

3GPP TR 32.809 V7.0.0 (2006-12)
Technical Report

3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;

Telecommunication management; Feasibility Study
 of XML-based (SOAP/HTTP) IRP Solution Sets

(Release 7)

The present document has been developed within the 3
rd

 Generation Partnership Project (3GPP
 TM

) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP
 TM

 system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 2 Release 7

Keywords

UMTS, XML, SOAP, HTTP, management

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 3 Release 7

Contents

Foreword ..5

1 Scope ..6

2 References ...6

3 Definitions and abbreviations..6
3.1 Definitions .. 6
3.2 Abbreviations ... 7

4 XML-based (SOAP/HTTP) technical introduction ...8
4.1 Foreword and vocabulary... 8
4.2 What is SOAP? .. 8
4.3 How does SOAP work? .. 8
4.3.1 SOAP message construct ... 8
4.3.2 SOAP processing model .. 9
4.3.3 SOAP extensibility model ... 9
4.3.3.1 SOAP features ... 9
4.3.3.2 SOAP Message Exchange Patterns (MEPs)... 10
4.3.3.3 SOAP modules .. 10
4.3.3.4 SOAP protocol binding framework ... 10
4.3.4 SOAP 1.1 Versus SOAP 1.2 ... 11
4.3.4.1 SOAP 1.2 o ffers a clear p rocessing model and better interoperability .. 11
4.3.4.2 SOAP 1.2 based on XML Information Set ... 11
4.3.4.3 SOAP 1.2 g ives developers protocol independence by providing a binding framework. 11
4.3.4.4 SOAP 1.2 includes HTTP binding fo r better integration to the WWW .. 11
4.3.4.5 SOAP 1.2 delivers a well defined extensibility model... 12
4.4 Heading towards a XML-based IRP Solution Set ... 12
4.4.1 Web Service Description Language (WSDL) .. 12
4.4.2 Universal Description Discovery and Integration (UDDI) .. 13
4.5 More about SOAP/HTTP XML-based Solution Set ... 13
4.5.1 Correct use of HTTP... 13
4.5.2 Interoperability with non SOAP HTTP implementations .. 13
4.5.3 MEP operation ... 13
4.5.3.1 Behaviour of the requesting SOAP node .. 13
4.5.3.2 Behaviour of responding SOAP node ... 14
4.5.4 Security considerations .. 14
4.5.5 Request-Response RPC.. 14

5 Business status ...15
5.1 Comparative analysis .. 15
5.1.1 Computing model.. 15
5.1.1.1 Data model ... 15
5.1.1.2 Scalability and reliability ... 15
5.1.1.3 Static and runtime checks .. 15
5.1.2 Features supported .. 16
5.1.2.1 Location transparency .. 16
5.1.2.2 Registry... 16
5.1.2.3 Service d iscovery .. 16
5.1.2.4 Firewall Traversal ... 16
5.1.2.5 Security ... 16
5.1.2.6 Platform independence... 16
5.1.3 Summary ... 17
5.2 Conclusion .. 17

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 4 Release 7

6 Standardisation status ...17

7 Usage status...18

8 Performance status ...18
8.1 State of the art .. 18
8.2 Way forward ... 18
8.3 Examples of Performances studies ... 18
8.3.1 Comparison of XML, Java-RMI and CORBA service implementation.. 19
8.3.1.1 Introduction and context of this study ... 19
8.3.1.2 Cases study results.. 19
8.3.1.2.1 Costs associated directly with communications protocols... 19
8.3.1.2.2 Costs of document transfer.. 20
8.3.1.2.3 Costs of XML generation and parsing .. 20
8.3.1.3 Conclusion ... 20
8.3.2 XML-Based Solution Set Real-Time Applications capabilities ... 20
8.3.2.1 Introduction and context of this study ... 21
8.3.2.1.1 Scope... 21
8.3.2.1.2 Testing environment... 21
8.3.2.2 Method and Testing Results.. 21
8.3.2.3 Questions relating to the Performance studies... 21
8.3.2.4 Conclusion ... 22

9 Market status ...22

10 Conclusion and recommendations ...22

Annex A: Example of SOAP message..24

Annex B: Links to more literature concerning XML-based technologies25

Annex C: Change history ...26

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 5 Release 7

Foreword

This Technical Report has been produced by the 3
rd

 Generat ion Partnership Pro ject (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal

TSG approval. Should the TSG modify the contents of the present document, it will be re -released by the TSG with an

identifying change of release date and an increase in version number as fo llows:

Version x.y.z

where:

x the first digit :

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

updates, etc.

z the third digit is incremented when editorial on ly changes have been incorporated in the document.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 6 Release 7

1 Scope

This present document is for the requested 3GPP Release 7 Work Item “XML-based (SOAP/HTTP) IRP Solution Set".

The purpose of the present document is to give TSG SA5 some arguments, through a survey work, about the need to

specify a new Solut ion Set for all Interfaces, Network Resource Models and Data Definition IRPs based on XML-based

(SOAP/HTTP) technology, as additional choice to CORBA and CMIP Solution Sets.

This document is intended to gather all information in order to provide a survey work on XML-based (SOAP/HTTP)

Solution Set, based on the following sections:

(1) XML-based Solution Set technical introduction

(2) Business Status: Reasons

(3) Standardizat ion Status

(4) Vendor Status

(4) Performance status:

(5) Economic Status

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present

document.

 References are either specific (identified by date of publication, edit ion number, version number, etc.) o r

non-specific.

 For a specific reference, subsequent revisions do not apply.

 For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including

a GSM document), a non-specific reference implicit ly refers to the latest version of that document in the same

Release as the present document.

[1] SOAP Specification definit ion part 1: http://www.w3.org/TR/soap12-part1

[2] SOAP specification definition part 2: http://www.w3.org/TR/soap12-part2/

[3] MTOSI XML implementation user guide

[4] MTOSI communication styles

[5] OSS through Java Web Services Integration Profile,

[6] SOAP 1.2 test collect ion : http://www.w3.org/TR/soap12-testcollection/

[7] XML Information Set : http://www.w3.org/TR/xml-infoset/

[8] Comparison of Web Services, Java-RMI and CORBA service implementations, S5-056555,

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply.

http://www.w3.org/TR/soap12-part1
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-testcollection/
http://www.w3.org/TR/xml-infoset/

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 7 Release 7

SOAP: formal set of conventions governing the format and processing rules of a SOAP message. The convention

includes the interaction between SOAP nodes generating/accepting SOAP messages in order to exchange information

along the SOAP message path.

SOAP application: An entity, typically software, that produces, consumes or otherwise acts upon SOAP messages in a

way conforming to the SOAP processing model.

SOAP body: A collection of 0 o r more element informat ion items targeted at an ultimate SOAP receiver within the

SOAP message path.

SOAP binding: formal set of rules for carrying a SOAP message within or on top of another protocol for the purpose of

exchange.

SOAP envelope: Outermost element information item of a SOAP message.

SOAP feature: An extension of the SOAP messaging framework.

SOAP header : A collection of 0 or more SOAP header blocks, each of which might be targeted at any SOAP receiver

within the SOAP message path.

SOAP header block: An element informat ion item used to delimit data that logically constitutes a single computational

unit with in the SOAP header. The type of a SOAP header b lock is identified by the XML expanded name of the header

block element information item.

SOAP intermediary: A SOAP intermediary is both a SOAP receiver and a SOAP sender.

SOAP message: Basic unit o f communicat ion between SOAP nodes.

SOAP message exchange pattern : Template for exchanging SOAP messages between SOAP nodes, enabled by one or

more underlying SOAP protocol bind ings

SOAP message path: Set of SOAP nodes through which a single SOAP message passes.

SOAP module: A specification that contains the combined syntax and semantics of SOAP header blocks. A SOAP

module realizes 0 o r more SOAP features.

SOAP node : embodiment of the processing logic necessary to transmit, receive, process or relay a SOAP message. A

SOAP node is responsible for enforcing the rules that govern the exchange of SOAP messages. It accesses the services

provided by the underlying protocols through one or more SOAP b indings

SOAP receiver : A SOAP node that accepts a SOAP message.

SOAP role: A SOAP receiver’s expected function in processing a message. A SOAP receiver can act in mult iple roles.

SOAP sender: SOAP node that transmits a SOAP message

Ultimate SOAP receiver: SOAP receiver that is the final destination of a SOAP message. It is responsible for

processing the content of the SOAP body and any SOAP header blocks targeted at him.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CORBA Common Object Request Broker Architecture

CORBA/IDL Common Object Request Broker Architecture/Interface Defin ition Language

EM Element Manager

EMS Element Management System

IDL Interface Defin ition Language

IRP Integration Reference Point

IS Information Service

MEPs Message Exchange Patterns

NM Network Manager

NMS Network Management System

OAM&P Operations, Administration, Maintenance and Provisioning

OS Operations System

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 8 Release 7

OSS Operations Support System

SOAP Simple Object Access Protocol

SS Solution Set

TCP/IP Transmission Control Protocol/ Internet Protocol

TMF TeleManagement Forum

UDDI Universal Description Discovery and Integration

WSDL Web Services Description Language

4 XML-based (SOAP/HTTP) technical introduction

This section is a quick technical overview of XML-based Solution Set, SOAP and SOAP/HTTP that can be used as a

reference to better understand the context of this document. This is not exhaustive but provides the main princip les and

gives enough informat ion to be able to make a judgement concerning this candidate technology.

4.1 Foreword and vocabulary

The following section will introduce XML-based technologies that uses, as a vehicle, SOAP technologies as well as its

add-ons such as WSDL and UDDI.

It has to be clear to the reader that SOAP is the protocol that is used to introduce XML-based IRP Solution Set.

As well, if SOAP is the XML-based protocol used, it comes with a number of add-ons such as WSDL, UDDI, and that

this set of “tools” are an entire part of the XML-based IRP Solution Set that is being defined in this study.

4.2 What is SOAP?

SOAP is a lightweight protocol defined by the w3c organisation (see [1] and [2]). SOAP is intended to exchange

informat ion in decentralized and distributed environment. It uses XML technologies that allow defining an extensible

messaging framework providing a message construct that can be exchanged over a variety of underly ing protocols. As

well, the framework has been designed to be independent of any particular programming model and other

implementations specific semantics.

SOAP stands for Simple Object Access Protocol and is a XML mess aging and invocation protocol. It does not specify a

transport event though it is very commonly used with HTTP.

SOAP was designed with the two main goals that are simplicity and extensibility. Later on in this technical introduction

there will be a detailed description about the way they have been implemented.

Globally SOAP is said to be agnostic in the sense that:

- Independent of transport protocol used to carry the messages (HTTP, SMTP, etc, etc...)

- Independent from other web services such as WSDL or UDDI

- Independent from programming languages

4.3 How does SOAP work?

SOAP provides a distributed process ing model that assumes a SOAP message originates at an initial SOAP sender and

is sent to an ultimate SOAP receiver v ia a number o f SOAP intermediaries.

4.3.1 SOAP message construct

A SOAP message is specified as an XML infoset that consists in a SOAP envelope, a SOAP header and a SOAP body.

The SOAP envelope element information item is embedded within an XML infoset and specifies that this infoset is a

SOAP message. It contains a local name (envelope) as well as a namespace and a number of namespace qualif ied

attribute information items (for example encoding Style). Finally it has to contain (Mandatory) a Body element

informat ion item and optionally a Header element informat ion item.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 9 Release 7

The SOAP header provides a mechanis m for extending a SOAP message in a decentralized and modular way. The

header can be inspected, inserted or deleted by SOAP nodes. It allows SOAP intermediary nodes to add value added

services such as correlation, audit, security etc, etc… Basically, the intermediaries SOAP nodes can potentially check

through the header to get info if necessary or to know which SOAP node is to be the ultimate SOAP receiver. The

SOAP header is defined by a local name (header), a namespace, a number of namespace qualified attribute informat ion

items and a number of namespace element informat ion items (header blocks). The header blocks attributes can be, for

example, EncodingStyle, role, mustUnderstand or relay.

The SOAP body provides a mechanis m to transmit informat ion to an ultimate SOAP receiver. It is a mandatory field

since it contains the message or payload that is to be processed by the ultimate SOAP receiver.

An example of the SOAP flexibility is that the decision to determine which data is to be placed in the header block or

body is decided at the application design stage.

4.3.2 SOAP processing model

The SOAP processing model specifies the way a SOAP receiver processes a SOAP message.

While processing a SOAP message, a SOAP node (identified by an URI) is said to act in one or more SOAP role, each

of which is identified by a URI known as the SOAP role name. For example, there are three main role names in the

context of SOAP:

- Next : Each SOAP intermediary and the ultimate SOAP receiver must act in this role

- None: SOAP nodes must NOT act in th is role

- Ult imateReceiver: Only the ult imate receiver must act in this role

For example, a SOAP header b lock may carry a role attribute information item that is used to target the header block at

SOAP nodes operating in the specified role. In the same way, a SOAP header b lock may carry a mustUnderstand

attribute information item set to true, in which case the header block is said to be mandatory because a targeted node

must process the header block and act according to its content.

Finally, the ult imate SOAP receiver must process correctly the SOAP body.

4.3.3 SOAP extensibility model

As said earlier, SOAP provides a simple messaging framework whose core functionality is concerned with providing

extensibility. Mainly, the SOAP extensibility is provided by the following three “possibilities”:

- SOAP Message Exchange Patterns (MEPs)

- SOAP modules

- SOAP protocol binding framework

4.3.3.1 SOAP features

A SOAP feature is an extension of the SOAP messaging framework. Although SOAP poses no constraints on the

potential scope of such features, those can be reliability, security, correlation, routing or MEPs such as request/response,

one-way and peer to peer conversation.

There are two mechanisms through which features can be expressed: SOAP processing model (See Sect ion 4.3.2) or

SOAP protocol binding framework (See sub-clause 4.3.3.4). The first mechanism is already known. The second

mechanis m mediates the act of sending/receiving SOAP messages by a SOAP node via an underly ing protocol.

The SOAP processing model enables SOAP nodes that include the necessary mechanisms to implement one or more

features to express such features within the SOAP envelope as SOAP header blocks. Such header blocks can be

intended for any SOAP node or nodes along the SOAP message path. The combined syntax and semantics of SOAP

header blocks are known as a SOAP module (See sub-clause 4.3.3.3).

On the other hand, the SOAP protocol binding operates between two adjacent SOAP nodes along a SOAP message

path. There are no requirements that the same underly ing protocol is used for all hops along a SOAP message path. In

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 10 Release 7

some cases, underlying protocols are equipped, either directly or through extension, with mechanisms for providing

certain features. The SOAP protocol binding framework provides a scheme for describ ing these features and how they

relate to SOAP nodes through a binding specificat ion.

Globally, in the case where the feature requires an end to end processing, it is probably recommended to use the SOAP

header blocks to reuse the SOAP processing model rules. Otherwise, SOAP protocol binding can be used.

A SOAP feature is fu lly defined by the following:

- A URI used to name the feature. Th is enables the feature to be unambiguously referenced in description

language or during negotiation

- The informat ion state required at each node to implement the feature

- The processing required at each node in order to fulfil the obligations of the feature, including handling of

communicat ion failures that might occur in the underlying protocol

- The informat ion to be provided from node to node

4.3.3.2 SOAP Message Exchange Patterns (MEPs)

A Message Exchange Pattern (MEP) is a template that establishes a pattern for the exchange of the messages between

SOAP nodes. In a way, MEPs are a kind of feature.

A MEP is defined by the following:

- A URI used to name the MEP

- Description of life cycle of a message exchange conforming to the pattern

- Description the temporal/causal relationships, if any, of mult iple messages exchanged in conformance with the

pattern

- Description of the normal and abnormal termination of a message exchange conforming to the pattern

4.3.3.3 SOAP modules

SOAP module refers to the specification of the syntax and semantics of one or more header b locks.

A SOAP module:

- Must identify itself with a URI. This enables the module to be unambiguously referenced in description

languages or during negotiation

- Must declare the features provided by a module

- Must clearly and completely specify the content and semantics of the SOAP header blocks used to implement the

behaviour in question, including if necessary any modifications to the SOAP processing model

4.3.3.4 SOAP protocol binding framework

SOAP enables exchange of SOAP messages using a variety of underlying protocols. The formal set of rules for carry ing

a SOAP message within or on top of another protocol for the purpose of exchange is called a binding.

A SOAP b inding specification:

- Declares the features provided by a binding

- Describes how the services of the underlying protocol are used to transmit SOAP messages infosets

- Describes how the services of the underlying protocol are used to honour the contract formed by the fea tures

supported by that binding

- Describes the handling of all potential failu res that can be anticipated within the binding

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 11 Release 7

- Defines the requirements for building a conformant implementation of the bindin g being specified

Globally, it can be considered that a binding does not really provide a separate processing model and does not constitute

a SOAP node by itself. Rather, a SOAP binding is an integral part of a SOAP node.

Two or more bindings can offer a given optional feature using different means. One binding might explo it an

underlying protocol that directly facilitates the feature and the other binding might provide the necessary logic itself. In

such cases, the feature can be made available to applicat ions in a consistent manner, regard less of which binding is

being used.

Finally, since the SOAP processing model describes the processing that is common to all SOAP nodes when rece iving a

message, the purpose of a binding is to augment the core SOAP rules with additional p rocessing that is particular to the

binding and to specify the manner in which the underlying protocol is used to transmit informat ion between adjacent

nodes in the message path.

4.3.4 SOAP 1.1 Versus SOAP 1.2

The following section is to introduce the delta between SOAP 1.1 and SOAP 1.2. The XML working group evaluated

the technical solutions proposed by SOAP 1.1. The result of this study work is the elaboration and proposal of a SOAP

1.2 version which is a more extensible and protocol-independent XML-based messaging framework.

The key point to keep in mind is that SOAP 1.2 can do everything that SOAP 1.1 does, and more.

4.3.4.1 SOAP 1.2 offers a clear processing model and better interoperability

Many interoperability issues in SOAP 1.1 were caused by ambiguities in the processing model. For example the scope

of the “mustUnderstand” attribute in the processing of a message as well as the processing being done by intermediary

impacted interoperability.

The XML protocol working group study raised more than 400 issues and built a clean, robust and unambiguous SOAP

1.2 processing model. W 3C actually ran a collection of tests that proved the better interoperability of SOAP 1.2 (Ref

[6]).

4.3.4.2 SOAP 1.2 based on XML Information Set

SOAP version 1.2 is based on the XML Informat ion Set (See [7]). This is a significant change since with SOAP 1.2 a

SOAP message is specified as an infoset which is carried from one SOAP node to another. In SOAP 1.1, which was

based in XML 1.0 serialization, SOAP 1.2 places no restriction about how the infoset is transported. For example, it

could be done using HTTP and XML 1.0 or a completely different mean of transportation. SOAP 1.2 is agnostic to this

which allows for compression, optimization and other performance gains.

4.3.4.3 SOAP 1.2 gives developers protocol independence by providing a binding

framework.

Building on top of the XML infoset, the SOAP 1.2 specification defines a binding fra mework exp lain ing the

responsibility of the mechanis m carrying a SOAP message from one SOAP node to another. This makes SOAP

processors underlying protocol agnostics and SOAP version 1.2 protocol independent. SOAP 1.2 messages can be

carried over HTTP, SMTP or any other protocol for which a b inding conforms the binding framework.

As a conclusion, SOAP 1.2 is fully protocol independent.

4.3.4.4 SOAP 1.2 includes HTTP binding for better integration to the WWW

Since SOAP 1.2 is likely to interoperate with the World W ide Wed, it needs to conform to the web arch itectural

principles. SOAP 1.2 defines a web method feature and the SOAP HTTP b inding provides support for both HTTP GET

and POST operations. This implies that SOAP gets the benefits of the web infrastructure such as HTTP caches.

Basically, SOAP 1.2 uses existing, established web technologies and it allows achieving better performance.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 12 Release 7

4.3.4.5 SOAP 1.2 delivers a well defined extensibility model

The biggest strength of SOAP 1.2 is coming from its extensibility model. SOAP 1.1 model has been reworked and

formalized as features and properties that can be expressed either in the SOAP envelope or via the underly ing protocol

binding, making SOAP1.2 very flexib le and making it take advantage of any feature that t he underlying protocol would

be providing.

4.4 Heading towards a XML-based IRP Solution Set

This study’s goal is to assess whether or not SA5 can head towards a XML Solution Set based on SOAP as a protocol,

WSDL as a description language and UDDI as a discovery “layer”. WSDL and UDDI will be described in the following

section.

4.4.1 Web Service Description Language (WSDL)

WSDL is a Standard to define Web Services.

WSDL is an XML format that allows Web Services description as a set of endpoints operating on messages containing

either a document oriented or procedure oriented informat ion. Operat ions and messages are described at an abstract

level and then bound to a concrete network protocol and message format to define an endpoint.

Basically WSDL describes the format and protocols of a web service in a standardized way. For example, the requestor

and the Service Provider have a standard way to describe:

- Service to be provided

- Messages needed to be sent by both parties in order to provide the service:

- Data contained in each message

- Binding of the messages to a communicat ion protocol

- What the service does

WWiirree

XXMMLL

SSOOAAPP 11..11//11..22

RReelliiaabbiilliittyy

AAttttaacchhmmeennttss

RRoouuttiinngg

SSeeccuurriittyy

DDeessccrriippttiioonn

XXMMLL SScchheemmaa

Service
DDeessccrriippttiioonn

((WWSSDDLL))

WWSS BBuussiinneessss

PPrroocceessss

DDiissccoovveerryy

DDiissccoovveerryy

DDiirreeccttoorryy ((UUDDDDII))

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 13 Release 7

- How the service is accessed

- Where the service is located

The Service p rovider publishes service WSDL description to a UDDI registry. The service requestor discovers the

service by searching the UDDI registry and then binds the WSDL description to a specific message it uses to access the

service. Finally, the service requestor can use the service.

4.4.2 Universal Description Discovery and Integration (UDDI)

UDDI allows service providers to publish informat ion about their services. The requestor can then find those

informat ion when looking for a service.

This is done using the UDDI functionalities providing a registry in which informat ion such as business entity, service

provided by this entity and the WSDL description of those services is stored. UDDI provides as well an interface to

insert informat ion of the registry and possibly search for a service.

4.5 More about SOAP/HTTP XML-based Solution Set

The SOAP HTTP b inding provides a binding of SOAP to HTTP. The binding conforms to the SOAP protocol binding

framework defined in Sect ion 4.3.3.4.

The SOAP HTTP b inding is optional and SOAP nodes are not required to implement it. However, this binding does not

preclude the development of other bindings to HTTP or to other protocols, but communication with nodes using such

bindings is not a goal even if those nodes can use HTTP features or status codes.

4.5.1 Correct use of HTTP

The SOAP HTTP b inding defines a base URI which is the HTTP Request -URI or the value of the HTTP Content-

Location header field.

This binding of SOAP to HTTP is intended to make appropriate use of HTTP as an application protocol. In fact, this

binding is not intended to fully exp lo it the HTTP features but rather to use HTTP specifically for the purpose of

communicat ing with other SOAP nodes implementing the same binding.

4.5.2 Interoperability with non SOAP HTTP implementations

When used with MEPs, the HTTP messages produced by the SOAP HTTP binding are likely to be indistinguishable

from those produced by non SOAP implementations performing similar operations. Accordingly, some degree of

interoperation can be made possible between SOAP nodes and other HTTP implementations when using this binding.

4.5.3 MEP operation

A SOAP node instantiated at an HTTP client may assume the following two role properties:

- Requesting SOAP node

- Responding SOAP node

4.5.3.1 Behaviour of the requesting SOAP node

This binding supports streaming and, as a result, requesting SOAP nodes must avoid deadlock by accepting and, if

necessary, processing SOAP response information while the SOAP request is being transmitted.

A number of state help for that purpose:

- Init: In this state a HTTP request is formulated and the transmission of the request is initiated

- Requesting: the sending of the request continues while wait ing for the start of the response message. A number

of statuses can be allocated at this stage (successful, Ok, redirect ion, client error, bad request etc, etc…).

Depending on the status, the node acts in consequence. It has to be noticed that the SOAP HTTP binding fo llows

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 14 Release 7

the rules of any HTTP applicat ion which means that an implementation of the SOAP HTTP bind ing must

understand the class of any status code

- Sending + Receiving: the transmission of the request message and receiving of the response message is

completed. The response message is assumed to contain a SOAP envelope serialized accord ing to the rules for

carrying SOAP messages in the media type given and the content-type header field

- Receiving: in the receiving state, receiving of the response is completed

- Success and Fail: Success and Fail are the terminal states of the Request-Response and SOAP response MEPs.

Control over the message exchange context returns to the local SOAP node

4.5.3.2 Behaviour of responding SOAP node

In the same way, the Responding SOAP node has a number of state that are driving the node behaviour

- Init: the binding waits for the start of an inbound request message. In this state, no SOAP message has been

received

- Receiving: the binding receives the request and any associated message and waits for the start of a response

message to be available

- Receiving + Sending: the binding completes receiv ing of the request message and transmission of the response

message

- Sending: the binding completes transmission of the response message

- Success and Fail: they are the terminal states for the Request- Response and SOAP Response MEPs. From the

point of view of the local node, this message exchange has completed

4.5.4 Security considerations

The SOAP HTTP b inding can be considered as an extension of the HTTP applicat ion protocol. As such, all the security

considerations described in the HTTP specificat ion apply to the SOAP HTTP binding. In particular, HTTPS is

supported.

On top of that, SOAP security items apply as well (see [2]).

4.5.5 Request-Response RPC

One of the goals of the SOAP to HTTP binding is to encapsulate remote procedure call functionality, using XML’s

flexib ility and extensibility.

In this context, RPC is used to model a certain programmat ic behaviour. To invoke a SOAP RPC, the fo llowing

informat ion is necessary:

- The address of the target SOAP node. URI can be included in header b locks or outside of SOAP message, in

bindings

- The procedure or method name

- The identities and values of any arguments to be passed to the procedure or method together with any output

parameters and return value

- A clear separation of the arguments used to identify the Web resource which is the actual target for the RPC, as

contrasted with those that convey data or control informat ion used for processing the call by the target resource

- The message exchange pattern which will be employed to convey the RPC

- Optionally, data which may be carried as a part of SOAP header b locks

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 15 Release 7

5 Business status

This section is a rough business assessment of the proposed XML-based IRP solution set. The goal of this section is to

assess and estimate whether or not the proposed solution can be an alternative to existing Solution Sets, notably

CORBA/IDL.

It has to be clear as well that the following is not a plea against CORBA but just a comparison with an existing solution

set. Globally, it will be demonstrated that everything (or nearly) that can be achieved using CORBA is do-able using the

XML-based Solution Set.

5.1 Comparative analysis

The comparison will be made against two different aspects which are the computing model and the features supported

by each technology.

The comparison will be based on a number of criteria developed in the following.

Finally, th is is obviously not an exhaustive comparison but that should be enough information to get a good enough

assessment of the proposed XML-based solution set.

The following table provides a first level of comparison between the two technologies:

CORBA stack XML-based stack

IDL WSDL
CORBA Services (naming service, trader service, IR) UDDI

CORBA Stubs/Skeletons SOAP Message
CDR (common data representation) binary encoding XML Unicode encoding

GIOP/IIOP HTTP
TCP/IP TCP/IP

5.1.1 Computing model

5.1.1.1 Data model

CORBA is a true Object Oriented component framework, whereas the XML-based solution set are focused around a

message passing paradigm with no notions of objects.

As well, with CORBA, there is a tight coupling between the client and the server. First of all, both of them must share

the same interface and must run an ORB (Object Request Broker) at both ends. Then, the interaction between the client

and the server may be achieved directly with no need to further intermediation. In the case of the XML-based solution,

everything is decoupled. The client sends or receives a message.

5.1.1.2 Scalability and reliability

In CORBA, the Portable Object Adapter (POA) policies combined with the Fault-tolerant CORBA features and the

Load-balancing CORBA service p rovide the desired scalability to CORBA applications

In the context of XML-based solution, standards do not address these issues. However, this is done on purpose and left

to the responsibility of the components.

5.1.1.3 Static and runtime checks

CORBA IDL is strongly typed and provides some static guarantees, DII (Dynamic Invocation Interface) addresses

runtime checks

In the XML-based solution, there is no standardized infrastructure support to offer static checking. At runtime, only the

structure of the SOAP message is checked, and the payload is only required to be a piece of well -formed XML. It is the

responsibility of the application to verify the payload further (i.e., validate against a schema). In the future, WSDL

could be used to generate a mapping to a programming language to offer some static guarantees.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 16 Release 7

XML Schemas are more expressive than IDL and define some syntactic checks (e.g., regular expression describing a

date format, etc.), as well as some semantic checks (e.g., range constraints), which cannot be captured in IDL.

5.1.2 Features supported

5.1.2.1 Location transparency

CORBA client applications obtain references to objects and invoke operations without concern for the location of the

objects

XML-based solution client applications (using SOAP) refers to services using URLs which implicit ly encode the

location (IP address) of the service

5.1.2.2 Registry

CORBA defines an Interface Repository (IR) that provides run-time informat ion about IDL interfaces and invokes via

DII

UDDI provides searchable central repositories using a publish/subscribe mechanis m to store service definit ions. UDDI

registries can store structural informat ion about the service in the form of a WSDL specification

5.1.2.3 Service discovery

CORBA Naming service provides lookup via service name. The Trad ing Object Service supports an advanced lookup,

registration and discovery of services based on service type.

In the XML-based solution, UDDI registries are allowing to discover services matching a given interface.

5.1.2.4 Firewall Traversal

The upcoming CORBA Firewall Traversal specification allows CORBA requests to be routed through firewalls.

Explicit routing information is added to the interoperable object references (IOR).

For XML-based solution, since the preferred transport protocol is HTTP, firewalls are usually configured to allow

inbound and outbound HTTP traffic

5.1.2.5 Security

Security features include authentication, authorization, encryption, data integrity, delegation, non-repudiation and

auditing

Security features are supported by the CORBA Security service

The XML-based solution stack does not define security services. However, security can be addressed by transport

network and internet technologies like SSL and XML-Signature

5.1.2.6 Platform independence

CORBA has been designed to be platform independent. This includes hardware, operating systems, and programming

and scripting languages independency.

On the XML-based solution, since all messages communication is via SOAP, and that no other restrictions (e.g.,

platform similarities) are imposed on the client or the server, the only requirement is to be able to read and write SOAP

messages (i.e. XML documents)

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 17 Release 7

5.1.3 Summary

Aspect CORBA XML-based SS
Data model Object model SOAP message exchange model
Client-Server coupling Tight Loose

Location transparency Object references URL
Type system IDL XML schemas

 static + runtime checks runtime checks only
Error handling IDL exception SOAP fault messages

Serialization built into the ORB can be chosen by the user
Parameter passing by reference by value (no notion of objects)

 by value (valuetype)
Transfer syntax CDR used on the wire XML used on the wire

 binary format Unicode
State stateful stateless

Request semantics at-most-once defined by SOAP
Runtime composition DII UDDI/WSDL

Registry Interface Repository UDDI/WSDL
 Implementation repository
Service discovery CORBA naming/trading service UDDI

Language support any language with an IDL binding any language
Security CORBA security service HTTP/SSL, XML signature

Firewall Traversal work in progress uses HTTP port 80

5.2 Conclusion

Basically, it seems that most of the things that can be achieved using CORBA are achievable as well using the proposed

XML-based solution.

There are a number o f points that are not actually defined at the XML-based solution specificat ion level but this is on

purpose and those are left to the discretion of the design team when implementing the application.

As a result of that, the flexibility of XML-based solution is clearly demonstrated.

XML-based solution seems as well to be easy to use with possibly less constraints than CORBA based solution set.

There is no need to compile each time a change or a new implementation is done and the fact that there is a binding to

HTTP seems interesting as well.

However there are few concerns that would need probably further studies. For example, there is a question mark

towards the performance of the system (See clause 8). As well, the interoperability might not be yet up to speed.

Finally, it looks like the notificat ion are not defined in the XML-based Standards and are therefore open to the four

winds which potentially means that every standardisation organism is setting its own standard on those. SA5 should

look into that as well for further studies.

6 Standardisation status

The XML-based IRP Solution Set discussed in this document is built on SOAP protocol, WSDL and UDDI. All three

are today standardised by the W3C organizat ion. The details of those specifications can be found by the link g iven in

Reference [2] and [3].

Since this solution is transport independent, it can easily be based on a standardised transport layer.

Today SOAP version is v1.2 and is not expected to change. However, the extensibility features are open and linked to

bindings to protocol.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 18 Release 7

7 Usage status

There is a real growing demand for the XML-based complete set of solution, which are today very widely used and

implemented in the industry. Especially XML-based solutions over HTTP or HTTPS since most of the web applications

are choosing this kind of implementation. It seems to be a well known and accepted fact, and is driving the industry at

the moment. For example, travel booking companies, music download sites and banking activities are using XML-

based solution to perform their activit ies.

This is in that regard, really, that this feasibility study has been set up. The question asked really is: “can we use, or re-

use” those XML-based technologies in the context of the telecom management and this is the answer that has to be

provided as an output to this feasibility study.

As a matter of fact, a number of Telecom Standard organisations have already made a positive assessment regarding

this XML-based solution set.

For example, the TMF MTOSI industry group has already progressed on that topic and presented their work to the SA5.

In the same way OSS/J study group have produced an assessment document that concludes that this the way going

forward. Both those documents are availab le and given as references [3] and [4]. Other g roups from

Telecommunications and other industries are actively working on that topic.

8 Performance status

8.1 State of the art

It seems that the performances offered by an XML-based solution would not be as good as the ones provided by a

CORBA solution set.

Globally, it seems to be an agreed and accepted point that SOAP, being XML-based, is too verbose as compared to

CORBA IIOP's binary format. Therefore, it is likely to introduce a performance h it.

However, that may be true for certain kinds of applications, but in most complex business applications, the cost of

message passing is dwarfed by the cost of processing the business logic

Anyway, this should be studied further to get maybe a clearer overview of the real performances impacts.

8.2 Way forward

There is clearly an argument to be discussed concerning performances. However, the industry makers, including in the

Telecommunication world seem to privilege the wider use of an XML-based solution rather than what seems to be a

small enough and acceptable impact on performances.

Unfortunately, at this stage, there is not a sufficient set of references to give defin ite arguments on that purpose. But a

discussion on that topic should be set up.

The discussion could stand, for example, over the use of an XML-based solution set against all our IRPs. Or is it only

applicable to PM, CM basic and Bulk and maybe not for FM, even though there are no existing studies demonstrating

the inefficiency of those type of solution in this sector.

On top of that, it would be very interesting, in the context o f SA5, and even beyond, to set up a work task group that

would study the performances in an XML-based environment versus existing solutions to find out if there is an impact

on performances and if any, how big it is.

8.3 Examples of Performances studies

In the following section, we’ll go through two performance studies which should allow us to get a better understanding

on the potential impacts that an XML-based solution set is introducing.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 19 Release 7

8.3.1 Comparison of XML, Java-RMI and CORBA service implementation

This study is the analysis of a white paper presented by China Mobile during SA5 # 43 and is based on the document

given in Ref [8].

8.3.1.1 Introduction and context of this study

Previous studies ran upon previous SOAP and HTTP versions had identified significant issues in terms of performances

for a system implemented using XML-based solution sets. The intent of this very study is to confirm whether or not

XML-based solution set have overcome this important issue. In fact, in prior studies, when comparing Java, CORBA

and XML-based solutions, a degradation factor of up to 400 in d isfavour of XML-based solution was demonstrated.

This study is based on three cases that will be tested against each of the technologies. The testing environment is exactly

the same for each technology. The three cases that will be tested against are:

 A “calculator” which defines a simple four-function calculator with operations that each required an integer

input argument and generated an integer response. This is the light case scenario that should involve min imal

overheads,

 A case called “data”, which involves a string input argument and a returned structure with in teger, string array,

and double array fields. At this stage, the XML encoding has to include some more significant structural meta -

data,

 Finally, the last case is called “large data” and it models a real world data retrieval applicat ion. For example,

intranet use of Java-RMI and CORBA frequently has a client running in one departmental system that uses a

middle-layer server to access a database in some other departmental system. This is the kind of

system/application that an XML solution sets will have to take on if they are to establish themselves as a

preferred technology, or at least as an alternative to Java or CORBA.

More details about the implementation of each of those study cases can be found in the document Ref [8].

8.3.1.2 Cases study results

8.3.1.2.1 Costs associated directly with communications protocols

Typically, an XML-based implementation has a client connecting to a service, submitting a single request for data and

terminate. Such applications are unlikely to put any great demands on either the server host’s CPU, or a

communicat ions network. Therefore, at this level XML-based solution perform pretty well in comparison with the

distributed objects systems.

Globally, any remote connection incurs the establishment costs of a TCP/IP connection. Typically, an XML-based

solution will only incur the cost of one connection. The subsequent exchanges using HTTP may be non optimal. For

example a request can be sent in two parts (HTTP headers in the first message, SOAP envelope with request in the

second part). The same goes for a response. Despite all that, XML-based solution performs best.

CORBA has to take into account the fact that the client contacts a name service to obtain a reference to its server. This

costs a TCP/IP connection that implies a decrease of performances.

Finally, Java-RMI has the most complex solution. Establishment of a connection towards the rmiRegistry and

submission of a lookup request, establishment of a connection to a HTTP server, posting a request in order to download

a class file and finally, exchanges with the current server. This costs dearly and implies additional data traffic. However,

Java still performs better than CORBA on that topic.

Technology Total Latency Total Packets Total data transferred in bytes

XML-Based 0.11s 16 3338
CORBA 0.86 24 3340

Java-RMI 0.32 48 7670

As a conclusion, the issues raised previously against XML-based solutions are now fixed. The traffic between the client

and the server is now more efficient, even though there is still a b igger amount of data to be transmitted. It has to be

noted that the introduction of HTTP 1.1 (versus HTTP 1.0) helped a lot in that matter, especially due to the fact that

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 20 Release 7

now the HTTP connections are now persistent (keep alive) and that the “chunked” response format is now incorporated

with HTTP 1.1.

8.3.1.2.2 Costs of document transfer

The image of large XML documents replete with textual data, mark up tags, and data type specifiers had lead to an

expectation of even poorer performance from an XML-based solution. In fact, what we see is that the relative

performance is poor with the simpler data transfers (“calculator”) but the difference is less marked where the data

volume is greater (“large data”). We see that the XML-based solution requires from three to five t imes as many data

packets as the other solutions, and from three to ten times as many bytes but this is without using any kind of

compression.

The CORBA implementation is the one that performs the best while java performs poorly.

As a conclusion, it seems that the five fold o r so increase in data transfer costs for XML-based type of implementations

may be tolerable for an intranet application for example. Local bandwidths should be high and local switched Ethernet

systems should reduce contention. However, if the application requires encryption of data traffic then the larger amount

of data will incur additional processing costs for encryption.

Example Technology Packets Total data transferred

“Calculator”
XML-Based 48.931 10.360.814
CORBA 10.007 1.400.851

Java 10.098 1.017.477

“Data”

XML-Based 55.617 16.053.312

CORBA 10.007 2.236.661
Java 10.050 2.451.790

“Large data”
XML-Based 1.143.608 1.134.974.047
CORBA 475.235 344.363.683
Java 1.354.377 449.330.931

8.3.1.2.3 Costs of XML generation and parsing

There is clearly t ime and space costs associated with the use of XML encoding. In terms of CPU usage, Java performs

best even though the “large data” scenario proved to show poor enough performances on the client size. The XML-

based solution set required up to six t imes as much CPU power on the server and the client-side parsing of the large

data as even a higher cost. CORBA is performing OK but not as well as Java.

On the memory space aspect, once again XML-Based solution Sets are consuming much more than the other two

alternatives solutions.

Globally, the cost of XML-Based solutions in that domain is significant but can easily be corrected by setting up more

CPU and Memory. It then becomes a financial costs discussion.

Application “Calculator” “Data” “Large Data”

Technology Client CPU Server CPU Client CPU Server CPU Client CPU Server CPU
XML-Based 15.0s 6s 22.8s 8.4s 1087s 551s

Java 2.3s 0.8s 4s 1.1s 148s 212s
CORBA 3.2s 1.9s 3.6s 2.1s 54.2s 250s

8.3.1.3 Conclusion

The performance restrict ions linked to the usage of an XML-Based solution are significantly reduced, if not solved,

compared to the previous studies performed on that topic. Even though it is still a slower implementation than Java or

CORBA, the gap has been reduced.

It can even be reduced further by increasing the CPU and Memory configurations.

8.3.2 XML-Based Solution Set Real-Time Applications capabilities

This study is the analysis of a white paper, written by Steve Orobec from Brit ish Telecom, on behalf o f the MTOSI

working group, see Ref [9].

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 21 Release 7

8.3.2.1 Introduction and context of this study

8.3.2.1.1 Scope

This white paper is investigating the ability of an XML-Based Solution Set to handle Real-Time applicat ions and in

particular Fault Management.

The goal is not to sell or promote such or such toolkit that are used in this study but to provide a purely technical study

from which a clear conclusion can be issued regarding the Real-Time capabilities of XML-Based Solution Set.

8.3.2.1.2 Testing environment

This study was done using open source software, freely availab le. For this purpose,

One single CPU 2.4 GHz single core 32 bit Pentium laptop with 1GB RAM and Windows XP SP -1, and one single

CPU 2.5 GHz single core 32 bit Athlon XP Desktop with 1 GB RAM and Windows XP SP-2 were used as Client and

Server respectively.

Glassfish V2b03 nightly (Glassfish V1.0 is the open source ESB for JEE5 and is the java reference implementation

covering JAX-WS, JAX-B, JAX-P, EJB 3.0 and supporting HTTP,

Derby Database,

54Mbit/s WiFi Router LAN.

The alarms flowing the system in the context of those tests are 3.75Kb which is realistic when talking about alarms.

It is very important to notice that none of the development and the tools (database) were tuned to optimize the results

of this study. As well, the tools used are potentially not the one offering the best performances aspects. Once again,

the goal was to set up a test environment neutral enough to allow the reader to make his own mind concerning the

Real-Time capabilities of an XML-Based SS.

8.3.2.2 Method and Testing Results

The testing took place in three phases:

The first step was to measure the sustainable alarm flow, with no persistency for the alarms. The client (EMS side) was

then set up to perform a p re-defined number of iteration (2000). The client (EMS) posts alarm events and the glassfish

decodes the SOAP message to provide two java objects, as parameters, at the notification service method (MTOSI

header and body respectively). These are manipulated in the same way as any java object can be.

Using default settings (no tuning), it was found that over 3 or 4 batches of 2000 iterations, performance increases

from 110 transactions per seconds (after 2000) to a peak of 143 transactions when sending up to 8000 iterations. It

has to be reminded that no tuning whatsoever was done!

The second run of tests was to add persistency of the data. Other than that, the same test methodology was used.

However, saving the alarm in a persistent database cost dearly to alarm flow that can be sustained. The averag e, in

this configuration is from 25 to 36 transactions per seconds. Mainly, it is writing in the database that has a dear cost

since it is estimated to 21 ms which is about three times the time for decoding the actual SOAP/XML messages. Once

again, no tuning was done, in particular on the database.

Finally, it was decided to use a third PC as a dedicated Application Server.

This significantly increased the performances. Over 11000 transactions, we reached a rate of 52.6 transactions per

seconds while the CPU load on the server was constantly between 2 and 4%. Concerning the LAN utilization, it

averaged to 0.08%.

8.3.2.3 Questions relating to the Performance studies

Question 1 : Does the alarm rates and times to process include the parsing of the alarms ?

Ans wer 1: Steve Orobec which performs the study confirmed that the times quoted are to take the soap wrapper and

open it, de-serialise the XML to java and then to write to a database on the same pc as the application server. There is

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 22 Release 7

obviously going to be a s ignificant overhead in doing an i/o write to disk but the actual soap/xml de-serialisation seems

quite quick after which the servlet has access to a concrete java representation of an alarm (i.e . you can get/set it).

Question 2 : Concerning the batch of iterat ions that were used to hit the system, are they always the same alarms or d id

you have a pool of different alarms that were thrown randomly across the system ?

Ans wer 2: Steve built the application in 2 modes, single shot (to support the MTOSI fau lt interface in which we can

populate the database with different types of alarm for ret rieval. However, there is still a need to do a little bit of work

on the fault interface) and batch for performance tests for which the same alarms were used. The reason for using the

same alarm is as follows: Steve was examining the performance of the application server receiving the alarm to

de-serialise and persist rather than the ability of a client to instantiate and send the message. It was quicker/easier client

software wise to send the same alarm in a loop. There would not be any difference if the same or different alarms would

be used since the app server container generates a new 'entity manager' for each http request i.e. there is no caching

(This is what the java community claim and Steve verified as such by applying a caching service locator pattern).

Question 3 : Did you run your testing aver a significant amount of time? For example, d id you consider the case where

you would run/send a batch of alarms for a 24 hours period?

Ans wer 3: Steve just selected what he thought was a reasonable batch size. He could do more but the issue being that

he didn't have any special equipment other than his work laptop, home pc and wifi router. The database he used

wasn't very fast (it's main purpose is prototyping). Anecdotal comments say that Postgress sql is twice as fast. Steve

may be ab le to get his hands on an old sun platform with mult iple cpu if he can find office space for it. Because of the

way java works performance increases over time since the jvm optimizes its byte code (JIT/Hotspot - also I used no

performance tweaks)

8.3.2.4 Conclusion

The testing session was undertaken with non optimal development environment and, really, represents a worse case

scenario.

The aim of this test was not to prove that an XML-Based Solution Set was the fastest technology but rather to verify

that they could support reasonable real life performance requirements. This has been smoothly proven by the figures

obtained by the testing.

Finally, further performance increases are likely to be met by the use of a faster customized database, the use of sc -si

disks rather than PC-ATI disks and the use of mult iple dual core 64 kbit CPUs.

Globally, init ial findings indicate that SOAP/XML can easily meet the performance requirements asked by any

networks.

9 Market status

Using a flexible and extensible feature, based on XML schema is easy to set up and therefore necessitates a shorter

development cycle. As well, due to the fact that XML-based solutions do not need to be compiled, once again, it is very

convenient to use and making changes don’t have the same cost than a solution for which compiling is necessary each

time a change is to be made.

There is not really such things as companies providing services to the XML-based technologies unlike in the CORBA

world where you can have companies such as Orbix provid ing those services. In the XML-based technologies, there are

no tools per say, excepted the parsers. The services at developed independently.

10 Conclusion and recommendations

This XML-Based Solution Set Feasib ility Study is going through all the main aspects that a technology has to comply

with if it wants to be chosen and used. Some issues were raised during the life cycle of this study and today, most of

them have been answered and closed in the core of the document.

In particular, in terms of performances a big effort was deployed to answer positively to the existing doubts surrounding

XML-Based Solutions.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 23 Release 7

However, today, one more key aspect to be considered concerning performances of such systems is still under study. It

concerns the ability for XML-Based technologies to handle in an acceptable way, real-time high volume notifications,

such as "alarm storm". This is under study and the scenario to be tested is 40 notifications per seconds, random alarms

over a ten minutes period of time. The outputs of this study are expected very shortly.

It appears clearly, through this study, that XML-Based IRP Solution Set, based on SOAP, at least as a wrapper, is the

solution picked going forward by the IT/Telecom industry since it is recognized by a number of industrial sectors

including many Telecommunication operators, vendors and organisations.

As a result of this feasibility study, the following points are agreed and accepted if 3GPP SA5 were to go ahead with an

XML-Based Solution Set type:

 XML-Based Solution Set would not introduce any significant restrictions when compared to existing and used

Solution Sets. However, the ability to handle large volume rea l-t ime notificat ions is still to be demonstrated,

 XML-based Solution Sets introduce fundamental and easy implementation concepts such as flexibility and

extensibility, and independence on the transport layer. However, the study has reservation about exten sibility

in terms of backward compatib ility and forward compatibility. Currently, W3C has recognized the importance

of such capability and is studying this aspect pending conclusion,

 Moving to XML-Based Solution Set is clearly a vehicle to use towards harmonisation in the Telecom Industry,

This Feasibility Study indicates that SA5 goes ahead with the use of XML-Based Solution Sets. The introduction of

such technologies is beyond 3GPP Release 7. For a start a particular focus should be set on Service Management but

this shouldn't be restrictive. Starting with Service Management implementation should allow a s mooth transition and to

gain a know-how experience.

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 24 Release 7

Annex A:
Example of SOAP message

SOAP Message Header:

<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"> env is the namespace name

 <env:Header> optional element

 <m:reservation xmlns:m=“…" env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

 env:mustUnderstand="true"> child

element, header block, with

 attribute: role,

 mustUnderstand,encodingStyle, relay

 <m:priority>1</m:priority> character or

element infor element item

 <m:expires>2001-11-29T13:20:00.000-05:00</n:expires>

 </m:reservation>

 </env:Header>

SOAP Message Body:

 <env:Body> mandatory

element

 <m:alert xmlns:m="http://example.org/alert"> character infor item

child element

 <m:msg>Pick up Mary at school at 2pm</m:msg> character or element

infor element item

 </m:alert>

 <env:Fault>

 </env:Fault>

 </env:Body>

</env:Envelope>

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 25 Release 7

Annex B:
Links to more literature concerning XML-based technologies

General :

http://www.bitp ipe.com/rlist/term/Web-Serv ices-(Software).html

http://www.globusworld.org/program/abstract.php?id=80

http://soapclient.com/papers.html

http://www.developers.net/tsearch

http://www.webservicesarchitect.com/

Performances :

http://www.orchestranetworks.com/fr/soa/contraintesws.cfm

http://www.orchestranetworks.com/fr/soa/extraitws.cfm

http://www.bitpipe.com/rlist/term/Web-Services-(Software).html
http://www.globusworld.org/program/abstract.php?id=80
http://soapclient.com/papers.html
http://www.developers.net/tsearch
http://www.webservicesarchitect.com/
http://www.orchestranetworks.com/fr/soa/contraintesws.cfm
http://www.orchestranetworks.com/fr/soa/extraitws.cfm

3GPP

3GPP TR 32.809 V7.0.0 (2006-12) 26 Release 7

Annex C:
Change history

Change history

Date TSG # TSG Doc. CR R Subject/Comment Cat Old New

Sep 2006 SA_33 SP-060566 -- -- Submitted to TSG SA#33 for Information -- -- 1.0.0

Dec 2006 SA_34 SP-060755 -- -- Submitted to TSG SA#34 for Approval -- 7.0.0

	Foreword
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 XML-based (SOAP/HTTP) technical introduction
	4.1 Foreword and vocabulary
	4.2 What is SOAP?
	4.3 How does SOAP work?
	4.3.1 SOAP message construct
	4.3.2 SOAP processing model
	4.3.3 SOAP extensibility model
	4.3.3.1 SOAP features
	4.3.3.2 SOAP Message Exchange Patterns (MEPs)
	4.3.3.3 SOAP modules
	4.3.3.4 SOAP protocol binding framework

	4.3.4 SOAP 1.1 Versus SOAP 1.2
	4.3.4.1 SOAP 1.2 offers a clear processing model and better interoperability
	4.3.4.2 SOAP 1.2 based on XML Information Set
	4.3.4.3 SOAP 1.2 gives developers protocol independence by providing a binding framework.
	4.3.4.4 SOAP 1.2 includes HTTP binding for better integration to the WWW
	4.3.4.5 SOAP 1.2 delivers a well defined extensibility model

	4.4 Heading towards a XML-based IRP Solution Set
	4.4.1 Web Service Description Language (WSDL)
	4.4.2 Universal Description Discovery and Integration (UDDI)

	4.5 More about SOAP/HTTP XML-based Solution Set
	4.5.1 Correct use of HTTP
	4.5.2 Interoperability with non SOAP HTTP implementations
	4.5.3 MEP operation
	4.5.3.1 Behaviour of the requesting SOAP node
	4.5.3.2 Behaviour of responding SOAP node

	4.5.4 Security considerations
	4.5.5 Request-Response RPC

	5 Business status
	5.1 Comparative analysis
	5.1.1 Computing model
	5.1.1.1 Data model
	5.1.1.2 Scalability and reliability
	5.1.1.3 Static and runtime checks

	5.1.2 Features supported
	5.1.2.1 Location transparency
	5.1.2.2 Registry
	5.1.2.3 Service discovery
	5.1.2.4 Firewall Traversal
	5.1.2.5 Security
	5.1.2.6 Platform independence

	5.1.3 Summary

	5.2 Conclusion

	6 Standardisation status
	7 Usage status
	8 Performance status
	8.1 State of the art
	8.2 Way forward
	8.3 Examples of Performances studies
	8.3.1 Comparison of XML, Java-RMI and CORBA service implementation
	8.3.1.1 Introduction and context of this study
	8.3.1.2 Cases study results
	8.3.1.2.1 Costs associated directly with communications protocols
	8.3.1.2.2 Costs of document transfer
	8.3.1.2.3 Costs of XML generation and parsing

	8.3.1.3 Conclusion

	8.3.2 XML-Based Solution Set Real-Time Applications capabilities
	8.3.2.1 Introduction and context of this study
	8.3.2.1.1 Scope
	8.3.2.1.2 Testing environment

	8.3.2.2 Method and Testing Results
	8.3.2.3 Questions relating to the Performance studies
	8.3.2.4 Conclusion

	9 Market status
	10 Conclusion and recommendations
	Annex A: Example of SOAP message
	Annex B: Links to more literature concerning XML-based technologies
	Annex C: Change history

