		$2 \ x V_{VREF}$					
				0		0		1		(16/15) xV _{VI}	REF				
				0		1		0		(22/15) xV _{VI}	REF				
				0		1	·	1		(8/15) xV _{VR}	EF				
				1		0		0		$(18/15) \text{ xV}_{VI}$	REF				
			<u> </u>	1		0		1		$(18/15) \times V_{VI}$	REF				
				1		1		1		$(20/15) \times V_{VI}$	XEF				
				1		1		1		(20/15) X V	REF				

8.2 Baseband control registers

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 65/81

TOP

9. VRPC REGISTERS

Name	: VRPCI	MSK1	Desc	ription :	VPRC	MASK				A	Address	: 31 F	age : 1		R/W
MSKO	F MSKOFF	MSKOFF	MSKOFF	MSKOFF	MSKSLP	MSKSLP	MSKSLP	MSKSLP	MSKSLP	1	1	1	1	1	1/0
SIM	DBB	RAM	MEM	10	SIM	DBB	RAM	MEM	10						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		< AC	CESS T	YPE		
0	0	0	0	0	0	0	0	0	0		≤ V/	ALUE A'	T RESET		

MSKSLP[IO,MEM,DBB,RAM,SIM]

'0' the regulator is in low consumption mode in SLEEP mode

MSKOFF[IO,MEM,DBB,RAM,SIM]

'1' the regulator is disable, in SLEEP mode no regulation is provided '1' the regulator is in low consumption mode in OFF mode

'0' the regulator is disable, in OFF mode no regulation is provided

Name :	VRPCM	ASK2	Desc	ription :	VPRC	MASK .	ABB			Addı	ress : 29	Page : 1		R/W
-	-	-	-	-	-	-	-	MSKOFF ABB	MSKSLP ABB	1	1 1	0	1	1/0
R	R	R	R	R	R	R	R	R/W	R/W	<	ACCESS	TYPE		
0	0	0	0	0	0	0	0	0	1	<	VALUE	AT RESET		

MSKSLPABB

'0' the regulator is in low consumption mode in SLEEP mode'1' the regulator is disable, in SLEEP mode no regulation is provided

MSKOFFABB

'1' the regulator is in low consumption mode in OFF mode

'0' the regulator is disable, in OFF mode no regulation is provided

Name :	VRPCC	CFG	Descrip	tion : V	PRC CO	NFIG				A	Address	: 30	Page: 1	-	R/W
-	RRTC1	RRTC0	RDBB1	RDBB0	SLPDLY4	SLPDLY3	SLPDLY2	SLPDLY1	SLPDLY0	1	1	1	1	0	1/0
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	<	ACCESS	TYPE			
0	KEEP	KEEP	KEEP	KEEP	1	1	1	1	1	<	VALUE	AT RES	ET (AFTER	EACH SWI	TCH ON)
	VALUE	VALUE	VALUE	VALUE											
0	VLRTC	0	VLRTC	0	1	1	1	1	1	<	VALUE	AT RES	ET (AFTER	FIRST RESI	ET)

SLPDLY[4:0]	:	Delay in SLPDLY*20*T32K before going in SLEEP mode
		(Code 00000 is not allowed)
RDBB1, RDBB0	:	Programs VRDBB voltage
		01' = 1.2 V $00' = 1.4 V$ $10' = 1.8$
RRTC1, RRTC0	:	Programs VRRTC voltage
		01' = 1.2 V $00' = 1.4 V$ $10' = 1.8$

÷

:

•

Name :	VRPCE	VRPCDEV Description : VPRC switch off register										: 30	Page : 0		R/W
-	-	-		-	-	-	-	DEVSLP	DEVOFF	1	1	1	1	0	1/0
R	R	R	R	R	R	R	R	R/W	R/W		< AC	CESS TY	/PE		
0	0	0	0	0	0	0	0	0	0		< VA	ALUE AT	RESET		

DEVOFF DEVSLP Start the WDT to switch OFF the regulators.

EVSLP		-	:	Start the SLPDLY and switch the ABB in SLEEP mode

N	ame :	VRPCS'	TS	Descr	iption :			Address	s: 31	Page :	0	R				
	-	-	-	CHGPRES	ONMRFLT	ONREFLT	CHGSTS	ITWSTS	ONRSTS	ONBSTS	1	1	1	1	1	0
	R	R	R	R	R	R	R	R	R	R		< AC	CESS TY	/PE		
	0	0	0	0/1	0/1	0/1	0/1	0/1	0/1	0/1		< VA	LUE AT	RESET		

ONBSTS ONRSTS

: Switch on Condition on ON BUTTON Push

: Switch on Condition on ON REM transition 0->1

UNDER NON DISCLOSURE AGREEMENT

PAGE: 66/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

REF: 100L3014	R	EF		T۷	٧L	.3	01	4
---------------	---	----	--	----	----	----	----	---

ITWSTS : Switch on Condition on ITWAKEUP CHGSTS Switch on Condition on CHARGER PLUG : ONREFLT Reflect the state of PWON pin after de bouncing : ONMRFLT : Reflect the state of ON_REM pin after debouncing CHGPRES : Mention that the Battery Charger is plugged

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 67/81

10. BCI REGISTERS

Controlling the operation of the BCI requires the exchange of 2 types of programming signals between the BCI itself and the rest of the system, i.e., the Power Control state machine contained in the VRPCD of ABB , and the uC contained in Hercules

-1- some programming signals will be sent or received by the uC exclusively, when it is fully awake; the path for these signals includes the uC interface registers only.

-2- other programming signals will be also sent or received by the Power Control state machine located in VRPCD block, before the uC gets awakened; the path for these signals includes a multiplexing operation between the uC interface registers (VRIO supply domain) and the Power Control state machine. A signal driving the direction of the multiplex, will decide which device, the Power Control state machine or the uC, will send or receive programming data to or from the BCI.

10.1 Battery charger current/voltage dac register:

Name : CHGREG					cription	:					Addro	ess : 25	Page	: 0	R/W
CHG9	CHG8	CHG7	CHG6	CHG5	CHG4	CHG3	CHG2	CHG1	CHG0	1	1	0	0	1	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		< AC	CESS TY	'PE		
0	0	0	0	0	0	0	0	0	0		< VA	ALUE AT	RESET		

CHG [9..0]

: 10 Bit DAC register for setting a voltage or a current for Main Battery charging.

Name : BCICTL1 R/W Description : Address 28 Page : 0 THSENS2 THSENS1 RSV TYPEN THEN THSENS0 DACNBU MESBAT 0 1/0R/W R/W R/W R/W R/W ACCESS TYPE P D/M D/V D AX 0 0 0 0 0 0 0 VALUE AT RESET 0 0 0 MESBAT : connects resistive divider to Main battery DACNBUF : bypass DAC buffer **THSENS** [2..0] : Set eight possible values for thermal sensor bias current THEN : enables bias current for main battery temperature sensing **TYPEN** : enables bias current for main battery type reading RSV : reserved bit (write only '0')

10.2 Battery charging Control registers

UNDER NON DISCLOSURE AGREEMENT

PAGE: 68/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Nama P	CICTI	,		Dag	printion :						Addra		20 D	$aa \cdot 0$	D/W
Name B	CICIL	2		Des	inpuon :						Addres	ss :	29 P	age: 0	K/ W
RSV	RSV	PREOFF	CGAIN4	LEDC	CHDISPA	CLIB	CHPASSPA	CHIV	CHEN	1	1 1		0	1	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	<	ACCESS	TY	PE		
0	0	0	0	0	0	0	0	0	0	<>	VALUE	AT	RESET	(CHG PRES	ENT)
1	1	1	1	1	1	1	1	1	1	<>	VALUE	_AT	RESET	(CHG NOT	PRESENT)
CH CH CL CH LE CG PR RS	EN IV IPASSP IB DISPA DC AIN4 EOFF V	A				: enables : selects : control : allows : control : enable : reduce : disable : reserve	s the charge s constant s fully cha a zero cali ls charge of the LEDC the gain of the prech ad bit (wri	ger currer arge of bration or no ci to ind f the c arge te only	t or con Main B routine harge of icate a c urrent to '0')	astant vo attery of the I f Main B charge o voltage	ltage ch to V cor attery e convert	argi iver	ng ter rom 10	0 to 4	

This register is supplied by VCHG.

When charger is not present, '1' value are read on each bit.

10.3 Battery charging configuration registers

Name :	BCICO	NF		De	escription	n :					A	dress :	: 13 Pa	uge : 1	R/W
-	BBSEL1	BBSEL0	MESBB	BBCHGEN	OFFEN	OFFSN3	OFFSN2	OFFSN1	OFFSN0	1	1	1	0	0	1/0
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	<	ACCESS	TYPE			
0	KEEP VALUE	KEEP VALUE	0	KEEP VALUE	KEEP VALUE	KEEP VALUE	KEEP VALUE	KEEP VALUE	KEEP VALUE	<)	VALUE	AT RE	ESET (AFTI	ER EACH SV	WITCH ON
0	0	0	0	0	0	0	0	0	0	<	VALUE	AT RE	ESET (AFT	ER FIRST RI	ESET)

OFFSN [3..0] : Set 16 possible values for current to voltage conversion offset. 0 => +0mvN => +N*12.5mV $15 \implies +187.5 \text{ mV}$ (typical values) OFFEN : Enable offset settings for current to voltage conversion. BBCHGEN : Enable Back Up Battery Charger MESBB : connects resistive divider to Back-up Battery BBSEL[1:0] : End charging backup battery voltage offset $00 \Rightarrow 0mV, 01 \Rightarrow -100mV, 10 \Rightarrow -200mV, 11 \Rightarrow -200mV$ (typical values)

UNDER NON DISCLOSURE AGREEMENT

PAGE: 69/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

11. MADC REGISTERS

11.1 Monitoring ADC Control

					Add	lress	: 1	3 Page	: 0	W
KPCV	ICHGCV	VCHGCV	VBATCV	0	1	1		0	1	1/

Name :	Name :ADCCTRL			De	escriptio	n :						Address	: 13	3 Page	: 0	W
-	-	ADIN4CV	ADIN3CV	ADIN2CV	ADIN1CV	VBKPCV	ICHGCV	VCHGCV	VBATCV	0	1	1		0	1	1/0
R	R	W	W	W	W	W	W	W	W		<	ACCESS	TY	PE		
0	0	0	0	0	0	0	0	0	0		<	VALUE	AT	RESET		

Name :.	ADCCT	RL SHA	ADOW	Ε	Descripti					Address	:13 Page	: 0	R		
-	-	ADIN4CV	ADIN3CV	ADIN2CV	ADIN1CV	VBKPCV	ICHGCV	VCHGCV	VBATCV	0	1	1	0	1	1/0
R	R	R	R	R	R	R	R	R	R		<	ACCESS	TYPE		
0	0	0	0	0	0	0	0	0	0		<	VALUE	AT RESET		

VBATCV	:	This bit selects a conversion of the battery voltage. When it is high, a conversion of this input is
		expected during the next conversion sequence.
VCHGCV	:	This bit selects a conversion of the charger battery voltage. When it is high, a conversion of this
		input is expected during the next conversion sequence.
ICHGCV	:	This bit selects a conversion of the charger battery current. When it is high, a conversion of this
		input is expected during the next conversion sequence.
VBKPCV	:	This bit selects a conversion of the backup battery voltage. When it is high, a conversion of this
		input is expected during the next conversion sequence.
ADIN1CV	:	This bit selects a conversion of the ADIN1 input. When it is high, a conversion of this input is
		expected during the next conversion sequence.
ADIN2CV	:	: This bit selects a conversion of the ADIN2 input. When it is high, a conversion of this input is
		expected during the next conversion sequence.
ADIN3CV	:	This bit selects a conversion of the ADIN3 input. When it is high, a conversion of this input is
		expected during the next conversion sequence.
ADIN4CV	:	This bit selects a conversion of the ADIN4 input. When it is high, a conversion of this input is
		expected during the next conversion sequence.

A **shadow** register, which corresponds to ADCCTRL Register is used during a conversions sequence: the running sequence performs conversions depending on bits of the shadow register. If the micro controller modifies the value of ADCCTRL data during a conversions sequence.

register. If the micro-controller modifies the value of ADCCTRL data during a conversions sequence, the new data will be loaded in the shadow register at the beginning of the next sequence.

А	ccess:		
A	DCCTR	L	: Write access at any time, even if MADC powered down.
A	DCCTR	L shadow	: Updated with ADCCTRL contents at the beginning of a sequence of
			conversions (when receiving START_CONV signal);
			: Read access at any time:
If	a read s	signal occurs	when ADCBUSY = 1 (sequence is running), selection bits, which correspond to
		curr	ent running sequence, are read;
If	a read s	ignal occurs	when $ADCBUSY = 0$ (no runnin g sequence), last written selection bits, which
		corr	espond to last performed sequence, are read.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

ТОР

11.2 Monitoring ADC output register

For each register from Address 15 to 22 perform a ,

Read access : Only when ADCEOC bit is 0 and MADC module is powered on.

Write access : Start a conversion (bits contents not affected) like STARTADC in TSP interface.

11.2.1 ADC_STATUS

Name :	Name :ADC_STATUS Description :										Ad	dress : 2	24 Page	: 0	R
-	-	-	-	-	-	-	-	-	ADCBUSY	1	1	0	0	0	1
R	R	R	R	R	R	R	R	R	R	<	< A	CCESS T	YPE		
0	0	0	0	0	0	0	0	0	0	~	< V.	ALUE A	Г RESET		

ADCBUSY : This bit is high during a conversion.

11.2.2 Battery voltage register: VBATREG (MADC RAM)

Name :VBATREG Description :											R				
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	0	1	1	1	1	1
R	R	R	R	R	R	R	R	R	R	< ACCESS TYPE					
0	0	0	0	0	0	0	0	0	0		< V.	ALUE AT	Γ RESET		

BIT[9:0] : Output of the 10 bits monitoring ADC for the voltage of the battery.

11.2.3 Charger battery voltage register: VCHGREG (MADC RAM)

Name :VCGHREG Description :											: 0	R			
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	1	0	0	0	0	1
R	R	R	R	R	R	R	R	R	R	< ACCESS TYPE					
0	0	0	0	0	0	0	0	0	0		< V/	ALUE A	Γ RESET		

BIT[9:0] : Output of the 10 bits monitoring ADC for the voltage of the battery charger.

11.2.4 Charger battery current register: ICHGREG (MADC RAM)

Name :	ICGHRE	EG		Des	scription	1:					R				
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	1	0	0	0	1	1
R	R	R	R	R	R	R	R	R	R	< ACCESS TYPE					
0	0	0	0	0	0	0	0	0	0		< VA	LUE AT	RESET		

BIT[9:0]

: Output of the 10 bits monitoring ADC for the current of the battery charger.

11.2.5 Backup battery voltage register: VBKPREG (MADC RAM)

Name :VBKPREG Description :										R						
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	1	0	0	1	0	1	
R	R	R	R	R	R	R	R	R	R	< ACCESS TYPE						
0	0	0	0	0	0	0	0	0	0		< VA	ALUE AT	RESET			

UNDER NON DISCLOSURE AGREEMENT

PAGE: 71/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 72/81
11.2.6 Battery type register: ADIN1REG (MADC RAM)

Name :.	ADIN1R	EG		D	escription	on :					Ad	ldress	: 19	Page	: 0	R
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	1	0	0		1	1	1
R	R	R	R	R	R	R	R	R	R		< A	CCESS	TYP	Е		
0	0	0	0	0	0	0	0	0	0		< V	ALUE	AT	RESET		

BIT[9:0] : Output of the 10 bits monitoring ADC for the ADIN1 pin.

11.2.7 Battery temperature register: ADIN2REG (MADC RAM)

Name :	ADIN2R	REG		D	escripti	on :				Address : 20 Page : 0 H	R
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO	1 0 1 0 0	1
R	R	R	R	R	R	R	R	R	R	< ACCESS TYPE	
0	0	0	0	0	0	0	.0	0	0	< VALUE AT RESET	

BIT[9:0] : Output of the 10 bits monitoring ADC for the ADIN2 pin.

11.2.8 ADIN3REG (MADC RAM)

Name :.	ADIN3R	EG		D	escriptio	on :				P	Add	lress : 2	1 Page	: 0	R
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO	1	0	1	0	1	1
R	R	R	R	R	R	R	R	R	R		< AC	CESS TY	/PE		
0	0	0	0	0	0	0	0	0	0		< VA	LUE AT	RESET		

BIT[9:0] : Output of the 10 bits monitoring ADC for the ADIN3 pin.

11.2.9 ADIN4REG (MADC RAM)

:

Name :	ADIN4R	EG		D	escripti	on :					Add	ress:2	2 Page	: 0	R
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	1	0	1	1	0	1
R	R	R	R	R	R	R	R	R	R		< AC	CESS TY	/PE		
0	0	0	0	0	0	0	0	0	0		< VA	LUE AT	RESET		

BIT[9:0]

Output of the 10 bits monitoring ADC for the ADIN4 pin.

UNDER NON DISCLOSURE AGREEMENT

PAGE: 73/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

12. CKG REGISTERS

12.1 Block power up / down selection

These bits are not memories cells, they generate only set or reset of internal latches. Writing "0" into any of these bit has no action.

If both xxxR and xxxS are writen to "1" at the same time it is interpreted as xxxR (e.g set xxON to zero).

Name :	TOGBI	R 1	Descr	iption :	Toggle	bits reg	gister1				A	ddre	ess: 4	4 Page	: 0	W
MADCS	MADCR	AFCS	AFCR	ADACS	ADACR	VDLS	VDLR	VULS ,	VULR	0		0	1	0	0	0
W	W	W	W	W	W	W	W	W	W		<	A	CESS	TYPE		
0	0	0	0	0	0	0	0	0	0		<	V	ALUE	AT RESE	T	

4

VULR	:	Writing "1" sets the bit VULON to zero
VULS	:	Writing "1" sets the bit VULON to one
VDLR	:	Writing "1" sets the bit VDLON to zero
VDLS	:	Writing "1" sets the bit VDLON to one
ADACR	:	Writing "1" sets the bit ADACON to zero
ADACS	:	Writing "1" sets the bit ADACON to one
AFCR	:	Writing "1" sets the bit AFCON to zero
AFCS	:	Writing "1" sets the bit AFCON to one
MADCR	:	Writing "1" sets the bit MADCON to zero
MADCS	:	Writing "1" sets the bit MADCON to one

Name :	TOGBI	R 2	Desci	iption :	Toggle	bits reg	gister2				Address	s:5	Page: 0		W
-	-	-	IAPCTR	IBUFPTR2	IBUFPTR1	ACTS	ACTR	KEEPS	KEEPR	0	0	1	0	1	0
-	-	-	W	W	W	W	W	W	W		< A0	CESS T	YPE		
0	0	0	0	0	0	0	0	0	0		< VA	ALUE A	Γ RESET		

KEEPR	:	Writing "1" sets the bit KEEPON to zero
KEEPS	:	Writing "1" sets the bit KEEPON to one
ACTR	:	Writing "1" sets the bit ACTIVMCLK to z ero
ACTS	:	Writing "1" sets the bit ACTIVMCLK to one
IBUFPTR1	:	Writing "1" initializes pointer of burst buffer 1
IBUFPTR2	:	Writing "1" initializes pointer of burst buffer 2
IAPCTR	:	Writing "1" initializes pointer of APC ram

UNDER NON DISCLOSURE AGREEMENT

PAGE: 74/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

ne: PWDNRG	De	scription	: Regis	ter For	Poweri	ng Dow	n	A	ddress :	9 Page : 1	L	R
	ACTIVMCLK	KEEPON M	IADCON	AFCON	ADACON	VDLON	VULON	0	1 0	0	1	1/0
R R R	R	R	R	R	R	R	R	<	ACCESS	TYPE		
0 0	0	0	0	0	0	0	0	<	VALUE	AT RESET		
ULON : DLON : DACON : FCON : ADCON :	 When th VULS When th VDLS When th and ress When th This bis When th When the When the When the set of the set	his bit is s and reset his bit is s and reset his bit is s set by AD his bit is s it is set by his bit is s	set to 0 by VUI set to 0 by VDI set to 0, DACR set to 0, y AFCS set to 0	, the vo LR.), the v LR. , the au , the A S and r , the M	oice ban oice bar uxiliary l FC is in eset by IADC is	id uplin nd dowr DAC is power AFCR. s in pow	k path is ilink path in power down mo rer down	in power 1 is in pov down mo ode. mode. Th	down mo ver down ode. This tis bit is s	ode. This bi mode. This bit is set by set by MAD	t is set s bit is s ADAC	by set b S S
	by MA	ADCR.										
EEPON	: When the	his bit is s	set to 1.	, the A	DC of N	ADC I	block is a	lways Of	V even af	ter a conver	sion. V	Vhen
	this bit	t is set to (0, the A	ADC of	f MADC	block :	sets itself	automati	cally OF	F after a co	nversio	n.
	This bi	it is set by	KEEP	S and	reset by	KEEPI	ર .					
CTIVMCLK	: When th	his bit is s	et to 0,	the M	ADC, II	BIC are	in low po	wer mod	e, using C	CK32K cloc	k. This	bit i

12.2 Power up / down status

UNDER NON DISCLOSURE AGREEMENT

PAGE: 75/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

13. AFC REGISTERS

Name :	me : AUXAFC1 Description : Automatic Frequency Control Reg1											ddress :	7 Page	0	R/W
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	0	0	1	1	1	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		<	ACCESS	TYPE		
0	0	0	0	0	0	0	0	0	0		<	VALUE	AT RESET		

BIT[9-0] : LSB Input of the 13 bit AFC DAC in two's complement.

Name :	ne : AUXAFC2 Description : Automatic Frequency Control Reg2											ddress : 8	B Page	0	R/W
-	-	-	-	-	-	-	BIT12	BIT11	BIT10	0	1	0	0	0	1 / 0
R	R	R	R	R	R	R	R/W	R/W	R/W		<	ACCESS T	YPE		
0	0	0	0	0	0	0	0	0	0		<	VALUE A	T RESET		

: MSB Input of the 13 bit AFC DAC in two's complement. BIT[12-10] The AFC value is loaded after successive write of AFC-MSB and AFC-LSB.

Name :	AFCCT	LADD	Descri	ption : `	Work fre	equency	of AFC	2			Add	ress: 2	1 Page	1	R/W
-	-	-	-	-	-	-	AFCBYP	AFCCK1	AFCCK0	1	0	1	0	1	1/0
R	R	R	R	R	R	R	R/W	R/W	R/W		< A	CCESS T	YPE		
0	0	0	0	0	0	0	0	0	0		< V	ALUE A'	T RESET		

AFCCK[1:0]	:	'00' → CKAFC = CKIN
		'01' → CKAFC = CKIN/2
		'10' → CKAFC = CKIN/4
		'11' → CKAFC = CKIN/8
		(CKIN = CK13M/3 = 4.3 MHz)
AFCBYP	:	Disable write in AFCOUT by delta sigma modulator
		Enable write by USP or BSP access in AFCOUT register

Name :	Jame : AFCOUT Description : AFC Digital output register										Add	ress: 2	22 Page	2 1	R/W
-	-	DOUT7	DOUT6	DOUT5	DOUT4	DOUT3	DOUT2	DOUT1	DOUT0	1	0	1	1	0	1/0
R	R	R/W	R/W_	R/W	R/W	R/W	R/W	R/W	R/W		< A	CCESS T	YPE		
0	0	0	0	0	0	0	0	0	0		< V	ALUE A'	T RESET		

DOUT[7:0]	:	Output of the AFC delta sigma modulator (for write access , see AFCBYP bit description) AFCON must be set to enable the write

TEXAS TRUMENTS

UNDER NON DISCLOSURE AGREEMENT

PAGE: 76/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

TOP

14. APC REGISTERS

Name :	APCDE	L1 D	escripti	on : APG	C Ramp	Delay F	Reg.				Ado	dress :	2 Page	: 0	R/W
DELD5	DELD4	DELD2	DELD1	DELD0	DELU4	DELU3	DELU2	DELU1	DELU0	0	0	0	1	0	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		< AC	CCESS T	YPE		
0	0	0	0	0	0	0	0	0	0		< V/	ALUE A'	T RESET		

DELU[4:0] : LSB for the value of the delay of ramp-up start versus the rising edge of BENA.

DELD[4:0] : LSB for the value of the delay of ramp-down start versus the falling edge of BENA.

Name :	APCDE	L2 D	escripti	on : AP	C Ramp	Delay R	Reg.					Α	ddr	ess :	26	Page	e:1	R/W
DELD9	DELD8	DELD7	DELD6	DELD5	DELU9	DELU8	DELU7	DELU6	DELU5	1		1		0		1	0	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		<	-	ACCI	ESS	TYPE			
0	0	0	0	0	0	0	0	0	0		<	-	VAU	UE .	AT R	ESET		

DELU[9:5] : MSB of the value of the delay of ramp-up start versus the rising edge of BENA.

DELD[9:5] : MSB of the value of the delay of ramp-down start versus the falling edge of BENA.

Name :.	AUXAP	C Des	scription	n : Auto	matic Po	ower C	ontrol F	Register			Addr	ess: 9	Page :	0	R/W
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	0	1	0	0	1	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		< A	CCESS T	YPE		
0	0	0	0	0	0	0	0	0	0		< V.	ALUE A'	Γ RESET		

BIT[9:0] : 10 bit APC power level.

Name : APCRAM Description : Auto	Addr	5	W				
		words)					
DW-0 (5BIT)	UP-0 (5 BIT)	0	1	0	1	0	0
DW-1 (5 BIT)	UP-1 (5BIT)	0	1	0	1	0	0
	111011	/////	/////	/////	//////	//////	/////
////////	//////	//////	/////	//////	///////	//////	/////
DW-14 (5 BIT)	UP-14 (5BIT)	0	1	0	1	0	0
DW-15 (5 BIT)	UP-15 (5BIT)	0	1	0	1	0	0
W W W W	W W W W	< ACCESS TYPE					
0 0 0 0	0 0 0 0 0	< VALUE AT RESET					

Content of the APC ram is the coefficients of the rampup and rampdown shaping filters.

Name :.	Name : APCOFF Description : Offset DAC Input Register										Addre	ess: 11	Page :	0	R/W
	-	-	RSV	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	0	1	0	1	1	1/0
R	R	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W		< A	CCESS T	YPE		
0	0	0	0	0	0	0	0	0	0		< V	ALUE A'	Γ RESET		

BIT[5:0] RSV : Input of the 6 bit Offset DAC.

Reserved bits.

Name :	APCOL	JT De	scriptio	n : APC	coutput	ame : APCOUT Description : APC output register									
APC9	APC8	APC7	APC6	APC5	APC4	APC3	APC2	APC1	APC0	PC0 0 1 1 0 0					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		< AC	CESS T	YPE		
0	0	0	0	0	0	0	0	0	0		< VA	ALUE AT	Γ RESET		

UNDER NON DISCLOSURE AGREEMENT

PAGE: 77/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. UNDER NON DISCLOSURE AGREEMENT

PAGE: 78/81

TOP

15. AUXDAC REGISTERS

Name :	AUXDA	C Des	scription	n: Auxi	liary D	AC Cor	ntrol Re	gister			Addre	ess : 12	Page :	0	R/W
BIT9	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	0	1	1	0	0	1/0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		<	ACCESS T	YPE		
0	0	0	0	0	0	0	0	0	0		<	VALUE A	T RESET		

BIT[9:0] : Input of the 10 bit ADAC.

16. SIM CARD REGISTERS

Name :	VRPCSI	M De	scriptio	n : SIM	CARD	Contro	l Regist	er		Ad	dress : 23	Page :	1	R/W
-	-	-	-	-	-	SIMLEN	SIMRSU	RSIMEN	SIMSEL	1 0) 1	1	1	1/0
R	R	R	R	R	R	R/W	R	R/W	R/W	<	ACCESS T	YPE		
0	0	0	0	0	0	0	0	0	0	<	VALUE A	T RESET		

SIMSEL	: Select VRSIM output voltage
	$'1' \Rightarrow 2.9 \text{ V} '0' \Rightarrow 1.8 \text{V}$
RSIMEN	: Enable the RSIM regulator
SIMRSU	: VRSIM regulation status
	'1' => regulation is ON, the SIM interface is correctly supplied
	0' => the regulator is not yet in regulation mode
SIMLEN	: Enable the SIM interface level shifter (SIMCK, SIMIO, SIMRST are enable)

17. AUXILIARY DRIVER REGISTERS

Name :ACDLED	De	scription	: Auxil	iary Dri	ver Co	ntrol Re	egister			Addre	ss: 24	Page :	1	R/W
	-	-	-		-	-	LEDB	LEDA	1	1	0	0	0	1/0
R R	R	R	R	R	R	R	R/W	R/W		< A	ACCESS 1	YPE		
0 0	0	0	0	0	0	0	0	0		< V	VALUE A	T RESET		
LEDA LEDB	::	When '	1', enal l', enab	ble the L	.EDA d	river river								

UNDER NON DISCLOSURE AGREEMENT

PAGE: 79/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

18. INTERNAL BUS AND INTERRUPT CONTROL REGISTERS

18.1 Interrupt 2 mask and status

Name :	ITMAS	KREG	Des	cription	: Interr	upt mas	k Regist	er			Addre	ss: 26	Page : 0		R/W
-	-	-	-	ADCEND	-	CHRGER	PUSHOF	REMOT	-	1	1	0	1	0	1/0
R	R	R	R	R/W	R	R/W	R/W	R/W	R		<	ACCESS	ГҮРЕ		
0	0	0	0	0	0	0	0	0	0		<	VALUE	AT RESET		

REMOT_IT_MSK : PUSHOFF_IT_MSK : CHARGER_IT_MSK : ADCEND_IT_MSK :

If 1 the 'Remote Power' from ON to OFF interrupt is not generated
If 1 the 'Push Button' from ON to OFF interrupt is not generated

- : If **1** the Charger Plug IN or OUT interrupt is not generated
- IT_MSK : If 1 the ADC End of Conversion interrupt is not generated

Name :	IT_STS	S_REG	Des	cription	: Interr	upt Stat	us Regi	Add	dress	: 27	Pag	es: 0 a	& 1	R/W		
-	-	-	-	ADCEND	-	CHRGER	PUSHOF	REMOT	-	1	1	0		1	1	1/0
R	R	R	R	R/W	R	R/W	R/W	R/W	R		<	ACCESS	TY	PE		
0	0	0	0	0	0	0	0	0	0		<	VALUE	AT	RESE T		

REMOT_IT_STS	: 'Remote Power' from ON to OFF interrupt bit
PUSHOFF_IT_STS	: 'Push Button' from ON to OFF interrupt bit
CHARGER_IT_STS	: Charger Plug IN or OUT interrupt bit
ADCEND_IT_STS	: ADC End of Conversion interrupt bit

18.2 Page selection

Name :	PAGE	REG		Desc	Description : Page Select Register										Address: 1 Pages: 0 & 1					
-	-	-		-		-	-	BSF	PP1	BSPP0	UCP1	UCP0	0	0	0	0	1	0		
								1	W	W	W	W		<	ACCESS T	YPE				
0	0	()	0		0	0		0	0	0	0		<	VALUE AT	RESET				

UCP0	:	Set Address Page 0 for USP access
UCP1	:	Set Address Page 1 for USP access
BSPP0	:	Set Address Page 0 for BSP access
BSPP1	:	Set Address Page 1 for BSP access

USP access to this register don't affect current address page selected by the BSP and BSP access to fect current address page selected by the USP.

That means that USP access has no effect if trying to write BSPP1 or BSPP0 and BSP access has no effect if trying to write UCP1 or UCP0.

and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

PRELIMINARY documents contain information on a product under development

UNDER NON DISCLOSURE AGREEMENT

PAGE: 80/81

19. TEST ACCESS PORT REGISTERS

19.1 TAP control

Name :	TAPCT	TL .	Descrip	tion : Ta	ap Instru	iction R	egister		Addı	ess : 19	Pages	: 1	R/W		
-	-	-	-	-	-	-	-	-	TAPEN	1	0	0	1	1	1/0
R	R	R	R	R	R	R	R	R	RW		<	ACCESS T	YPE		
0	0	0	0	0	0	0	0	0	0		<	VALUÉ A'	Γ RESET		

TAPEN : Enable write in TAPREG

19.2 TAP instruction register

Name :	TAPRE	EG	Descrip	tion : Ta	ap Instru	iction R	legister				Addr	ess : 20	Pages	: 1	R/W
VER3	VER2	VER1	VER0	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	1	0	1	0	0	1/0
R	R	R	R	R/W	R/W	RW	R/W	RW	RW		< A	ACCESS TY	/PE		
0	0	0	0	0	0 .	0	0	0	1		< \	ALUE AT	RESET		

VER[3:0]	:	Version Number VER[3:0] (from IDCODE)
BIT[5:0]	:	JTAG Instruction Register data, TAPINST[5:0]

UNDER NON DISCLOSURE AGREEMENT

PAGE: 81/81

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.