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Foreword 

This Technical Report has been produced by the 3
rd

 Generat ion Partnership Pro ject (3GPP).  

The contents of the present document are subject to continuing work within the TSG and may change following formal 

TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an 

identifying change of release date and an increase in version number as fo llows: 

Version x.y.z 

where: 

x the first digit : 

1 presented to TSG for information; 

2 presented to TSG for approval; 

3 or greater indicates TSG approved document under change control. 

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, 

updates, etc. 

z the third digit is incremented when editorial on ly changes have been incorporated in the document. 
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1 Scope 

The present document describes the statistical theory and concepts applied in the conformance test of the user 

equipment (UE) so as to improve test speed. 

2 References 

The following documents contain provisions which, through reference in this text, constitute provisions of the present 

document. 

 References are either specific (identified by date of publication, edit ion number, version number, etc.) o r 

non-specific. 

 For a specific reference, subsequent revisions do not apply. 

 For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including 

a GSM document), a non-specific reference implicit ly refers to the latest version of that document in the same 

Release as the present document. 

[1] 3GPP TS 34.121: "Terminal Conformance Specificat ion; Radio trans mission and reception 

(FDD)". 

[2] 3GPP TS 34.122: " Terminal Conformance Specification; Radio transmission and reception 

(TDD)". 

3. Definitions, symbols and abbreviations 

Definitions, symbols, abbreviations and equations used in the present document are listed in TR 21.905 [5] and 

TR 25.990 [6]. 

3.1 Definitions 

For the purposes of the present document, the following additional terms and defin itions apply. 

3.2 Symbols 

For the purposes of the present document, the following symbols apply: 

[…] Values included in square bracket must be considered for further studies, because it means that a 

decision about that value was not taken 

3.3 Abbreviations 

For the purposes of the present document, the following abbreviations apply: 

BER Bit Error Ratio  

BLER Block Error Ratio  

DUT Device under Test 

3.4 Equations 

Void. 
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4 Introduction  

This technical report includes two distinct approaches made to determine total test time optimisation. For ease of  

understanding they are just referred to here as the first and second approach. Furthermore the two approaches differ a 

litt le in that they use slightly different terminology. 

4.1 First approach 

The first approach is found in clauses 5 and 6. It reflects TS 34.121 in that the symbols, abbreviations and equations are 

consistent with TS 34.121.  

4.2 Second approach 

The second approach is found in clauses 7 to 11 and does not directly reflect TS 34.121 although it does use the existing 

theory from TS 34.121. The difference is that it refines the theory and derives further approaches for test time reduction. 

Some of the symbols, abbreviations and equations have local meaning and these are identified in clause 7.  

5. Definitions of distribution functions and parameters to 
be used 

Summary  

5.1 Properties of the Poisson Distribution 

Description of a statistical experiment by a distribution function and basic characteristics of the distribution.  

5.2 Equivalence between Poisson Distribution and Chi Square Distribution  

Here it is shown, that both distributions are equal. Just the form is different. On the other hand there are two inverse 

cumulat ive operations. One of them is useful for our purpose. 

5.3 Confidence interval  

Introduction into the notion. 

5.4 Application of the confidence interval to decide the outcome of the test  

Using the notion of the confidence interval, we calculate the early pass and early fail limit.  

5.6 Test time reduction 

Using 5.4 the outcome of the test is connected with two qualities, a good one and a worse and variable one. Introducing 

the bad DUT factor M, the quality of the test is now uniform and test time is further reduced. 

5.7 Calculation of the intersection coordinates (maximum number of sample and the 
normalized test limit) 

Calculus for intersection co-ordinates of the early pass and early fail limit.  

5.8 Wrong decision risk F 

5.1 to 5.6 applies the wrong decision risk fo r a single test step D. However it is desirable to have a predefined wrong 

decision risk for the entire test F. The approach to derive F from D this is exp lained here.  
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5.1 Properties of the Poisson distribution 

NOTE:  The following text is expressed in terms of BER=bit error rat io. However it can be used for BLER (Block 

error ratio) as well. Even for 1- Success Ratio, used in RRM delay tests, the theory can be used. 

With a fin ite number of samples (ns), the final b it erro r rat io BER cannot be determined exactly.  

Applying a fin ite ns, we measure a number of errors (ne). 

ne/ns =ber is the preliminary bit error ratio.  

In a single test we apply a predefined number of samples ns and we measure a number of errors (ne). ne is connected 

with a certain differential probability in the Po isson distribution. We don't know the probability and the position in the 

distribution conducting jus t one single test. 

Repeating this test infinite times, apply ing repeatedly the same ns, we get the complete Poisson distribution. The 

average number of errors is NE. NE/ns  is the final BER. 

Poisson Distribution:  

 dpois(ne,NE)=(NEne/ne!)e-NE  (1) 

TOL 10
10

 e.g. : ns 500  BER 0.01 NE ns BER ne 1 2 50  

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

dpois ne NE( )

ne  

Figure 5-1: Example of Poisson distribution curve 

The Poisson distribution has the variable ne and is characterised by the parameter NE.  

Real probabilities to find ne between two limits are calculated by integrating between such limits. 

Note: The Po isson distribution is an approximation: Independent error occurrence is described by the binomial 

distribution. If the BER approaches 0 the Poisson distribution approximates the binomial distribution.  

5.2 Equivalence between Poisson distribution and Chi Square 

distribution 

The experiment, the Poisson distribution is based on, is having observed a certain number of samples (ns), the number 

of events (ne) is counted to calculate the ratio ne/ns . 

The experiment, the Chi Square d istribution is based on, is having observed a certain number o f events (ne), the number 

of samples (ns) is counted to calculate the ratio ne/ns . 

Poisson and Chi Square are valid only if ne<<ns  
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TOL 10
10

 ns 500  BER 0.01  NE ns BER  ne 0 1 50  

0 5 10 15 20
0

0.05

0.1

0.15

0.2

dpois ne NE( )

2 dchisq 2 NE 2 ne 1( )[ ]

ne  

Figure 5-2: Comparison of Chi-Squared and Poisson distribution  

The dotted blue function is the Chi-squared distribution, using the parameters of the Poisson distribution. We scaled, 

offset and changed the interpretation of variable and parameter such that both distributions match. The Poisson 

distribution is a discrete distribution. Such scaled the Chi Squared distribution interpolates the Poisson distribution 

exactly for all NE (degenerated for NE=ne=0).  

The experiment of the Chi Square distribution is always terminated by an event, 

In contrast the experiment of the Po isson distribution almost never is terminated by an event because of ne/ns -->0. This 

explains that the Poisson distribution needs one event more, to equal in its form the Chi Square distribution  

 2*dchisq(2*NE,2*ne) = dpois(ne-1,NE) describes the experiment, terminated by an error.  

 2*dchisq(2*NE,2*(ne+1)) = dpois(ne,NE) describes the experiment, terminated by any sample.  

The terminating error may be the art ificial error at the beginning of the test, or the last error, causing the fail.  

In the next comparison shows dpois versus dchisq. 

The first 3D plot shows the Poisson distribution: (Figure 5-1) 

 Variable: ne  Range 0 to 10 Column in the table  0 to 10- axis in the plot  

 Parameter: NE Range 0 to 10 Row in the table  0 to 100 axis in the plot 

The second 3D plot shows the Chi Square distribution: (Figure 5-4) 

 Variable: NE Range 0 to 10 Column in the table  0 to 100- axis in the plot 

 Parameter: ne  Range 0 to 10 Row in the table  0 to 10 axis in the plot 

Columne 0 is degenerated 

P ne NE( ) dpois ne 0.1NE 0.000001( )  

m 10  n 100  O matrixm n P( )  
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Table 5-1: Poisson distribution calculation 

O

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

1 0.905 0.819 0.741 0.67 0.607 0.549 0.497 0.449 0.407 0.368 0.333

10·10    -7 0.09 0.164 0.222 0.268 0.303 0.329 0.348 0.359 0.366 0.368 0.366

5·10      -13 4.524·10    -3 0.016 0.033 0.054 0.076 0.099 0.122 0.144 0.165 0.184 0.201

0 1.508·10    -4 1.092·10    -3 3.334·10    -3 7.15·10    -3 0.013 0.02 0.028 0.038 0.049 0.061 0.074

0 3.77·10    -6 5.458·10    -5 2.5·10    -4 7.15·10    -4 1.58·10    -3 2.964·10    -3 4.968·10    -3 7.669·10    -3 0.011 0.015 0.02

0 7.541·10    -8 2.183·10    -6 1.5·10    -5 5.72·10    -5 1.58·10    -4 3.556·10    -4 6.955·10    -4 1.227·10    -3 2.001·10    -3 3.066·10    -3 4.467·10    -3

0 1.257·10    -9 7.278·10    -8 7.501·10    -7 3.813·10    -6 1.316·10    -5 3.556·10    -5 8.114·10    -5 1.636·10    -4 3.001·10    -4 5.109·10    -4 8.19·10    -4

0 1.795·10      -11 2.079·10    -9 3.215·10    -8 2.179·10    -7 9.402·10    -7 3.048·10    -6 8.114·10    -6 1.87·10    -5 3.858·10    -5 7.299·10    -5 1.287·10    -4

0 2.244·10      -13 5.198·10      -11 1.206·10    -9 1.09·10    -8 5.876·10    -8 2.286·10    -7 7.1·10    -7 1.87·10    -6 4.341·10    -6 9.124·10    -6 1.77·10    -5

0 2.494·10      -15 1.155·10      -12 4.018·10      -11 4.842·10      -10 3.265·10    -9 1.524·10    -8 5.522·10    -8 1.662·10    -7 4.341·10    -7 1.014·10    -6 2.163·10    -6



 

 

O

Figure 5-3: 3D plot for Poisson distribution 

C NE ne( ) 2dchisq 2 0.1NE( ) 2 ne .000001( )[ ]  

m 100  n 10 D matrixm n C( )  ne 
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Table 5-2: Chi-squared distribution calculation 

D

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0 0 0 0 0 0 0 0 0 0

9.048·10    -6 0.905 0.09 4.524·10    -3 1.508·10    -4 3.77·10    -6 7.54·10    -8 1.257·10    -9 1.795·10      -11 2.244·10      -13

4.094·10    -6 0.819 0.164 0.016 1.092·10    -3 5.458·10    -5 2.183·10    -6 7.278·10    -8 2.079·10    -9 5.198·10      -11

2.469·10    -6 0.741 0.222 0.033 3.334·10    -3 2.5·10    -4 1.5·10    -5 7.501·10    -7 3.215·10    -8 1.205·10    -9

1.676·10    -6 0.67 0.268 0.054 7.15·10    -3 7.15·10    -4 5.72·10    -5 3.813·10    -6 2.179·10    -7 1.09·10    -8

1.213·10    -6 0.607 0.303 0.076 0.013 1.58·10    -3 1.58·10    -4 1.316·10    -5 9.402·10    -7 5.876·10    -8

9.147·10    -7 0.549 0.329 0.099 0.02 2.964·10    -3 3.556·10    -4 3.556·10    -5 3.048·10    -6 2.286·10    -7

7.094·10    -7 0.497 0.348 0.122 0.028 4.968·10    -3 6.955·10    -4 8.114·10    -5 8.114·10    -6 7.1·10    -7

5.617·10    -7 0.449 0.359 0.144 0.038 7.669·10    -3 1.227·10    -3 1.636·10    -4 1.87·10    -5 1.87·10    -6

4.517·10    -7 0.407 0.366 0.165 0.049 0.011 2.001·10    -3 3.001·10    -4 3.858·10    -5 4.341·10    -6

3.679·10    -7 0.368 0.368 0.184 0.061 0.015 3.066·10    -3 5.109·10    -4 7.299·10    -5 9.124·10    -6

3.026·10    -7 0.333 0.366 0.201 0.074 0.02 4.467·10    -3 8.19·10    -4 1.287·10    -4 1.77·10    -5

2.51·10    -7 0.301 0.361 0.217 0.087 0.026 6.246·10    -3 1.249·10    -3 2.141·10    -4 3.212·10    -5

2.096·10    -7 0.273 0.354 0.23 0.1 0.032 8.432·10    -3 1.827·10    -3 3.393·10    -4 5.514·10    -5

1.761·10    -7 0.247 0.345 0.242 0.113 0.039 0.011 2.579·10    -3 5.158·10    -4 9.026·10    -5

1.488·10    -7 0.223 0.335 0.251 0.126 0.047 0.014 3.53·10    -3 7.564·10    -4 1.418·10    -4

1.262·10    -7 0.202 0.323 0.258 0.138 0.055 0.018 4.705·10    -3 1.075·10    -3 2.151·10    -4

1.075·10    -7 0.183 0.311 0.264 0.15 0.064 0.022 6.124·10    -3 1.487·10    -3 3.161·10    -4

9.183·10    -8 0.165 0.298 0.268 0.161 0.072 0.026 7.809·10    -3 2.008·10    -3 4.518·10    -4



 

 

D

Figure 5-4: 3D plot for Chi-squared distribution 

Observation:  

1) The rows in Po isson distribution correspond the columns in the scaled Chi-squared distribution and vice versa. 

2) Poisson distribution at ne=0 versus NE is the exponential distribution 

Chi-squared distribution at ne=0 (degree of freedom=1) versus NE is also the exponential d istribution  



 

3GPP 

3GPP TR 34.901 V3.0.0 (2003-06) 11 Release 1999 

see the next plot: 

NE 0.01 0.02 10  ne 0 1 10  

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

2 dchisq 2 NE 2 0 1( )[ ]

exp NE( )

dpois 0 NE( )

NE  

Figure 5-5: Comparison between Poisson and Chi-squared distribution 

Inverse Cumulative Operation:  

We have seen: Chi Square and Poisson both describe the same array: ne versus NE.  

The figures above show, that NE and ne in both functions are not commutative. 

Hence there are two inverse operations (a) and (b): 

 D=

0

ne

nidpois ni NE( )




d  = 2* 

0

ne

nidchisq 2NE 2 ni 1( )[ ]




d  (a) 

with D=wrong decision probability or confidence level (input). 

ni is the integration variable  

ne is the measured value.(input, discrete) It is the integration limit  

NE (real) is tuned such that the integral is consistent. 

It returns an NE as a function of the two parameters D and ne. qchisq(D,ne)  

 D=

0

NE

NIdpois ne NI( )




d   =  2* 

0

NE

NIdchisq 2NI 2 ne 1( )[ ]




d  (b) 

NI is the integration variable  

NE (real) is the integration limit  

ne (discrete) is tuned such that the integral is consistent. 

It returns ne as a function of the two parameters D and NE: qpois(D,NE) 
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Our target requires a). Th is is usually called the Inverse Cumulative Chi Square function. 

(b) is the solution for another target. This is usually called the Inverse Cumulat ive Poisson function. 

 

(a) returns a greater NE than (b) returns with respect to ne. (easily v isible in the figures) 

The difference (a)-(b) is small. This is also visible from the figures: ne and NE are close to commutative. 

(a) returns a continuous NE, (b) returns a discrete ne. 

5.3 Confidence interval 

In a single test we apply ns samples and measure ne errors. The result can be member of different distributions each 

characterized by another parameter NE. We ask for two of them: 

1) The worst possible distribution NEhigh , containing our measured ne with [D= 0.0085%] probability in the sense 

 0.000085=

0

ne

nidpois ni NEhigh( )




d   (2) 

ni is the integration variable  

ne is the measured value 

NE is the variable to tune in order to make the integral consistent. 

The result of the inverse cumulat ive operation is  NEhigh 

2) The best possible distributions NElow , containing our measured ne with [D=0.0085%] probability in the sense 

 0.000085=

ne



nidpois ni NElow( )




d   (3) 

The result of the inverse cumulat ive operation is NElow  

To illustrate the meaning of the range between NElow and NEhigh: 

In the case our measured value ne is a rather untypical result (just [0.0085%] probability) nevertheless the final result 

NE can still be found in this range, called confidence interval.  

The probabilit ies D in (1) and (2) can be independent like in  GSM, but we want to have them dependent and equal. 

The inverse cumulat ive Chi Squared distribution gives the wanted results:  

Inputs: number o f errors ne, measured in this test. 

 Probabilities D and the complementary probability 1- D 

Output: NE, the parameter describing the average of the distribution. 

  E.G.: ne 15  D .000085  

 
NElow 0.5qchisq D 2ne( )   (4) 

 
NElow 4.56  

 
NEhigh 0.5qchisq 1 D 2ne( )   (5)
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NEhigh 34.085  

ni 1 2 50

 10 20 30 40 50
0

0.05

0.1

0.15

0.2

dpois ni NElow 

dpois ni NEhigh 

ni  

Figure 5-6: Confidence Interval 

Same as the width of the distributions the confidence interval increases  proportional to SQR(ne), that means, it 

increases absolutely, but decreases relatively to the measured number of errors.  

5.4 Application of the confidence interval to decide the outcome 
of the test 

If we find the entire confidence range, calculated from a single result ne, on the good side of the specified limit we can 

state: With high probability 1-D, the final NE is better than the limit .  

If we find the entire confidence interval, calculated from a single result ne, on the bad side of the specified limit we can 

state: With high probability 1-D, the final NE is worse than the limit. 

With each new test we update our preliminary data for ns , ne and ber. For each new sample we calcu late the 

confidence interval and check it against the test limit.  

Once we find the entire confidence interval on the good side of the specified limit we allow an early pass.  

Once we find the entire confidence interval on the bad side of the specified limit we allow an early fail.  

If we find the confidence interval on both sides of the specified limit, it is evident neither to pass nor to fail the DUT 

early.  

Transcription of the above text into formulas: 

 

The current number of samples ns is calculated from the preliminary ber  and the preliminary ne  

 ber  = ne/ns (6) 

 BERlim = NElimit  / ns (7) 

for abbreviation in the formula: bernorm  = ber/BERlimit = ne/ NElimit    (normalised ber) 

Early pass stipulates:  

 NEhigh < NElimit   (8) 

Early fail stipulates: 
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 NElow > NElimit   (9) 

D 0.000085 ne 1 2 1000  

 

The early fail and the early pass limit are displayed in Figure 5-7: 

early pass limit  

 
bernormpass ne D( )

2ne

qchisq 1 D 2 ne( )
   (10) 

early fail limit 

 
bernormfail ne D( )

2ne

qchisq D 2ne( )
   (11) 

1 10 100 1 10
30.1

1

10

bernormpass ne D( )

bernormfail ne D( )

ne
 

Figure 5-7: Early pass and early fail curves 

5.5 Test time reduction 

Whichever ne we propose as a final stop condition e.g. ne =200, the test can leave the area between the early pass and 

the early fail limit through the open end of the right side of Figure 5-7. Th is situation needs an arbitrary pass or fail 

decision. E.g. pass, if the test hits the vertical 200-error line. This situation has the following drawback: The test has two 

different qualities. A good one, when the test hits an early pass or early fail limit, and  a worse and variable one, when 

the test hits the vertical 200 error line; variab le, depending on the height, it crosses the line. The quality of the test in  

terms of wrong decision risk is variable in the range D up to as bad as 50%. We can replace the situation against a better 

trade-off: 

 Instead a test with different qualities against one limit,  
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 we design a test with a fixed uniform quality against two limits, 

 (gaining further test time reduction). 

We maintain the defin ition of the early fail limit : 

(a) We fail a DUT and accept the probability of D= 0.0085% that it is actually better than the limit.  

We propose a meaningful redefinit ion of the early pass limit :  

(b) We pass a DUT and accept the probability of D=0.0085% that it is actually worse than 

M times the limit  (M>1).(M = Bad DUT factor)  

This produces the following consequences: 

(1) The early pass limit is shifted upwards by the factor of M 

(2) The early fail and the early pass limit intersect. 

(3) The intersection coordinates are: 

  the normalized test limit  

 and the maximum number of events 

Transcription of the above text into formulas: 

 berlimbadpass: early pass limit against the bad DUT limit   (12) 

 berlimfail: early fail limit against the specified limit (13) 

M 1.5 D 0.000085 ne 1 2 1000  

 

berlimbadpass ne D( ) 2
ne

qchisq 1 D 2 ne( )
 M

 

 

berlimfail ne D( ) 2
ne

qchisq D 2 ne( )
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1 10 100 1 10
30.1

1

10

100
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Figure 5-8: Early pass and early fail curves with multiplication factor M 

5.6 Calculation of the intersection coordinates 

M 1.5 D 0.000085 ne 1 2 1000  

 

berlimbadpass ne D( ) 2
ne

qchisq 1 D 2 ne( )
 M

 

 

berlimfail ne D( ) 2
ne

qchisq D 2 ne( )


 

 
Diff k( ) berlimfail k D( ) berlimbadpass k D( )  

initial guess of target number of events 

 k 200  

root finds the zero of the function 

 
klm root Diff k( ) k( )

 

target number of events 

 
klm 344.942

 

normalized test limit 

 
berlimfail klm D  1.234
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5.7 Wrong decision risk F 

Provided a single BER trajectory with final BER on the limit hits the early fail limit . If a fail is decided at this instant of 

the test, the wrong decision risk is as small as D. For each member of a large population of DUTs a wrong decis ion can 

happen, with probability D, accumulating to an amount F > D for the entire population.  

D is the wrong decision risk based on the statistical totality of samples with BER on the limit.  

F is the wrong decision risk based on the statistical totality of DUTs with BER on the limit .  

(The same holds for a bad DUT, h itting the early pass limit.)  

 

We call D the wrong decision risk at a single test step and F the wrong decision risk for the entire test. For a real test it  

is desirable to define in advance the wrong decision risk F of the entire test. An exact theory is not available for this 

problem. It is proposed to derive D from F by the fo llowing simulation:  

A large population of DUTs with BER on the limit (limit-DUT) is simulated and decided against the early pass and 

early fail bound, with a free D-parameter in the early pass and fail limit. The simulat ion will show, that a certain 

fraction F (D<F<1) falsely fails.  

The complementary simulation is:  

A large population of DUTs with M*BER (bad DUT) is simulated and decided against the early pass and early fail 

bound, with a free D-parameter in the early pass and fail limit. The simulation will show, that a certain fraction F 

(D<F<1) falsely passes.  

Both false decision fract ions are approximately equal and represent the wrong decision probability F for the entire test. 

D is tuned such that F corresponds to the predefined wrong decision probability.  

6 F to D conversion in BER BLER tests 

6.1 Conversion F to D 

Annex F.6.1 in TS 34.121 g ives a statistical approach for BER BLER tests. It gives early pass and early fail conditions. 

The formulas for this condition contain the parameter D, the wrong decision probability fo r a single test step. However 

it is desirable to have a wrong decision probability fo r the entire test F. Th is contribution exp lains the way, how to 

derive F from D and gives results for a set of parameters. 

6.2 Introduction 

Provided a single BER trajectory with final BER on the limit hits the early fail limit . If a fail is decided at this instant of 

the test, the wrong decision risk is as small as D. For each member of a large population of DUTs a wrong decision can 

happen, with probability D, accumulating to an amount F > D for the entire population.  

D is the wrong decision risk based on the statistical totality of samples with BER on the limit.  

F is the wrong decision risk based on the statistical totality of DUTs with BER on the limit .  

(The same holds for a bad DUT, h itting the early pass limit.)  

 

We call D the wrong decision risk at a single test step and F the wrong decision risk for the entire test. For a real test it 

is desirable to define in advance the wrong decision risk F of the entire test. An exact theory is not available for this 

problem. It is proposed to derive D from F by the fo llowing simulation: 

A large population of DUTs with BER on the limit (limit-DUT) is simulated and decided against the early pass and 

early fail bound, with a free D-parameter in the early pass and fail limit. The simulat ion will show, that a certain 

fraction F (D<F<1) falsely fails. 
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The complementary simulation is:  

A large population of DUTs with M*BER (bad DUT) is simulated and decided against the early pass and early fail 

bound, with a free D-parameter in the early pass and fail limit. The simulation will show, that a certain fraction F 

(D<F<1) falsely passes.  

Both false decision fract ions are approximately equal and represent the wrong decision probability F for the entire test. 

D is tuned such that F corresponds to the predefined wrong decision probability.  

6.3 The simulation procedure 

6.3.1 Equal pass and fail probability 

A population of DUTs on the limit  is established.  Quantity 10 000 

               Preselected BER 1% 

An early fail and an early pass limit is established. With D (wrong decision risk) and M (bad DUT factor) 

With target ne and test limit as a side result. 

D is tuned in the inner loop 

M and Fpredefined are varied in the outer loop 

During the simulat ion 

A member of the population leaves the statistical totality if  

An error happens and the early fail limit is hit (false fail) 

An error happens and the early pass limit is hit or crossed (correct pass) 

The fraction false fails / 10 000 = F is recorded.  

Inner loop: In repeated trials D is tuned, such that F ≤ Fpredefined (conservative approach). 

Having decided for a specific D the simulation is repeated again 10 t imes  and Fmin, Fmax, and Fmean are recorded. 

The complementary simulation is done with a population of bad DUTs  

(same quantity, same M, same Fpredefined , same D) 

Observation 1: the false pass  fraction is slightly lower than the false fail fract ion.  

Hence the result is even more conservative for the false pass. 

Outer Loop: M is varied from 1.1 to 1.5 in steps of 0.1 

Fpredefined is varied from 0.2 %, 0.5 %, 1%, 2% to 5%. 

Observation 2: For lower wrong decision risks F the false decisions in 10 000 DUT are less. 

Hence the variance of F in the 10 repetit ions relatively increases.  

For lower wrong decision risks F the simulat ion time increases. 

Hence the compensation of the increasing variance of F by more repetit ions is limited by the simulation time, or vice 

versa: the simulat ion results for F converge to a final value, investing infinite effort for simulat ions. 

For practical and security reasons the Ds for lower Fs are decided more conservative than the equivalent ones for higher 

Fs. 
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6.3.2 Unequal pass and fail probability 

For statistical test, frequently repeated, a single false fail can fail the composite test. This can be combated by a 

decreased false fail risk. Th is costs test time.  

A single false pass does not have this effect on the composite test. Hence it is not necessary to consume increased test 

time due to decreased false pass risk for the pass probability. Hence unequal pass and fail p robabilities are treated for 

very low false fail risk. 

A population of DUTs on the limit  is established.  Quantity 10 000 

               Preselected BER 1% 

In the complementary simulation  

a population of bad DUTs is established (same parameters)  

Common for both simulations: 

An early fail limit is established with Dfail and an early pass limit is established with Dpass (D wrong decision risk D fail  <  

Dpass) and M (bad DUT factor) 

With target ne as a side result. 

Dfail and Dpass are tuned independently in the inner loop 

M is varied in the outer loop 

During the simulat ion 

A member of the population leaves the statistical totality if  

An error happens and the early fail limit is hit (false fail)  

For the complementary simulat ion: (correct fail)  

An error happens and the early pass limit is hit or crossed (correct pass) 

For the complementary simulat ion: (false pass) 

The fraction false fails / 10 000 = F fail and the fraction false pass/10 000 = Fpass are recorded. 

Inner loop: In repeated trials D fail and Dpass are tuned independently , such that F fail and Fpass ≤ Fpredefined (conservative 

approach). 

Having decided for a specific D fail and  Dpass the simulation is repeated again 10 t imes  and Fmin fail, Fmax fail, and Fmean fail 

and Fmin pass, Fmax pass, and Fmean pass are recorded. 

Observation 3: The Dpass must be slightly lower than the equivalent D in the case for equal probabilit ies (a).  

Due to lower Dfail the target number of errors increases (e.g. 345   403), accumulating more single step wrong 

decisions. This is compensated by a lower Dpass. 
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6.4 Result of the simulation: M-F array 

Table 6-1: M-F table  

 

7. Definitions, symbols and abbreviations 

Definitions, symbols, abbreviations and equations used in the present document are listed in TR 21.905 [5] and 

TR 25.990 [6]. 

7.1 Definitions 

For the purposes of the present document, the following additional terms and defin itions apply. 

Wrong Decision Probability: Chance of incorrect judgement based on the given test results . 

Significance Level: Chance of incorrect judgement based on the given test results . This term is exchangeable with 

Wrong Decision Probability.  

Individual Significance Level: The significance level of a simple test or a single decision. Denoted by "D".  

Total Significance Level : The significance level of a test system as a whole (a set of simple tests.) Denoted by "F". 

Confidence Coefficient (Level): In this report, this is defined by 1 – Significance Level. 

Specified Error Ratio: General term that is referred to BER/BLER or other error ratios that are specified in the test 

specifications (TS34.121 and TS34.122.)  

Average Error Ratio: The error ratio specific to a DUT whose value can be determined by averaging the infin ite 

number of measurement data of error ratio.  

Early Pass/Fail Criteria: a set of simple tests, each of which consists of a pair of thresholds of the measured error 

ratio. 
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7.2 Symbols 

For the purposes of the present document, the following symbols apply: 

[…] Values included in square bracket must be considered for further studies, because it means that a 

decision about that value was not taken 

C Confidence Coefficient (Confidence Level)  

D Individual Significance Level 

Dp Individual Significance Level of an early pass criterion  

Df Individual Significance Level of an early fail criterion  

F Total Significance Level 

Fp Total Significance Level of a set of early pass criteria  

Ff Total Significance Level of a set of early pass criteria  

M Bad DUT factor 

R0 Specified error rat io 

R Measured error ratio (rate) (calculated from the measured error count and time duration or sample 

number) 

Rth  Threshold level against measured error ratio  

Rth-p Threshold of an eraly pass test 

Rth-f Threshold of an eraly fail test 

r Average error rat io (rate) of DUT 

7.3 Abbreviations 

For the purposes of the present document, the following abbreviations apply: 

BER Bit Error Ratio  

BLER Block Error Ratio  

DUT Device under Test 

pdf Probability Distribution Function 

CDF Cumulat ive Distribution Function 

7.4 Equations 

Chi-s quare distribution: of a degree of freedom n  
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where () is gamma function. 

Exponential distribution:  
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8 Introduction 

BER/BLER measurements are inherently statistical process es, and a statistical approach should be introduced in order 

to make a BER/BLER test method objective and accurate. 

In the GSM standard specifications, this has been achieved by introducing "wrong decision probability (significance 

level)" and "bad DUT factor." That is, the standard requires the test method to give a well-defined (predictable) "wrong 

decision probabilities", Ff / Fp or confidence coefficients Cf (= 1 - Ff)/Cp (= 1 - Fp). Here, it should be noted that the 

significance levels are defined against the population of UEs with two error rates (0.01 and 0.015). 

These parameters, the significance level and bad DUT factor, should be determined a priori, since there seems to be no 

good reason to pick a set of values rather than others. So, it would be a reasonable decision to employ the same value 

with GSM standard: F = 0.002 (0.2 %) and M = 1.5 for BER and BLER measurements  since we now have a long 

enough experience to prove the validity of these parameters.  
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The GSM standard recommends that BER/BLER should be calculated after 200 errors were observed and the resultant 

BER/BLER should be compared against a threshold (around 1.24 R0). Th is test method gives the significance level 

presented above. 

However, this method is not optimal from the viewpoint of test time. Apparently, if the DUT population consists of 

very good UEs (UE with a very low BER), it would take a long time to observe 200 errors. In practice, such a situation 

is unacceptable, so some supplementary criterion should be used. For example, if a UE doesn't report any bit/block 

errors for the certain time period, it should pass the test. This supplementary criterion may save many of the potentially 

time-consuming cases, but still not optimised for the test time.  

In this report, a more sophisticated method will be developed to optimise the test time by introducing the early pass/fail 

criteria, whose basic idea was inspired by I-95 standard. 

9 Statistical characteristics of testing processes 

9.1 Exact probability distribution functions 

BER/BLER measurements treat phenomena that are characterized as: 

1) The experiment consists of a sequence of independent trials. 

2) Each trial has two possible outcomes, E (Error) or N (Non Error).  

3) The probability of E (r = f(E)) is constant from one trial to another. 

That is, the BER/BLER measurement can be reduced to observation of Bernoulli sequences. Many other test objects, 

such as RRM delay measurements results, can also be reduced to a process that is characterized by these requirements. 

In these case, the outcomes are either "Pass or Successful (the measured delay was within the limit value, for example)" 

or "Fail (the delay exceeded the limit )." 

Our objective is to find a way to tell whether r is larger than R0*M  or smaller than R0 with a certain significance level 

from the result of a certain number of trials.  

This report proposes to use a set of many simple tests, instead of a single simple test. Here, a test is a comparison of 

resultant error rate against a predefined criterion (a threshold value). Practically speaking, there would be two ways to 

do this comparison: 

a) To do the comparison for every trial, or 

b) To do the comparison each time an error is observed. 

For method a) above, the probability of g iving an error number, m, is given by a binomial distribution, 
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Where r: average error rate, m: the number of erro rs, s: the number o f samples. The resultant error ratio, R, is m/s, and 

its probability can be derived from the equation above. 

On the other hand, for method b), the probability that m-th error is observed at the s-th sample follows a negative 

binomial distribution, 

 
msm rr

m

s
mrsnBi 












 )1(

1

1
),:(  ,....)2,1,(  mmms . 

The error rate R is again given by m/s. 
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9.2 Approximation with continuous distributions 

In this section, the notion r for average error rat io is used for average error rate too. 

The distributions introduced above are exact, but sometimes they are very time-consuming to simulate the process on a 

computer. So, it is convenient to use appropriate continuous distribution functions  that approximate the discrete 

functions. 

If r  is very low (that is, m/s << 1), the phenomenon described in the previous section can be reduced to the one that 

satisfies following requirements: 

1) Every error can be described by the time at which it occurred. 

2) Each error occurs independently 

3) The average error rate r (= m/T) is constant throughout the testing. 

It is known that the time interval between the consecutive errors, t, should follow an exponential distribution.  

Again, there are two possibilit ies to determine the measured error rate R  and test it against the criteria:  

a) To calculate R after the predetermined time period, or  

b) To calculate R when m-th error is observed. 

In case a), the probability that m errors are observed within the certain time period, T follows the Poisson distribution. 
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Where  : average error count in the time duration T, so  = rT. So, the function can be represented as: 
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The measured error rate, R, is given by m/T. 

For the test method b), the time to m-th erro r, T, follows an m-Erlang distribution. 
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Where 
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pdf (x, n) is a chi-square distribution function of a degree of freedom n.   m-Erlang distribution’s CDF is given 

by 
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This function can be transformed to a function of R(=m/T), mERCDF(). 

 )2,)/(2(1),:( 2 mmRrmrRmER CDFCDF   

Apparently, the CDF is a function of (R/r) and this means the distribution does not depend on the absolute value of 

average or measured error rate. This would make a handling very easy. 

Almost all the RF and RRM measurements that require the statistical approach are of the discrete nature, and then the 

continuous pdf is accurate only for smaller r values . It’s hard to tell the exact condition under which the approximat ion 

should be good, but it can be said that we cannot use the continuous pdf when r = 0.1. This subject will be discussed in 

the chapters below.  
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9.3 Simple test criteria and significance level 

For BER/BLER testing, our test can be reduced to a comparison of the measured error rate, R against a threshold. It 

would fo llow the procedure like: 

if R < Rth-p then the DUT passes 

else if R > Rth-f then the DUT fails 

else no decision should be made  

 

Where Rth-p and Rth-f are the threshold for pass and fail criteria, and in general Rth-p   Rth-f. 

The significance level for the first test, Fp, is defined as the probability that a bad DUT (r > R0 M) should pass. 

Similarly, Ff is defined as the probability that a good DUT (r < R0) should fail in this test. 

The severest condition from the viewpoint of the significant level is that r = R0M and r = R0 for bad DUT and good 

DUT population respectively. So, it would be reasonable to define the significance levels fo r such populations.  

Now that it is presumed that r of the DUT population is unique (R0 or M*R0), we can calculate the probability 

distribution of R according to the functions introduced in the previous chapter. For a pdf, f(R: r, m), the threshold can be 

determined so that: 
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Where, it should be noted that x takes only discrete values that are given by m/s. 

For the continuous pdf’s, the summation should be replaced with integration, or using their CDF (F(R: r, m)) 

ppth DmMRRF  ),:( 0  (1’) 

ffth DmRRF  1),:( 0  (2’) 

When we choose an appropriate combination of M, m, and D(= Dp = Df), we can set the Rth so that the outcome of the 

test is either of Pass or Fail. For GSM standard, M = 1.5, D = 0.2 %, and then m = 200 and Rth = 1.24 R0. This can be 

derived from both of m-Erlang distribution (mERCDF(R:m,r) above) and the negative binomial d istribution. 

10 Early Pass/Fail termination of testing 

10.1 Framework of test method 

If a UE reported 50 block errors for the first 100 frames, we would intuit ively know that the UE should be bad (its 

average BLER should be higher than 0.01), even though the number of the observed errors is much s maller than 200. 

We are quite sure about that, since it should be very rare for a UE with an average BLER of 0.01 to report 50 b lock 

errors out of 100 frames. This can be shown using the binomial d istribution, which g ives its probability as  

 
72101.6)100,01.0:50(  srBi  

The probability that 50
th

 error should occur at 100
th

 sample is given by negative binomial d istribution: 

 
72101.3)50,01.0:100(  mrnBi  

We can safely say that both cases should be very unlikely. That is, r cannot be 0.01 and should be much larger.  

This suggests that, for very good or very poor UEs, the test sequence can be terminated at earlier stages, and as a result, 

the test time can be cut short. This is the origin o f the idea of "early pass/fail criteria."  
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Such the test method will consist of many simple tests and its pseudo script would look like:  

m = 0 

for each s:   # repeat for sample forever 

 if an error is reported:   

  m = m + 1 

  R = m/s  

  if R > Rth_f(m):  # fail test 

   UE failed 

   break    # stop procedure 

  else if R < Rth_p(m): 

   UE passed 

   break 

  else 

   continue  

 

This method is straightforward. Each time an error reported, the error rate should be calculated and then compared with 

thresholds that depend on m. However, there is till a  room for improvement from viewpoint of test time reduction. The 

problem is apparent if we imagine the case in which no errors occur at all. The test would not be completed within a 

fin ite time period. 

Assume that the no error samples last long enough after the m-th error. If the duration is long enough and the error rate 

calculated from imaginary (m +1)th error is lower than Rth_p(m + 1), the UE can be considered to have passed the test. 

This idea would be implemented like: 

m = 0 

for each s:   # repeat for sample forever 

 if an error is reported:   

  m = m + 1 

  R = m/s  

  if R > Rth_f(m): #fail test 

   UE failed 

   break 

 else: # if not error 

  if s > Tdp(m): #pass  test 

   UE passed 

   break 

  else: 

   continue 

 

Where Tdp(m) is a predefined time durat ion (in sample number) which gives R < Rth_p for (m +1)th error. 

To make the test method complete, a table like the example below should be prepared: 

m Rth_p  Tdp Rth_f 

0 --- 417 --- 
1 0.0024 540 --- 
2 0.0034 750 0.031 
3 0.0040 800 0.025 
… … … … 

 

Where, "---" means "any decision should not be made at that error count." For example, while no error is reported, any 

decisions should not be made based on the error rate, and only when the time duration in terms of the number of 

samples exceeds 417, DUT is decided to pass. 

10.2 Early Pass/Fail criteria 

As described in the previous section, once the framework of the test procedure is established, a test can be defined by 

presenting the table of Rth_p, Tdp, and Rth_f. These values will be referred to as "Early Criteria."  

The requirements for such criteria should be: 

1) F should be 0.2 % for BER/BLER measurement, and 5% for RRM delay measurement and others.  

2) The test shall be terminated in a finite t ime period (in terms of the number of samples.)  

Presuming these requirements, we will t ry to min imize the test time.  



 

3GPP 

3GPP TR 34.901 V3.0.0 (2003-06) 26 Release 1999 

There seems to be a broad freedom in choosing a set of early criteria. However, it would be a g ood start point to choose 

these criteria so that they provide a constant D at each error count m. When the error-count based and discrete 

distribution approach is presumed, the pdf to be used is a negative binomial distribution, nBi(s: r, m) = nBi(m/R: r, m). 

Then, equation (1) and (2) will be: 
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Using these equations, Rth_f and Rth_pcan be determined and from the latter, Tdp can also be derived. The problem is how 

to determine D. The target is clear; we have to get an F of 0.2%, but the population keeps changing in the procedure 

(some DUT hit either of the criteria and will be removed from the population), so it seems almost impossible to 

determine D to give a predefined F by an analytical method. 

So an experimental method should be used to determine D values, which goes like: 

1) Pick a D value 

2) Calculate Rth_p and Rth_f 

3) With a simulation with random generator of Bernoulli distribution of r = R0 and r = R0M, and the criteria above, 

determine F value. 

4) If the resultant F value is not close enough to the target F value (total significance level), start over with step 1) 

with a slightly different D value. 

In the experiments that give results shown in this report bisection method was sued to perform this iterat ion efficiently, 

anda binomial d istribution generator was used as Bernoulli generator. The simulations have been done for a population 

of 100,000 devices.  

The resultant criteria for typical parameters are g iven in the fo llowing tables. 
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Table 10-1: Early Pass/Fail criteria for RRM delay measurements (R0=0.1, F=0.05) 

m Rth-p Tdp Rth-f 

0 `--- 32 --- 
1 0.03125000 46 --- 
2 0.04347826 57 --- 
3 0.05263158 68 0.75000000 
4 0.05882353 79 0.50000000 
5 0.06329114 89 0.41666667 
6 0.06741573 98 0.35294118 
7 0.07142857 108 0.30434783 
8 0.07407407 117 0.28571429 
9 0.07692308 126 0.26470588 
10 0.07936508 136 0.25000000 
11 0.08088235 144 0.23404255 
12 0.08333333 153 0.22641509 
13 0.08496732 162 0.21666667 
14 0.08641975 171 0.21212121 
15 0.08771930 179 0.20547945 
16 0.08938547 188 0.20000000 
17 0.09042553 197 0.19540230 
18 0.09137056 205 0.18947368 
19 0.09268293 213 0.18627451 
20 0.09389671 222 0.18348624 
21 0.09459459 230 0.18103448 
22 0.09565217 238 0.17741935 
23 0.09663866 247 0.17557252 
24 0.09716599 255 0.17266187 
25 0.09803922 263 0.17123288 
26 0.09885932 271 0.16883117 
27 0.09963100 280 0.16666667 
28 0.10000000 288 0.16568047 
29 0.10069444 296 0.16384181 
30 0.10135135 304 0.16216216 
31 0.10197368 312 0.16062176 
32 0.10256410 320 0.15920398 
33 0.10312500 328 0.15789474 
34 0.10365854 336 0.15668203 
35 0.10416667 344 0.15555556 
36 0.10465116 352 0.15450644 
37 0.10511364 360 0.15352697 
38 0.10555556 368 0.15261044 
39 0.10597826 376 0.15175097 
40 0.10638298 383 0.15094340 
41 0.10704961 391 0.15018315 
42 0.10741688 399 0.14946619 
43 0.10776942 407 0.14878893 
44 0.10810811 415 0.14814815 
45 0.10843373 423 0.14705882 
46 0.10874704 430 0.14649682 
47 0.10930233 438 0.14596273 
48 0.10958904 446 0.14545455 
49 0.10986547 454 0.14454277 
50 0.11013216 462 0.14409222 
51 0.11038961 469 0.14366197 
52 0.11087420 477 0.14285714 
53 0.11111111 484 0.14247312 
54 0.11134021 492 0.14210526 
55 0.11178862 500 0.14138817 
56 0.11200000 508 0.14105793 
57 0.11220472 516 0.14039409 
58 0.11240310 523 0.14009662 
59 0.11281071 531 0.13981043 
60 0.11299435 539 0.13921114 
61 0.11317254 546 0.13895216 
62 0.11355311 554 0.13839286 
63 0.11371841 561 0.13815789 
64 0.11408200 569 0.13763441 
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65 0.11423550 577 0.13742072 
66 0.11438475 584 0.13692946 
67 0.11472603 592 0.13673469 
68 0.11486486 600 0.13627255 
69 0.11500000 607 0.13609467 
70 0.11532125 615 0.13565891 
71 0.11544715 622 0.13523810 
72 0.11575563 630 0.13508443 
73 0.11587302 637 0.13468635 
74 0.11616954 645 0.13454545 
75 0.11627907 653 0.13416816 
76 0.11638591 660 0.13380282 
77 0.11666667 668 0.13368056 
78 0.11676647 675 0.13333333 
79 0.11703704 683 0.13299663 
80 0.11713031 690 0.13289037 
81 0.11739130 698 0.13256956 
82 0.11747851 705 0.13225806 
83 0.11773050 713 0.13216561 
84 0.11781206 720 0.13186813 
85 0.11805556 728 0.13157895 
86 0.11813187 735 0.13149847 
87 0.11836735 743 0.13122172 
88 0.11843876 750 0.13095238 
89 0.11866667 758 0.13088235 
90 0.11873351 765 0.13062409 
91 0.11895425 773 0.13037249 
92 0.11901682 780 0.13012730 
93 0.11923077 788 0.13006993 
94 0.11928934 795 0.12983425 
95 0.11949686 803 0.12960437 
96 0.11955168 810 0.12938005 
97 0.11975309 818 0.12916112 
98 0.11980440 825 0.12911726 
99 0.12000000 832 0.12890625 
100 0.12019231 840 0.12870013 
101 0.12023810 847 0.12849873 
102 0.12042503 855 0.12830189 
103 0.12046784 862 0.12826899 
104 0.12064965 870 0.12807882 
105 0.12068966 877 0.12789281 
106 0.12086659 884 0.12771084 
107 0.12104072 892 0.12753278 
108 0.12107623 899 0.12735849 
109 0.12124583 907 0.12733645 
110 0.12127894 914 0.12716763 
111 0.12144420 922 0.12700229 
112 0.12147505 929 0.12684032 
113 0.12163617 936 0.12668161 
114 0.12179487 944 0.12652608 
115 0.12182203 951 0.12637363 
116 0.12197687 958 0.12622416 
117 0.12212944 966 0.12621359 
118 0.12215321 973 0.12606838 
119 0.12230216 981 0.12592593 
120 0.12232416 988 0.12578616 
121 0.12246964 995 0.12564901 
122 0.12261307 1003 0.12551440 
123 0.12263210 1010 0.12538226 
124 0.12277228 1017 0.12525253 
125 0.12291052 1025 0.12512513 
126 0.12292683 1032 0.12500000 
127 0.12306202 1039 0.12487709 
128 0.12319538 1047 0.12475634 
129 0.12320917 1054 0.12475822 
130 0.12333966 1062 0.12464046 
131 0.12335217 1069 0.12452471 
132 0.12347989 1076 0.12441093 
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133 0.12360595 1084 0.12429907 
134 0.12361624 1091 0.12418906 
135 0.12373969 1098 0.12408088 
136 0.12386157 1106 0.12397448 
137 0.12386980 1113 0.12386980 

 

The resultant thresholds (criteria) for BER, BLER and RRM Delay measurements are shown in Figure 10-1,Figure 10-2 

and Figure 10-3 respectively. 

 

Figure 10-1: Early Pass/Fail Criteria for BER Measurement (R0= 0.001, F = 0.002) 
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Figure 10-2: Early Pass/Fail Criteria for BLER Measurement ( R0= 0.01, F = 0.002) 

 

 

Figure 10-3: Early Pass/Fail for RRM Delay Measurement (R0 = 0.1, F = 0.05) 
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10.3 Estimating the test time 

The final goal of this report is to reduce the total test time, so each set of criteria should be rated by estimat ing its tes t 

time. This task is fairly simple, and can be done using almost the same simulation program used in the previous se ction. 

The sample number at which the measurement is terminated is recorded and averaged to give the test time of the 

criteria. The estimat ion is repeated for various average error rates, r.  

Some results are shown in Figure 10-4 through Figure 10-6. 

 

 

<Figure will be inserted here> 

Figure 10-4: Test Time for BLER Measurement (R0 = 0.001, F = 0.002)  

 

 

Figure 10-5: Test Time for BLER Measurement (R0 = 0.01, F = 0.002) 
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Figure 10-6: Test Time for RRM Delay Measurement (R0 = 0.1, F = 0.05)  

 

In Figure 10-7, the BLER test time (Figure 10-5) is compared with a conventional test method, in which no early 

criteria are not incorporated. Apparently, the required test time is the time to see 200 errors, and the test time is simply 

given by 200/r. It should be noted that the averaged test time values almost coincide at r = 0.0124, and the early criteria 

greatly reduce the test time in the areas of r << 0.0124 and of r >> 0.0124. 
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Figure 10-7: Reduction of the Test Time by Employing Early Criteria 

 

10.4 Minimizing the test time 

The criteria set in Sect ion 10.2 ("constant D criteria") were chosen in an arbitrary way, and there is no guarantee that 

that should give the shortest test time. So, to seek the optimized method, some other criteria that are basically a 

variation of the "constant D criteria" will be proposed and their test time will be estimated in the fo llowing subsections. 

10.4.1 Truncation 

As a matter of fact, while the simple test is terminated at m = 200 (F = 0.2%), the cross point of the criteria is located at 

m = 374 for the "constant D criteria." Moreover, only few DUTs survive till later stages. So, it seems to be a good idea 

truncating the procedure at a little  earlier stage. 

This means that Rth_p and Rth_f should be to 1.24 R0 at an m value between 200 and 374 in the criteria table. The change 

is simple, but has an impact on F, so we have to re-evaluate D. 

The results are shown in Figure 10-8, which shows no significant improvement in the test time, while the (rare) 

maximum test time of 1000 samples were reduced to 700 as shown in Figure 10-9. In the figure, the red solid line 

shows the average test time as a reference.  
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Figure 10-8: Test Time by Truncated Early Criteria (R0 = 0.1, F = 0.05) 

 

 

Figure 10-9: Maxim Test Time by Truncated Early Criteria (R0 = 0.1, F = 0.05) 
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10.4.2 Decimation 

If the simple tests (comparisons) were done at a smaller number of m, that would result in a smaller F  value. In other 

words, a larger D value can be employed for a certain F value, this can mean a reduced test time since the criteria curve 

with a h igher D value will be located at more left hand side. The real expected advantages are that such method can be 

presented by a much shorter table and that it may reduce the requirement for calculation.  

The resultant test time values for the criteria with every m, and one with every 10 m points are shown in Figure 10-10. 

Apparently, the decimation didn’t improve the test time. 

 

 

Figure 10-10: Test time of 1:10 Decimated Criteria (R0 = 0.1, F = 0.05) 

10.4.3 Composite criteria 

The results of the simulation stated above show that almost all the devices are picked out at relatively early stages, and 

only few reach later stages. This observation would lead to the idea that the test time could be reduced if stricter criteria  

at the later stages. Suppose that each threshold in a criterion, Rth-fix(m) / Rth_var(m), have individual significance levels, 

Dfix / Dvar, respectively. A new criteria, Rth_com(m), can be built by merging these two criteria like,  
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        ),....,2,1( maxmm   

That is, the composite threshold, Rth-com, is a weighted average of Rth-fix and Rth-var. Where mmax corresponds to the cross 

point of pass/fail criteria of Rth-fix , and Dfix > Dvar. 

The experimental method to find D value witch meets the requirement fo r F was introduced in Section 10.2, and it can 

be easily modified to find Dvar for a fixed Dfix. The resultant D values are listed in Table 10-2.  
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Table 10-2: Combinations of D values to give F = 0.05 (R0 = 0.1) 

Dfix Dvar mmax Comment  

--- 0.005125 143 Reference 

0.01 0.00425 118  

0.02 0.00250 92  

0.03 0.001125 77  

  

Using these criteria, the test time was evaluated, and the results are shown in Figure 10-11. In comparison with the 

reference (" Constant D" criteria), the composite criteria give a slightly shorter test time in the worst case (r = 1.24 R0), 

but these give a longer test time fo r r < R0.  

 

Figure 10-11: Test time for composite test criteria 

 

11 Accuracy of Continuous Distributions 

As stated in clause 9.2, the negative binomial d istributions can be approximated by m-Erlang distribution. In this 

Appendix, we will d iscuss about how good this approximation is. 

For continuous distributions, Equation (1’) and (2’) determine early Pass/Fail thresholds, and these can be transformed 

to more specific forms shown below by presuming m-Erlang distribution.  

ppthCDFpthCDF DmmRrmrRmER   )2,)/(2(1),:( 2  
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ffthCDFfthCDF DmmRrmrRmER   )2,)/(2(1),:( 2  

There is no explicit way to know Rth from D , but ()2

CDF is a continuous function, so Newton method can be employed 

to find Rth . 

The Early Pass/Fail criteria obtained this way are compared with those from negative binomial distrib utions in Figure 

11-1 through Figure 11-3. 

For the first two cases (Figure 11-1and Figure 11-2), the two approaches show a good agreement. However, in Figure 

11-3, there is a significant difference between them. This difference results in a significant difference in the test time as 

shown in Figure 11-4. The d ifference is largest for a marginal UEs (r ~ 0.124). 

 

 

Figure 11-1: Comparison of Early Pass/Fail Criteria for BER Measurement (R0 = 0.001, F = 0.002)  
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Figure 11-2: Comparison of Early Pass/Fail Criteria for BLER Measurement (R0 = 0.01, F = 0.01) 

 

 

Figure 11-3: Comparison of Early Pass/Fail Criteria for RRM Delay Measurement (R0 = 0.1, F = 0.05) 
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Figure 11-4: Comparison of Test Time (R0 = 0.1, F = 0.05) 
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