TRF6151 RITA Quadruple band GSM Single chip Transceiver

Specification

RIT000

Vers 3.2

File: RITA Specification.pdf

Department: WTBU Chipset 2G - 2.5G

	Originator	Approval	Quality
Name	Pascal AUDINOT Jerome DEMA Y	Marc COUVRAT Gianni PUCCIO Regis GAILLARD	
Date	5/19/03		
Signature			

TI – Proprietary Information –

Page 1 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

HISTORY

Version	Date	Author	Notes
Vers 1.0	12/20/01	Estelle PROUX	First version
		Francois BELIN	
		Angel EZQUERRA	
		Jerome DEMAY	
Vers 2.0	03/28/02	Estelle P ROUX	Second version
		Francois BELIN	
		Angel EZQUERRA	
		Jerome DEMAY	
Vers 2.1	04/04/02	Jerome DEMAY	Third version
Vers 2.2	05/02/02	Francois BELIN	Fourth version
		Jerome DEMAY	
Vers 2.3	05/30/02	Jerome DEMAY	Fifth version
Vers 3.0	12/03/02	Estelle PROUX	Sixth version
		Jerome DEMAY	
Vers 3.1	03/08/03	Estelle NGUYEN Seventh vers	
		Jerome DEMAY	
Vers 3.2	05/15/03	Jerome DEMAY	Seventh version

NOTES :

- 1.0 Creation
- 2.0 Update following Designers' inputs PA controller specification added
- 2.1 VCC pin swap
- 2.2 P.A.U.C. specification added
- 2.3 Current consumption table updated
- Global Input 1dB blocking compression point table added Update of serial interface
 P.A.U.C. specification removed
- 3.1 Interferer detection system is a provision and removed from the general specification Gain GRF_MID and GAIN_MID1 are dedicated to interferer detection system. Gain G1 is now GRF_HIGH; Gain G3 is now GRF_LOW VCXO current consumption requirement updated Current consumption in RX mode and TX mode updated
- 3.2 Typical values added

TI – Proprietary Information –

Page 2 of 74

Strictly Private

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

TABLE OF CONTENT

Introduction	5
References	7
Chipset block diagram	8
Application Board Functional Block Diagram	9
Terminal diagram	. 10
Pins description	11
Package characteristics	13
Absolute Maximum Ratings	15
Recommended Operating Conditions	15
Electrical Characteristics	16
Current Consumption	16
OFF mode	16
Receive mode	16
Transmit mode	16
RX ON	17
TX ON	18
Voltage regulation	19
Band gap	19
Regulator R1	19
Regulator R2	20
Regulator R3	21
Regulators power domains	22
Temperature sensor	23
Synthesizer	23
Crystal and External Varactor network	23
Reference clock input	24
VCXO buffer output (XOUT pin)	24
Main synthesizer in RX mode for GSM 850 and E-GSM 900	25
Main synthesizer in RX mode for DCS 1800 and PCS 1900	26
Main synthesizer in TX mode for GSM 850 and E-GSM 900	27
Main synthesizer in TX mode for DCS 1800 and PCS 1900	28
Synthesizer Power up / down time	28
Transmitter	29
Transmitter inputs	29
Low Band Output	29
Low Band Output (continued)	30
High Band Output	31
High Band Output (continued)	32
Modulated output spectrum	33
Spurious emissions	34
Power Amplifier Controller	35
Low pass filter for DAC signal (1 st order)	35
Sense amplifier	35
Integrator	35
Current generators	35
Home position voltage	35
Power up/down time	36
Receiver	39
Global performances	39

TI – Proprietary Information –

Page 3 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Global performances (continued)	40
Global performances (continued)	41
Low band GSM850-GSM900 LNA (LNAGSM) + IQ demodulator (MIXGSM)	43
DCS LNA (LNADCS) + IQ demodulator(MIXDCS)	
PCS LNA (LNAPCS) + IQ demodulator (MIXPCS).	45
Post IQ demodulator low pass filter	46
Base band amplifier (VGA)	46
Global characteristics	46
VGA filters	
DC offset compensation system	
Receiver Power up / down time	49
Serial data interface description	
Serial interface timing	50
Serial interface programming	
Serial word format	51
Registers table	51
REG_RX register	52
REG_PLL register	53
REG_PWR register	54
REG_CFG register	55
Annex 1: PLL_mode	
Annex 2: Front End measurement schematic	60
Annex 3: TRF6151 receiver configurations	61
Annex 4: TRF6151 filters	
Annex 5: Reference clock connection	
Annex 6: Test procedure for RX lock time	
Test #1: locking time from "OFF" to "RX" state	6/
Test #2: locking time from "RX GSM" to "RX DCS" state	
Annex 7 - INTERFERER DETECTION SYSTEM (PROVISION)	
Interferer detection principle	
Prerequisites for using interferer detection system:	
Interferer detection block diagram.	
Interferer detection process	
Interferer detection system specification:	
Clobal parformanage	
Low hand CSM850 CSM000 LNA (LNACSM) + IO domedulator (MIXCSM)	/1 72
DCS I NA (I NADCS) + IQ demodulator(MIXDCS)	12 72
DCS LIVA (LIVADCS) + IQ utiliouulator (MIXDCS)	12 27
I Usaful hits for interferer detection control.	
Within DEG, DY register	
Within REG PWR register	

TI – Proprietary Information –

Page 4 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **Strictly Private**

UNDER NON DISCLOSURE AGREEMENT

INTRODUCTION

The TRF6151 is a quadruple band transceiver IC suitable for GSM 850, GSM 900, DCS 1800 and PCS 1900 GPRS class 12 applications. The chip integrates the receiver based on direct conversion architecture, the transmitter based on the modulation loop architecture, the frequency synthesis including a 26MHz VCXO, a MAIN N-integer synthesizer, 2 MAIN VCOs, a programmable MAIN loop filter, 2 TX VCOs, a TX loop filter, the voltage regulators to supply on chip and off chip RF functions and a power amplifier controller.

Few external components are required for a "quad band" application as a power amplifier and a front-end module.

It is housed in a 48 pins 7x7mm - 0.5mm pitch QFN package.

The TRF6151 transceiver is part of TI GSM chipset. It is compatible with Iota (TWL3014) and Syren (TWL3016) ABB chips and with Calypso, Calypso20G2, Calypso-plus and Perseus2 DBB chips.

The chip combines the following functions:

- 1. Transmit section:
 - an offset PLL with post IQ modulator and post offset mixer filters fully integrated on chip
 - two TX VCOs fully integrated on chip
 - a TX loop filter fully integrated on chip
 - a divider by 4 for the LO generation in GSM900 and GSM850
 - a divider by 2 for the LO generation in DCS1800 and PCS1900
 - a programmable M divider for the IF generation
 - a power amplifier controller including all the functions required to design a power sensing control loop except the sensing diodes

PRELIMINARY documents contain information on a product under development

Features characteristic data and other information are subject to change.

and is issued for evaluation purposes only.

TI – Proprietary Information –

Page 5 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

- 2. Receive section:
 - a GSM900/GSM850 LNA (LNAGSM) with switchable gain
 - a DCS1800 LNA (LNADCS) with switchable gain
 - a PCS1900 LNA (LNAPCS) with switchable gain
 - three quadrature demodulators for GSM900/GSM850 (MIXGSM), DCS1800 (MIXDCS) and PCS1900 (MIXPCS) bands with switchable gain
 - two base-band amplifiers with digitally programmable gain
 - two fully integrated base-band channel filters.
 - two DC offset compensation systems
 - a divider by 4 for the LO generation in GSM900 and GSM850 in order to minimize the DC offset generated by self mixing and the LO re-radiation
 - a divider by 2 for the LO generation in DCS1800 and PCS1900 in order to minimize the DC offset generated by self-mixing and the LO re-radiation.

Figure 1 - Receiver block diagram

- 3. Common to both sections:
 - a 26MHz VCXO with external varactor and crystal
 - a 26 MHz buffer to drive the DBB
 - two MAIN VCOs fully integrated on chip
 - a MAIN N-integer synthesizer
 - a programmable MAIN loop filter fully integrated on chip
 - 3 voltage regulators to supply internal functions and external RF components
 - a digital serial interface

TI – Proprietary Information –

Page 6 of 74

Strictly Private

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

REFERENCES

[1] 3GPP TS05.05 version 8.10

"Digital cellular telecommunications system (phase 2+); Radio transmission and reception

[2] 3GPP TS51.010-1 version 4.4.0 "Digital cellular telecommunications system (phase 2+); MS conformance specification "

[3] TWL3014 v1.2 specification (Iota) - Internal document - Texas Instruments

[4] Time serial port specification – HYP004 v1.0 – Internal document – Texas instruments

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 7 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

CHIPSET BLOCK DIAGRAM

TI chipset = HERCRxx + TWL3014 / TWL3016 + TRF6151

Figure 2 - Chipset block diagram

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 8 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

APPLICATION BOARD FUNCTIONAL BLOCK DIAGRAM

Figure 3 - TRF6151 block diagram

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 9 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

TERMINAL DIAGRAM

Figure 4 - TRF6151 terminal diagram (top view)

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 10 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

PINS DESCRIPTION

PIN NAME	PIN#	I/O	DESCRIPTION
XSEL	1	Ι	Xtal select external or internal
XEN	2	Ι	Xtal enable (VCXO and buffer supply)
RESETZ	3	Ι	Serial interface reset input
VCC1	4	VCC	PLL supply voltage
DATA	5	Ι	Serial interface data input
VCC2	6	VCC	PLL supply voltage
CLK	7	Ι	Serial interface clock input
VCC3	8	VCC	PLL supply voltage
STROBE	9	Ι	Serial interface strobe input
VCC4	10	VCC	MAIN VCO2 supply voltage (2.0Volts internally generated)
VCC5	11	VCC	VCO DIVIDER supply voltage
VCC6	12	VCC	MAIN VCO1 supply voltage (2.0Volts internally generated)
SIOUT_TST	13	0	Serial interface output multiplexed with PLL test
RTEMP_VTEST	14	0	Temperature sensor output and VCO test
LNAPCSP	15	Ι	RX PCS LNA input (+)
LNAPCSN	16	Ι	RX PCS LNA input (-)
VCC7	17	VCC	RX LNA supply voltage
LNADCSP	18	Ι	RX DCS LNA input
LNADCSN	19	Ι	RX DCS LNA input
VBG	20	0	Bandgap voltage output
LNAGSMP	21	Ι	RX GSM LNA input (+)
LNAGSMN	22	Ι	RX GSM LNA input (-)
VREG3	23	0	Regulator 3 output dedicated to VCC8, VCC10
VBAT2	24	Ι	Regulator 3 battery voltage supply
DET	25	Ι	PA controller DETECT input
Not used	26	-	Not used
APC	27	0	PA controller output
DAC	28	Ι	PA controller APC input
HBTXOUT	29	0	TX DCS/PCS output
VCC8	30	VCC	TX VCO buffer supply voltage (2.7V)
LBTXOUT	31	0	TX GSM900 / GSM850 output
VCC9	32	VCC	TX HB VCO core supply voltage (2.4V internally generated)
VCC10	33	VCC	TX VCO and RX mixer supply voltage
TSTVCO1	34	-	Not used
TSTVCO2	35	-	Not used
VCC11	36	VCC	TX LB VCO core supply voltage (2.4V internally generated)
VCC12	37	VCC	IQ modulator supply voltage and RX VGA supply voltage (2.7V)
IN	38	I/O	In phase baseband I/O (-)
IP	39	I/O	In phase baseband I/O (+)
QP	40	I/O	Quadrature phase baseband I/O (+)
QN	41	I/O	Quadrature phase baseband I/O (-)
VCC13	42	VCC	TX charge pump supply voltage (2.7V)
VREG1	43	0	Regulator 1 output dedicated to VCC7, VCC12, VCC13
VBAT1	44	I	Regulator 1 and regulator 2 battery voltage supply

TI – Proprietary Information –

Page 11 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Strictly Private

TRF6151 Transceiver

VREG2	45	0	Regulator 2 output dedicated to VCC1, VCC2, VCC3, VCC5
VRIO	46	VCC	Serial interface supply voltage
XOUT	47	0	Xtal buffer output
XIN	48	Ι	Xtal input

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 12 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

PACKAGE CHARACTERISTICS

48 pins QFN 7x7mm - 0.5mm pitch

Figure 5 - Component Dimensions

BODY SIZE = 7.0 x 7.0mm, THICKNESS = 0.9mm

SYMBOL	Package Dimensions with Tolerance			
	MIN.	NOM.	MAX.	
А	-	0.85	0.90	
A1	0	0.02	0.05	
D	6.85	7.00	7.15	
D2	5.00	5.15	5.25	
Е	6.85	7.00	7.15	
E2	5.00	5.15	5.25	
L	0.30	0.40	0.50	
b	0.18	0.23	0.30	
e	-	0.50 BSC	-	

All dimensions in Millimeters

Figure 6 - PCB Land Pattern Dimensions

	Board Land Pattern Dimensions					
SYMBOL	Zmax	Amax	Gmin	Xmax	Yref	D2' _{TH}
	7.36	5.78	5.98	0.28	0.69	5.68

All dimensions in Millimeters

Note: Xmax dimension reduced to avoid solder bridging

TI – Proprietary Information –

Page 13 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

TBD

Figure 7 - Thermal Pad Stencil Design

More information on Package Characteristics is available on: <u>http://www1.itg.ti.com/msp_packaging/docs/qfn/qfn_home.htm</u>, "Available QFN Package Information"

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 14 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (Unless Otherwise Noted)

Chip supply voltage range: VBAT	0.3 V to 5.5 V
Input voltage to any other pin:	tbd V
Power dissipation, $Ta = 25 \degree C$, 48 Pin QFN 7x7mm - 0.5mm pitch	tbd mW
Storage temperature range	65 to +150 °C
ESD integrity ¹	tbd HBM

RECOMMENDED OPERATING CONDITIONS

	MIN	ТҮР	MAX	UNIT
VRIO Supply voltage	2.7	2.8	2.9	V
VIH High level input voltage	0.8*VRIO			V
VIL Low level input voltage			0.22 x VRIO	V
VOH High level output voltage	0.7*VRIO		VRIO+0.5	
VOL Low level output voltage	-0.5		0.3*VRIO	
Vcc Supply voltage	2.7	2.8	2.9	V
VBAT Supply voltage	3.0^{2}	3.6	5.5	V
Ta Operating Temperature range	-25		+85	°C

 $^{^{2}}$ 3.0 V corresponds to VBATMIN ==> When MS is emitting at full power, the battery voltage must never be under 3.0 V at Rita regulators inputs

TI – Proprietary Information –

Page 15 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private UNDER NON DISCLOSURE AGREEMENT

¹ Sensitive RF pins (LNA inputs, TXVCO outputs) are not protected against voltage stress higher than 300 V HBM (tbc).

ELECTRICAL CHARACTERISTICS

Typical: Vcc = 2.8 V, Ta = $+25^{\circ}$ C Min. and Max.: Ta= -25° C to $+85^{\circ}$ C, VBAT = 3.0 V to 5.5 V and over Process

CURRENT CONSUMPTION³

	Typical: $Vcc = 2.8 V$, $Ta = +25^{\circ}C$			
Power mode	Test conditions	Band	Typical operating	
			current	

OFF mode

ALL OFF	All functional blocks powered OFF	-	5 uA
ALL OFF except BG	Band gap ON and all others functional blocks powered OFF	-	80 uA
ALL OFF except BG and Regulators	Band gap and Regulators ON and all others functional blocks powered OFF	-	0.6 mA

Receive mode

RX synthesizer ON	Main PLL is locking	GSM850 / GSM900	39.3 mA
		DCS1800 / PCS1900	41.6 mA
RX synthesizer ON + DC	Main PLL and RX	GSM850 / GSM900	54.5 mA
offset calibration running	ON	DCS1800 / PCS1900	56.8 mA
RX ON in High gain Main PLL, LO		GSM850 / GSM900	62.4 mA
	demodulator and Baseband strip are ON	DCS1800 / PCS1900	64.7 mA
RX ON in Low gain Main PLL, LO generation LNA IO		GSM850 / GSM900	63.7 mA
	demodulator and Baseband strip are ON	DCS1800 / PCS1900	66.0 mA

Transmit mode

TX ON	Main PLL and Offset	GSM850 / GSM900	111.8 mA
	PLL, LO/IF	DCS1800 / PCS1900	103.0 mA
	generation, IQ		
	modulator and PA		
	controller are ON		

³ VCXO (supplied by an external voltage source) typical current consumption is 2.7 mA

TI – Proprietary Information –

Page 16 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private
UNDER NON DISCLOSURE

R NON DISCLOSURE D AGREEMENT

Typical: Vcc = 2.8 V, Ta = $+25^{\circ}$ C

			JT ···	
Module	VCC line	Band	Typical operating	Typical operating
			current in High gain	current in Low gain

RX ON

LNA	VCC7 (Reg R1)	All Bands	7.9 mA	9.3 mA
Baseband strip	VCC12 (Reg R1)	All Bands	7.2 mA	7.2 mA
Main Counters A, B	VCC1 (Reg R2)	All bands	2.1 mA	2.1 mA
Main Prescaler + Main CP + Main PFD	VCC2 (Reg R2)	All Bands	5.7 mA	5.7 mA
Main loop filter	VCC3 (Reg R2)	All Bands	0.5 mA	0.5 mA
Main VCO + LO	VCC5	GSM850 / GSM900	30.8 mA	30.8 mA
generation	(Reg R2)	DCS1800 / PCS1900	33.1 mA	33.1 mA
IQ demodulator	VCC8 (Reg R3)	All Bands	7.6 mA	7.5 mA
Voltage regulator R1	VREG1	All Bands	15.1 mA	16.5 mA
Voltage regulator R2	VREG2	GSM850 / GSM900	39.1 mA	39.1 mA
		DCS1800 / PCS1900	41.4 mA	41.4 mA
Voltage regulator R3	VREG3	All Bands	7.6 mA	7.5 mA
VBAT1	Reg R1 + Reg R2	GSM850 / GSM900	54.6 mA	56.0 mA
		DCS1800 / PCS1900	56.9 mA	58.3 mA
VBAT2	Reg R3	All Bands	7.8 mA	7.7 mA
Total RX current consumption	-	GSM850 / GSM900	62.4 mA	63.7 mA
		DCS1800 / PCS1900	64.7 mA	66.0 mA

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 17 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Typical: Vcc = 2.8 V, Ta = $+25^{\circ}$ C

		i ypicui	100 = 2.0 V, $10 = 125$ C
Module	VCC line	Band	Typical operating current

TX ON

Offset mixer, post offset mixer	VCC7	All Bands	13.0 mA
LPF and PA controller	(Reg R1)		
IO modulator + post IO	VCC12	All Bands	8.7 mA
modulator low pass filter	(Reg R1)		
TX Charge pump	VCC13	All Bands	0.5 mA
	(Reg R1)		
Main Counters A, B	VCC1	All Bands	2.1 mA
	(Reg R2)		
Main Prescaler + Main charge	VCC2	All Bands	5.5 mA
pump + Main phase frequency detector	(Reg R2)		
Main loop filter	VCC3	All Bands	0.5 mA
	(Reg R2)		
LO generation (L divider, M	VCC5	All Bands	38.1 mA
divider) + Main VCO regulator	(Reg R2)		
input			
TX VCO buffer	VCC8	GSM850 / GSM900	20.6 mA
	(Reg K3)	DCS1800 / PCS1900	15.8 mA
TX VCO + Offset mixer buffer	VCC10	GSM850 / GSM900	23.4 mA
	(Reg R3)	DCS1800 / PCS1900	18.4 mA
Voltage regulator R1	VREG1	All Bands	22.2 mA
	VDECO	A 11 D 1	46.0
Voltage regulator R2	VREG2	All Bands	46.2 mA
Voltage regulator R3	VREG3	GSM850 / GSM900	42.6 mA
		DCS1800 / PCS1900	33.8 mA
VBAT1	Reg R1 + Reg R2	All Bands	68.9 mA
VBAT2	Reg R3	GSM850 / GSM900	42.9 mA
		DCS1800 / PCS1900	34.1 mA
Total TX current	-	GSM850 / GSM900	111.8 mA
consumption		DCS1800 / PCS1900	103.0 mA

TI – Proprietary Information –

Page 18 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

VOLTAGE REGULATION

 $C_{\text{out}}{=}1.0\text{uF},$ $C_{\text{bandgap}}{=}100\text{nF}$ unless otherwise specified.

Table specifies regulator and bandgap together unless otherwise specified.

If an external regulation is desired, the internal voltage regulators can be bypassed (regulators shut down).

Band gap

Turn-on time	speed up mode active			25	ms
Consumption current			80		uA

Regulator R1

Input voltage		Vin	3.0^{4}	3.6	5.5	V
Output voltage	@ Ioutmax	Vout	2.7	2.8	2.9	V
Max. output current		Ioutmax	60			mA
Ground pin current	@ Ioutmax@ Iout = 0 mA				6.0 0.3	mA
DC line regulation	From Vinmin to Vinmax @ Ioutmax				50	mV
AC line regulation Overshoot Undershoot	Vin step from Vout $+ 0.1$ to Vout $+ 0.5$ in 30 us Vin step from Vout $+ 0.5$ to Vout $+ 0.1$ in 30 us				20 20	mV
DC load regulation	Iout = 0 mA to Ioutmax				50	mV
AC load regulation Overshoot Undershoot	Iout step from Ioutmax to Ioutmax/2 in 5 us Iout step from Ioutmax/2 to Ioutmax in 5 us				30 30	mV
Output voltage noise	f =10 Hz to 100 kHz Iout = Ioutmax Vin = Vout + 0.2 V			50		uVrms
ESR of decoupling capacitor			0.01		1	Ohm
Response time	Iout step from 0 to Ioutmax Iout step from Ioutmax to 0 @ Vout = final +/-3 %			10 10		us
Turn-on time	Vout step from 0 to Voutmax +/-3% @ Ioutmax			100 ⁵		us
Ripple rejection	AC amplitude = 50 mVp f = 100 Hz @ Ioutmax f = 500 kHz @ Ioutmax Vin = 3.1 V			55 35		dB
Shutdown supply current	Vout = 0 V				1	uA

⁵ Band gap turn-on time not included

TI – Proprietary Information –

Strictly Private

Page 19 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

Regulator R2						
Input voltage		Vin	3.0^{6}	3.6	5.5	V
Output voltage	@ Ioutmax	Vout	2.7	2.8	2.9	V
Max. output current		Ioutmax	60			mA
Ground pin current	@ Ioutmax@ Iout = 0 mA				6.0 0.3	mA
DC line regulation	From Vinmin to Vinmax @ Ioutmax				50	mV
AC line regulation Overshoot Undershoot	Vin step from Vout + 0.1 to Vout + 0.5 in 30 us Vin step from Vout + 0.5 to Vout + 0.1 in 30 us				20 20	mV
DC load regulation	Iout = 0 mA to Ioutmax				50	mV
AC load regulation Overshoot Undershoot	Iout step from Ioutmax to Ioutmax/2 in 5 us Iout step from Ioutmax/2 to Ioutmax in 5 us				30 30	mV
Output voltage noise	f =10 Hz to 100 kHz Iout = Ioutmax Vin = Vout + 0.2 V			50		uVrms
ESR of decoupling capacitor			0.01		1	Ohm
Response time	Iout step from 0 to Ioutmax Iout step from Ioutmax to 0 @ Vout = final +/-3 %			10 10		us
Turn-on time	Vout step from 0 to Voutmax +/-3% @ Ioutmax			100 ⁷		us
Ripple rejection	AC amplitude = 50 mVp f = 100 Hz @ Ioutmax f = 500 kHz @ Ioutmax Vin = 3.1 V			55 35		dB
Shutdown supply current	Vout = 0 V				1	uA

 ⁶ 3.0 V corresponds to VBATMIN ==> When MS is emitting at full power, the battery voltage must never be under 3.0 V at Rita regulators inputs
 ⁷ Band gap turn-on time not included

TI – Proprietary Information –

Page 20 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

Regulator R3						
Input voltage		Vin	3.0 ⁸	3.6	5.5	V
Output voltage	@ Ioutmax	Vout	2.7	2.8	2.9	V
Max. output current		Ioutmax	60			mA
Ground pin current	@ Ioutmax@ Iout = 0 mA				6.0 0.3	mA
DC line regulation	From Vinmin to Vinmax @ Ioutmax				50	mV
AC line regulation Overshoot Undershoot	Vin step from Vout + 0.1 to Vout + 0.5 in 30 us Vin step from Vout + 0.5 to Vout + 0.1 in 30 us				20 20	mV
DC load regulation	Iout = 0 mA to Ioutmax				50	mV
AC load regulation Overshoot Undershoot	Iout step from Ioutmax to Ioutmax/2 in 5 us Iout step from Ioutmax/2 to Ioutmax in 5 us				30 30	mV
Output voltage noise	f =10 Hz to 100 kHz Iout = Ioutmax Vin = Vout + 0.2 V			50		uVrms
ESR of decoupling capacitor			0.01		1	Ohm
Response time	Iout step from 0 to Ioutmax Iout step from Ioutmax to 0 @ Vout = final +/-3 %			10 10		us
Turn-on time	Vout step from 0 to Voutmax +/-3% @ Ioutmax			1009		us
Ripple rejection	AC amplitude = 50 mVp f = 100 Hz @ Ioutmax f = 500 kHz @ Ioutmax Vin = 3.1 V			55 35		dB
Shutdown supply current	Vout = 0 V				1	uA

⁸ 3.0 V corresponds to VBATMIN ==> When MS is emitting at full power, the battery voltage must never be under 3.0 V at Rita regulators inputs
 ⁹ Band gap turn-on time not included

TI – Proprietary Information –

Page 21 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Regulators power domains

Functional blocks	Supply voltage	Regulated Supply	VCC line
Receiver			
LNAGSM, LNADCS, LNAPCS	VBAT1	VREG1	VCC7
Analog part of VGA	VBAT1	VREG1	VCC12
IQ demodulators (MIXGSM, MIXDCS and	νρλτ2	VPEC3	VCC8
MIXPCS)	VDA12	VILLOJ	VCCO
Provision (Interferer detection system)	VBAT2	VREG3	VCC10
Transmitter			
Charge pump	VBAT1	VREG1	VCC13
Phase frequency detector	VBAT1	VREG1	_10
Offset mixer, post offset mixer low pass filter	VBAT1	VREG1	VCC7
Offset mixer buffer	VBAT2	VREG3	VCC10
IQ modulator, post IQ modulator low pass filter	VBAT1	VREG1	VCC12
TX LB VCO	VCC10	2.4V internal	VCC11 ¹¹
ТХ НВ VCO	VCC10	2.4V internal	VCC9 ¹¹
TV VCO output hufford	<u>ΜΡΑΤΆ</u>	VDEC2	VCC8
		VKEUJ VRECI	VCC7
PA controller	VBALL	VKEGI	VLL/
Main synthesizer		VDECO	NCCO
Prescaler, Charge pump, Phase trequency detector	VBATT	VREG2	VCC2
Loop filter (operational amplifier)	VBAT1	VREG2	VCC3
Counters A, B	VBAT1	VREG2	VCC1
LO generation for the RX/TX (L divider, M divider)	VBAT1	VREG2	VCC5
MAIN VCO2	VCC5	2.0V internal regulator	VCC4 ¹²
MAIN VCO1	VCC5	2.0V internal regulator	VCC6 ¹²
VCO calibration machine	VBAT2	VREG3	VCC10
Reference voltage source			
Band gap	VBAT2	-	-
Digital control		I	
PA controller timer. Digital clock generator, serial	VRIO supply from		
interface and associated buffer, VGA digital circuitry	ABB chip	-	VRIO
Internal 26MHz VCXO	I		
	TCXOEN buffer		
VCXO core. Main PLL Reference divider	(2.7V) from DBB	_	XEN
	chip		
	TCXOEN buffer		
Internal VCXO selection	(2.7V) from DBB	-	XSEL
	chip		
RF front End module (external component)	P	II	
Front End Module	VBAT2	VREG3	_

¹⁰ Connection is done on chip (no decoupling using a VCC line)

¹¹ Decoupling line for 2.4V internal regulator output

¹² Decoupling line for 2.0V internal regulator output

TI – Proprietary Information –

Strictly Private

Page 22 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

TEMPERATURE SENSOR¹³

Sensor voltage	@ Ta min. = -25° C	0.9	1.05	V
	@ Ta max. = $+85^{\circ}C$	1.35	1.5	
Sensor slope	Over $-25 \sim +85^{\circ}C$	3.0	5.0	mV/°C

SYNTHESIZER

Crystal and External Varactor network ¹⁴

XEN supply pin	@ I = 3.2mA		2.4		2.9	V
Crystal						
Nominal frequency				26.0		MHz
Frequency tolerance	at 25°C±3°C				±10.0	ppm
Temperature characteristics	in reference to $+25^{\circ}C$ over $-20 \sim +75^{\circ}C$				±10.0	ppm
Aging 1 st year after 5 years					±1.0 ±2.5	ppm ppm
Dips vs. temperature	$-20 \sim +75^{\circ}C$				0.3	ppm/°C
Frequency versus temperature slope at 25°C	at $25^{\circ} C \pm 7^{\circ} C$		-0.5		0	ppm/°C
Equivalent Series Resistance			0		40	Ω
Standard load capacitance				9.3 (tbc)	12.0	pF
Shunt capacitance				1.5	1.7	pF
Motional capacitance			5.4	6.3	7.2	fF
Drive level					150	μW
Varactor network						
Minimum voltage tuning		Vt	0		2.0	V
Tuning range	with $Vt = 0V$ to 2.0V		±26.0	±33.0	±41.0	ppm
Sensitivity accuracy ¹⁵	Over temp and over the tuning range				20 %	Hz/step^2
Frequency step					0.01	ppm/step

¹³ This temperature sensor is accessible at any time (not multiplexed with another signal)

¹⁴ See Annex 5 (page 66) for connection schematic

¹⁵ The sensitivity accuracy is how much the "local sensitivity" can differ from the average sensitivity. In other words, it is the derivate of the sensitivity. See the plot above.

TI – Proprietary Information –

Page 23 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Strictly Private

TRF6151 Transceiver

Typical: Vcc = 2.8 V, $Ta = +25^{\circ}C$ - Min. and Max.: $Ta = -25^{\circ}C$ to $+85^{\circ}C$, VBAT = 3.0 V to 5.5 V and over Process

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

Reference clock input¹⁶

Input frequency			26		MHz
Input sensitivity		0.8	1.0	2.0	Vpp
Reference phase noise	@ 1 kHz offset			-129	dBc/Hz
Duty cycle				40/60	
				to	
				60/40	
Input resistance		10			kΩ
Input capacitance				5	pF

VCXO buffer output (XOUT pin)¹⁷

Output frequency			26		MHz
Output level		0.5	1.0	2.0	Vpp
Start up time (including the	90% of output			4.6	ms
VCXO core)	amplitude			(tbc)	

¹⁶ If use of an external VCTCXO (See Annex 5 (page 66) for connection schematic) ¹⁷ $Z_{LOAD} = 25 \text{pF}$ in parallel with $10 \text{k}\Omega$ @ 26MHz

TI – Proprietary Information –

Page 24 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private UNDER NON DISCLOSURE AGREEMENT

Main synthesizer in RX mode for GSM 850 and E-GSM 900

Specification at the mixers LO port

Prescaler input frequency		3476			MHz
range		to			
		3840			
PFD operating frequency			400		kHz
N divider ratio		8692			
		to			
		9598			
L divider by 4 output		869			MHz
frequency range		to			
		960			
Close in phase noise	@ 1 kHz offset		-90	-81	dBc/Hz
_	fcomp = 400 kHz				
	@ 960 MHz				
Phase noise	@ 600 kHz offset		-130	-120	dBc/Hz
	@ 1.6 MHz offset			-135	
	@ 3.0 MHz offset			-140	
	@ 10 MHz offset			-142	
	@ 20 MHz offset			-145	
Reference feedthrough	@ 400 kHz offset		-80	-53	dBc
C	@ 800 kHz offset		-94	-68	
	@ 1.6 MHz offset			-79	
Lock time	1) GSM850:		100	170	us
	From 869MHz to 894MHz				
	2) GSM900:				
	From 925MHz to 960MHz				
	3) PCS1900 → GSM850:				
	From 1990MHz to 869MHz				
	4) DCS1800 → GSM900:				
	From 1880MHz to 925MHz				
	@ 20 Hz averaged				
	frequency error over one				
	burst				

Power up/down time

Power up time	Output power within 10 % of steady state values		5	us
Power down time			5	us

TI – Proprietary Information –

Page 25 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **Strictly Private**

UNDER NON DISCLOSURE AGREEMENT

Main synthesizer in RX mode for DCS 1800 and PCS 1900

Specification at the mixers LO port

÷	÷				
Prescaler input frequency		3610			MHz
range		to			
		3980			
PFD operating frequency			400		kHz
N divider ratio		9026			
		to			
		9949			
L divider by 2 output		1805			MHz
frequency range		to			
		1990			
Close in phase noise	@ 1 kHz offset		-84	-81	dBc/Hz
	fcomp = 400 kHz				
	@ 1990 MHz				
Phase noise	@ 600 kHz offset		-124	-120	dBc/Hz
	@ 1.6 MHz offset			-132	
	@ 3.0 MHz offset			-137	
	@ 20 MHz offset			-146	
Reference feedthrough	@ 400 kHz offset		-70	-53	dBc
	@ 800 kHz offset		-88	-69	
	@ 1.6 MHz offset			-82	
Lock time	1) DCS1800:		110	170	us
	From 1805MHz to 1880MHz				
	2) PCS1900:				
	From 1930MHz to 1990MHz				
	3) GSM850 → PCS1900:				
	From 869MHz to 1990MHz				
	4) GSM900 → DCS1800:				
	From 925MHz to 1880MHz				
	@ 40 Hz averaged frequency				
	error over one burst				

Power up/down time

Power up time	Output power within 10 % of steady state values		5	us
Power down time			5	us

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 26 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Main synthesizer in TX mode for GSM 850 and E-GSM 900

Specification at the offset mixer LO port

Prescaler input frequency		3269 to			MHz
range		3957			
PFD operating frequency	For GSM 850:				kHz
	[824.2 ~ 837.0 MHz]		472.73		
	[837.2 ~ 848.8 MHz]		866.67		
	For GSM 900		742.86		
N divider ratio		4186 to			
		8370			
L divider by 4 output		817 to			MHz
frequency range		990			
M divider ratio	For GSM 850:				
	[824.2 ~ 837.0 MHz]		26		
	[837.2 ~ 848.8 MHz]		52		
	For GSM 900		52		
M divider output frequency		62 to			MHz
range		153			
Close in phase noise	GSM850:		-91	-81	dBc/Hz
L	@ 1 kHz offset				
	$f_{comp} = 472.73 \text{ kHz}$				
	@ 990 MHz				
	GSM900:		-92	-81	
	@ 1 kHz offset		~ _	01	
	$f_{\rm comp} = 742.86 \rm kHz$				
	@ 850 MHz				
Phase noise	@ 400 kHz offset		-126	-120	dBc/Hz
Reference feedthrough	GSM 850:				dBc
2	@ 472.73 kHz offset		-87	-69	
	@ 866.67 kHz offset		-92	-67	
	GSM900			• •	
	@ 742.86 kHz offset		-94	-67	
Lock time	@ 20 Hz averaged		110	235	us
	frequency error over one		-		
	burst				

Power up/down time

Power up time	Output power within 10 % of steady state values		5	us
Power down time			5	us

TI – Proprietary Information –

Page 27 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **Strictly Private**

UNDER NON DISCLOSURE AGREEMENT

Main synthesizer in TX mode for DCS 1800 and PCS 1900

Specification at the offset mixer LO port

Prescaler input frequency		3176 to			MHz
range		3547			
PFD operating frequency			371.43		kHz
N divider ratio		8551			
		to 9549			
L divider by 2 output		1588 to			MHz
frequency range		1774			
M divider ratio			26		
M divider output frequency		122 to			MHz
range		137			
Close in phase noise	@ 1 kHz offset		-84	-81	dBc/Hz
	fcomp = 371.43 kHz				
	@ 1774 MHz				
Phase noise	@ 400 kHz offset		-122^{18}	-120	dBc/Hz
			-120.5 ¹⁹		
Reference feedthrough	@ 371.43 kHz offset		-80	-69	dBc
Lock time	@ 40 Hz averaged		140	235	us
	frequency error over one				
	burst				

Synthesizer Power up / down time

Power up time	Output power within 10 % of steady state values		5	us
Power down time			5	us

¹⁸ in DCS band ¹⁹ in PC<u>S band</u>

TI – Proprietary Information –

Page 28 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **Strictly Private**

UNDER NON DISCLOSURE AGREEMENT

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

TRANSMITTER

Transmitter inputs

I/Q inputs common		1.215	1.35	1.485	V
mode voltage					
I/Q inputs voltage	Single ended	0.44	0.47	0.49	Vpp
swing					
I/Q inputs resistance	Differential ended	10			kO
I/Q inputs	Differential ended			25	pF
capacitance					

Low Band Output

Dedicated to GSM850 and E-GSM900

GMSK modulated signal applied at the IQ inputs (unless otherwise specified)

Frequency range		fout	824.2 to			MHz
			914.8			
Output impedance	See below schematic for the matching	Z _{out}		50		0
Output Return Loss					-10	dB
Output power level	into 50 O load	Pout	4	6.5	8	dBm
Phase error	Max. RMS phase error			2.0	3	degree
	Max. Peak phase error			5.0	10	
TXVCOLB Pulling	VSWR = 2, all phases,	PULL		tbd		MHz
	open loop					

Low Band TX VCO Output buffer matching

For indication, $I_B = 6.8$ nH and $C_B = 12$ pF on EVARITA application board. Please note that these values are layout depending.

TEXAS INSTRUMENTS

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 29 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

TRF6151 Transceiver

Typical: $Vcc = 2.8 V$, Ta	$= +25^{\circ}C$ - Min. and Max.: Ta=	-25°C to +85	5°C, VBAT	= 3.0 V to 5.	5 V and over	Process
Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

Low Band Output (continued)

68 kHz CW signal applied at the IQ inputs (unless otherwise specified)

Carrier Suppression	With respect to the carrier	CS	-35	-47		dBc
Sideband	With respect to the carrier	SBS	-40	-49		dBc
Suppression						
Spurs @ 4×fIQ	With respect to the carrier	S4C	-50	-55		dBc
Phase Noise	@ 400 kHz offset from	PN400		-117	-113	dBc/Hz
	the carrier					
	@ 20 MHz offset from the	PN _{20M}		-164.5	-164^{20}	
	carrier					
Settling time ²¹	From power down to final				240	us
	frequency @ 20 Hz					
	averaged frequency error					
	over one burst					

²¹ Including settling time of the MAIN PLL

TI – Proprietary Information –

Page 30 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

 $^{^{20}}$ Measured with a Spectrum Analyzer as defined by ETSI norm – No corrective factor applied – The specification of -164dBc/Hz with +6dBm output power is equivalent to a measurement of -108dBm into 100kHz RBW

TRF6151 Transceiver

Typical: $Vcc = 2.8 V$, $Ta = +25^{\circ}C$ - Min. and Max.: $Ta = -25^{\circ}C$ to $+85^{\circ}C$, VBA	AT = 3.0 V to 5.5 V and over Process

	Parameters		Test conditions	Symbol	Min.	Тур.	Max.	Unit
--	------------	--	-----------------	--------	------	------	------	------

High Band Output

Dedicated to DCS1800 and PCS 1900

GMSKmodulated signal applied at the IQ inputs (unless otherwise specified)

Frequency range		f _{out}	1710.2			MHz
			to			
			1909.8			
Output impedance	See below schematic for	Zout		50		0
	the matching					
Output Return Loss					-10	dB
Output power level	into 50 O load	Pout	4	5.5	8	dBm
Phase error	Max. RMS phase error			2.5	3	degree
	Max. Peak phase error			7.0	10	-
TXVCOHB Pulling	VSWR = 2, all phases,	PULL		tbd		MHz
TXVCOHB Pulling	VSWR=2, all phases, open loop	PULL		tbd		MHz

High Band TX VCO Output buffer matching

For indication, $I_H = 6.8$ nH and $C_H = 10$ pF on EVARITA application board. Please note that these values are layout depending.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 31 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Typical: $Vcc = 2.8 \text{ V}$, $Ta = +25^{\circ}C$ - Min. and Max.: $Ta = -25^{\circ}C$ to $+85^{\circ}C$, $VBAT = 3.0 \text{ V}$ to 5.5 V and over Process						
Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

High Band Output (continued)

68 kHz CW signal applied at the IQ inputs (unless otherwise specified)

Carrier Suppression	With respect to the carrier	CS	-35	-46		dBc
Sideband Suppression	With respect to the carrier	SBS	-40	-50		dBc
Spurs @ 4×fIQ	With respect to the carrier	S4C	-50	-61		dBc
Phase Noise	@ 400 kHz offset from	PN400		-117	-113	dBc/Hz
	 @ 20 MHz offset from the carrier 	PN _{20M}		-156.5	-152 ²²	
Settling time ²³	From power down to				240	us
	final frequency @ 40 Hz averaged frequency error over one burst					

²³ Including settling time of the MAIN PLL

TI – Proprietary Information –

Page 32 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Strictly Private

 $^{^{22}}$ Measured with a Spectrum Analyzer as defined by ETSI norm – No corrective factor applied – The specification of –152dBc/Hz with +6dBm output power is equivalent to a measurement of –96dBm into 100kHz RBW

TRF6151 Transceiver

Typical: Vcc = 2.8 V, $Ta = +25^{\circ}C$ - Min. and Max.: $Ta = -25^{\circ}C$ to $+85^{\circ}C$, VBAT = 3.0 V to 5.5 V and over Process

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit	

Modulated output spectrum

GSM 850 / E-GSM 900

Maximum	allowed	@ 200 kHz offset ²⁴			-30	dBc
level		@ 250 kHz offset ²⁴			-33	dBc
		@ 400 kHz offset ²⁴		-64	-60	dBc
		>= 600 kHz < 1.8 MHz			-60	dBc
		offset ²⁴				
		>= 1.8 MHz < 3.0 MHz			-63	dBc
		offset ²⁵				
		>= 3.0 MHz < 6.0 MHz			-65	dBc
		offset ²⁵				
		$>= 6.0 \text{ MHz offset}^{25}$			-71	dBc

DCS 1800

Maximum	allowed	@ 200 kHz offset ²⁴			-30	dBc
level		@ 250 kHz offset ²⁴			-33	dBc
		@ 400 kHz offset ²⁴		-64	-60	dBc
		>= 600 kHz < 1.8 MHz			-60	dBc
		offset ²⁴				
		>= 1.8 MHz < 6.0 MHz			-65	dBc
		offset ²⁵				
		$>= 6.0 \text{ MHz offset}^{25}$			-73	dBc

PCS1900

Maximum	allowed	@ 200 kHz offset ²⁴		-30	dBc
level	@ 250 kHz offset ²⁴		-33	dBc	
	@ 400 kHz offset ²⁴	-64	-60	dBc	
		>= 600 kHz < 1.2 MHz		-60	dBc
		offset ²⁴			
		>= 1.2 MHz < 1.8 MHz		-60	dBc
		offset ²⁴			
	>= 1.8 MHz < 6.0 MHz		-65	dBc	
		offset ²⁵			
		$>= 6.0 \text{ MHz offset}^{25}$		-73	dBc

²⁴ Observed in 30 kHz RBW

²⁵ Observed in 100 kHz RBW

TI – Proprietary Information –

Page 33 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

Spurious emissions²⁶

Specification at the antenna with the use of the TBD PA and the TBD FEM

E-GSM 900

Maximum allowed level when allocated channel	from 9 kHz to 1 GHz		-69	dBc
	from 1 GHz to 12.75 GHz		-63	dBc
	in the band [925 ~ 935 MHz]		-100	dBc
	in the band [935 ~ 960 MHz]		-112	dBc
	in the band [1805 ~ 1880 MHz]		-104	dBc
	in the bands [1900 ~1920 MHz], [1920 ~ 1980 MHz], [2010 ~ 2025 MHz] and [2110 ~ 2170 MHz]		-99	dBc

DCS 1800

Maximum allowed level when allocated channel	from 9 kHz to 1 GHz		-66	dBc
	from 1 GHz to 12.75 GHz		-60	dBc
	in the band [925 ~ 935 MHz]		-97	dBc
	in the band [935 ~ 960 MHz]		-109	dBc
	in the band [1805 ~ 1880 MHz]		-101	dBc
	in the bands [1900 ~1920 MHz], [1920 ~ 1980 MHz], [2010 ~ 2025 MHz] and [2110 ~ 2170 MHz]		-96	dBc

GSM 850

Maximum allowed level when allocated channel	from 9 kHz to 1 GHz		-69	dBc
	from 1 GHz to 12.75 GHz		-63	dBc
	in the band [869 ~ 894 MHz]		-112	dBc
	in the band [1930 ~ 1990 MHz]		-104	dBc

PCS 1900

Maximum allowed level when allocated	from 9 kHz to 1 GHz		-66	dBc
	from 1 GHz to 12.75 GHz		-60	dBc
channel	in the band [869 ~ 894 MHz]		-109	dBc
	in the band [1930 ~ 1990		-101	dBc
	MHzJ			

²⁶ Spurious emissions above the values specified in the table will be measured at the TX VCO output (HBTXOUT pin and LBTXOUT pin). This measurement is made for one allocated channel (chosen in the Mid ARFCN range) per band.

TI – Proprietary Information –

Page 34 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Strictly Private

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

Power Amplifier Controller

Low pass filter for DAC signal (1st order)

1 8	(
Cut off frequency		420	600	kHz

Sense amplifier

Slew Rate (pos and neg)	4	5		V∕µsec
Input Offset Voltage	-10	0	10	mV
Unity gain bandwidth	5			MHz
Max Output Voltage	2.5			V
Min Output Voltage			100	mV
Input Voltage Range	0		2.7	V
Matching Ratio accuracy			1	%
between Cap				
Current leakage at negative			20	pA
input				

Integrator

Slew Rate (pos and neg)			4	5		V∕µsec
Input Offset Voltage			-20	0	20	mV
Output current	Vout = 2.5V				8.4	mA
	Rload = 300Ω					
Unity gain bandwith			5			MHz
Max Output Voltage			2.5			V
Min Output Voltage					100	mV
Input Voltage Range			0		2.5	V
Rload			300			Ω
Cload			1		100	pF
R integrator range ²⁷		R int		150 to		kΩ
				300		
C integrator range ²⁸		C int		12.5 to		pF
				50		

Current generators

I1		21	30	39	uA
I2		210	300	390	uA
Temperature dependence	-25 to +85 C			5	%

Home position voltage

I					
Mimimal Vhome ²⁹				0.5	V
Maximal Vhome ²⁹		1.3			
VHome step			27		mV

 28 C may be open by program for tests

²⁹ VHome is programmable with a 5 bits DAC through the serial interface

TI – Proprietary Information –

Page 35 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Strictly Private

²⁷ R may be open by program for tests

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

Power up/down time

Power up time	Output power within 10 % of steady state values		5	us
Power down time			5	us

Figure 8 - PA controller block diagram

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 36 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Figure 9 - PA controller timing diagram for I2 current solution – single slot configuration

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 37 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Figure 10 - PA controller timing diagram for I1 current solution – multislot configuration

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 38 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

RECEIVER

Global performances

DEinmet	LNAGSMN/P pins		869	-	960	MHz
frequency	LNADCSN/P pins		1805	-	1880	MHz
nequency	LNAPCSN/P pins		1930	-	1990	MHz
Balanced RF input impedance	LNAGSMN/P, LNADCSN/P or LNAPCSN/P pins		-	100	-	Ω
RF input return	LNAGSMN/P, LNADCSN/P or LNAPCSN/P pins Receiver gain = G_HIGH		-		-10	dB
loss	LNAGSMN/P, LNADCSN/P or LNAPCSN/P pins Receiver gain = G_MID or G_LOW		-		-4	dB
	All bands Front end and VGA high gain mode	G_HIGH	63	67.3	69	dB
Voltage gain ³⁰	All bands Front end in low gain mode and VGA in high gain mode	G_MID	43	47.4	49	dB
	All bands Front end and VGA in low gain mode	G_LOW	17	21.0	23	dB
	LNAGSMN/P pins; G=G_HIGH GSM900 band [925,960Mhz]		I	3.5*	5	dB
	LNAGSMN/P pins ³² ; G=G_HIGH GSM850 band [869,894Mhz]		-	3.5*	5.2	dB
Noise figure ³¹	LNADCSN/P pins; G=G_HIGH DCS band [1805,1880Mhz]		-	3.9*	5	dB
	LNAPCSN/P pins; G=G_HIGH PCS band [1930,1990Mhz]		-	3.8*	5	dB
	All bands; G= G_MID		-	11.7 ³³ 11.9 ³⁴	20.8	dB
Input 1dB	All bands Gain = G_HIGH		-50	-46 ³³ -45 ³⁴	-	dBm
compression	GSM850-GSM900 bands G= G_LOW		-19.5	-16.7	-	dBm
point	DCS1800–PCS1900 bands G=G_LOW		-25	-19.6 ³⁵ -20.7 ³⁶	-	dBm
Input 3 rd order intercept point	All bands, $Gain = G_HIGH^{37}$		-20	-9.5^{33} -13.2^{34}	-	dBm

* By using high Q inductors (like LQW type) for the matching network the typical NF value should be 0.2dB better.

³⁷ For IIP3 tests, interferers are 2 sine waves at 800kHz and 1.6Mhz from carrier applied at LNA input with a power level=-51dBm.

TI – Proprietary Information –

Strictly Private

Page 39 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

 $^{^{30}}$ From <u>500 single ended voltage source</u> output (matched to LNA differential input) to one receiver differential output. See Annex 2 (page 60) for more details. ³¹ NF is measured from LNA matched differential input to one receiver differential output (IN/P or QN/P pins). <u>Matching losses with</u>

low O components are included. Noise is averaged over 1kHz to 100kHz.

For quad band, GSM900 hardware is used to receive GSM850 signal as well. See Annex 3 (page 61) for more details

³³ in GSM bands

³⁴ in DCS/PCS bands

³⁵ in DCS band

³⁶ in PCS band

TRF6151 Transceiver

Typical: Vcc = 2.8 V, $Ta = +25^{\circ}C$ - Min. and Max.: $Ta = -25^{\circ}C$ to $+85^{\circ}C$, VBAT = 3.0 V to 5.5 V and over Process

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

Global performances (continued)

	Voltage gain=G_HIGH, All bands Blocker @ 0.33 Mhz from carrier	-48	-36.7^{38} -37.5^{39}	-	dBm
	Voltage gain= G_HIGH, All bands Blocker @ 0.6 Mbz from carrier	-47.5	-34.4^{38} -34.0^{39}	_	dBm
Input 1dB blocking compression point	Voltage gain= G_HIGH, All bands Blocker @ 1.6 Mhz from carrier	-37	-25.9^{38} -26.3^{39}	-	dBm
	Voltage gain= G_HIGH, GSM850 and GSM900 bands, Blocker @ 3 Mhz from carrier	-30	-21.7	-	dBm
	Voltage gain= G_HIGH, DCS1800 and PCS1900 bands Blocker @ 3 Mhz from carrier	-32	-23.5	-	dBm
	Voltage gain= G_HIGH, GSM900 band Blocker @ 10 Mhz from carrier	-28	-20.7	-	dBm
	Voltage gain= G_HIGH, GSM850 band Blocker @ 20 Mhz from carrier	-25	-20.7	-	dBm
	Voltage gain= G_HIGH, GSM900 band Blocker @ 20 Mhz from carrier	-26	-20.7	-	dBm
	Voltage gain= G_HIGH, DCS1800 band Blocker @ 20 Mhz from carrier	-30	-24.2	-	dBm
	Voltage gain= G_HIGH, PCS1900 band Blocker @ 20 Mhz from carrier	-26	-24.7	-	dBm
	Voltage gain= G_HIGH, DCS1800 band Blocker @ 100 Mhz from carrier	-26	-24.2	-	dBm
	LNAGSMN/P pins, GSM band, Gain=G_HIGH	-		11	dB
Noise figure in blocking conditions ^{40;41}	LNAGSMN/P pins, GSM850 band, Gain=G_HIGH ⁴²	-		11.2	dB
	LNADCSN/P pins, DCS band, Gain=G_HIGH	-		11	dB
	LNAPCSN/P pins, PCS band, Gain=G_HIGH	-		11	dB

³⁸ in GSM bands

Table 1.

⁴² For quad band, GSM900 hardware is used to receive GSM850 signal as well. See Annex 3 (page 61) for more details

TI – Proprietary Information –

Page 40 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

³⁹ in DCS/PCS bands

 ⁴⁰ NF is measured from LNA matched differential input to one receiver differential output (IN/P or QN/P pins). <u>Matching losses with low Q components are included</u>. Noise is averaged over 1kHz to 100kHz.
 ⁴¹ Blocking signal power level and its frequency offset from carrier are defined in

Parameters	Test conditions	Min.	Тур.	Max.	Unit	

Global performances (continued)

				-	
LO/4	LNAGSMN/P pins, GSM850 band LNAGSMN/P pins, GSM900 band Gain=G_HIGH	-	-117	-80	dBm
RF port ⁴³	LNAGSMN/P pins, GSM850 band LNAGSMN/P pins, GSM900 band Gain=G_LOW	-	-119	-54	dBm
LO/2	LNADCSN/P pins, DCS band LNAPCSN/P pins, PCS band Gain=G_HIGH	-	-103	-80	dBm
RF port ⁴³	LNADCSN/P pins, DCS band LNAPCSN/P pins, PCS band Gain=G_LOW	-	-103	-44	dBm
IQ Phase unbalance	@ 67.7kHz, All bands, between IN/P and QN/P pins	-5	+/- 1 ⁴⁴ +/- 3 ⁴⁵	+5	Deg
IQ Amplitude unbalance	All bands, between IN/P and QN/P pins	-0.8	+/-0.1	0.8	dB
TDE6151 filters	Global 3dB cut-off-frequency	109	142	204	kHz
TKF0151 IIItels	Global attenuation	See pl	ots in Anr	dB	
Static differential	On IN/P or QN/P path Static DC offset calibrated LNA is OFF 600 kHz blocker applied at LNA input ⁴⁶ After DC offset compensation	_	70	80	mV
DC offset	On IN/P or QN/P path Static DC offset calibrated Gain=G_HIGH LNA is switched on after calibration 3Mhz blocker is applied at LNA input ⁴⁶	_		180	mV
Time -varying differential DC offset	On IN/P or QN/P path Static DC offset calibrated Gain= G_HIGH LNA is switched on after calibration AM suppression ETSI test case ⁴⁷			0.5	DC ratio ⁴⁸
Output DC offset calibration. time			45	50	usec
Receiver settling time	See Annex 6 (page 67) for test procedure		110	175	usec
Output common mode voltage	On one IN/P or QN/P pin, after DC offset compensation	0.9	Vcc/2	1.9	v
Output resistance	Differential ended		TBD		kΩ
Output load impedance	Differential ended			200 10	kΩ pF

⁴³ LO is the frequency delivered by the VCO RX. ⁴⁴ in GSM bands ⁴⁵ in DCS/PCS bands

⁴⁶ See

Table 1 for blocker level specification.47 See Table 2 for AM suppression test case definition

⁴⁸ DC ratio = [Time-varying differential DC offset]/ [Vpeak(useful signal)]

TI – Proprietary Information –

Page 41 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Band	Offset from carrier	Power level at LNA input (dBm)
All bands	600 kHz	-45dBm
GSM850 - GSM900	3 MHz	-25dBm
DCS1800 - PCS1900	3 MHz	-28dBm
GSM900	10 MHz	-25dBm
GSM850	20 MHz	-22dBm
GSM900	20 MHz	-23dBm
DCS1800	20 MHz	-27dBm
PCS1900	20MHz	-23dBm
DCS1800	100MHz	-23dBm

 Table 1: Receiver noise figure in blocking condition: blocker frequency and power levels:

Table 2 :AM suppression test case definition

For AM suppression test, the following signals are applied at LNA input:

- S1 = a GMSK useful signal in Mid ARFCN range, with a power level =-103 dBm
- S2 = a GMSK interferer signal, at 6Mhz offset from useful signal, synchronized with the useful signal, but delayed by 70 bits, with a power level = -33dBm

Test case	Pand	SI	S1		S2		
#	Balld	Power level	Frequency	Power level	Frequency		
1	GSM850		882MHz		888MHz		
2	GMS900	102dBm	942Mhz	22dBm	948Mhz		
3	DCS1800	-105ubiii	1842MHz	-550DIII	1848MHz		
4	PCS1900		1960Mhz		1966Mhz		

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 42 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit	1

Low band GSM850-GSM900 LNA (LNAGSM) + IQ demodulator (MIXGSM)

RF input frequency	LNAGSMN/P pins		869	-	960	MHz
Balanced RF input impedance	LNAGSMN/P pins		-	100	-	Ω
PE input return loss	LNAGSMN/P, Voltage gain = GRF_HIGH		-		-10	dB
KI* input return 1088	LNAGSMN/P, Voltage gain = GRF_LOW		-		-4	dB
Voltage gain ⁴⁹	High gain mode	GRF_HIGH	24		28	dB
vonage gam	Low gain mode ⁵⁰	GRF_LOW	4		8	dB
	GSM900 band, GRF_HIGH ⁵²		-		4.7	dB
Noise figure ⁵¹	GSM850 band, GRF_HIGH		-		4.9	dB
	GSM850 or GSM900 band, GRF_LOW		-		20	dB
	GSM850 and GSM900, GRF_HIGH Blocker @ 3 Mhz from carrier		-28		-	dBm
Input 1dB blocking	GSM900 band, GRF_HIGH Blocker @ 10 Mhz from carrier		-28		-	dBm
compression point	GSM850 band, GRF_HIGH Blocker @ 20 Mhz from carrier		-25		-	dBm
	GSM900 band, GRF_HIGH Blocker @ 20 Mhz from carrier		-26		-	dBm
Input 1dB compression point	GSM850 or GSM900 band, GRF_LOW		-19		-	dBm
Noise figure in	GSM900 band, Voltage gain=GRF_HIGH		-		9.1	dB
blocking conditions ⁵³	GSM850 band, Voltage gain=GRF_HIGH		-		9.3	dB
Input 3 rd order intercept point ⁵⁴	GSM850 and GSM900 bands Voltage gain=GRF_HIGH		-18		-	dBm
LO/4 feedthrough at	GSM850 and GSM900 bands, GRF_HIGH		-		-80	dBm
RF port ⁵⁵	GSM850 and GSM900 bands, GRF_LOW		-		-54	dBm

⁵⁵ LO is the frequency delivered by the VCO RX.

TI – Proprietary Information –

Page 43 of 74

Strictly Private

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

⁴⁹ From <u>50Ω single ended voltage source</u> output (matched to LNA differential input) to one IQ demodulator differential output (MIXIN/P or MIXQN/P internal pads). See Annex 2 (page 60) for more details. ⁵⁰ A 20 dB gain switch is implemented in the LNA/mixer

⁵¹ NF is measured from LNA matched differential input to one receiver differential output (MIXIN/P or MIXQN/P internal pads). Matching losses with low O components are included. Noise is averaged over 1kHz to 100kHz.

⁵² GSM900 band in Rx mode is [925Mhz; 960 Mhz]. GSM850 band in Rx mode is [869Mhz; 894 Mhz].

⁵³ These figure are given for design purpose. They do not include LO phase noise contribution.

⁵⁴ For IIP3 tests, interferers are 2 sine waves at 800kHz and 1.6Mhz from carrier applied at LNA input with a P=-51dBm.

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

DCS LNA (LNADCS) + IQ demodulator(MIXDCS)

RF input frequency	LNADCSN/P pins		1805	-	1880	MHz
Balanced RF input impedance	LNADCSN/P pins		-	100	-	Ω
RF input return loss	LNADCSN/P pins, GRF_HIGH		-		-10	dB
	LNADCSN/P pins, GRF_LOW		-		-4	dB
N. I. 56	High gain mode	GRF_HIGH	24		28	dB
vonage gam	Low gain mode ⁵⁷	GRF_LOW	4		8	dB
Noise figure 58	Voltage gain=GRF_HIGH		-		4.7	dB
Noise figure	Voltage gain=GRF_LOW		-		20	dB
	Voltage gain=GRF_HIGH Blocker @ 3 Mhz from carrier		-31		-	dBm
Input 1dB blocking compression point	Voltage gain=GRF_HIGH Blocker @ 20 Mhz from carrier		-30		-	dBm
	Voltage gain=GRF_HIGH Blocker @ 100 Mhz from carrier		-26		-	dBm
Input 1dB compression point	Voltage gain=GRF_LOW		-25		-	dBm
Noise figure in blocking conditions ⁵⁹	Voltage gain=GRF_HIGH		-		9.1	dB
Input 3 rd order intercept point ⁶⁰	Voltage gain=GRF_HIGH		-18		-	dBm
LO/2 feedthrough at	Voltage gain= GRF_HIGH		-		-80	dBm
RF port ⁶¹	Voltage gain= GRF_LOW		-		-44	dBm

⁶¹ LO is the frequency delivered by the VCO RX.

TI – Proprietary Information –

Page 44 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

⁵⁶ From <u>50Ω single ended voltage source</u> output (matched to LNA differential input) to one IQ demodulator differential output (MIXIN/P or MIXQN/P internal pads). See Annex 2 (page 60) for more details. ⁵⁷ A 20 dB gain switch is implemented in the LNA/mixer

⁵⁸ NF is measured from LNA matched differential input to one receiver differential output (MIXIN/P or MIXQN/P internal pads). <u>Matching losses with low Q components are included</u>. Noise is averaged over 1kHz to 100kHz.

 ⁵⁹ These figure are given for design purpose. They do not include LO phase noise contribution.
 ⁶⁰ For IIP3 tests, interferers are 2 sine waves at 800kHz and 1.6Mhz from carrier applied at LNA input with a power level=-51dBm.

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit

PCS LNA (LNAPCS) + IQ demodulator (MIXPCS)

RF input frequency	LNAPCSN/P pins		1930	-	1990	MHz
Balanced RF input impedance	LNAPCSN/P pins		-	100	-	Ω
PE input return loss	LNAPCSN/P pins, GRF_HIGH		-		-10	dB
KI mput ieturn ioss	LNAPCSN/P pins, GRF_LOW		-		-4	dB
Voltago gain ⁶²	High gain mode	GRF_HIGH	24		28	dB
voltage gam	Low gain mode ⁶³	GRF_LOW	4		8	dB
Noise figure ⁶⁴	Voltage gain=GRF_HIGH		-		4.7	dB
Inoise figure	Voltage gain=GRF_LOW		-		20	dB
Input 1dB blocking	Voltage gain=GRF_HIGH Blocker @ 3 Mhz from carrier		-31		-	dBm
compression point	Voltage gain=GRF_HIGH Blocker @ 20 Mhz from carrier		-26		-	dBm
Input 1dB compression point	Voltage gain=GRF_LOW		-25		-	dBm
Noise figure in blocking conditions ⁶⁵	Voltage gain=GRF_HIGH		-		9.1	dB
Input 3 rd order intercept point ⁶⁶	Voltage gain=GRF_HIGH		-18		-	dBm
LO/2 feedthrough at RF	Voltage gain= GRF_HIGH		-		-80	dBm
port ⁶⁷	Voltage gain= GRF_LOW		-		-44	dBm

 67 LO is the frequency delivered by the VCO RX.

TI – Proprietary Information –

Page 45 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

⁶² From <u>50Ω single ended voltage source</u> output (matched to LNA differential input) to one IQ demodulator differential output (MIXIN/P or MIXQN/P internal pads). See Annex 2 (page 60) for more details. ⁶³ A 20 dB gain switch is implemented in the LNA/mixer

⁶⁴ NF is measured from LNA matched differential input to one receiver differential output (MIXIN/P or MIXQN/P internal pads). <u>Matching losses with low Q components are included</u>. Noise is averaged over 1kHz to 100kHz.

 ⁶⁵ These figure are given for design purpose. They do not include LO phase noise contribution.
 ⁶⁶ For IIP3 tests, interferers are 2 sine waves at 800kHz and 1.6Mhz from carrier applied at LNA input with a power level=-51dBm.

TRF6151 Transceiver

Typical: Vcc = 2.8 V, $Ta = +25^{\circ}C$ - Min. and Max.: $Ta = -25^{\circ}C$ to $+85^{\circ}C$, VBAT = 3.0 V to 5.5 V and over Process

Parameters	Test conditions	Min.	Тур.	Max.	Unit

Post IQ demodulator low pass filter

Filter order		1		-
Filter cut off frequency	275	338	438	kHz

Base band amplifier (VGA)

Global characteristics

Maximum gain voltage		39	40	41	dB
Voltage gain control range		13 to 39	14 to 40	15 to 41	dB
Gain step		-	2	-	dB
Gain error linearity	In any 20dB window	-	±1	±1.5	dB
SSB Input averaged	VGA gain ∈ [34; 40dB]	-		4.6	nVrms ∕√Hz
noise	VGA gain \in [14; 40dB]		See specificat	ion in figure	1
	VGA gain ∈ [34; 40dB] Blocker @330kHz	-32		-	dBvp
Input 1dB blocking	VGA at max gain, Blocker @600 kHz	-34		-	dBvp
compression point	VGA at max gain, Blocker @1.6MHz	-30		-	dBvp
	VGA at max gain, Blocker @ 3MHz	-26		-	dBvp
Input 1dB compression point	VGA gain=14 to 40dB		See specificat	ion in figure	2
Input 3 rd order intercept point	VGA gain ∈ [34; 40dB], blocker @ 0.8 and 1.6MHz offset from carrier ⁶⁹	-10			dBvp
Output load impedance	Differential ended			200 10	kΩ pF
Common mode output voltage		1	VCC/2	1.8	V
VGA output resistance	Differential ended			1	kΩ

⁶⁸ Noise is averaged over 1kHz to 100kHz

⁶⁹ Interferer for IIP3 tests are applied at antenna with a power level=-49dBm \Rightarrow at VGA input, we have: -40dBvp for the 800kHz interferer and -44dBvp for the 1.6Mhz interferer

TI – Proprietary Information –

Page 46 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Gain	dB	14	16	18	20	22	24	26	28	30	32	34	36	38	40
Max. input noise	nV/sqrt(Hz)*	60	60	60	60	60	17	17	10	5.2	5.2	4.8	4.6	4.6	4.6

*Noise is averaged on [1kHz;100kHz] band

Figure 12 - VGA minimum P1dB vs gain setting

Gain	dB	14	16	18	20	22	24	26	28	30	32	34	36	38	40
PC1dBi min	dBv	-15	-15	-15	-15	-15	-24	-24	-24	-28	-28	-28	-30	-32	-34

TI – Proprietary Information –

Page 47 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Parameters	Test conditions	Min.	Тур.	Max.	Unit

VGA filters

VOA muis					
VGA low pass filter	Order	-	1	-	-
#1	3dB cut-off-frequency	0.9	1.2	1.8	MHz
	Order	-	2	-	-
#2	Туре		Butterwort	h	-
	3dB cut-off-frequency	120	155	230	kHz

DC offset compensation system

	On IN/P or QN/P path RF Gain=GRF_HIGH VGA gain ∈ [24; 40dB] LNA is OFF, 600 kHz blocker applied at LNA input ⁷⁰ After DC offset compensation,	DCO0a		80	mV
Output DC	On IN/P or QN/P path RF Gain=GRF_HIGH VGA gain ∈ [14; 22dB] LNA is OFF, 600 kHz blocker applied at LNA input ⁷¹ After DC offset compensation,	DCO0b		130	mV
onset tottage	On IN/P or QN/P path Static DC offset calibrated Gain= G_HIGH LNA is switched on after calibration No signal at LNA input	DCO1		160	mV
	On IN/P or QN/P path Static DC offset calibrated Gain= G_HIGH LNA is switched on after calibration 3Mhz blocker is applied at LNA input ⁴⁶	DCO2		180	mV
Time -varying differential DC offset	On IN/P or QN/P path Static DC offset was calibrated Gain= G_HIGH LNA is switched on after calibration AM suppression ETSI test case ⁷²	DCO3		0.5	DC ratio ⁷³
Output DC offset calibration time				50	usec

Note: those values must be met for all RF bands: GSM850, GSM900, DCS or PCS, with no DC offset voltage drift during RX slot.

⁷⁰ See

Table 1 for blocker level specification according band.

⁷¹ See

Table 1 for blocker level specification according band.72See Table 2 for AM suppression test case definition

⁷³ DC ratio = [Time -varying differential DC offset]/ [Vpeak(useful signal)]

TI – Proprietary Information –

Strictly Private

Page 48 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Receiver Power up / down time

Power up time	Output power within 10% of steady state values		5	usec
Power down time			5	usec

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 49 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

SERIAL DATA INTERFACE DESCRIPTION

The serial interface of TRF6151 consists of a 4-wire serial bus, comprising DATAIN, DATAOUT, CLOCK and STROBE signals. These signals are used to communicate with the serial port TSP of digital base band chip:

- In the uplink path (from DBB to RF), to enter control words into the RF chip. The control words contain information for programming the regulators, the synthesizers, the receiver and the offset PLL according to the protocol described in this document.
- In the downlink path (from RF to DBB), to inform the digital base band chip (DBB) with data about RF environment. DATAOUT is also used for test purpose.

Serial interface timing

Symbol	Description	Min	Typ.	Max	Unit
T _{CCLK}	CLOCK: Cycle time	154	-	-	ns
T _{WCLK}	CLOCK: Pulse duration	77	-	-	ns
T _F	CLOCK: fall time (at max rating)	-	-	5	ns
T _R	CLOCK: rise time (at max rating)	-	-	5	ns
T _{SUDA}	Setup, Data valid before CLOCK ↑	15	-	-	ns
T _{HDA}	Hold time, Data valid after CLOCK ↑	15	-	-	ns
T _{END}	Delay time, CLOCK \downarrow before STROBE \uparrow	70			ns
T _{START}	Delay time, STROBE \downarrow before CLOCK \uparrow	70			ns
T _{STHIGH}	Pulse width: STROBE high	-	154^{74}	-	ns

DATAOUT is sampled by the DBB on CLOCK rising edge. DATAIN is provided by the DBB on each CLOCK falling edge and sampled by TRF6151 in a shift register on each CLOCK rising edge. The shift register content is copied into latches on the STROBE signal rising edge. Most significant bit is clocked in first. Some internal calibration process uses STROBE falling edge. Therefore, STROBE signal, generated by the TI Digital base band TSP module should be configured in "positive pulse trigger mode -rising edge". At TRF6151 initialization, reset of serial interface registers is done by a digital signal (active low) applied on the RESETZ pin.

⁷⁴ Length of STROBE signal is one clock cycle time (154 ns)

TI – Proprietary Information –

Page 50 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Strictly Private

SERIAL INTERFACE PROGRAMMING

The serial interface is divided into 8 different registers. The serial word contains a total of 16 bits. The serial mode controller selects a register by reading the 3 LSB of the serial word.

Serial word format

MS	SB													Ι	SB
FIF	RST	IN											L	AST	' IN
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Registers table

Α	ddre	SS	Serial word format	Register name	Definition
0	0	0	16 bits	REG_RX	RF general settings
0	0	1	16 bits	REG_PLL	PLLs settings
0	1	0	16 bits	REG_PWR	Power on/off all functional block of the transceiver
0	1	1	16 bits	REG_CFG	Transceiver setting, PA Controller setting
1	0	0	16 bits	REG_TEST1	
1	0	1	16 bits	REG_TEST2	Decomposition to $\sqrt{25}$
1	1	0	16 bits	REG_TEST3	Keserved for test
1	1	1	16 bits	REG_TEST4	

⁷⁵ See design specification for the test registers.

PRELIMINARY documents contain information on a product under development

information are subject to change.

and is issued for evaluation purposes only. Features characteristic data and other **TI – Proprietary Information –**

Page 51 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

REG_RX register

This register is used to configure the receiver and to launch RX calibration process.

MS	B													Ι	SB
FIF	RST	IN											L	AST	IN
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	0	0	0

Bit	Name	Description	Value at
DR	i (unite		reset
15:11	VGA_GAIN	00000 - 00101: reserved 00110: VGA gain =14dB 00111: VGA gain =16 dB 01000: VGA gain =18 dB 01001: VGA gain =20 dB 01010: VGA gain =22 dB 01011: VGA gain =24 dB 01100: VGA gain =26 dB 01101: VGA gain =28 dB 01111: VGA gain =30 dB 01111: VGA gain =32 dB 10000: VGA gain =34 dB 10001: VGA gain =36 dB 10011: VGA gain =40 dB 10100 - 11111: reserved	10011
10:9	RF_GAIN	00: low RF gain (GRF_LOW) 01: reserved 10: reserved 11: high RF gain (GRF_HIGH)	11
8	RX_CAL_MODE ⁷⁶	0: Stop RX calibration process1: power on DC offset calibration system and start RX calibration process.	0
7	READ_EN	0: Data serialized on SIOUT pin are 0 1: Data serialized on SIOUT pin are REG_RX content	0
6	Reserved	Reserved	0
5	Reserved	Reserved	0
4	Reserved	Reserved	0
3	Reserved	Reserved	0

 76 RX calibration process ends automatically. But, setting RX_CAL_MODE=0 may force the process to be stopped before its normal end.

TI – Proprietary Information –

Strictly Private

Page 52 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

REG_PLL register

This register is used to program the synthesizer frequency according the desired RX/TX channel.

MS	SB													Ι	SB
FIF	RST	IN											L	AST	IN
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	0	0	1

Bit	Name	Description	Value at reset
15:9	PLL_REGB	$B = [64; 66; 67 \dots 155]^{77}$	0000000
8:3	PLL _REGA	A = [0; 1; 263]	000000

Useful formulas for synthesizers are:

	Р	R	L	Μ	B range	A range	RX/TX RF Frequency (MHz)
RX Low band	64	65	4	-	[135; 150]	[0; 62]	$\frac{(B*P+A)}{2}*26$
RX High band	64	65	2	-	[141; 155]	[0; 63]	R*L 20
TX mode GSM850_1	64	55	4	26	[128; 130]	[0; 62]	$(1 \ 1) * (B*P+A) * 26$
TX mode GSM850_2	64	30	4	52	[65; 66]	[0; 63]	$\left(\frac{1}{L} - \frac{1}{M}\right)^{2} = \frac{1}{R}$
TX mode GSM900	64	35	4	52	[68; 71]	[0; 63]	$(\frac{1}{1} + \frac{1}{1}) * (B * P + A) * 26$
TX mode High band	64	70	2	26	[133; 149]	[0; 63]	$\left(\frac{1}{L}, \frac{1}{M}\right) = \frac{1}{R}$

⁷⁷ B is varying on the [64;155] range but is coded on 7 bits.

To have B=64 in the PLL, user should program dec2bin(B-64)=dec2bin(0)=0000000

To have B=155 in the PLL, user should program dec2bin(B-64)=dec2bin(91)=1011011

In TRF6151 core, PLL_REGB contents is added with 64 and stored in an 8 bits register, used by PLLS.

TI – Proprietary Information –

Strictly Private

Page 53 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

REG_PWR register

This register is used to power on/off all functional block of the transceiver and to choose the RX/TX band.

MS	SB													Ι	SB
FIF	RST	IN											L	AST	IN
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	0	1	0

Bit	Name	Description	Value
Dit	ivanie	Description	reset
15	DACTI D ADCEN	0: PA controller is disabled ⁷⁸	0
15	FACILK_AFCEN	1: PA controller is enabled	0
14		0: PA controller is OFF ⁷⁸	0
14	FACILK_AFC	1: PA controller is ON	0
12	TY MODE	0: Transmitter is OFF	0
15	IA_WODE	1: Transmitter is ON	0
		00: Receiver is OFF	
12:11	RX_MODE	01: Receiver is ON	00
		10-11: Reserved	
		00: Synthesizer, transmitter and receiver are off	
10.0	SVNTHE MODE ⁷⁹	01: RX Synthesizer is ON	00
10.9	SININE_WODE	10: TX Synthesizer is ON	00
		11: not used	
		000-001: GSM900	
		010-011: DCS	
8:6	BAND	100: GSM850 (Low part)	000
		101: GSM850 (High part)	
		110-111: PCS	
5	REGUL MODE	0: Regulators are OFF	0
	KLOUL_MODE	1: Regulators are ON	Ŭ
		00-01: Band gap is OFF	
4:3	BANDGAP_MODE	10: Band gap is ON; speed up mo de is disabled	00
		11: Band gap is ON: speed up mode is enabled	

⁷⁸ See PA controller timing diagram for details about all control associated with PACTLR_APC and

PACTLR_APCEN bit. ⁷⁹ VCO calibration is launched when SYNTHE_MODE is set from '0' to '1' (when RX synthesizer ON or TX synthesizer ON is programmed)

TI – Proprietary Information –

Page 54 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

REG_CFG register

This register is used to configure the transceiver and set the PA controller at mobile initialization.

MS	SB													L	SB
FII	RST	IN											L	AST	' IN
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	0	1	1

Bit	Name	Description	Value at reset
15	ILOGIC_INIT_DIS	 0: Initialize internal logical blocks⁸⁰, once regulators are switched on. 1: Disable initialization of internal logical blocks 	0
14	TEMP_SENSOR	0: Temperature sensor is OFF 1: Temperature sensor is ON	0
13:12	PACTLR_CAP	00: 0 pF 01: 12.5 pF 11: 25 pF 10: 50 pF	10
11:10	PACTLR_RES	00: open 01: 150 kΩ 10: 300 kΩ 11: not used	10
9:5	PACTLR_VHOME	PA controller detection voltage setting: ⁸¹ 00000: 0*Vstep+Vlow ~ 0.46 V 00001: 1*Vstep+Vlow ~ 0.49 V 00010: 2*Vstep+Vlow ~ 0.52 V 11111: 31*Vstep+Vlow ~ 1.39 V	01100
4	PACTLR_IDIOD	0: Diode bias current is low (30 uA) 1: Diode bias current is high (300 uA)	0
3	TX_LOOP_MANU	0: Automatic mode 1: TX loop custom programming (for test purpose only)	0

⁸⁰ Caution! This bit <u>is not</u> a global reset of the RF chip contents. This only resets, when regulators are powered on, some specific internal blocks of TRF6151. ⁸¹ Vstep = 30mV; Vlow = 0.460 V

TI – Proprietary Information –

Page 55 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

ANNEX 1: PLL_MODE

Figure 13 - Synthesizer block diagram

- **TI Proprietary Information**
- Page 56 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT Four VCOs are used :

- a TX LB VCO [824.2 ~ 914.8 MHz] to generate the TX GSM 850 / TX GSM 900,

- a TX HB VCO [1710.2 \sim 1909.8 MHz] to generate the TX DCS 1800 / TX PCS 1900,

- a MAIN VCO 1 [3176.1 \sim 3575.2 MHz] (see below) to generate the RX GSM 850 / LO (and IF) for TX GSM 900, TX DCS 1800 and TX PCS 1900,

- a MAIN VCO 2 [3610.4 ~ 3979.6 MHz] (see below) to generate the RX GSM 900 / RX DCS 1800 / RX PCS 1900 / LO (and IF) for the two parts of TX GSM 850.

• MAIN VCO 1 at 3.37 GHz to generate in TX mode the LO (and IF) for GSM 900, DCS 1800 and PCS 1900 and also used to cover GSM 850 in RX mode :

Standard	RX band [MHz]	L divider	MAIN VCO range [MHz]
GSM 850	869.2 ~ 893.8	4	3476.80 ~ 3575.20
	TX band [MHz]	-	-
GSM 900	880.2 ~ 914.8	4	3269.31 ~ 3397.83
DCS 1800	1710.2 ~ 1784.8	2	3176.09 ~ 3314.63
PCS 1900	1850.2 ~ 1909.8	2	3436.09 ~ 3546.77
		TOTAL	3176.09 ~ 3575.20

→ **D**f = 399 MHz

• MAIN VCO 2 at 3.80 GHz to cover GSM 900, DCS 1800 and PCS 1900 in RX mode and also used in TX mode to generate the LO (and IF) for the two parts of GSM 850 :

Standard	RX band [MHz]	L divider	MAIN VCO range [MHz]
GSM 900	925.2 ~ 959.8	4	3700.80 ~ 3839.20
DCS 1800	1805.2 ~ 1879.8	2	3610.40 ~ 3759.60
PCS 1900	1930.2 ~ 1989.8	2	3860.40 ~ 3979.60
	TX band [MHz]	-	-
First part of GSM 850	824.2 ~ 837.0	4	3896.22 ~ 3956.73
Second part of GSM 850	837.2 ~ 848.8	4	3627.87 ~ 3678.13
		TOTAL	3610.40 ~ 3979.60

\rightarrow **D**f = 370 MHz

• MAIN PLL in RX mode : the reference frequency is 26.0 MHz

Standard	MAIN RX band [MHz]	R divider	Comparison frequency [kHz]	N range
GSM 850	3476.80 ~ 3575.20	65	400.0	8692 ~ 8938
GSM 900	3700.80 ~ 3839.20	65	400.0	9252 ~ 9598
DCS 1800	3610.40 ~ 3759.60	65	400.0	9026 ~ 9399
PCS 1900	3860.40 ~ 3979.60	65	400.0	9651 ~ 9949

The step frequency at the RX LO port is 100 kHz for GSM 850 / GSM 900 and 200 kHz for DCS 1800 / PCS 1900.

information are subject to change.

TI – Proprietary Information –

Page 57 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other **Strictly Private**

UNDER NON DISCLOSURE AGREEMENT

Vers 3.2

Standard	MAIN TX	L	LO range	М	IF range	RF
	band [MHz]	divider	[MHz]	divider	[MHz]	
First part of GSM 850	3896.22	4	974.06	26	149.85	LO – IF
	~ 3956.73		~ 989.18		~ 152.18	
Second part of GSM 850	3627.87	4	906.97	52	69.77	LO – IF
	~ 3678.13		~ 919.53		~ 70.73	
GSM 900	3269.31	4	817.33	52	62.87	LO + IF
	~ 3397.83		~ 849.46		~ 65.34	
DCS 1800	3176.09	2	1588.04	26	122.16	LO + IF
	~ 3314.63		~ 1657.31		~ 127.49	
PCS 1900	3436.09	2	1718.04	26	132.16	LO + IF
	~ 3546.77		~ 1773.38		~ 136.41	

• LO / IF ranges in TX mode :

→ 3 different IF: IF1 = 66.8 MHz - Δf = 7.9 MHz IF2 = 129.3 MHz - Δf = 14.3 MHz IF3 = 151.0 MHz - Δf = 2.4 MHz

• MAIN PLL in TX mode : the reference frequency is 26.0 MHz

Standard	MAIN TX band	R divider	Comparison	N range
	[MHz]		frequency [kHz]	
First part of GSM 850	3896.22 ~ 3956.73	55	472.73	8242 ~ 8370
Second part of GSM 850	3627.87 ~ 3678.13	30	866.67	4186 ~ 4244
GSM 900	3269.31 ~ 3397.83	35	742.86	4401 ~ 4574
DCS 1800	3176.09 ~ 3314.63	70	371.43	8551 ~ 8924
PCS 1900	3436.09 ~ 3546.77	70	371.43	9251 ~ 9549

The step frequency at the RF output is 100 kHz for the first part of GSM 850 and 200 kHz for the second part of GSM 850 / GSM 900 / DCS 1800 / PCS 1900.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 58 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Synthesizer mode	Р	L	М	R	Main VCO
OFF	-	-	-	-	OFF
TX High band	64	2	26	70	Main VCO 1
TX GSM900	64	4	52	35	Main VCO 1
TX GSM850_low	64	4	26	55	Main VCO 2
TX GSM850_high	64	4	52	30	Main VCO 2
RX_GSM850	64	4	-	65	Main VCO 1
RX GSM900	64	4	-	65	Main VCO 2
RX high band	64	2	-	65	Main VCO 2

Synthesizer configuration according to REG_PWR register is:

Synthesizer mode	IF filter	TX VCO	Main PLL charge pump current	Main PLL filter settings
OFF	OFF	OFF	tbd	tbd
TX High band	IF2	TXHBVCO	tbd	tbd
TX GSM900	IF1	TXLBVCO	tbd	tbd
TX GSM850_low	IF3	TXLBVCO	tbd	tbd
TX GSM850_high	IF1	TXLBVCO	tbd	tbd
RX_GSM850	-	-	tbd	tbd
RX GSM900	-	-	tbd	tbd
RX high band	-	-	tbd	tbd

When SYNTHE_MODE ='00' to '01' or '10', synthesizer is powered up according to the settings defined in the table above. Main VCO and TX VCO calibration processes are activated.

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 59 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

ANNEX 2: FRONT END MEASUREMENT SCHEMATIC

To measure front-end characteristics, considering its 100 ohms input, following schematic is proposed:

Figure 14 - RX RF gain definition

For the 50 to 100 Ω balun, following components can be used:

- Murata LDB20C101A0900 Unbalance Impedance: 50 ohm Balance Impedance (Differential): 100 ohm Frequency range: 900 ± 100 MHz band Maximum insertion loss: 0.8dB (25°C); 0.9dB max. (-25~+85°C)
- Murata LDB20C101A1900 Unbalance Impedance: 50 ohm Balance Impedance (Differential): 100 ohm Frequency range: 1900 ± 100 MHz band Maximum insertion loss: 0.8dB (25°C); 0.9dB max. (-25~+85°C)

All front-end data are specified and should be measured with:

- \blacktriangleright input point = A
- output point = C (internal pads or test outputs)
- Balun losses have to be removed from measurement. They are not included in specification.
- Matching network must be built with standard capacitors and "LQG series" inductors. Its losses must be included in receiver noise figure.

Recommended Matching network structure is the following: C1+C2+L or C3+C4+L.

Figure 15 - Recommended matching network

TI – Proprietary Information –

Page 60 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

ANNEX 3: TRF6151 RECEIVER CONFIGURATIONS

European dual band configuration:

Figure 16 - European dual band RX block diagram

US dual band configuration:

Figure 17 - US dual band RX block diagram

"European triple band" configuration:

Figure 18 - European triple band RX block diagram

TI – Proprietary Information –

Page 61 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Strictly Private

"US triple band" configuration:

Figure 19 - US triple band RX block diagram

"Quad band" configuration:

Or...

Figure 20 - Quad band RX block diagram

TI – Proprietary Information –

Page 62 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **Strictly Private**

UNDER NON DISCLOSURE AGREEMENT

ANNEX 4: TRF6151 FILTERS

Cascaded filters:

Following plots are showing the attenuation characteristics of the 3-cascaded low pass filters included in TRF6151.

Worst-case curves are "cascaded worst case" on all filters (cut-off-frequencies are maximal).

Best-case curves are also "cascaded best case" on all filters (cut-off-frequencies are minimal).

Figure 21 - TRF6151 cascaded filters characteristic

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 63 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

Parameters	Test conditions	Min.	Тур.	Max.	Unit
Filter order			1		-
Filter cut off frequency		275	338	438	kHz
	f=330kHz	2	2.9	3.9	dB
	f=600kHz	4.6	6.2	7.6	dB
	f=800kHz	6.4	8.2	9.8	dB
Filter attenuation	f=1.6MHz	11.6	13.7	15.4	dB
	f=3MHz	16.8	19	20.8	dB
	f=10MHz	27.2	29.4	31.2	dB
	f=20MHz	33.2	35.4	37.2	dB

Post IQ demodulator filter:

Figure 22 - TRF6151 post mixer filter characteristic

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **TI – Proprietary Information –**

Page 64 of 74

Strictly Private

UNDER NON DISCLOSURE AGREEMENT

VGA low pass filters:

Typical: Vcc = 2.8 V, $Ta = +25^{\circ}C$ - Min. and Max.: Over Operating temperature and Voltage range

Parameters	Test conditions	Min.	Тур.	Max.	Unit
VGA low pass filter	Order		1		
#1	3dB cut-off-frequency	0.9	1.2	1.8	MHz
VCA loss need filter	Order		2		
VGA low pass filter #2	Туре		Butterworth		
	3dB cut-off-frequency	120	155	230	kHz
	f=330kHz	7.2	13.7	18.8	dB
	f=600kHz	17	24.5	30.1	dB
VGA Filters global attenuation ⁸²	f=800kHz	22.1	30.1	36.1	dB
	f=1.6MHz	36	45	51.8	dB
	f=3MHz	50.2	60.1	67.3	dB
	f=10MHz	80.3	60.9	98.4	dB
	f=20MHz	98.3	108.9	116.4	dB

Figure 23 - TRF6151 base band filters characteristic

 82 Filters included in VGA are cascaded (1rst order low pass filter with cut-off-frequency at 1.2MHz + 2nd order Butterworth low pass filter with cut-off-frequency at 155 kHz)

TI – Proprietary Information –

Page 65 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Strictly Private

ANNEX 5: REFERENCE CLOCK CONNECTION⁸³

Figure 24 – Reference clock connection

⁸³ The components values are given only for indication – They come from EVARITA application board

TI – Proprietary Information –

Page 66 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Strictly Private

ANNEX 6: TEST PROCEDURE FOR RX LOCK TIME

Test #1: locking time from "OFF" to "RX" state

Test procedure:

- 1. TRF6151 is in idle mode, only the bandgap and the regulators are ON,
- 2. Set the LNA in high gain, and VGA in low gain. RX DC offset compensation is not required,
- 3. A sinewave signal @ freq = F_1 +68kHz is applied at receiver input,
- 4. At t=t₀, entire receiver is switched on (RX synthesizer + RX path),
- 5. 68kHz signal is observed at IQ P/N outputs of TRF6151. The receiver lock time is $t_L=t_1-t_0$, where t_1 is the time when frequency error is within 20 Hz averaged over 1 burst time.

Test signal settings for lock time measurement:

Test signal power level at antenna = -50dBm

Test signal frequency at antenna = F_1 +68kHz (see table below for F_1 value)

Band	Frequency F ₁ (MHz)	Receiver input port
GSM 850	869.2	LNAGSM
	881.6	
	893.8	
GSM 900	925.2	LNAGSM
	942.6	
	959.8	
DCS 1800	1805.2	LNADCS
	1842.6	
	1879.8	
PCS 1900	1930.2	LNAPCS
	1960.0	
	1979.8	

TRF6151 Programming sequence example (RX EGSM @925.2MHz):

Task #	Action	Programming	Timing
#1	TRF6151 is in idle mode, only the bandgap and the regulators are ON	REG_PWR<15:0>=0000000XXX111010	Wait at least 25msec before #2
#2	Set PLL channel RX EGSM = 925.2MHz with A=36 B=144 freq = (144*64+36)/(65*4)*26	REG_PLL<15:0>= 1010000100100001	before #3
#3	Set LNA gain = high, VGA gain = low	REG_RX<15:0>= 00110XX0011XX000	before #4
#4	Set RX band (EGSM), power on synthesizer, and RX path. After 175usec, Main VCO is calibrated and main PLL should be locked	REG_PWR<15:0>=000010100X111010	t ₀
#5	Measure signal on VGA IQ output with frequency error<= 20Hz over 1 burst	-	t_1

TI – Proprietary Information –

Page 67 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **Strictly Private**

UNDER NON DISCLOSURE AGREEMENT

Vers 3.2

Test #2: locking time from "RX GSM" to "RX DCS" state

Test procedure:

- 1. A sinewave signal @ freq = F_1 +68kHz is applied at receiver input,
- 2. TRF6151 is in RX GSM mode,
- 3. Stop TRF6151 RX GSM session,
- 4. Set PLL for RX DCS session,
- 5. At t=t₀, entire receiver is switched on (RX synthesizer + RX path) in DCS mode,
- 6. 68kHz signal is observed at IQ P/N outputs of TRF6151. The receiver lock time is $t_L=t_1-t_0$, where t_1 is the time when frequency error is within 20 Hz averaged over 1 burst time.

Test signal settings for lock time measurement:

Test signal power level at antenna = -50dBm

Test signal frequency at antenna = F_1 +68kHz (see table below for F_1 value)

Band	Frequency F ₁ (MHz)	Receiver input port
DCS 1800	1805.2	LNADCS
	1842.6	
	1879.8	

TRF6151 Programming sequence example:

From EGSM RX=925.2MHz to DCS RX=1879.8MHz

Task #	Action	Programming	Timing
#1	TRF6151 is in RX GSM mode with freq = 925.2MHz	REG_PLL<15:0>= 1010000100100001 REG_RX<15:0>= 00110XX0011XX000 REG_PWR<15:0>= 000010100X111010	Wait at least 25msec before #2
#2	Stop RX GSM session, set TRF6151 is in idle mode, only the bandgap and the regulators are still maintained ON.	REG_PWR<15:0>=0000000XXX111010	Before #3
#3	Set PLL channel RX DCS = 1879.8MHz with A=55 B=146 freq = (146*64+55)/(65*2)*26	REG_PLL<15:0>= 1010010110111001	before #4
#4	Set RX band (DCS), power on synthesizer, and RX path. After 175usec, Main VCO is calibrated and main PLL should be locked	REG_PWR<15:0>=000010101X111010	t ₀
#5	Measure signal on VGA IQ output with frequency error<= 20Hz over 1 burst	-	t ₁

TI – Proprietary Information –

Page 68 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. **Strictly Private**

UNDER NON DISCLOSURE AGREEMENT

ANNEX 7 - INTERFERER DETECTION SYSTEM (PROVISION)

Interferer detection principle

Today, the AGC strategy is only based on the useful signal input power level and quality. We propose also to inform the DBB when a large interferer appears at the TRF6151 input, during a RX session.

Prerequisites for using interferer detection system:

A dedicated AGC algorithm should be implemented in L1 software.

Interferer detection block diagram

Interferer detection process

The DBB controls the RF chip using a specific register (REG_PWR<12>) of the serial interface to start an RX session with the "interferer detector enabled". Then, the receiver is switched on with a detector system at the mixer output, which sets a control bit to 1 if a large signal is present at the mixer output. This detector includes 2 thresholds, automatically switched according the RF gain setting. If LNA-mixer gain is high, high threshold is used; otherwise, low threshold is used.

The control bit is stored in one bit of the serial interface registers, with two possible storing addresses: REG_RX<4> or REG_RX<3>. The DBB selects alternatively each address to ensure the double buffering of the detector output. This is necessary for the L1 software.

At the end of the RX session, DBB reads REG_RX contents and reset REG_RX<43> before the next RX session.

Finally, according detection results, DBB can decide to reduce the RF gain to limit dynamic DC offset due to the presence of powerful interferer at the antenna. To preserve a good SNR even if RF gain is reduced, an additive gain step is defined for the RF part of the receiver. Useful LNA mixer gain can be high (GRF_HIGH ~26dB) or intermediate (GRF_MID ~20dB).

TI – Proprietary Information –

Page 69 of 74

Strictly Private

UNDER NON DISCLOSURE

AGREEMENT

DO NOT COPY

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

Useful TPU scenario:

To read RF serial interface contents, following TPU scenario is recommended:

#	Programming	Explanations				
1	Set DBB REG_SPI_CTRL2 = '1'	DBB serial port is in RX/TX mode				
2	Word #1	Word #1 means that during the next serial				
	'XXXXXXX0100XX000'	interface programming, REG_RX register				
		content will be serialized on SIOUT pin.				
3	Word #2	During Word #2 reception, REG_RX				
	'XXXXXXX0011XX000'	register content is received by the DBB.				
		Word#2 means that during the next serial				
		interface programming, no data will be				
		serialized on SIOUT pin and that				
		BLOCK_DETECT contents is reset.				
4	Set DBB REG_SPI_CTRL2 = '0'	DBB serial port is in TX mode only.				
		(BLOCK_DETECT is now stored in				
		REG_RX_LSB [4:3])				

Interferer detection system specification:

Typical: Vcc = 2.8 V, Ta = +25°C - Min. and Max.: Over Operating temperature and Voltage range

Parameters	Test conditions	Min.	Typ.	Max.	Unit
Detection threshold	on active LNA input pins LNA/mixer gain = <u>GRF HIGH or GRF MID^{84,85}</u> With GMSK useful signal @ Freq=F1, P1= -103dBm and a sinus interferer signal @ Freq=F2, P= [P2i to P2f] with 1dB step increment (See Table 3)	-40	-37.5	-35	dBm

Table 3: Test signals for interferer detection system:

Band	F1	F2	P2i	P2f	
	MHz	MHz	dBm	dBm	
GSM850	882	888			
GSM900	942	948	42	22	
DCS1800	1842	1848	-42	-55	
PCS1900	1960	1966			

⁸⁵ This requires 2 different hardware thresholds at the mixer output, separated by GRF_HIGH-GRF_MID+2dB = 8dB

TI – Proprietary Information –

Strictly Private

Page 70 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

⁸⁴ GRF_MID is defined in the next chapter

Specification related to GRF_MID gain:

Unless otherwise specified, receiver performance programmed at full gain (RF gain is GRF_MID and VGA gain is maximum) should be equivalent to receiver performance programmed with a reduced gain (GRF_MID) on RF part and maximum gain on VGA.

Global performances

Typical. $v cc = 2.8$	$v_1 = \pm 23$ C - Will. and Wax $1a = -23$ C C	0 + 0J C, VE	-3.0	v 10 5.5 v		
Parameters	Test conditions	Symb	Min.	Тур.	Max.	Unit
Voltage gain ⁸⁶	All bands Front end in intermediate gain mode and VGA in high gain mode	G_MID*	57	60	63	dB
RF input return loss	LNAGSMN/P, LNADCSN/P or LNAPO Receiver gain = G_MID*	CSN/P	-	-	-10	dB
	GRF_MID, All bands Blocker @ 0.33 Mhz from carrier		-42	-38.5	-	dBm
	GRF_MID, All bands Blocker @ 0.6 Mhz from carrier		-41.5	-37.5	-	dBm
	GRF_MID, All bands Blocker @ 1.6 Mhz from carrier		-33	-30.5	-	dBm
	GRF_MID, DCS1800 and PCS1900 bands Blocker @ 3 Mhz from carrier		-32	-30.5	-	dBm
Input 1dB	GRF_MID, GSM850 and GSM900 ban Blocker @ 3 Mhz from carrier	ds	-28.5	-27	-	dBm
blocking compression	GRF_MID, GSM900 band Blocker @ 10 Mhz from carrier		-28	-27	-	dBm
point	GRF_MID, GSM850 band Blocker @ 20 Mhz from carrier		-25	-24	-	dBm
	GRF_MID, GSM900 band Blocker @ 20 Mhz from carrier		-26	-25	-	dBm
	GRF_MID, DCS1800 band Blocker @ 20 Mhz from carrier		-30	-29	-	dBm
	GRF_MID, PCS1900 band Blocker @ 20 Mhz from carrier		-26	-25	-	dBm
	GRF_MID, DCS1800 band Blocker @ 100 Mhz from carrier		-26	-25	-	dBm
	LNAGSMN/P pins, GSM900 band, G_1	MID*	-		10.9	dB
Noise figure in	LNAGSMN/P pins, GSM850 band, G_M	/IID* 42	-		11.1	dB
blocking	LNADCSN/P pins, DCS band, G MID*		-		10.9	dB
conditions	LNAPCSN/P pins, PCS band, G_MID*		-		10.9	dB
LO/4 feedthrough at RF port ⁸⁹	LNAGSMN/P pins, CSM850 band, G_N LNAGSMN/P pins, GSM900 band, G_N	AID* AID*	-	-	-74	dBm

OFOC VDAT 2017 2500 - - X7 **10 W**

⁸⁹ LO is the frequency delivered by the VCO RX.

TI – Proprietary Information –

Strictly Private

Page 71 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

⁸⁶ From <u>50 Ω single ended voltage source</u> output (matched to LNA differential input) to one receiver differential output. See Annex 2 (page 60) for more details.

⁸⁷ NF is measured from LNA matched differential input to one receiver differential output (IN/P or QN/P pins). <u>Matching losses with low O components are included</u>. Noise is averaged over 1kHz to 100kHz. ⁸⁸ Blocking signal power level and its frequency offset from carrier are defined in

Table 1.

LO/2 feedthrough at RF port ⁴³	LNADCSN/P pins, DCS band, G_MID* LNAPCSN/P pins, PCS band, G_MID*	-	-	-74	dBm
Static	On IN/P or QN/P path, G_MID* LNA is OFF 600 kHz blocker applied at LNA input ⁴⁶ After DC offset compensation	_	-	80	mV
offset	On IN/P or QN/P path Static DC offset calibrated, G_MID* LNA is switched on after calibration 3Mhz blocker is applied at LNA input ⁹⁰	-	-	180	mV
Time -varying differential DC offset	On IN/P or QN/P path Static DC offset calibrated, G_MID* LNA is switched on after calibration AM suppression ETSI test case ⁹¹			0.5	DC ratio ⁹²

Low band GSM850-GSM900 LNA (LNAGSM) + IQ demodulator (MIXGSM)

RF input return loss	LNAGSMN/P Voltage gain = GRF_MID		-	-	-10	dB
Voltage gain ⁹³	Intermediate gain mode ⁹⁴	GRF_ MID	18	20	22	dB
Noise figure ⁹⁵	GSM850 or GSM900 band,Voltage gain=GRF_MID				8.8	dB
	GRF_MID, GSM850 and GSM900 bands Blocker @ 3 Mhz from carrier		-28	-27	-	dBm
Input 1dB blocking	Voltage gain= GRF_MID GSM900 band Blocker @ 10 Mhz from carrier		-28	-27	-	dBm
compression point	Voltage gain= GRF_MID GSM850 band Blocker @ 20 Mhz from carrier		-25	-24	-	dBm
	Voltage gain= GRF_MID GSM900 band Blocker @ 20 Mhz from carrier		-26	-25	-	dBm
Noise figure in	GSM900 band, Voltage gain=GRF_MID		-		8.6	dB
blocking conditions ⁹⁶	GSM850 band, Voltage gain=GRF_MID		-		8.8	dB
LO/4 feedthrough at RF port ⁹⁷	GSM850 and GSM900 bands Voltage gain= GRF_MID		-	-	-74	dBm

DCS LNA (LNADCS) + IQ demodulator(MIXDCS)

RF input	LNAGSMN/P			10	٩D
return loss	Voltage gain = GRF_MID	-	-	-10	uБ

⁹⁰ See

⁹⁶ These figure are given for design purpose. They do not include LO phase noise contribution. ⁹⁷ LO is the frequency delivered by the VCO RX.

TI – Proprietary Information –

Strictly Private

Page 72 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

Table 1 for blocker level specification.

⁹¹ See Table 2 for AM suppression test case definition

⁹² DC ratio = [Time -varying differential DC offset]/ [Vpeak(useful signal)]

 $^{^{93}}$ From <u>50Ω single ended voltage source</u> output (matched to LNA differential input) to one IQ demodulator differential output (MIXIN/P or MIXQN/P internal pads). See Annex 2 (page 60) for more details. ⁹⁴ A 6 dB gain switch is implemented in the LNA.

⁹⁵ NF is measured from LNA matched differential input to one receiver differential output (MIXIN/P or MIXQN/P internal pads). Matching losses with low O components are included. Noise is averaged over 1kHz to 100kHz.
Voltage gain ⁹⁸	Intermediate gain mode ⁹⁹		18	20	22	dB
Noise figure ¹⁰⁰	Voltage gain=GRF_MID		-		8.6	dB
Input 1dB blocking compression point	Voltage gain= GRF_MID Blocker @ 3 Mhz from carrier		-31	-30		dBm
	Voltage gain= GRF_MID Blocker @ 20 Mhz from carrier		-30	-29	-	dBm
	Voltage gain= GRF_MID Blocker @ 100 Mhz from carrier		-26	-25		dBm
Noise figure in blocking conditions ¹⁰¹	Voltage gain=GRF_MID		-		8.6	dB
LO/2 feedthrough at RF port ¹⁰²	Voltage gain= GRF_MID		-	-	-74	dBm

PCS LNA (LNAPCS) + IQ demodulator (MIXPCS)

Voltage gain ¹⁰³	Intermediate gain mode ¹⁰⁴		18	20	22	dB
Noise figure ¹⁰⁵	Voltage gain=GRF_MID		-		8.6	dB
RF input return loss	LNAPCSN/P pins Voltage gain= GRF_MID		-	-	-10	dB
Input 1dB blocking	Voltage gain= GRF_MID Blocker @ 3 Mhz from carrier		-31	-30	-	dBm
compression point	Voltage gain= GRF_MID Blocker @ 20 Mhz from carrier		-26	-25	-	dBm
LO/2 feedthrough at RF port ¹⁰⁶	Voltage gain= GRF_MID		-	-	-74	dBm
Noise figure in blocking conditions ¹⁰⁷	Voltage gain=GRF_MID		_		8.6	dB

DC offset compensation system: same specification applied for RF Gain=GRF_MID or RF Gain=GRF_HIGH.

¹⁰⁷ These figure are given for design purpose. They do not include LO phase noise contribution.

TI – Proprietary Information –

Page 73 of 74

Strictly Private

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change.

UNDER NON DISCLOSURE AGREEMENT

DO NOT COPY

⁹⁸ From <u>50Ω single ended voltage source</u> output (matched to LNA differential input) to one IQ demodulator differential output (MIXIN/P or MIXQN/P internal pads). See Annex 2 (page 60) for more details. ⁹⁹ A 6 dB gain switch is implemented in the LNA.

¹⁰⁰ NF is measured from LNA matched differential input to one receiver differential output (MIXIN/P or MIXQN/P internal pads). <u>Matching losses with low Q components are included</u>. Noise is averaged over 1kHz to 100kHz.

 ¹⁰¹ These figure are given for design purpose. They do not include LO phase noise contribution.
 ¹⁰² LO is the frequency delivered by the VCO RX.

¹⁰³ From <u>50Ω single ended voltage source</u> output (matched to LNA differential input) to one IQ demodulator differential output (MIXIN/P or MIXQN/P internal pads). See Annex 2 (page 60) for more details. ¹⁰⁴ A 6 dB gain switch is implemented in the LNA.

¹⁰⁵ NF is measured from LNA matched differential input to one receiver differential output (MIXIN/P or MIXQN/P internal pads). <u>Matching losses with low Q components are included</u>. Noise is averaged over 1kHz to 100kHz.

¹⁰⁶ LO is the frequency delivered by the VCO RX.

Useful bits for interferer detection control:

Within REG_RX register:

Some bits are dedicated to read/reset the "interferer detector" results and to program the RF gain in "intermediate mode".

Bit	Name	Description	Value at
10:9	00: low RF gain (GRF_LOW)01: intermediate RF gain (GRF_MID)10: reserved11: high RF gain (GRF_HIGH)		11
7	READ_EN	 0: Data serialized on SIOUT pin are 0 1: Data serialized on SIOUT pin are REG_RX content => this enables the reading of BLOCK_DETECT value by the Digital base band chip. 	0
6	RST_BLOCK_DETECT[1]	0: no action 1: Reset BLOCK_DETECT[1] ¹⁰⁸	0
5	RST_BLOCK_DETECT[0] 0: no action 1: Reset BLOCK_DETECT[0]		0
4	BLOCK_DETECT[1]] Result of interferer detection on the current and last	
3	BLOCK_DETECT[0]	RX burst. Those bits are READ ONLY ¹⁰⁹ .	0

Within REG_PWR register:

Bit <12:11> are used to power on and off the interferer detection system

	Name	Description	Value
Bit			at
			reset
12:11	RX_MODE	00: Receiver +interferer detection system are OFF	
		01: Receiver is ON (RX mode A)	00
		10: Receiver +interferer detection system is ON (RX mode B1)	00
		11: Receiver +interferer detection system is ON (RX mode B2)	

Table 4 Receive Mode description

Mode	Receiver status	Interferer detector		
RX mode A		OFF		
RX mode B1	Receiver is ON i.e RX path (LNA, mixer, VGA) and RX synthesizer are ON.	ecceiver is ONInterferer detector is ON and detection result is storedin (LNA, mixer, VGA)in REG_RX bit#3 at the end of the RX window		
RX mode B2		Interferer detector is ON and detection result is stored in REG_RX bit#4 at the end of the RX window		

¹⁰⁹ BLOCK_DETECT content is updated according interferer detection value during each RX burst (mode B). BLOCK_DETECT cannot be directly updated by user using serial interface, but can be forced to 0 by setting RST_BLOCK_DETECT bits to 1. BLOCK_DETECT is also reset by RESETZ pin.

TI – Proprietary Information –

Page 74 of 74

PRELIMINARY documents contain information on a product under development and is issued for evaluation purposes only. Features characteristic data and other information are subject to change. Strictly Private

UNDER NON DISCLOSURE AGREEMENT

¹⁰⁸ RST_BLOCK_DETECT[1:0] are TOGGLE bits, no need to write 0!