

3GPP TR 33.823 V2.0.0 (2012-11)
Technical Report

3rd Generation Partnership Project;
Technical Specification Group TSG SA Security;

Security for Usage of GBA with a UE browser;
 (Release 12)

The present document has been developed within the 3
rd
 Generation Partnership Project (3GPP

 TM
) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Report is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and Reports for implementation of the 3GPP
 TM

 system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 2 Release 12

MCC selects keywords from stock list.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2011, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 3 Release 12

Contents

Foreword ..4

Introduction ..4

1 Scope ..5

2 References ...5

3 Definitions, symbols and abbreviations ..6
3.1 Definitions .. 6
3.2 Abbreviations ... 6

4 Objectives for the Architecture using GBA from a UE web browser ..7
4.1 Introduction .. 7
4.2 Objectives ... 7

5 Usage Scenarios and accompanying Threats for using GBA from a UE web browser8
5.1 Usage Scenarios... 8
5.1.1 Usage scenario 1.. 8
5.2 Threats ... 8

6 Control of GBA Credentials and GBA Module in the UE ...9
6.1 General .. 9
6.2 Control Mechanism 1– Same Origin Authentication Tokens .. 9
6.3 Control Mechanism 2 – Server Authenticated TLS .. 9
6.4 Control Mechanism 3 - Channel Binding.. 9
6.5 Control Mechanism 4 – Key Usage ... 9

7 Potential Extension of Protocol Mechanism used on Ua Reference Point ...10
7.1 Key derivation .. 10
7.2 Channel binding ... 11

8 Common Practices and Examples ..11
8.1 Security Considerations.. 11
8.1.1 General Scripting Security Considerations... 11
8.1.2 GBA key control ... 12
8.1.3 User grants.. 12
8.1.4 Root CAs in Browser.. 12
8.2 Javascript GBA API description ... 12
8.2.1 GBA API Description .. 12
8.2.2 Example API usage ... 13
8.3 Example sequence flows .. 14
8.3.1 Example sequence flow with channel binding ... 14

Annex <X>: Change history...19

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 4 Release 12

Foreword

This Technical Report has been produced by the 3
rd

 Generat ion Partnership Pro ject (3GPP).

Introduction

The most used authentication method in the Internet today is HTML FORM based authentication. It is used with web

browsers where a login page is downloaded over HTTPS and which contains an HTML FORM with at least 'username'

and 'password' fields. Somet ime, this takes place over plain HTTP, which poses a secu rity risk. The current mechanis m

how GBA could be used from web browser is to use GBA with HTTP Digest as specified in clause 5.3 o f 3GPP TS

33.222 [3].

In current implementations, once a web browser has started to use HTTP Digest with a particu lar web s erver, it

continues to use it until the browser instance is terminated. This is common behavior in web browsers today. This

means that there is no way of doing a logout as the browser keeps on sending the HTTP Authorizat ion headers back to

the web server.

Another drawback is that using HTTP Digest in parallel to HTML FORM based authentication is not straight forward

as the authentication happens in different layers of protocols. Also, the usage of HTTP Digest and HTML FORM based

Authentication from the same browser is investigated.

In order to simplify the usage of GBA in web browsers this document describes how to enable access to GBA in HTML

layer, namely using Javascript. The usage of Javascript together with GBA raises also some security concerns with

regard to protection of GBA credentials, hence the best common practices for th is kind of interworking are outlined in

this document.

NOTE: Security in a Javascript scenario is implementation-dependent.

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 5 Release 12

1 Scope

This work in this Technical Report has the following scope:

- Study the potential threats for different GBA credentials use scenarios via a web browser. These new use

scenarios (e.g. using HTML forms, using Javascript, using widgets) are not covered by current specifications .

The scope of this Technical Report will cover the following:

- Study, identify and specify any protection mechanis m that maybe additionally required fo r the GBA

credentials

- Study, identify and potentially specify usage control for GBA credentials

- Study, identify and potentially specify access control mechanis m for GBA module

- Study, identify and potentially specify the usage of web based GBA as an extension on the current

protocol mechanis ms used on Ua reference point (e.g. new Ua protocol identifier)

- Identify and outline how GBA can be used with HTML Forms and Javascript securely (e.g. describ ing GBA –

web specific common practices and examples)

This Technical Report will collect the potential specification improvements, which are then at a later stage of work

transferred to the appropriate Technical Specifications. The potential improvements for access control to GBA

credentials and potential Ua protocol impacts will then be documented in TS 33.220 [2]. The threat analysis, common

security implementation practices and examples may build a new chapter 5 in TS 33.222 [3].

Relation to GBA variants defined in other documents : Web based GBA aims at defin ing web enhancements for the

use of HTML forms with GBA. It is a new variant for the Ua interface and does not affect the Ub interface, as opposed

to the GBA variants defined in TS 33.220. Web based GBA is orthogonal to these other GBA variants and can be used

with any of them.

2 References

The following documents contain provisions which, through reference in this text, con stitute provisions of the present

document.

- References are either specific (identified by date of publication, edit ion number, version number, etc.) o r

non-specific.

- For a specific reference, subsequent revisions do not apply.

- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including

a GSM document), a non-specific reference implicit ly refers to the latest version of that document in the same

Release as the present document.

[1] 3GPP TR 21.905: " Vocabulary for 3GPP Specifications".

[2] 3GPP TS 33.220: " Generic Authentication Architecture (GAA); Generic Bootstrapping

Architecture".

[3] 3GPP TS 33.222: " Generic Authentication Architecture (GAA); Access to network application

functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".

[4] IETF RFC 5705 (2010): "Keying Material Exporters for Transport Layer Security (TLS)".

[5] W3C Candidate Recommendation (Dec 8, 2011): "Web Storage", work in progress,

http://www.w3.org/TR/webstorage/

[6] W3C Working Draft (Oct 20, 2011): "File API", work in progress,

http://www.w3.org/TR/FileAPI/

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 6 Release 12

[7] IETF RFC 5929 (2010): "Channel Bindings for TLS".

[8] W3C Working Draft (Apr 20, 2012): " HTML5 – A vocabulary and associated APIs for HTML and

XHTML", work in progress, http://dev.w3.org/html5/spec/

[9] 3GPP TS 33.203: "3G security; Access security for IP-based services".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A

term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

HTML FORM: A HTML form is a section of a HTML document containing normal content, markup, special element

called controls (checkboxes, rad io buttons, text fields, password fields, etc.) and labels on those controls. End users

generally "complete" a form on a web page by modify ing its controls (entering text, selecting radio buttons, etc.), before

submitting the form to an agent for processing (e.g., to a web server).

HTML5: HTML5 is a W3C specification [8] that defines the fifth major rev ision of the Hypertext Markup Language

(HTML), the standard language for describing the contents and appearance of Web pages.

JavaScript: JavaScript is a prototype-based scripting language that was formalized in the ECMAScript language

standard. JavaScript is primarily used in the form of client-side JavaScript, implemented as part of a Web browser in

order to provide enhanced user interfaces and dynamic websites .

Same origin policy: Some origin policy is a security mechanism in a client browser that permits webpage scripts to

access their associated website’s data and methods but restricts its access to scripts and data stored by other websites.

GBA web session: A GBA web session is the duration where the NAF can identify that the messages relate to the same

individual GBA enabled terminal and a particular browser instance running in that terminal and consist out of a

sequence of related HTTP request/response transactions together with some associated server-side state. The lifetime of

the session is the lifet ime of the Ks_js_NAF which is equal or shorter than the Ks_NAF lifetime and it is also equal or

shorter than the lifetime of the TLS session, which was used to derive the Ks_js_NAF.

 NOTE: The NAF and the UE may have to recalculate the key, when the TLS session is re-established.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An

abbreviation defined in the present document takes precedence over the definition of the same abbreviat ion, if any, in

TR 21.905 [1] and TS 33.220 [2].

API Application Programming Interface

BSF Bootstrapping Server Function

B-TID Bootstrapping Transaction Identifier

CA Cert ification Authority

DNS Domain Name System

FQDN Fully Qualified Domain Name

GBA Generic Bootstrapping Architecture

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HTTP Over TLS

MBMS Multimedia Broadcast Multicast Service

ME Mobile Equipment

http://dev.w3.org/html5/spec/

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 7 Release 12

NAF Network Applicat ion Function

NAF_ID NAF identifier

TLS Transport Layer Security

UE User Equipment

URL Uniform Resource Locator

4 Objectives for the Architecture using GBA from a UE
web browser

4.1 Introduction

The most used authentication method in the Internet today is HTML FORM based authentication. It is commonly used

with web browser where a login page is downloaded over HTTPS and which contains an HTML FORM with at least

'username' and 'password' fields.

The current mechanism how GBA could be used from web browser is to use GBA with HTTP Digest as specified in

clause 5.3 of 3GPP TS 33.222 [3]. In this case, the GBA enabled web server can detect whether the web browser is able

to perform GBA with HTTP Digest by examining the "User-Agent" header. If "3gpp-gba" product token is present in

this header, then the web server (NAF) is able to perform GBA with HTTP Digest with the web browser (UE).

However, HTTP Digest has one general drawback. In current implementations, once web browser has started to use

HTTP Digest with a part icular web server, it continues to use it until the browser instance is terminated. This is

common behavior in web browsers today.

This means that there is no way of doing a logout as browser keeps on sending the HTTP Digest headers back to the

web server. Another drawback is that using HTTP Digest in parallel to HTML FORM based authentication is not

straight forward as the authentication happens in different layers of protocols and with different input windows (as web

browsers typically implement a d ialog window to handle the query HTTP Digest authentication credentials from the

end user compared to HTML FORM having query for the credentials implemented as part of the web page itself).

In order to simplify the usage of GBA in web browser this TR outlines the access to GBA in HTML layer, namely using

Javascript.

4.2 Objectives

The document has the following objectives for the usage of GBA in web browsers:

- There will be cryptographic separation between different applications using GBA (e.g. MBMS, Presence,

browser banking applicat ion, browser e-mail application, etc). For non-browser based applications, this is

already in use in generic GBA architecture with the usage of NAF specific keys Ks_(ext/ int)_NAF with the

usage of NAF_Ids and protocol identifiers.

- The authentication token for the use of GBA in web browsers will be protected from man-in-the-middle attacks.

- The GBA based authentication token will be bound to the existing GBA web session between the browser and

the web server in such a way that the authentication tokens cannot be reused in another session or reused by

another entity.

- The access to NAF specific keys and authentication tokens by JavaScript will be restricted in such a way that a

web page executing a Javascript in a web browser will have access to the NAF specific authentication tokens

that it is authorized to have access to. For instance, same origin policy could be used so that a Javascript will

have access to only that NAF specific authentication tokens that belongs to same orig in (e.g. a web page loaded

from http://www.3gpp.org/ will have access to only the NAF specific authentication tokens of www.3gpp.org

and not be able to request keys or authentication tokens for another origin).

http://www.3gpp.org/

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 8 Release 12

5 Usage Scenarios and accompanying Threats for
using GBA from a UE web browser

5.1 Usage Scenarios

5.1.1 Usage scenario 1

End user wants to use some service provider’s services (e.g., an operator), and the service provider wants to use GBA to

authenticate the user.

1) End user opens web browser application in the ME, and instructs it to go the service provider’s web page. The

web page redirects the web browser to a login page if end user has not yet authenticated.

2) Service provider’s login page has logic to discover whether Javascript access to GBA is enabled in the browser

or not (can be done with Javascript). If GBA is not supported, the web page reverts to other means of

authentication, e.g., legacy username/password. If GBA is supported, proceed to step 3.

3) The web page has code implemented in Javascript that obtains a NAF specific token and the B-TID from the

GBA function in the UE. In simplest case, the browser uses these variables as username and password in an

HTML FORM, and instructs the web browser to send this information back to the web server.

4) The web server extracts the NAF specific key and the B-TID, and uses B-TID to fetch the NAF specific key

from the BSF over Zn interface. The NAF generates then the NAF specific authentication token and compares it

with the received NAF specific token from the BSF with the one received from the UE. If they are equal, end

user is authenticated, and the requested service is provided to the ME and the end user.

NOTE: The direct usage of the NAF specific keys Ks_(ext)_NAF introduces an even greater risk. Therefore the

usage of a NAF specific authentication token is considered below in 5.2.

5.2 Threats

The usage scenarios described in clause 5.1 are susceptible to three serious threats:

Threat 1: ME downloads a web page from an attacker that has Javascript which requests all NAF specific keys

that is interested in.

Threat 2: ME uses a public access point that is controlled by attacker, i.e ., classic man-in-the-middle attack.

When the ME requests the login page from the service provider, the attacker sends back a rogue login

web page as it controls the DNS. This rogue login page has Javascript that is able to extract any NAF

specific authentication token of the service provider, and send it back to the attacker.

Threat 3: It is possible for any third party on the internet connection to eavesdrop on the B-TID and the NAF

specific authentication token, and impersonate the user as long as the B-TID has not expired.

Threat 4: If an attacker gets hold of the authentication token Ks_js_NAF, then he can utilize it to attack the

communicat ion between web browser and the NAF.

Threat 5: ME downloads a web page from an attacker that has JavaScript which repeatedly triggers GBA re -

bootstrapping to be performed. This causes SQN numbers in the USIM to be consumed which

shortens the lifet ime of the USIM (i.e. a type of denial-of-service attack). A secondary effect is that

the malicious web page can coordinate a distributed DoS attack against the BSF/HSS.

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 9 Release 12

6 Control of GBA Credentials and GBA Module in the
UE

6.1 General

The threats identified in clause 5 are counterd using a set of control mechanisms as defined in this clasue. Using only a

subset of the control mechanis m leaves some threats open. Therefore all control mechanisms need to be applied to

mitigate the outlined threats.

6.2 Control Mechanism 1– Same Origin Authentication Tokens

To mit igate threat 1 in clause 5.2, the web browser should limit a web page to access only to those NAF specific

authentication tokens that belong to origin web server. This way Javascript has access only to one NAF’s authentication

tokens, which is the NAF identified by the origin of the web page. All web browsers currently implement a single-

origin policy where the Javascript is able to send HTTP requests only to the server from where the original web page

came from.

6.3 Control Mechanism 2 – Server Authenticated TLS

To mit igate threat 2 and threat 3, HTTPS, i.e., server authenticated TLS, should be used with integrity and

confidentiality protection. This way attacking DNS does not help the attacker as the origin of the web page is

authenticated using TLS, and the web page content, and B-TID and Ks_js_NAF are confidentially protected against

eavesdropping and the Ks_(ext)_NAF are not used directly here.

6.4 Control Mechanism 3 - Channel Binding

The usage of server authenticated TLS as described in clause 6.3 is not sufficient on its own if one were to consider the

threat of a compromised TLS server certificate a likely event.. Given that in commonly used browsers there are 100+

root certificates from cert ification authorities (CAs) who have different levels of security protection when issuing and

managing cert ificates, it can in p rinciple be questioned, how secure TLS with server authentication really is. If one CA

is compromised the attacker can use a compromised certificate to lure the user into believ ing that the attacker’s server is

the genuine NAF the user wants to communicate with. The attacker can exp loit this to realize the fo llowing two threats:

- Threat A: If the Javascript would use the Ks_NAF directly and an attacker obtains the Ks_NAF from the

user, then it could use this Ks_NAF to impersonate the user towards the genuine NAF, obtain the services

and let the user foot the bill.

- Threat B: The attacker makes the user reveal informat ion valuable fo r the attacker that the user would want to

reveal only to the genuine NAF.

Even though TLS with server certificates can generally be trusted , the TLS channel should for the GBA browser case be

bound to the authentication token derivation process of GBA. This shall however not be taken as a general clue that

TLS with server side cert ificate authentication is insecure. As the key derivation of Ks_(ext)_NAF is already defined

with a fixed set of input parameters, and backward compatib ility by not changing this key derivation should be ensured,

a new Javascript specific authentication token (Ks_js_NAF) should be derived from Ks_(ext)_NAF using a channel

binding mechanis m. This channel binding mechanis m shall be based on either RFC 5705 (Keying Material Exporters

for TLS) [4] or RFC 5929 (Channel Bindings for TLS) [7].

This mechanis m does not help against threat B. The mit igation of threat B is further d iscussed in clause 8.1.4.

6.5 Control Mechanism 4 – Key Usage

In Threat 4 in clause 5.2, the attacker may get hold of the Ks_js_NAF by one of the following means:

- One of the endpoints can be considered as compromised and the Ks_js_NAF is compromised i.e. NAF or web

browser are compromised.

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 10 Release 12

- Ks_(ext)_NAF and authentication token derivation parameters are compromised.

The compromise of an endpoint might be made more difficult by usage of additional hardware functionalities, but those

would require that all communication for usage of such keys would be routed over the secure hardware. Th is would still

leave the challenge, how to ensure that no fake traff ic is routed over the secure hardware. The handle used to authorize

the usage of the Ks_js_NAF authentication token inside the secure module need to be secured to avoid unauthorized

usage, but that would require a trustworthy browser, which then negates the effect of using a handle for authentication

tokens. The usage of the Ks_js_NAF should be done in the TLS tunnel that was used to create the token. This makes

usage in another TLS tunnel impossible, as long as the end points check that the TLS tunnel used to receive the

informat ion is the same as was used to derive the token.

If the compromised token has been derived, by usage of the compromised Ks_(ext)_NAF key and corresponding

parameters, then usage of additional secure hardware would not gain any significant security improvement for the usage

from the token of the originating terminal, since the source of the Ks_js_NAF token is compromised.

7 Potential Extension of Protocol Mechanism used on
Ua Reference Point

7.1 Key derivation

In order to ensure the key separation in the HTML FORM based authentication in Ua reference point, a Ua security

protocol identifier fo r the NAF_ID needs to be specified.

FQDN

When the web browser in the ME downloads a web page using HTTPS, the web browser verifies that the FQDN in the

URL matches the FQDN used in the TLS certificate used by the server (NAF). It is common pract ice for web browsers

to perform this check today. Any web browser that does not perform this check is not secure enough to be used for

security sensitive applications with or withouth GBA, and therefore should not be considered for the purpose of this

report.

Once the web browser has verified that the FQDN in the URL matches the FQDN in the server (NAF) certificate, the

browser makes this verified FQDN available to the GBA API.

The GBA API uses the verified FQDN to derive the authentication token Ks_js_NAF.

NOTE1: Security associated with the use of the FQDN in Javascript in the manner described above is dependent

upon the implementation of the web browser, which is out-of-scope for 3GPP.

Ua security protocol identifier

Since HTML FORM is tunneled through TLS, one possibility is to use the Ua security protocol identifier for Ua

security protocols that are based on TLS (HTTP Digest with HTTPS and Pre-shared key TLS) that is already specified

in Annex H of 3GPP TS 33.220 [2]: (0x01,0x00,0x01,yy,zz), where yy and zz are the protection mechanism

CipherSuite as specified in relevant TLS specifications by IETF. However, the HTML FORM based authentication

within TLS is significantly different from this Ua security protocol identifier where the NAF specific key is used as a

password in the (TLS tunneled) HTTP Digest case compared to HTML FORM case where the NAF specific key is

transferred in plain text inside the TLS tunnel. Therefore it is recommended to specify a new Ua security protocol

identifier for Ua protocols that transfer the NAF specific key in p lain text inside a TLS tunnel, e.g.,

(0x01,0x00,0x02,yy,zz), where the third octet (0x02) would distinguish this case from other protocols tunneled inside

TLS. The last two octets (yy,zz) would specify the TLS ciphersuite used.

NOTE2: Whenever a new Ua protocol is specified where the client authentication is performed inside a server

authenticated TLS tunnel, and the client authentication is based on a protocol (inside a TLS tunnel) not

covered by the existing Ua security protocol identifiers, then a new identifier should be specified. In

general, this kind of Ua security protocol identifier could be in the form where the used TLS ciphersuite is

indicated the same way as above (last two octets of the identifier), and the used client authentication

protocol by (subset) of the remain ing octets (second and/or third octet).

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 11 Release 12

7.2 Channel binding

7.2.1 Background

To mit igate the threat introduced in clause 6.4, a second level of key derivation is introduced. When Javascript code that

is downloaded from the web server v ia the server authenticated TLS tunnel requests for a GBA based key, the request is

first handled by the web browser and more specifically the GBA API module in the web browser. The GBA API

module will request the Ks_(ext)_NAF key from the GBA Function in the ME using the Javascript specific NAF_ID as

specified in clause 7.1. After receiving the Ks_(ext)_NAF key from the GBA Function, the GBA API will derive a

Javascript specific authentication token Ks_js_NAF that is bound to the server authenticated TLS tunnel.

The channel binding can be performed using either RFC 5705 or RFC 5929 [7], as is described below. It is possible for

the JavaScript code to select which option to use when it requests the Ks_js_NAF token from the GBA API. An

example sequence flow is in clause 8.3.1.

NOTE: Both RFC 5705 and RFC 5929 do not utilize TLS nonces, but only refer to RFC 5246 (TLS 1 .2).

7.2.2 Option 1: Channel binding using RFC 5705

After receiv ing the Ks_(ext)_NAF key from the GBA Function the GBA API obtains the TLS_MK_Extr, which is

extracted from the TLS master key using the exporter function as specified in RFC 5705 [4]. The label fo r the exporter

function shall be "EXPORTER_3GPP_GBA_W EB". The Ks_js_NAF shall be derived from Ks_(ext)_NAF as fo llows:

 Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

Ed itor's note: The label " EXPORTER_3GPP_GBA_WEB" for the exporter function needs to be registered with

IANA.

An example sequence flow is in clause 8.3.1.

7.2.3 Option 2: Channel binding using RFC 5929

After receiv ing the Ks_(ext)_NAF key from the GBA Function, the GBA API obtain s either the tls-server-endpoint or

tls-unique binding type as specified in RFC 5929 [7]. The Ks_js_NAF token shall be derived from Ks_(ext)_NAF as

follows:

 Ks_js_NAF = KDF (Ks_(ext)_NAF, t ls-server-endpoint or tls-unique value)

The tls-server-endpoint binding type (the fingerprint of the server’s certificate) has the advantage that it may be used

with existing web servers and server-side proxies without modifications to the web servers or proxies . At the same time

it also provides protection in the case where one of the browser root CAs gets compromised. However, if the de rived

key gets stolen through code injection (e.g., cross -site-scripting or inclusion of malicious third-party-code) then the tls-

server-endpoint binding type is not sufficient. To prevent reuse of the authentication token even in this scenario, one has

to use the tls-unique binding type (the client’s Fin ished message in the TLS handshake) which binds the credential to

the particular TLS connection. The downside of this binding type, however, is the lack of support in web servers and

server-side proxies.

An example sequence flow is in clause 8.3.1.

8 Common Practices and Examples

8.1 Security Considerations

8.1.1 General Scripting Security Considerations

JavaScript has been designed as an open scripting language, and it has its own security model. Th is model has not been

designed to protect the server administrator or the data that is passed between the browser and the external application

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 12 Release 12

server. The scripting language security model is designed to protect the user from malicious servers, and as result,

capabilit ies of Javascript have been restricted. For example, currently deployed Javascript implementations cannot read

or write files on users' computers, or interact between different web pages that are open at the same time in the browser.

W3C has been extending Javascript APIs to include new functionality, includ ing File API [6] enabling reading and

writing files, and HTML5 Web Messaging enabling communication between the web pages in the browser.

8.1.2 GBA key control

When the Javascript specific authentication token (Ks_js_NAF) is requested by a web page, its creation is controlled by

the web browser as specified in clause 7. The Ks_js_NAf is bound to the web server, to the javascript context, and to

the type of TLS tunnel used by using NAF_ID as described in clause 7.1. The Ks_js_NAF should not be used outside of

the designed web page context.

8.1.3 User grants

When Javascript in a web page is trying to access the Javascript specific authentication token via the Javascript GBA

API, the browser executing the Javascript may prompt the end user with a permission dialog asking the end user to

grant access to the token. The end user can then decide whether to allow access or deny it, and also additionally have

the browser remember the decision. This mimics the functionality of the browsers today that support geolocation

Javascript API. There Javascript notifies the end user, that the current page is requesting location information. The end

user has then the possibility to either grant access or deny it. Additionally, the end user may have the browser remember

that decision, so that the next time the same page is requesting access to the location informat ion, the answer from the

previous query from the end users is used without disturbing the end user.

8.1.4 Root CAs in Browser

Clause 6.3 describes the threats related to a compromised CA where either the CA certificate itself or the certificate of

some root CA above the compromised CA is present in browsers' root CA list. With the threat B it is possible to issue

certificates containing any DNS name, and therefore pretend to be any server. If the attacker can spoof

https://www.facebook.com or https://accounts.google.com for instance, he can easily trick users into entering their

username and password to attacker's webpages by just mimicking the look-n-feel of the attacked webpages.

Additionally, with the introduction of HTML5 there are addit ional things to consider as HTML5 introduces new

features like WebStorage API [5], where a web site can use "localStorage" function to store name-value pairs to the

browser, which can be later accessed only by those web pages that have been downloaded from same server identified

by protocol/site/port tuple. With this threat, the attacker can fully read from and write to the localStorage of the attacked

site.

There is no way to mitigate this threat if a compromised CA is listed in browsers' root CA list except strongly

recommend that the browser vendors should carefully consider which CAs they include to their browser offering as

trust roots by default, and that the browser implementation should show proper warnings to the end user, if the user (or

some service on behalf of the user) tries to add a new CA as trust root. In addition, root CA stores managed online by

some external instance, e.g., browser vendors updating root CA stores of their browsers online, should also be kept up -

to-date.

8.2 Javascript GBA API description

8.2.1 GBA API Description

Below is an example how Javascript based GBA API could be specified :

[NoInterfaceObject]

interface DocumentGBA {

 readonly attribute GBA gba;

};

Document implements DocumentGBA;

[NoInterfaceObject]

interface GBA {

 void getGBAToken(in GBACallback successCallback,

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 13 Release 12

 in optional GBAErrorCallback errorCallback,

 in optional GBAOptions options);

};

[Callback=FunctionOnly, NoInterfaceObject]

interface GBACallback {

 void handleEvent(in GBATokenInfo keyinfo);

};

[Callback=FunctionOnly, NoInterfaceObject]

interface GBAErrorCallback {

 void handleEvent(in GBAError error);

};

[Callback, NoInterfaceObject]

interface GBAOptions {

 attribute boolean forceBootstrap; // force bootstrapping; default false

 attribute DOMString bindingType; // TLS channel binding; the options are

 // “tls-key-extractor” for option 1, OR

 // “tls-server-endpoint” (default), and

 // “tls-unique” for option 2

};

// The NAF_ID is determined by the web browser. The FQDN is taken from the origin URL

// of the web page that has the javascript. The Ua security protocol identifier is

// (0x01,0x00,0x02,yy,zz) where the yy,zz is CipherSuite in the used TLS tunnel (HTTPS).

// If TLS tunnel was not used, (0xFF, 0xFF, 0xFF, 0xFF, 0xFF) is used as Ua security

// protocol identifier. The latter case is not specified in 3GPP and it should only be

// used for testing purposes.

interface GBATokenInfo {

 readonly attribute DOMString key; // base64 encoded GBA key: Ks_(ext)_NAF

 readonly attribute DOMString btid; // B-TID

 readonly attribute long bootstrapTime; // Bootstrap time; millisecs since 1.1.1970

 readonly attribute long expiryTime; // Token expiry: millisecs since 1.1.1970

 readonly attribute DOMString fqdn; // used FQDN

 readonly attribute DOMString uaSecProtId; // base64 encoded Ua security prot. id;

};

interface GBAError {

 readonly attribute unsigned short code; // error code (to be specified)

 readonly attribute DOMString message; // textual description of the error

};

8.2.2 Example API usage

Below is an example how to use javascript based GBA API:

// Basic example of requesting GBA token

document.gba.getGBAToken(gbaSuccess,gbaError);

function gbaSuccess(tokeninfo) {

 // gba token was successfully created, and for example use

 // tokeninfo.btid as username and tokeninfo.token as password

}

function gbaError(error) {

 // an error occured during gba token creation

}

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 14 Release 12

8.3 Example sequence flows

8.3.1 Example sequence flow with channel binding

In this example message flow with channel binding the following architecture is assumed:

- GBA Function: The GBA Function handles establishment of GBA -specific keys. In particu lar, the

establishment of the key Ks can use any of the methods defined by TS 33.220 [2] (e.g., based on AKA or

GBA_Digest). The GBA Function is not part of the web browser.

NOTE: In the case of GBA_Digest, the GBA Function treats SIP Digest credentials as specified in Annex N

of TS 33.203 [9].

- Web Browser: The web browser is either native or downloaded and contains some functions which support

usage of GBA. In part icular we have in the architecture:

o GBA_API: Part of the browser that communicates with the GBA Function and receives GBA

authentication token material requests from the Javascript code.

o Javascript: Downloaded Javascript code.

o Engine: Sets up communicat ion with the NAF.

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 15 Release 12

NAF

Terminal
Browser

GBA API Javascript Engine

GBA Function

Credentials

Figure 8.3-1. Example Architecture

Below is an example sequence flow diagram of GBA usage in Web context, i.e., within Javascript.

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 16 Release 12

Figure 8.3-2. Example sequence flow.

The web browser is considered to be a trusted application in the sense that the user trusts it to handle security related

functions properly, i.e., setting TLS sessions with servers, sandboxing the Javascript code that is downloaded from the

web servers, and not leaking sensitive information like a password to third parties. In the sequence flow diagram, the

web browser is divided into three functional blocks:

- engine module handles the basic functionalities for the web browser like setting up TLS with web servers,

downloading web resources from network, and providing the user interface with the end user.

- GBA API module offers the API towards any Javascript executing in the web browser. As Javascript should not

be explicit ly trusted, the web browser and the GBA API should not reveal any sensitive informat ion to the

Javascript, nor should they accept any sensitive information from the Javascript more than necessary.

Web browser (Ua application)

GBA Function

Web server

(NAF)
GBA API javascript engine

2. GET /gba.js HTTP/1.1

4. HTTP 200 OK (gba.js)

3. Send javascript code (gba.js) that

contains javascript GBA API usage.

5. Downloaded gba.js is executed in javascript engine.

6. Javascript execution comes to the point where javascript GBA API is called.

7. Javascript GBA API generates a
request with normal Ks_(ext)_NAF
key derivation input parameters.

10. Return Ks_(ext)_NAF and B-TID.

8. Request for Ks_(ext)_NAF with FQDN of the NAF and Ua security protocol identifier.

9. Bootstrap with BSF if

cached Ks is not available.
Generate Ks_(ext)_NAF.

11. Obtain Ks_js_NAF by binding

KS_(ext)_NAF to the server
authenticated TLS tunnel using
either RFC 5705 or RFC 5929

 12. Return Ks_js_NAF with B-TID and token expiration time.

13. Continue javascript execution

and use Ks_js_NAF. Then make
XMLHttpRequest call to web server
with Ks_js_NAF and B-TID.

14. POST /validate HTTP/1.1

16. HTTP 200 OK

15. Web server request Ks_(ext)_NAF from the BSF
using the B-TID, and then generates Ks_js_NAF as in
step 11. It then validates the incoming request with

Ks_js_NAF.

1. Establish TLS Tunnel.

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 17 Release 12

- Javascript module executes the downloaded Javascript. Any Javascript executing in web browser should be

considered not trusted and should not be granted access to sensitive resources or the access to those resources

should be controlled.

The communicat ion between web browser and web server in the depicted sequence flow diagram is executed inside a

server authenticated TLS tunnel. A lso, the web browser is in the process of downloading a html page where one of the

linked Javascript resources is "gba.js".

1. The web browser and the web server establish a server authenticated TLS session.

2. The web browser engine makes a HTTP GET request to the server to download gba.js resource from the server.

3. The web server sends the gba.js file that contains the Javascript GBA API call on the browser. The gba.js can

also contain additional logical elements that make use of the Javascript specific authentication token

Ks_js_NAF.

 Example on how a GBA API call could look like:

document.gba.getGBAToken(successCallback,

 errorCallback);

4. As a HTTP response to the HTTP request made in step 2, the web server returns the gba.js to the web browser.

5. The engine in the web browser starts to execute the Javascript in gba.js in Javascript sandbox.

6. The Javascript comes to a point where a call to GBA API is made.

7. Browser's Javascript GBA API locates the relevant information about the Javascript, i.e ., in what html page it is

executing, from what url was the html page downloaded from, and which TLS ciphersuite is used in the TLS

tunnel. The FQDN of the NAF can be ext racted from the url of the web page, and the Ua security protocol

identifier can be derived from the used TLS ciphersuite. FQDN of the NAF and the Ua security protocol

identifier form the NAF_ID.

8. Browser's Javascript GBA API makes a call to ME's GBA Function with the NAF_ID derived in step 7.

9. The GBA Function bootstraps with the BSF if there is no valid GBA master key Ks. From the Ks,

Ks_(ext)_NAF NAF specific key is derived using the NAF_ID.

10. The GBA Function returns the Ks_(ext)_NAF key to browser's Javascript GBA API with the bootstrapping

transaction identifier (B-TID).

11. Upon receiving the Ks_(ext)_NAF key, browser's javascript GBA API will derive the Javascript specific

authentication token Ks_js_NAF that is bound to the server authenticated TLS session. The two options are as

follows:

If the value of the bindingType in GBAOptions is "tls-key-extractor " (i.e. RFC 5705 is used with the label

"EXPORTER_3GPP_GBA_WEB") then Ks_js_NAF is derived as:

 Ks_js_NAF = KDF (Ks_(ext)_NAF, TLS_MK_Extr)

If instead the value of bindingType is "tls-server-endpoint" or "tls-unique" (i.e. RFC 5929 [7] is used), then

Ks_js_NAF is derived as:

Ks_js_NAF = KDF (Ks_(ext)_NAF, t ls-server-endpoint or tls-unique value)

The tls-server-endpoint, tls-unique value and TLS_MK_Extr are all related to the TLS connection that

established the TLS session in step 1.

 Editor’s note: If there are several key-derivation variants then indication of the variant is ffs.

12. Browser's Javascript GBA API returns Javascript specific Ks_js_NAF authentication token, B-TID and

authentication token lifetime to the executing javascript.

13. The Javascript continues to execute and it uses the Ks_js_NAF authentication token the way the web server has

instructed (via Javascript).

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 18 Release 12

 Example on how Javascript can extract parameters from result object in Javascript (continued from step 2).

function successCallback(result) {

 var token = result.token;

 var btid = result.btid;

 var lifetime = result.expiryTime;

}

14. After executing the client side logic, the Javascript makes a XMLHttpRequest (ajax call, HTTP request) to the

web server. This request contains at least Ks_js_NAF or hash of it, and B-TID.

15. The web server fetches the Ks_(ext)_NAF key from the BSF, and it then derives the Ks_js_NAF the same way

it was done in step 11. The web server will then compare the received Ks_js_NAF with the locally derived one

and validate that the TLS session is the same as was used for the request that established the TLS session in step

1.

16. If the received Ks_js_NAF is valid, the web server will continue to process the request made in step 14 and

return the result to the web browser (to the Javascript).

3GPP

3GPP TR 33.823 V2.0.0 (2012-11) 19 Release 12

Annex <X>:
Change history

It is usual to include an annex (usually the final annex of the document) for reports under TSG change control which

details the change history of the report using a table as follows:

Change history

Date TSG # TSG Doc. CR Rev Subject/Comment Old New

2011-08-

12

 S3-110831 Integration of S3-110644, S3-110645, S3-110646 0.0.1

2011-11-

08

 S3-111214 Integration of S3-111128, S3-111129, S3-111131 and S3-

111166 accord ing to the decisions during the meeting

0.0.1 0.0.2

2012-02-

10

 S3-120227 Integration of S3-120057, S3-120061, S3-120217, S3-

120054 and S3-120056 according to the decisions during

the meeting

0.0.2 0.1.0

2012-05-

25

 S3-120530 Integration of S3-120432 and S3-120532 according to the

discussion during the meeting

0.1.0 0.2.0

2012-06 SP-120335 SP-120335 presented to SA plenary for information 0.2.0 1.0.0

2012-07-

13

 S3-120788 Integration of S3-120821, S3-120706, S3-120820, S3-

120819, S3-120703, S3-120614, S3-120789, S3-120648,

and S3-120790 accord ing to the discussion during the

meet ing

1.0.0 1.1.0

2012-11-

09

 S3-121202 Integration of S3-121059 and S3-121061 1.1.0 2.0.0

	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Objectives for the Architecture using GBA from a UE web browser
	4.1 Introduction
	4.2 Objectives

	5 Usage Scenarios and accompanying Threats for using GBA from a UE web browser
	5.1 Usage Scenarios
	5.1.1 Usage scenario 1

	5.2 Threats

	6 Control of GBA Credentials and GBA Module in the UE
	6.1 General
	6.2 Control Mechanism 1– Same Origin Authentication Tokens
	6.3 Control Mechanism 2 – Server Authenticated TLS
	6.4 Control Mechanism 3 - Channel Binding
	6.5 Control Mechanism 4 – Key Usage

	7 Potential Extension of Protocol Mechanism used on Ua Reference Point
	7.1 Key derivation
	7.2 Channel binding
	7.2.1 Background
	7.2.2 Option 1: Channel binding using RFC 5705
	7.2.3 Option 2: Channel binding using RFC 5929

	8 Common Practices and Examples
	8.1 Security Considerations
	8.1.1 General Scripting Security Considerations
	8.1.2 GBA key control
	8.1.3 User grants
	8.1.4 Root CAs in Browser

	8.2 Javascript GBA API description
	8.2.1 GBA API Description

	8.2.2 Example API usage
	8.3 Example sequence flows
	8.3.1 Example sequence flow with channel binding
	Annex <X>: Change history

