BGPP TS 31113 V8.0.0 (2009-02)

Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network and Terminals;
Universal Subscriber Identity Module Application Toolkit
(USAT) interpreter byte codes

(Release 8)

™

The present document has been developed within the 3™ Generation Partnership Project (3GPP '™) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partnersand shall not be implemented.
This Specification isprovided for future development work within 3GPP only. The Organizational Partners accept no liability for any use ofthis Specification.
Specifications and reports for implementation of the 3GPP ™ system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Release 8 2 3GPP TS 31.113 Vv8.0.0 (2009-02)

Keywords
UMTS, SIM, card, LTE

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +334 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade M ark of ET SI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its M embers and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its M embers and of the 3GPP Organizational Partners

GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

Release 8 3 3GPP TS 31.113 Vv8.0.0 (2009-02)

Contents

0] (=10 (o PRSPPI 9
1 00 2RSSR 10
2 L (=] (=] o PR UPPRPRUPPSRR 10
3 Definitions, abbreviations and SYMDOIS.............eeiiiiiriiiiiii e ree e e e 11
3.1) 1 To] 0TSSR
3.2 Abbreviations

3.3 SYMDOIS ... R R

4 Model Of COMPULALIONoueiiiiiie ettt e e e e
41 NAVIGATION ...ttt bbb
4.2 Communication with the exXternal SYSTEM ENTILYcccvcrieceee e
4.2.1 Incoming pages fromthe external systementity

422 Outgoing data to the eXternal SYSTEM ENTILYcciiirrieieirr ettt
423 R AT L - TP TTTOTO
4.3 Terminal response handler mechanism

4.3.1 Operation of the Terminal ReSPONSe HaNGIErcccviiiiiiiiierr sttt
4311 (7 T 0118 To] 4 OO OT TP
4.3.1.2 Operation

4.3.2 Default Terminal Response Handler Configuration...........ccccovvceinicccinncccessse s 18
4.4 AACTIVALION. ...t b bR bbb bbb R bbbttt
4.5 Page format overview

4.6 L 1T (0 Y 1T PR

5 TLV FOMMAL ... ettt ettt e e oo e e s e bbbttt e e e e et e et b bbbt e e e e e e e e e e e nbbbbreeeeeeeesnnnnbeees
5.1 (@0 o 1o To o)l L aT=I - o [N o)V (- TR E TR
5.2 Attributes in TLVScocovvieenee.

5.3 Coding of attribute bytes

6 VATIADIES ... et e e e e e 24
6.1 USBQE BIBAS ...vevevrereteteteteieteseseseseiesesasesssesasesssasasesasasesesesesssesesesstsesee st sesessasssseas e s s asas s s neas b sas ettt e b e bbb et et et ebebe bbb ebe bt nbnnas 24
6.1.1 ENVIrONMENT Variable USAQE GrEa........cuoviiiiiiiiiiii sttt sttt es sttt b bbb bbb st sebenas 25
6.1.1.1 USAT Interpreter system information Partition ... 25
6.1.1.1.1 Write access to the partition

6.1.1.1.2 Read access 0F the PArTItION. ... bbbt
6.1.1.2 USIM issuer information Partition ...t nnes 27
6.1.1.2.1 Write access to the partition

6.1.1.2.2 Read access 0F the PAMItION.......cccecce et
6.1.1.3 End user information Partition..........ccccccerieeriiieereees sttt nnen
6.1.1.3.1 Write access to the partition

6.1.1.3.2 Read access 0F the PAMTItION. ..o
6.1.2 Permanent VArMahIE BrEAco ittt bbbt
6.1.2.1 Write access to the permanent variable area

6.1.2.2 Read access of the permanent variable area

6.1.3 TEMPOTArY VANAD I8 BIEAc..vucvieciiieiie ettt
6.1.3.1 Write access to the temporary variab le area

6.1.3.2 Read access of the temporary variable area

6.1.3.3 Lifetime of temMPOrary VariabIES ..o e
6.1.4 Page string element

6.1.4.1 Write access t0 PAge StHNG IEMENTS ..ot
6.1.4.2 Read access 0f Page StriNg ElEMENTS ..o
6.2 Variable values

6.3 VariahIe SUDSTIIULIONveieecece bbb bbbttt b

7

7.1

7.11

7.1.2

3GPP

Release 8

4 3GPP TS 31.113 Vv8.0.0 (2009-02)

7.13 L To L= U] (o To Qo Yo = PRSP
7.1.4 One Time Password

7.1.5 Keep Alive List......cccccourrneeen.

7.1.6 SEIVICE ID e

7.1.7 StrNG POOL ...

7.1.8 Terminal response handler modifier

7.1.8.1 AHDULE. ..o

7.1.8.2 General result range......cveeeeveiereerseereesesens

7.1.8.3 Text for user notification

7.1.8.4 Y o] 1 0]

7.1.84.1 Attributes

7.1.8.4.2 Action ID

7.1.8.4.3 Action to be performed

7.1.8.4.4 ACION desCription.......covvervrerneernereeeenns

7.2 Navigation Unit

7.2.1 ALHDULES ...

7.2.2 ANCROT..o.iiie e

7.2.3 Terminal response handler modifier

7.2.4 USAT Interpreter Byte Codes...................

7.3 Anchor Reference.......cccceeeueae.

7.4 Variable Identifier List

7.5 INliNe ValUE ..o

7.6 Inling Value 2......ccoouvvveercccersree e

7.7 INPUL LIS ..o

7.8 Ordered TLV LiSt....ccocevvrceerieessesecieinns

7.9 Page ReferenCe.....cooeevivccsnseseeseseeees

7.9.1 Anchor Reference......coovvevvececennerenenn,

7.9.2 Variable Identifier List........ccoververininneenreensns

7.9.3 Submit Configuration

7.9.3.1 Attributes.........cocevevenee.

7.9.3.2 Submit Data

7.9.3.3 Text to be displayed during the active wait stateccccovvrenene.

7.9.34 Gateway Address

7.10 SUBMIL oo

7.10.1 Submit Data

7.10.2 Page Identification

8 USAT INtErpreter DYIE COUBS. ... uviiiiiiiiiii ettt e anaee e
8.1 SEEVAMIADIE ..t R £ E Rttt
8.2 ASSIGN AN BIANCH ..o
821 Destination Variable Identifier

8.2.2 Inline TLV containing Select IEM THIEcieiec s 50
8.2.3 L@ (0 =T o I I Y I 0 A O 50
8.3

8.4

8.5 Branch On Variable ValUe ...t 53
85.1 Variable ID

8.5.2 L@ (o 1= (=To I I A 3 PO T PR U PR
8.5.3 PG RETEIBICE ...ttt bRt R b £ £t R bbb bt et et e s bt
8.6 Exit

8.7 Execute USAT Command

8.7.1 AETDULES ..t bbb bR bR bR Rt bR E et s R bRt et
8.7.2 SIMPIE TLV oo

8.7.3 Simple TLV Indicator

8.7.4 Sequence of Simple TLVs and Simple TLV INAICALOTSccccvviceriricerse e eens 57
8.7.5 Result of an Execute USAT Command

8.7.5.1 Optimisation NOT REGUITEAcceivceeriieeieieise sttt s e a et s st s s st s st seas
8.7.5.2 (@] 01 T AT AT 2 T UL TR
8.8 Execute Native Commandccccoeevreennninieenseeesnnens

8.8.1 AETIDULES ...ttt bbb bbb b bbb b e bbb e b et e bR e b e b e R e R e A e R e R oA e R e R e AR e AR e e e e
8.8.2 Result of @ Native FUNCLION CAl ...t
8.9 G LBNGEN .S

3GPP

Release 8 5 3GPP TS 31.113 Vv8.0.0 (2009-02)

8.10 Get TLV Value

8.11 Display TEXt ...ccvveerreeerrieee s

8.12 LC1=1 B [0] 018 OSSOSO RTSROTPTSTRPRPRIN

9 NALIVE COMMEBNGS.....eeeei ittt ettt e et e e ettt e ettt e e e e s bt et e e e e anbb e e e e abbeeeeans 61
9.1 ST T oL 20 o 11T TR 62
9.1.1 (000 1010070 0 TN 0 0 PR 62
9.1.1.1 Security Policy

9.11.2 ClaSSIFICAtION OF PINS ..ottt 62
9.1.1.3 KEY DIVEISIFICALION ...vvviicieiicieieisieee sttt sttt ettt s e s 62
9.1.14 Output Parameters

9.1.2 PRI PIUGINS .ttt
9.1.2.1 P7 - PKCSHT SIGNature PIUG-IN c.ocvececeesices ettt sss ettt sssssssssssssesees 63
9.1.211 Description

9.1.2.1.2 N TP
9.1.2.1.3 Arguments

9.1.2.1.4 Output Parameters

9.1.2.1.5 T ot U o o TP
9.1.2.1.6 B 0TS bbb E ettt
9.1.2.2 FP — Fingerprint Plug-In

9.1.2.2.1 DTS 1 01 0] OO OT TSRO
9.1.2.2.2 N TP
9.1.2.2.3 Arguments

9.1.2.2.4 OULPUL PAFAIMELETS ...viviviveieriiiieieriiiieiereriseeie et sttt sttt ettt e et s st n bbbt
9.1.2.25 EXBOULION ..ottt bbb bbb bbb E bbbttt
9.1.2.2.6 Errors

9.1.2.3 AD — Asymmetric Decryption PIUG-IN ...t snnes 66
9.1.2.3.1 Description

9.1.2.3.2 NCI o

9.1.2.3.3 Arguments

9.1.2.34 OULPUL PAFAIMETES ...vvivieieieiiieieieieieieiereneeie ettt ettt bbbt 66
9.1.2.35 Execution

9.1.2.3.6 BT ¢t R Rt
9.1.3 QLI O (T 1S3 (U T PP
9.1.31 DE- Triple DES Encryption Plug-In

9.1.311 DIESCIIPTION ..ottt
9.1.31.2 INCI bbb £
9.1.3.1.3 Arguments

9.1.31.4 OULPUL PATAMELETS ...ttt
9.1.3.1.5 ot U To o TR
9.1.3.1.6 Errors

9.1.3.2 DD — Triple DES DeCryption PIUG-IN ..o 68
9.1.3.21 Description

9.1.3.2.2 N[[

9.1.3.2.3 Arguments

9.1.3.2.4 OULPUL PAAMETEIS ...t 69
9.1.3.25 Execution

9.1.3.2.6 BT 0TS bRttt
9.1.3.3 DS — Triple DES SIgN PIUG-IN .ottt bbb 69
9.1.3.3.1 Description

9.1.3.3.2 INCI bbb bbb bbb £ E R E bbb
9.1.3.3.3 Arguments

9.1.3.34 Output Parameters

9.1.3.35 EXBCULION ...ttt bbb bbb bbb bbbttt
9.1.3.3.6 EETTOTS -t R Rttt
9.1.34 DU — Triple DES Unwrap Plug-In

9.1.3.4.1 DTS]) 0] TR RRTT
9.1.34.2 INCI bbb s £t
9.1.34.3 Arguments

9.1.3.4.4 OUTPUL PATAMETETS ..ot n e n e
9.1.3.4.5 EXBCULION ...ttt bbb bbb bbbttt
9.1.3.4.6 e 0 O TRRTS

3GPP

Release 8 6 3GPP TS 31.113 Vv8.0.0 (2009-02)

9.1.4 PIN Management PIUG-iNS......ovciiiiicesice ettt sttt nn st et s s s

9.1.4.1 CP — Change PIN Plug-In

9.1.4.1.1 Descriptioncccoveevvveeenreeneenns

9.1.4.1.2 NCl o

9.1.4.1.3 ATQUIMEBNTS ..o

9.1.4.1.4 Output Parametersccceevreeees

9.1.4.15 EXECULION ...

9.1.4.1.6 ErTOrS .o

9.14.2 RP — Reset PIN Plug-Inccocccueee.

9.14.21 DeSCriptionc.oeveeevveerreerrerenes

9.1.4.2.2 NCl o

9.14.23 ATrgUMENTS ..o

9.1.4.24 Output Parameters

9.1.4.25 Execution...................

9.14.2.6 BETTOTS . b

10 ENG L0 ENU SECUMY ...viiieiiieiieie ittt etttk e ekt e et et e et e e anae e e nnneeea 74

10.1 [0 T0] Y o | OSSPSR 74

10.2 DBCIY P R 74

11

1.1

11.2

12 Error handling @nd COUINGcooueeeiiiieiiie ettt ettt et e et e e e eeanaee e 74

12.1 Setting of the environment variable "error COUR™ ... 74

12.2 User NOtIfICAtION OF the EXBCULIONv.cvieiricri bbb 75

12.3 BT COOMNG co1ttt et bbb bbb 75

13 TAG VAIUES ...ttt ettt 76

Annex A (informative): Terminal Response Handler Flow Chartsccccceiiiiiiiiens 77

Anrex B (informative): Example of Accessing USAT Interpreter Functionality in Wireless
Mark-up Language

B.1 INETOTUCTION ...ttt ekttt e bt e et e et e e asb e e e s e e e ene e e anes

B.1.1 PUIDOSE ... bR

B.1.2 TermMiNOIOQY ...cvveveeerrierrierceee e

B.1.3 Definitions and aDDIEVIALIONS.........oiiicc s

B2 INAMESPACE ... ettt 80

B.2.1 The USAT INTEIPIEter EF ClIaSS ...ttt bbb s 80

B.2.2 EXAIMIDIES ..o bbb 80

2 T V| | PR PPPPPPRRRR

B.3.1 WWIMIL SYNTAX ... ttrtrteceeeeseesees et et ss st s s 8RR

B.3.1.1 The WML page

B.3.1.2 ENLITIES oo

B.3.1.3 ElemMeNtS ..o

B.3.1.4 ATIIDULES .o

B.3.1.5 Variables

B.3.2 Extended functionality interface

B.4 ImpIicit Calls USING WML SYNEAX........eiiiiieiiiieiiiie ettt ettt e e 82

B.4.1 PPOIOGUE ... bbb bR 82

B.4.2 CRATACTET BNCOMING ... ettt eb bbb bbb 82

B.4.3 Elements

B.4.3.1 wml element

B.4.3.2 (o210 I (1 10/ 0L SRR 84
B.4.3.3 PelemENt.. ..o

B.4.3.4 br element

B.4.3.5 INPUL BIEMBNT ... e b e bbb bbb bbb et b s s bbbt s bbb s st b s st b
B.4.3.6 select Element

B.4.3.7 option element

3GPP

Release 8 7 3GPP TS 31.113 Vv8.0.0 (2009-02)

B.4.3.8 Lo 0T L= 427=] L PSRRI
B.4.3.9 setvarelement ...

B.4.3.10 NOOP ElEMENt ...

B.4.3.11 doelement ...

B.4.3.12 refresh Element

B.5 EXPIiCit Calls USING WML SYNEAX.......vviiiiiieiiiieiiiie ettt sttt nnbe e e nnee e 88
B.5.1 SErVICES FOr USAT COMIMANUSc.cuieiiierireerietsiete ettt s bbb bbbt bbb 88
B.5.1.1 LAUNCR BIOWSEY ...ttt s bbb bbbt
B.5.1.2 Y (o 31 PR TRTTST
B.5.1.3 Provide Local Information

B.5.1.4 e =1 o TR
B.5.1.5 RUN AT COMMANG ...ttt bbb
B.5.1.6 Send USSD

B.5.1.7 SENA SM ..ottt s RERRRRR abeE e Rbbetesar
B.5.1.8 SEEUD CAIL ...
B.5.1.9 Set Idle Mode Text

B.5.2 Services for INtErpreter COMMEBNGS ..o 93
B.5.2.1 Get Interpreter Version INTOrMATION ..o 93
B.5.2.2 Get Interpreter Buffer Size

B.5.2.3 Get Native Command List

B.5.2.4 Gt TEIMUNAI PIOTIIE ..ottt
B.5.2.5 Get Error Code for Last Byte Code Command

B.5.2.6 Get Maximum Size for Temporary Storage 0f PAge ...t eens 94
B.5.2.7 Get USAT INLEIPreter ISSUBT URL ...ttt
B.5.2.8 Get USAT Interpreter Issuer URL Hash

B.5.2.9 GEE USEE INGITE ..ottt bbb bR bbb bbb bbbttt
B.5.2.10 GEE USEI EMAIT ...ttt e bbb bbbt
B.5.3 Services for Calling ClENt PIUG-INS.......c.ccvcrecer st
B.6 ACCESS 10 SPECIAI FEATUMES. ... eeiii i ettt e e e e e s e e e e e s s st be e e aeeeeeeaaans
B.6.1 Variahle IMANAGEMENT......c.cviieeeicee ettt s e bt ee bbb e st s s a et s e st et s s s s et s s e st et s n s
B.6.1.1 Keep Alive and Protect Variables

B.6.2 Terminal Response Handler Modifier

B.6.2.1 REPIACE ...

B.6.2.2 A s

B.6.2.3 RESTOTE ...

B.6.2.4 REMOVE ...t

o A L (=] (<] 41 TP RSP 99
Anrex C (informative): Terminal Response Handler Modifierexamples...........ccccccoevvvveeiinnnn. 100
C.1l REPIACE OPRIALION. .. .cciitiiiie e ittt e e et e et e e e e et e e e e e e e e et a e e e e bt e e e e s asaaaeeeeaansbeaeesnsreaeeaans 101
C.2 AJ/APPENT OPEIALION. .. .eiieiiiiiieeiiiite e ettt e e st e e e et e e e sttt e e s s et e e e e s sbe e e e e ssbbeeeesasbbeeaeesnsbeeeeaans 102
C.3 REMOVE OPEIALIONeeitieiie ettt e ettt e e e e ettt e e ettt e e e ettt e e e e sste et e e e e sntb e e e esbeeeeesnsneeeesannsbeeeesseeeeeans 103
C.4 RESLOIE OPEIALIONveieiieiee ittt ettt ekttt ettt e e bt e ekt e ekt e et e e e nbe e e enbeeennnees 104
C.5 Special case: Empty text for user NotifiCationccuvieiiiiiiee i 105
C.6 Special case: No text for user NOLIFICALIONccoveiriiiiiiiie et 106
C.7 Special case: Modify @ SiNGIe EXCEPLION CASE.......cvuviiirrrecrrrre s nsenes 107
Annex D (normative): PKI Plug-ins Imple mentation Specification

3 o SRR
D.1.1 Plug-in EXECULIONcvvevvceerereeeesrna

D.1.1.1 User Identification

D.1.2 Signature Calculation

D.1.2.1 Temp late Expansion

D.1.2.2 Signature Generation Operationcccoveeveerneeens

D.1.2.3 OULPUL AALA TOMMATTING ...vvveceiee e

3GPP

Release 8 8 3GPP TS 31.113 Vv8.0.0 (2009-02)

2 PP ittt a1 aaaaaan 115
D.2.1 PIUG-IN EXECULIONcvctiiccte sttt st sttt s s st s s bt n s 115
D.2.2 SIGNALUE CAICUIRLION ...t bbb bbb a et 116
D.2.2.1 Signature GeNeration OPEIALIONccviiieiririieesi ettt s s s s s s e 116
D.2.2.2 Output data formatting
D.2.3 Format Of WrapPeUCONTENT ...ttt bbbttt
.3 A ittt a1 aan
D.3.1 PIUG-IN EXECULIONocvcttcce sttt bbb sttt s st s s bt n s
D.3.2 DeCryPioN CAICUIALION ...t bbb
D.4 Non-functional Requirements

D.4.1 CUSTOMISALION REQUITEIMENTS ...vvviecicteiicie ettt ettt b bbb bbbt s st bbbt n s bt s 120
D.4.2 ATCHItECTUTAl REGUITEMENTSviiivcteiicecte sttt ettt bbb bbb st b s st s s an b s s nneneeas 120
Annex E (normative): PIN Management Plug-ins Implementation Specification

e O 54 PR
El1l PIUG-IN EXECULION ...ttt ettt st s s s b b s s

B 2 R
E21 PIUG-IN EXECULIONcvtecce ettt bbb bbbt s bbbt s st et s s
E22 Decryption and VEIFICATIONcccvceeuiiiccesscce ettt .
E2.21 3DES EDE CBC with two keys + SHA-1L MDC........cooocciiceesneee s nnes

E2.22 3DES EDE CBC with two keys + ISO/IEC 9797 MACccovrrirenerseseeeseinsesesssssssssssssesnees

E.2.2.3 3DES EDE CBC with three keys + SHA-L1MDC ... ssnes
E2.24 3DES EDE CBC with three keys + ISO/IEC 9797 MAC ...t sssssssenns
E.3 NON-funCtional REQUIFEMENLESeeeiie ittt ce e e e e e e e e e e st e e e e e e s s s b aereeeeeas
E3.1 CUStOMISALION REQUITEIMENTS ...vvviecieieiicieie ettt ettt s bbbt s sttt p s st s e
E3.2 ATChItECTUIAL REGUIMEIMENTS ...ttt bbb bbbttt
Annex F (normative): Triple DES Plug-ins Implementation Specification...............cccccccevv.. 126
I SRR
F11 PIUG=TN EXECULION ...ttt
F.1.2 Encrypt Procedure

I | 5 TSP
F2.1 Plug-in Execution........

F.2.2 Decrypt Procedure

T 15 1 TP PP PPPPTPRPP
F3.1 PIUG-IN EXECULION ...ttt sttt s st s st b s s
F.3.2 MAC Calcu lation Procedure

Fod DU
F4.1 PIUG-IN EXECULIONcvtcce ettt sttt bbb bbb bRt a bt s bbb s st s s n bt n s
F.4.2 Decryption and Verification PrOCEAUTE.........co ittt et

F4.2.1 3DES EDE CBC with two keys + SHA -1 MDC........cociiiciiiccereee s nses

F4.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC ...t senns

F4.23 3DES EDE CBC with three keys + SHA-L1MDC ... s

F4.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC ...

F.5 NON-functional REQUIFEMENLESeeeiei it ee et e e e e e e e e e e e st e e e e e e s s s babeeeeeaeas
F5.1 CUStOMISALION REQUITEIMENTS ...vvviecieteiicieie ettt ettt b s s bbbt s s b bbb s st s s
F.5.2 ATCHItECTUIAl REGUITEMENTS ...ttt sttt s st et s s et es s e nnneeas
Annex G (informative): Change HISTOMYuiiiiiiiii e 134

3GPP

Release 8 9 3GPP TS 31.113 Vv8.0.0 (2009-02)

Foreword

This Technical Specification (TS) has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version Xx.y.z
where:
X the first digit:
1 presented to TSG for information;
2 presented to TSG for approval,
3 orgreater indicates TSGapproved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

3GPP

Release 8 10 3GPP TS 31.113 Vv8.0.0 (2009-02)

1 Scope

The present document specifies the byte codes that are recognised by an USAT Interpreter. The byte codes primary
purpose is to provide efficient programmatic access to the SIM Application Toolkit commands.

The design objectives of the byte code set are:
- Compact representation for efficient transmission over the air interface.
- Minimisation of USAT Interpreter complexity to minimise SIM footprint and ease compliance testing.
- Easily configured and extended.
- Source language independent although XML-style mark-up languages are exp licitly envisioned.
- Transport bearer independent (e.g. SMS, GPRS...)
- Transport protocol independent.

- Independent from design of external entities.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

o References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

e Foraspecific reference, subsequent revisions do not apply.
e Foranon-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including

a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 31.111: "USIM Application Toolkit (USAT)".

[2] 3GPP TS 31.114: "USAT Interpreter protocol and ad ministration".

[3] 3GPP TS 23.038: "Alphabets and language-specific information".

[4] 3GPP TS 31.101: "UICC-terminal interface; Physical and logical characteristics".

[5] ISO/IEC 7816-6 (1995): "Identification cards — Integrated circuit(s) cards with contacts - Part 6:
Inter-industry data elements".

[6] void.

[7] IETF RFC 1738: "Uniform Resource Locators (URL)".

[8] Schneier, Bruce: "Applied Cryptography Second Edition: Protocols, Algorithms and Source code

in C", John Wiley & Sons, 1996, ISBN 0-471-12845-7.

9] RSA Laboratories: "PKCS #1 v2.0: RSA Cryptography Standard",
www.rsasecurity.com/rsalabs/pkcs/.

[10] ISO/IEC 9797-1:1999(E): "Information technology — Security techniques — Message
Authentication Codes (MACs)".

[11] RSA Laboratories: "PKCS#9 v2.0: Selected Object Classes and Attribute Types",
http://www.rsasecurity.com/rsalabs/pkcs/.

[12] FIPS PUB 180-1: "Secure Hash Standard (SHS)".

3GPP

Release 8 11 3GPP TS 31.113 Vv8.0.0 (2009-02)

[13] Wireless Application Forum: "Wireless Application Protocol — WMLScript Crypto Library
Specification”, Version 20-Jun-2001.

[14] Wireless Application Forum: "Wireless Application Protocol — Wireless Transport Layer Security
Specification”, Version 18-Feb-2000.

[15] IANA assigned character sets, http://www.iana.org/assignments/character-sets.

[16] RSA Laboratories: "PKCS #5 v2.0: Password-Based Cryptography Standard”,
http://www.rsasecurity.comv/rsalabs/pkes/.

[17] 3GPP TS 31.112: "USAT Interpreter Architecture Description; Stage 2".

3 Definitions, abbreviations and symbols

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

anchor: named location on a page to which references can be made and at which rendering by the USAT Interpreter is
initiated

NOTE: Anchors can be referenced by anchor reference TLVs.

attribute: A property assigned to a TLV. The attribute can consist of a single bit or of a sequence of consecutive bits
within the attribute bytes ofa TLV.

attribute byte(s): sequence of consecutive bytes in the value part of a TLV containing the attributes of that TLV
current page: page which is currently rendered by the USAT Interpreter
current terminal response handler configuration: terminal response handler configuration currently valid

external systementity: any entity outside the USAT Interpreter, able to communicate with the USAT Interpreter (e.g.
USAT Gateway, content/application system)

default terminal response handler configuration: the terminal response handler configuration as specified in clause
4.3.2

general result range: general result range is a range of general results in the terminal response of an USAT command
(referto TS 31.111 [1])

navigation unit: block of a service description that can be referenced (by its anchor) and hence independently activated

page: context of an USAT Interpreter rendering, the default scope of USAT Interpreter variables and the unit of
transmission between an external system entity and the USAT Interpreter

protected variable: shared variable, which is protected by an one time password

service: collection of pages that defines an unitary capability of the mobile equipment from the point of view of the
user. Examples include remote database access, electronic mail, and alerts

service ID: unique ID to identify a service on the external system entity
shared variable: variable to be shared with the following page

NOTE: Shared variables can be provided to the next page in a protected or non protected manner.
string pool: list of predefined variables provided by the current page within the page TLV

NOTE: The string poolis mainly used for optimisation purposes.

system terminal response handler configuration: default terminal response handler configuration possibly modified
by personalisation

3GPP

Release 8

12

3GPP TS 31.113 Vv8.0.0 (2009-02)

terminal res ponse handler configuration: configuration used by the terminal response handler mechanismto allow

the mapping of actions to general results of USAT commands (see 4.3.1.1)

variable ID: identifier to reference a variable within a variable usage area

wait state: state which is possibly entered by the USAT Interpreter to wait for a response fromthe external system

entity after information has been submitted to the external system entity

3.2

For the purposes of the present document, the following abbreviations apply:

3DES
AKI
AD
ASN.1
c

CA
CBC
CHV
cp
DCS
DD
DE
DER
DES
DS
DU
ECB
EDE
FP
IANA
ICCID
ID

Y,
LSB
M
MAC
MDC
MSB
NCI
NU

0
oID
OTA
oTP
P7
PIN
PKCS
PS
PUK
RFU
RP
RSA
SHA-1
SMS
SW1/SW2
TLV
TR
TS
TTBS

Abbreviations

Triple DES

Asymmetric Key Index
Asymmetric Decryption Plug-in
Abstract Syntax Notation One (1)
Conditional

Certification Authority

Cipher Block Chaining (Mode)
Card Holder Verification

Change PIN Plug-in

Data Coding Scheme

Triple DES Decrypt Plug-in
Triple DES Encrypt Plug-in
Distinguished Encoding Rules of ASN.1
Data Encryption Standard

Triple DES Sign Plug-in

Triple DES Unwrap Plug-in
Electronic Code-book (mode)
Encrypt-Decrypt-Encrypt
Fingerprint Plug-in

Internet Assigned Numbers Authority
Integrated Circuit Card IDentification
IDentifier

Initialisation Vector

Least Significant Bit

Mandatory

Message Authentication Code
Modification Detection Code
Most Significant Bit

Native Code Identifier
Navigation Unit

Optional

Object Identifier

Over-the-Air

One Time Password

PKCS#7 Signature Plug-in
Personal Identification Number
Public-Key Cryptography Standards
Plug-in Status Code

PIN Unblocking Key

Reserved for Future Use

Reset PIN Plug-in

Algorithm invented by Rivest, Adleman and Shamir

Secure Hash Algorithm 1
Short Message Service

Status Word 1/ Status Word 2
Tag Length Value

Terminal Response

Technical Specification

Text To Be Signed

3GPP

Release 8 13 3GPP TS 31.113 Vv8.0.0 (2009-02)

UCs2 Universal two byte coded Character Set
UE User Equip ment

URL Uniform Resource Locators

USAT USIM Application Toolkit

USIM Universal Subscriber Identity Module
WAP Wireless Application Protocol

WIM Wireless Identity Module

WTLS Wireless Transport Layer Security
XML eXtensible Markup Language

3.3 Symbols

For the purposes of the present document, the following symbol applies:

'0'to'9'and 'A'to 'F' The sixteen hexadecimal digits
Single bits are identified by b1 to b8, where b1 is the LSB and b8 is the MSB of the byte containing the bit.
RFU bits and bytes are to beset to '0".

Symbols used in annexes:

<i.j> Sub-string extraction operator. Extracts bytes ithroughj. 1 <i<j.
XY Concatenation of byte-strings X and Y (in that order).

I Byte length operator.

bn Individual bit in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most
significant), denoted b8.

Bn Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n
(rightmost), denoted Bn.

c Ciphertext representative. An integer between 0 and n-1.

C Ciphertext. Input parameter to the AD plug-in.

DP Decrypted PIN data.

DTBS Data-to-be-signed. Input parameter to the FP plug-in.

EM Encrypted message.

DM Decrypted message.

EMSA-PKCS1-vl 5-ENCODE PKCS#1 encoding function. See [9] for further reference

EP Encrypted PIN data.
120SP Integer-to-Octet-String conversion primitive. See [9] for further reference.
ICCID Raw ICCID. 10 bytes length.

ISO_IEC_9797_ALG3 ISO/IEC 9797 MAC algorithm 3. See [10] for further reference.

ISO_IEC_9797_PAD2 ISO/IEC 9797 padding method 2. See [10] for further reference.

k Length in bytes of the modulus.
K RSA private key.

Ky, Ko, K, K’ DES keys.

KC An 8 byte key checksum.

3GPP

Release 8 14 3GPP TS 31.113 V8.0.0 (2009-02)

KH SHA-1 hash of the public key. The hash shall be computed from the unsigned modulus
to be in line with WAP WTLS and WAP WIM.

m Message representative. An integer between 0 and n-1.

M Message, a byte string.

MAC A ISO/IEC 9797 message authentication code

MD A SHA-1hash value.

N Modulus. An integer.

0s21p Octet-String-to-Integer conversion primitive. See [9] for further reference.

PC An 8byte PIN checksum.

PKCS5_PAD PKCS#5 padding function. See [16] for further reference.

PKCS5_UNPAD Inverse of PKCS5_PAD. See [16] for further reference.

PM A padded message.

R Random nonce. 8 bytes length.

RSADP RSA decryption primitive. See [9] for further reference.

RSASP1 RSA signature primitive. See [9] for further reference.

RSASSA-PKCS1-vl 5-SIGN PKCS#1 signature generation function. See [9] for further reference.

S Raw signature of byte length k.
SHA1L SHA-1 hash function. See [12] for further reference.
TDEA_DECR Triple DES decryption algorithm. See [8] for details regarding the algorithm.
TDEA_ENCR Triple DES encryption algorithm. See [8] for details regarding the algorithm.
TTBS Text-to-be-signed. Byte string. Input parameter to P7 plug-in.

4 Model of computation

A service is mobile device (user equipment) functionality as seen by the user, for example e-mail, information access or
order entry.

A service is composed of one or more pages. Pages describe information presented to the subscriber and retrieve input
fromthe subscriber. The unit of transmission to the user equipment as well as the unit of USAT Interpreter
interpretation is the page. The set of all pages describing a service is called the service description.

Pages are composed of navigation units. Anchors reference the beginning of navigation units. Therefore anchors are
points in a service description that can be branched to fromother points in the service description. Each page has an
implicit anchor at the beginning of the page.

In some mark-up languages pages are known as decks and anchors are known as cards.

The USAT Interpreter renders pages and provides a way to navigate from within pages to anchors belonging to the
same page or other pages. The requirements of the USAT Interpreter include a way to automatically go back to
previously visited anchors.

When reaching the last byte code of a page, the USAT Interpreter shall behave like ending a navigation unit.

3GPP

Release 8 15 3GPP TS 31.113 Vv8.0.0 (2009-02)

4.1 Navigation

A page expressed as compiled byte code instructions is stored as a unit in the USAT Interpreter. The page is the
smallest unit that the external systementity can provide to the USAT Interpreter. A page is partitioned into one or more
navigation units each of which can be referenced using anchors. In other words, navigation units and anchors are
included in pages.

The anchor is defined as being the elementary navigation target. The USAT Interpreter can skip fromone anchor to
another, backwards and forwards based either on control flow constructs or user interaction. If a navigation unit
contains no instructions to branch to an anchor within the current page or another page, the behaviour of the USAT
Interpreter is defined by the terminal response handler mechanism. This keeps the proactive session alive and allows
further navigation.

Pages are stored in the USAT Interpreter. The structure of pages is described later in the present document. These pages
are stored either permanently in the USAT Interpreter or received and interpreted on the fly.

Pages and navigation units are referenced using anchor references as described below.

To be able to create multiple-page services, page references within USAT Interpreter commands are used to fetch new
pages or to link pages together.

The behaviour of the USAT Interpreter in response on user interaction (e.g. backward move, proactive session
terminated, help information requested) is defined by the current terminal response handler configuration. The terminal
response handler configuration can be modified by a terminal response handler modifier within the page or navigation
unit context.

If no terminal response handler modifier is defined in the page context or in the navigation unit context, the system
terminal response handler configuration shall be used.

4.2 Communication with the external system entity

This clause provides an overview of the communication of the USAT Interpreter with the external systementity. The
present document describes the format of content exchanged between the external systementity and the USAT
Interpreter. The protocol and bearer used for the communication with a USAT Interpreter Gateway System is specified
in TS 31.114 [2]. The protocol and bearer used for the communication with other external systementities is out of the
scope of the present document.

4.2.1 Incoming pages from the external system entity

Any information obtained by the USAT Interpreter fromthe external systementity shall be formatted as a Page TLV.
After obtaining a Page TLV fromthe external systementity the USAT Interpreter shall start rendering the obtained
page according to the present document.

4.2.2 Outgoing data to the external system entity

The submission of outgoing data can be triggered by the USAT Interpreter byte codes:
- Assign and Branch;
- Branch on Variable Value; and

implicitly by a "go back" history navigation action.

A service can trigger the submission of outgoing data by providing a Page Reference TLV containing a Sub mit
Configuration TLV within the byte codes mentioned above.

The Submit Configuration TLV contains the parameters to be used to build a Submit TLV structure, which will be
provided to the external systementity then.

The Submit TLV structure is used only in the direction from the USAT Interpreter to the external systementity. All
information provided by the USAT Interpreter to the external systementity shall be formatted as a Submit TLV
structure. The Submit TLV structure consists of a Submit Data TLV and optionally of a Page Identification TLV.

3GPP

Release 8 16 3GPP TS 31.113 Vv8.0.0 (2009-02)

The Submit Data TLV is used in two forms:

- In the direction fromthe external systementity to the USAT Interpreter, the value part of the Submit Data TLV
contained in the Submit Configuration TLV may consist of any byte sequence possibly containing variable
references.

- Inthe direction fromthe USAT Interpreter to the external systementity, all variable references within the
Submit Data TLV contained in the Submit Configuration TLV are substituted according to method 2 in clause
6.3. The resulting Submit Data TLV containing the substituted variable references with variable content shall
then be used within the Submit TLV to be submitted by the USAT Interpreter to the external system entity.

4.2.3 Wait State

When rendering a Page Reference TLV containing a Submit Configuration TLV having the "ProcessingBehaviour"
attribute set (post mode, not expecting a related answer fromthe external systementity, see TS 31.112 [17]), the USAT
Interpreter shall performthe following actions:

- provide the Submit TLV to the protocol layer to be transmitted to the external systementity (see clause 4.2.2);
- Ifthe transport layer successfully executed the given information

- process next byte code.
- Ifthe transport layer could not execute the given information successfully

- execute the "Transport error while submitting data" exception case of the terminal response handler
mechanis m.

When rendering a Page Reference TLV containing a Submit Configuration TLV having the "ProcessingBehaviour”
attribute not set, the USAT Interpreter shall perform the following actions:

- Generate a new RequestID value, by incrementing the RequestID value. If the Request ID value reaches its
maximumvalue, the RequestID value shall start at 0 again.

- Provide the RequestID to the protocol layer to be incorporated into the transport protocol (refer to
TS 31.114[2]).

- Provide the Submit TLV to the protocol layer to be transmitted to the external systementity (see clause 4.2.2).
If the transport layer successfully executed the given information

- enter the wait state.

If the transport layer could not execute the given information successfully

- execute the "Transport error while submitting data” exception case of the terminal response handler
mechanis m.

In the wait state, the USAT Interpreter shall keep the proactive session alive. Therefore,a DISPLAY TEXT USAT
command shall be issued by the USAT Interpreter to notify the user that the USAT Interpreter has entered the wait
state.

The text to be used for the text string of the DISPLAY TEXT command shall be taken fromthe Inline Value TLV of the
Submit Configuration TLV requesting the wait state.

If this Inline Value TLV is not available in the Submit Configuration TLV when entering the wait state, then a default
text shall be taken by the USAT Interpreter. This default text can be personalised and later on changed by
administrative means.

Forthe DISPLAY TEXT USAT command the command qualifier option:
- "clear message after delay".
shall be used.

The USAT Interpreter shall handle the wait state according to figure 4.1.

3GPP

Release 8 17 3GPP TS 31.113 V8.0.0 (2009-02)

DISPLAY
TEXT

||0k||, Or
"no response from user"

General Result
analysis

Requested page
received?

other General Results

TR Handler

exit wait
state and
render
requested
Page

exit wait
state

according to

TR Handler

Figure 4.1: State diagram

The terminal response handler is activated by the USAT Interpreter, when the general result range of the DISPLAY
TEXT command is not ‘00 OF' ("ok™) and not '12 12" ("no response fromuser"). The terminal response handler shall use
the current terminal response handler configuration (i.e. the configuration of the current navigation unit).

Incoming pages shall be handled as follows.
When getting a page during the wait state being active, the protocol layer shall check the received Reques tiD:

- Ifthe provided RequestID does not match the expected RequestID, the page is discarded and the wait state
remains active. The current page is not affected by the discarded page.

- Ifthe provided RequestID does match the expected RequestID, the wait state is terminated by the USAT
Interpreter and the received page is rendered.

If the wait state has been terminated before the expected RequestID has been received (e.g. the wait state was cancelled
by the user, the UE was switched off...), the protocol layer shall discard pages fromthe external systementity, which
have been received as operational pull messages (see TS 31.114[2] and TS 31.112 [17]).

4.3 Terminal response handler mechanism

For any general result of an USAT command, the USAT Interpreter shall branch to the terminal response handler. The
terminal response handler shall handle the general result according to the following rules.

3GPP

Release 8 18 3GPP TS 31.113 Vv8.0.0 (2009-02)

4.3.1 Operation of the Terminal Response Handler

4311 Definitions

For the description of the Terminal Response Handler Mechanismthe following definitions and abbreviations apply:

Abbreviation ltem Definition

Al Action Identifier a single value in the range of '00' to 'FF' identifying an action

GR General Result result of a USAT command; a single value in the range from '00' to 'FF'

GRR General Result Range | multiple consecutive General Result (GR) values

a Single Action Asingle action identified by an external system or service defined Action

Identifier(Al). axx is a single action with the Al 'xx.

A Set of Actions a collection of zero or more single actions (a).

Acr General Result Actions | Aset of Actions (A) applying to a specific General Result (GR).

TRHC Terminal Response Acollection of Agr, S0 that there is one Set of Actions for each General
Handler Configuration | Result (GR).

43.1.2 Operation

The execution of any USAT command generates a general result (GR). The behaviour of the USAT Interpreter after the
execution of a USAT command is determined by the generated general result and the current terminal response handler
configuration as follows:

While the USAT Interpreter is in execution there is always one active terminal response handler configuration called the
current terminal response handle configuration.

Let the generated general result be GR. The USAT Interpreter shall check the current terminal response handler
configuration for the corresponding Agrg for that GR. By definition, for each GR an Agg shall exist. As specified in
4.3.1.1an Agg might have no, one or more actions (a) applied to it.

If the Agg contains only one action (), then the single action (a) in Agg shall be performed by the USAT Interpreter
without user confirmation. If there are several actions in the Agg, then the USAT Interpreter shall issue a SELECT
ITEM command to let the user select one action (a) out of Aggthat shall be used by the USAT Interpreter. The handling
of the SELECT ITEM command is described in clause 7.1.8.4.4.

Besides the actions assigned to general results received after USAT commands execution, the T RH modifier allows also
to change the USAT Interpreter behavior when an exception occurs. In case of an exception, the corresponding
exception action will apply. Each exception action can be changed by using the terminal response handler modifier with
the reserved general result range 'FF xx' (with xx between '00' and 'FE"). The reserved general result range 'FF xx' are
called exception range. It is also possible to change all the exception actions using the "general exceptions” (‘'FF FF'"). In
the default terminal response handler table (clause 4.3.2, table 4.1), the range 'FF FF' is called "general exceptions".

Exception examples:
- no more byte code when process next byte code (e.g. end of navigation unit);

- After the execution of a USAT command, there is no action (a) in Agg.

4.3.2 Default Terminal Response Handler configuration

A default terminal response handler configuration is defined in the present document (see table 4.1). The proposed
default terminal response handler configuration may be modified at personalization stage by the card issuer.

The possibly modified resulting terminal response handler configuration is called the systemterminal response handler
configuration, which shall be used by the USAT Interpreter. The systemterminal response handler configuration can be
the same as the default terminal response handler configuration or it can differ from it, depending on the decision of the
card issuer.

NOTE: A service should take into account, that the systemterminal response handler configuration might be
different from the default terminal response handler configuration. The service might need to have
knowledge of the systemterminal response handler configuration in order to behave as intended.

3GPP

Release 8 19 3GPP TS 31.113 v8.0.0 (2009-02)
The systemterminal response handler configuration can be modified temporarily by the terminal response handler
modifier (see clause 7.1.8).

If the USAT Interpreter branches to another page due to the terminal response handler configuration, the standard inter
page variable management shall apply (see clause 6.1.3.1).

Default terminal response handler configuration.

Table 4.1
Action ID General result range
'FFFF | '1414' | 'O00OF | '1313' | '1212' | '1111' | '1010' | '20 2F | '30 3F
) -)
n c 5 1) @ 3 = =
55 828 S|SB EE| L | ¢ |
c= (A8 c X~ g o) = = o <>
SC |aoe © = S E = o s T
Lo oc € o 2s S o < g
Ox |58s T of | X© 5 z
+ = c g ; g
process next byte code '00' X
(%]
S | quit USAT Interpreter 01" X X X X X X
@
5
= go back one entry in o
2 history list 02 X
D)
retry last proactive
command within current 03" X X
USAT Interpreter (note)
navigation unit

NOTE: In the case of SET UP CALL, the system action "retry last proactive command within current USAT Interpreter
navigation unit' should be deactivated by the service.

The USAT Interpreter may support storage of texts for user notification for the general result ranges of the system
terminal response handler configuration. If texts for user notification are available, the texts shall be used according to
clause 7.1.8.3.

For each of the systemactions a text shall be assigned and shall to be used in the SELECT ITEM if more than one
action is assigned to a general result (see clause 4.3.1.2). These texts shall be specified by the card issuer and shall be
provided by personalisation.

4.4 Activation

Activation of USAT Interpreter depends on USAT Interpreter current state. The USAT Interpreter state corresponds to
the presence or the origin of proactive session generated by USAT Interpreter. A state can be:

- Idle (i.e. no proactive session is running);
- Rendering a page (i.e. proactive session issued from byte code command);
- Wait state (see section 4.2.3).

The USAT Interpreter can be activated (i.e. be caused to leave the idle state and start rendering a page) in different
ways:

- locally fromthe UE using menu selection;
- locally fromthe UE as the result of an event;

- by an incoming page initiated by an external systementity (push mode according to TS 31.112 [17]); or

3GPP

Release 8 20 3GPP TS 31.113 Vv8.0.0 (2009-02)

- optionally by an internal application using a proprietary interface.
The rendering of a page shall be independent of the means of activation.

In idle state of the USAT Interpreter, the protocol layer (see TS 31.114 [2]) shall discard pages from the external system
entity, which have been received as operational pull messages (see TS 31.114[2] and TS 31.112 [17]).

With respect to activation locally from the UE using menu selection, the SETUP MENU command as described in

TS 31.111[1] can contain one or more links to a Page Identification TLV which identifies a locally stored page. When
one of these identifiers is selected, and when USAT Interpreter is in idle state, the USAT Interpreter is activated and
renders the referenced page. If the referenced local page does not exist the USAT Interpreter shall generate a "Jump to
undefined" error (see chapter 12). Registering of pages to the main menu is up to administrative means.

An event (as specified in TS 31.111 [1] or proprietary events defined by the card issuer) is linked to a Page
Identification TLV which identifies a locally stored page. When the UE sends an ENVELOPE command containing an
event, and when USAT Interpreter is in idle state, the USAT Interpreter is activated and renders the referenced page. If
an event is received not referencing to a page, the eventshall be ignored by the USAT Interpreter. If the referenced
local page does not exist the USAT Interpreter shall generate a "Jump to undefined™ error (see chapter 12). For security
reasons, setting up events is up to administrative means.

If an event occurs while the USAT Interpreter is not in idle state, the USAT Interpreter shall queue the event and shall
postpone executing the event until the USAT Interpreter enters idle state again.

The USAT Interpreter shall be able to queue at least one event. Events shall be executed in the order the events have
been occurred.

If the USAT Interpreter is not able to store an event (e.g. because the event queue is full already), it is up to the
implementation of the USAT Interpreter to handle this situation.

3GPP

Release 8 21 3GPP TS 31.113 Vv8.0.0 (2009-02)

4.5 Page format overview

Figure 4.2 gives an overview of the construction and elements of a page to be rendered by the USAT Interpreter.

Page

Page Parameters

Navigation Unit #1

Name (Anchor)

Byte Code #1

Byte Code Parameter #1

Byte Code Parameter #2

Byte Code Parameter #n

Byte Code #2

Byte Code #n

Navigation Unit #2

Navigation Unit #n

Figure 4.2: Overview of page format

A transmission initiated by the USAT Interpreter to the external systementity is performed when the USAT Interpreter
executes a byte code containing a Page Reference TLV containing a Submit Configuration TLV (see clause 7.9.3)
referring to a page which is not locally stored.
Page Reference TLVs are used in the following byte code commands:

- Assign and Branch;

- Branch on Variable Value.

4.6 History list

The history list is a list of anchor references. This history list also owns an anchor reference pointer which points to a
specific entry in the history list. When a navigation unit is completely rendered (i.e. when the USAT Interpreter starts to
render another navigation unit), its anchor reference is added on the top of the history list, and the anchor pointer points
on it. A navigation unit is not added to this list in following cases:

- Ifan appropriate attribute flag is set in the navigation unit;

- ifthe navigation unit does not have any anchor name.

3GPP

Release 8 22 3GPP TS 31.113 Vv8.0.0 (2009-02)

The maximum number of entries in the history list is N (anchor references) where N is greater than or equal to zero. If
N=0, the history list mechanismand related navigation actions become deactivated.

If the history list is full, the bottom-most entry is removed from the list in order to free space for a new top-most entry.
The history is reset (is emptied) whenever the USAT Interpreter is initialised.

The USAT Interpreter allows navigation based on the history list and the anchor reference pointer. The history
navigation action "go back one entry in history list" means that the navigation unit corresponding to the pointed anchor
reference shall be rendered, and the anchor reference pointer is immediately moved down in the list. The origin of this
action can be either the systemaction '02" in terminal response handler configuration, or the Go Back byte code
command.

The moving of this anchor reference pointer in the history list does not modify the history list itself.

If the anchor reference pointer reaches the bottom of the history list or the history list does not contain any entry, and if
a "go back" history navigation action has to be performed in this situation, then the "History list empty, or bottom of the
list reached" exception case of the terminal response handler mechanism shall be performed.

Retry-last-proactive-command, systemaction '03' of the terminal response handler configuration shall not modify the
history list.

If, at any time, the anchor reference pointer does not point to the top-most anchor reference in the history list, and if a
navigation action other than the "go back" history navigation action (e.g. Assign and Branch byte code command) is
performed, then any anchor references between the anchor reference pointer and the top-most entry are deleted fromthe
history list, that means the entry referenced by the anchor reference pointer beco mes the top-most entry in the history
list.

If the USAT Interpreter does not find the requested anchor locally while processing a "go back™ history navigation
action, an outgoing message shall be sent to the external system entity to retrieve the page the requested anchor
reference belongs to. The Submit TLV shall be formatted in the same way as the previously used Submit TLV to
retrieve this page and the USAT Interpreter shall start to render the navigation unit the anchor reference points to.

NOTE: Service providers should take care of that the "go back™ history navigation action on remote pages could
generate security issues.

5 TLV Format

The Tag Length Value (TLV) is the basic data structure element. If the value part ofa TLV contains other TLV
elements it is called a BER-TLV ora template TLV. If not, it is called a simple TLV. Referto ISO/IEC 7816-6 [5] for
more information on data objects.

The tag byte contains a seven-bit tag value and an attribute byte-present bit in the MSB. If the attribute byte-present bit
is set then the leading byte(s) in the value field contain attribute information for the element identified by the tag.

Length Value Description M/O
1 T Tag M
1-3 L Length of following data, a length value of '00' is allowed M
L \% The data value associated with the tag (@)

The length is BER coded onto 1, 2 or 3 bytes according to ISO/IEC 7816-6 [5].
The value ofa TLV is the content of its value field and therefore evaluation of a TLV yields its value.

TLVs shall appear in the order given in the present document. Additional TLVs may be appended to the TLVs given in
the present document. If TLVs are expected by the USAT Interpreter and are missing the execution result of the byte
code shall be "Syntax error"”, as stated in chapter 12. Then the USAT Interpreter shall behave as described in chapter 12.
TLVs not supported by the USAT Interpreter shall be ignored by the USAT Interpreter.

3GPP

Release 8 23 3GPP TS 31.113 Vv8.0.0 (2009-02)

5.1 Coding of the tag byte

The tag byte of all TLVs described in the present document is as follows:

b8 b7 | b6 | b5 | b4 | b3 [b2 [bl
Attribute
byte Tag value coded on 7 bits
present
bit
Attribute byte present bit Value
Attribute byte present as first byte of V 1
Attribute byte not present as first byte of V 0

5.2 Attributes in TLVs

Every TLV can have one or more attributes bytes if indicated by the attribute byte present bit of the tag byte. The
coding of an attribute byte is shown below. Attributes provided in the attribute byte shall be related to the belonging
TLV. The meaning of the attributes of a TLV is TLV specific and specified in the TLV descriptions.

An attribute given in an attribute byte can consist of a single bit or a combination of consecutive bits forming an
attribute value.

The default value of an attribute value or an attribute bit within an attribute byte is always '0'. The '0' value of an
attribute shall be used by the USAT Interpreter, if the attribute is not available in the TLV.

Whenever the attributes for a tag require more than 7 bits within an attribute byte, the number of attribute bytes will be
extended. The extension of the attribute byte shall be indicated by the MSB of the attribute byte, which is called the
follow bit.

Attributes or attribute bytes not expected or not known by the USAT Interpreter shall be ignored by the USAT
Interpreter.

5.3 Coding of attribute bytes

The MSB of each attribute byte indicates if another attribute byte follows or not. The MSB is called follow bit. The
remaining seven bits of an attribute byte contain TLV specific attributes, either coded as a single bit or as a combination
of consecutive bits.

The context, namely the tag, completely determines the order, span and semantics of the bit-packed attribute values. An
attribute consisting of more than 1 bit may span two attribute bytes.

General coding:

|b8| b7|b6|b5| b4|b3| b2|b1|
——Attribute #1
Attribute #2
Attribute #3
Attribute #4
Attribute #5
Attribute #6
Attribute #7
Follow bit

3GPP

Release 8 24 3GPP TS 31.113 Vv8.0.0 (2009-02)

Follow bit coding:

Follow bit Value
Another attribute byte available as next byte of V 1
No more attribute bytes available 0

Other coding examp le where attribute #2 consists of a single bit, attribute #3 consists of a 4 bit value and attribute #1
consists of a 2 bit value.

|b8| b7|b6|b5| b4|b3| b2|b1|

LT Attribute #1
Attribute #2
Attribute #3

Follow bit

6 Variables

Variables are name-value pairs. The name is called the variable identifier (ID) and the value is called the variable value.
Operations are provided to refer to a variable value by using its variable ID and for setting and resetting the value
associated with a variable.

Variables can be stored in the following usage areas:

Environment variable area;

- Permanent variable area;

Temporary variable area;

Page string element.

Variables have one of the following variable types:

SMS default 7-bit coded alphabet as specified in TS 23.038 [3] with bit 8 set to 0;

SMS default 7-bit coded alphabet as specified in TS 23.038 [3] packed;
- Binary;
- UCS2 coded string.

The list can be extended.

6.1 Usage areas

Variables are referred by using an unified one byte notation. The one byte variable reference is called the variable ID.
b8 and b7 of the variable ID are used to indicate the belonging of a variable to a certain usage area. The remaining 6 bits
are used to reference a certain variable within the usage area.

Due to the used coding, the number of variables per area is restricted to 64.

The coding of the variable ID is as follows:

3GPP

Release 8 25 3GPP TS 31.113 Vv8.0.0 (2009-02)

belongs to Environment usage area
belongs to Permanent usage area

belongs to Temporary usage area

belongs to Page String Element usage area
X X X X X x | identifier of the variable within the usage area

ol el [=) K]
RO O

Except for the Page String Element usage area, the size of the different usage areas is to be defined by the card issuer
and configured during the personalisation process of the USAT Interpreter.

6.1.1 Environment variable usage area
This usage area consists of 3 different partitions:

- USAT Interpreter system information partition;

- USIM issuer information partition;

- End user information partition.

6.1.1.1 USAT Interpreter system information partition

The USAT Interpreter partition is preloaded during the manufacturing process of the USIM or during the runtime of the
USAT Interpreter.

3GPP

Release 8

At least the following information shall be stored:

26 3GPP TS 31.113 Vv8.0.0 (2009-02)

Variable ID

Description

Coding

00"

ICCID of UICC

Binary coding as for EFiccip specified in TS 31.101 [4]

o1

USAT Interpreter version

Byte 1: Issuer Version
USAT Interpreter issuer specific version. The coding
and value of this byte depends on the USAT
Interpreter issuer. The USAT Interpreter issuer is
stored in variable '07' and variable '08'.

Bytes 2-3: TS 31.113, Version (this TS)
Byte 2: first digit (x according to the foreword of the
present document) of the version of the supported TS
31.113; BCD coded

Byte 3: second digit (y according to the foreword of the
present document) of the version of the supported TS
31.113; BCD coded

Bytes 4-5: Version of TS 31.114 [2]
Byte 2: first digit (xaccording to the foreword of the
present document) of the version of the supported TS
31.114; BCD coded

Byte 3: second digit (y according to the foreword of the
present document) of the version of the supported TS
31.114; BCD coded

further bytes are RFU

Example:
Issuer version: '22'
TS 31.113 version: 5.2.0
TS 31.114 version: 5.12.3
resulting coding:
'22 05020512’

07"

USAT Command Filter

This includes the list of allowed USAT Commands.
Coding as specified in TS 31.114 [2].

NOTE: Contentis dynamic, i.e. itis impacted by the
current configuration

03

USAT Interpreter Native Commands

List of supported native commands. Coding: Sequence of
NCls. Each NCI coded in 2 bytes.

o

Terminal Profile as got at runtime

Binary coded as defined in TS 31.111 [1] for TER MIN AL
PROFILE

05"

Error Code as generated by the last
byte code command executed

Binary coded as specified in clause 12

06"

Maximum page size for temporary
storage of one page

Binary coded, most significant byte first:
Number of bytes available for page storage.

o7

USAT Interpreter issuer identification

URL of USAT Interpreter issuer, coding according to RFC
1738 [7] <host> of URL.

08"

Hash Value of URL of USAT
Interpreter issuer identification

4 mostsignificant (left most) bytes of SHA-1 hash of the
content of variable '07'

09"

Reception Buffer Size

Binary coded, most significant byte first:
— Receive buffer size in bytes available for
messages to be received bythe USAT Interpreter.

This size includes all possibly needed space for transport
headers, security, routing information, concatenation
information and so on.

USAT Interpreter Byte Code Filter

This includes the list of allowed USAT Interpreter byte
codes.
Coding as specified in TS 31.114 [2].

NOTE: Contentis dynamic, i.e. itis impacted by the

3GPP

Release 8 27 3GPP TS 31.113 Vv8.0.0 (2009-02)

Variable ID Description Coding
current configuration.
'0B’ Transmission Buffer Size Binary coded, most significant byte first:

— Transmit buffer size in bytes available for
messages to be sent by the USAT Interpreter.

This size includes all possibly needed space for transport
headers, security, routing information, concatenation
information and so on.

'0C"... 13" |RFU

6.1.1.1.1 Write access to the partition

This partition shall not be updated by administrative means after the personalisation process. The variables in this
partition may be changed by the USAT Interpreter itself, if e.g. the configuration of the USAT Interpreter changes
(e.g. addition of a new native code functionality).

6.1.1.1.2 Read access of the partition

The information stored in this partition can be freely accessed by any page executed by the USAT Interpreter.

6.1.1.2 USIM issuer information partition
The information stored in this partition is under the control of the USIM issuer. The USIM issuer is responsible to

allocate variable 1Ds for his own purposes in the range from '14' to '28'. The used variable IDs shall be published to
content providers.

6.1.1.2.1 Write access to the partition

This partition can be updated by the USIM issuer by administrative means.

6.1.1.2.2 Read access of the partition

The information stored in this partition can be freely accessed by any page executed by the USAT Interpreter.

6.1.1.3 End user information partition

The information stored in this partition is under the control of the end user. If the user decides to store information in
this partition, the following variable I1Ds shall be used:

Variable ID Description Coding
'29' User name SMS default 7-bit coded alphabet as defined in TS 23.038 [3]
with bit 8 setto 0
or
UCS2 coded
2A User e-mail address SMS default 7-bit coded alphabet as defined in TS 23.038 [3]
with bit 8 setto 0
'2B' ... '3F' RFU

6.1.1.3.1 Write access to the partition

This area can only be updated by the end user. How this is implemented is out of the scope of the present document.

6.1.1.3.2 Read access of the partition

The information stored in this partition can be freely accessed by any page executed by the USAT Interpreter.

3GPP

Release 8 28 3GPP TS 31.113 Vv8.0.0 (2009-02)

6.1.2 Permanent variable area

This area is used to store permanently variab les which can be accessed even after the USIM was reset. This area is
organised as a cyclic variable buffer. If the buffer is full, a new entry shall delete the oldest entries until enough space is
made available to store the new entry.

Each entry consists of the service ID of the page storing the variable in this area, the variable ID and the content of the
variable. A variable is identified by the couple {variable ID, service ID}. Therefore, in the permanent variable area, two
different variables can share the same variable 1D. For pages using this variable area, it is mandatory to provide the
service ID in the Page TLV. The assignment of service I1Ds is up to an external systementity.

6.1.2.1 Write access to the permanent variable area

Any page which provides a service ID may store permanent variables.

6.1.2.2 Read access of the permanent variable area

The information in this area can be freely accessed by pages providing a service ID within the Page TLV, which is
contained in the list of permanently stored variables. A page shall have access to those variables only, which have the
same service ID as stored in the Page TLV.

If a page, which does not provide a Service ID TLV, attempts to access a variable, the USAT Interpreter shall generate
a "security error".

If a page attempts to read a variable, which has never been initialised by the service the page belongs to, the USAT
Interpreter shall generate a "reference to undefined" error.

Example:
Step 1: page 1, with service ID "1111", creates a permanent variable. Its variable ID is '41' and its content is "Toto".

Step 2: page 2, with service ID "222222", attempts to read the variable '41' content. The USAT Interpreter generates a
"reference to undefined" error because the variable {'41', "222222"} does not exist yet.

Step 3: page 3, with service ID "222222", creates a permanent variable. Its variable 1D is '41' and its content is
"Fellow".

Step 4: page 4, with service ID "1111", attempts to read the variable '41' content. The result is "Toto" and not "Fellow".

This example shows that page 2 does not overwrite the page 1 variables.

Page 1 Page 2
Service ID ="1111" Service ID = "222222"
Write Variable ID =41, Read Variable ID = '41'
content = "Toto"
2
1 Permanent variable area
Service Variable Content
B ri111” ‘41 "Toto"
4 "'222222" ‘41 "Fellow" <+
3
Page 4 Page 3
Service ID ="1111" Service ID ="222222"
Read Variable ID = '41' Write Variable ID = '41',
content = "Fellow"

Figure 6.1: Example

3GPP

Release 8 29 3GPP TS 31.113 Vv8.0.0 (2009-02)

6.1.3 Temporary variable area

Temporary variables are used during the execution of the current page. If the USAT Interpreter is not able to create a
new temporary variable due to the limits of the temporary variable area memory space, the USAT Interpreter shall
generate a "Problem in memory management " error. Temporary variables may be shared with the following page.
Temporary variables are used for 2 purposes:

- as variables defined and used within the current page;
- as variables to be shared between the current page and the following page.

The current page shall define, which variables are to be kept for access of the following page. To ensure, that only a
dedicated following page can access the variables defined to be sharable, the current page may protect them with a One
Time Password (OTP). The following page shall present a Page Unlock TLV to get access to the shared variables. This
TLV contains the OTP of the preceding page.

If this mechanism is used to protect shared variable, it might happen that a page is not able to access the protected
shared variables, if the sequence of pages provided to the USAT Interpreter is disturbed (e.g. by using backward
navigation between pages...).

6.1.3.1 Write access to the temporary variable area

Only the current page can allocate temporary variables. The current page can allocate temporary variables as many as it
is space available in this area.

To indicate how to provide variables to the next page, the KeepAll flag in the attribute of the current page and the OTP
TLV and the Keep Alive List TLV within the current Page TLV is used according to the following table.

KeepAll flag OTP TLV KeepAliveList Actions
TLV

set present present not valid, if occurs, the KeepAll attribute shall be ignored, variables
listed in the Keep Alive List TLV shall be kept for the following page
and shall be protected by OTP

set present not present all temporary variables shall be kept for the following page and
shall be protected by OTP

set not present present not valid, if occurs, the variables listed in the Keep Alive List TLV
shall be kept for the following page and shall not be protected by
OTP

set not present not present all temporary variables shall be kept for the following page and
shall not be protected by OTP

not set present present variables listed in the Keep Alive List TLV shall be kept for the
following page and shall be protected by OTP

not set present not present not valid, no variables to be kept for the following page

not set not present present variables listed in the Keep Alive List TLV shall be kept for the
following page and shall not be protected by OTP

not set not present not present no variables to be kept for the following page

6.1.3.2 Read access of the temporary variable area

A current page can freely access temporary variables stored by this current page. Variables of the previous page shall
only be accessible according to the rules of the table in clause 6.1.3.

3GPP

Release 8 30 3GPP TS 31.113 Vv8.0.0 (2009-02)

In order to unlock the shared protected variables the Page Unlock TLV has to be present within the Page TLV. The
Page Unlock TLV shall contain the OTP of the previous page. If the OTP in the Page Unlock TLV matches the OTP
stored with the protected variables, the protected variables are made availab le to the current page as regular temporary
variables.

6.1.3.3 Lifetime of temporary variables

By default, all variables which are not kept explicitly to be shared by the following page are deleted, after the page is
processed.

If there are protected variables, but the current page does not contain a matching OTP, the protected variables are
deleted before processing the current page.

6.1.4 Page string element

This area is provided optionally by the current page. It can be used to store e.g. strings that are used several times in the
current page.

The first string element in the String Pool TLV shall be identified by the variable reference 'C0', the next with 'C1' and
so on.

6.14.1 Write access to page string elements

The information contained in this area is read only.

6.1.4.2 Read access of page string elements

The information can be accessed by the current page.

6.2 Variable values

The value associated with a variab le identifier is a length-byte string pair. The type of a variable value is determined by
the usage context. The USAT Interpreter shall keep track of the type of a variable. How the type of the variable is stored
internally within the USAT Interpreter is up to the implementation of the USAT Interpreter.

The length of the variable value is restricted to 65535 ('"FFFF') bytes. Each variable has one of the following types.

Type of variable coding (3 hits)

Unknown ‘000

SMS default 7-bit coded alphabet as defined in '001'

TS 23.038 [3] with bit8 setto 0

SMS default 7-bit coded alphabet as defined in ‘010

TS 23.038 [3] packed

Binary format 011’

UCS2 coded string '100'

Other types RFU

The coding specified shall be used to indicate the type of variable, when variable substitution is used.

6.3 Variable substitution

Variable IDs may appear in fields explicitly labelled as containing a variable identification. Var iable substitution can
take place in the following TLVs:

- Simple TLV Indicator (see clause "Execute USAT Command");
- Inline Value TLV;,

- Inline Value 2 TLV;

3GPP

Release 8 31 3GPP TS 31.113 Vv8.0.0 (2009-02)

- Submit Data TLV.
The value part of TLVs, where variab le substitution can take place, consists of sequences of:

- length - value pairs to indicate constant text; or

- variable substitution indicator - variable 1D pairs to indicate variab le substitutions.
Such sequences may appear in any order in value parts of TLVs where variable substitution may take place.
The variable substitution indicators are used to indicate that the next byte is a variable I1D.

Length - Value pair

Length Value Description M/O
1-3 L Length of the following data M
L \Y data)

The length L is BER coded onto 1, 2 or 3 bytes according to ISO/IEC 7816-6 [5]. If L indicates a length of '00', no data
shall be available.

Variable Substitution Indicator - Variable ID Pair

Length Value Description M/O
1 'CO'or'C1'or Variable substitution indicator, see table below M
..or 'C7'
1 ID Variable ID M

The least significant 3 bits of the variable substitution indicators shall be used to indicate the type of the variable coded
according to the table below.

Coding of variable substitution indicators:

Coding of variable Type of variable referenced to
substitution indicator

'co’ unknown

'Cl' SMS default 7-bit coded alphabet as defined in TS 23.038 [3] with
bit8 setto 0

'C2' SMS default 7-bit coded alphabet as defined in TS 23.038 [3]
packed

'C3' Binary format

'C4' UCS?2 coded string

'C5'...'CT7' RFU

Whenever TLVs, where variable substitutions may take place, are encountered by the USAT Interpreter at runtime, one
of the following mechanisms are used, to replace the respective Length - Value pair(s) or the Variable Substitution
Indicator - Variable 1D pair(s) depending on the context:

Method 1:
Length - Value pair:
- the length is removed from the running text;
- the value part remains unchanged;
Variable Substitution Indicator - Variable 1D pair:
- the variable substitution indicator is removed from the running text;

- the type of the value corresponding to the following variable reference shall be checked against the type
indicated in the variab le substitution indicator. If the type of the value is different from the indicated type, the
USAT Interpreter shall generate a " Type mismatch" error unless the indicated type was set to 'CO' ("unknown");

- the following variable reference is replaced by:

3GPP

Release 8

- the current content of the variable (that means inserting the variable content into the running text).

Method 2:

Length - Value pair:

32 3GPP TS 31.113 Vv8.0.0 (2009-02)

the length is not removed fromthe running text;

the value part remains unchanged;

Variable Substitution Indicator - Variable 1D pair:

the variable substitution indicator is not removed fromthe running text:

the type of the value corresponding to the following variable reference shall be checked against the type

indicated in the variab le substitution indicator. If the type of the value is different from the indicated type, the
USAT Interpreter shall generate a "Type mis match™ error unless the indicated type was set to 'CO' ("unknown™);

if the indicated type was set to 'CO' ("unknown™"), the type information of the variab le substitution indicator in the

running text is updated with the actual type of the variable;

the following variable reference is replaced by:

- the length of the content of the variable. The length is coded onto 1, 2 or 3 bytes according to

ISO/1EC 7816-6 [5];

- the current content of the variable (inserting the variable content into the text).

A variable value shall not contain a variable substitution, i.e. an inserted variable value is not rescanned for variable

IDs.

-

Used USAT Interpreter data structures

7.1 Page
A page is the unit which the USAT Interpreter does render and the default name scope of the temporary variab les.
Length Value Description M/O
1 '01'/'81" Page Tag M
1-3 A+B+C+D+ Length M
E+F+G+H+|
A Data Attributes O
B TLV Page Identification M
C TLV Page Unlock Code (@)
D TLV One Time Password O
E TLV Keep Alive List O
F TLV Service ID (@)
G TLV String Pool (@)
H TLVs Terminal response handler modifier - one ormore TLVs (@)
I TLVs Navigation Units — one ormore TLVs M

The following clauses specify the attributes and TLVs used in the Page TLV.

3GPP

Release 8

7.1.1

Attributes

33 3GPP TS 31.113 Vv8.0.0 (2009-02)

|b8|b7|b6|b5|b4|b3|b2|b1|

'——KeepAll (variables for following page)
0: notset, variables shall not be kept
1: set, variables shall be kept

Dynamic /Static
0: static, page may be cached bythe USAT Interpreter
1: dynamic, USAT Interpreter shall not cache the page

DCS Attribute
used, if no explicit type of text is available
0: SMS default 7-bit coded alphabet as defined in
TS 23.038 [3] with bit8 setto 0
1. UCS2

RFU

Follow bit

7.1.2

The content of this TLV is a sequence of bytes to uniquely identify the page. This reference may later on be used by the

Page Identification

USAT Interpreter to reference the page (e.g. for caching mechanisms or accessing the page by the end-user fromthe

menu structure).

Coding:
Length Value Description M/O
1 '02' Page Identification Tag M
1-3 L Length M
L Data Unique identification of the page. Asequence of bytes to uniquely M
identify the Page. This identification shall not contain a #-character
(coded '23") and is coded by the external system entity.
7.1.3 Page Unlock Code

The content of this TLV is a sequence of bytes (the page unlock code) to be compared and verified by the USAT

Interpreter against an OTP provided by a previous page.

Coding:
Length Value Description M/O
1 '03' Page Unlock Code Tag M
1 L+1 Length (up to 1+8 bytes) M
1 XX Anyone byte value. The USAT Interpreter shall ignore this byte M
L Data Page unlock code (one time password of the previous page) M

3GPP

Release 8 34 3GPP TS 31.113 Vv8.0.0 (2009-02)

7.1.4 One Time Password

The content of this TLV is a sequence of bytes generated by randomto protect the temporary variables of the current
page against unauthorised access.

Coding:
Length Value Description M/O
1 '04' One Time Password Tag M
1 L Length (up to 8 bytes) M
L Data One time password M
(random value generated by an external system entity)
7.1.5 Keep Alive List

The content of this TLV is a list of variable 1Ds indicating which variables of the current page may be shared with the

following page. The list shall not contain other variable 1Ds than variable 1Ds referring to temporary variables.

Coding:
Length Value Description M/O
1 ‘05’ Keep Alive List Tag M
1 L Length (number of temporary variable IDs, up to 64 variables) M
L Data Variable IDs M
7.1.6 Service ID

The content of this TLV is a sequence of bytes to indicate that the current page shall belong to a certain service and is
mainly used to handle permanent variable management The assignment and coding of service I1Ds is up to an external
systementity. The length of a service 1D shall not exceed 8 bytes.

Coding:
Length Value Description M/O
1 '06' Service ID Tag M
1 L Length (number of bytes of the service ID, <= 8 bytes) M
L Data Service ID, unique identification of a service M
7.1.7 String Pool

The content of this TLV is a list of strings coded in with the alphabet indicated in the DCS attribute used within the
page. Within the page the strings are referenced by using their variable references (range 'C0' to 'FF') within the page
string element area.

Coding:
Length Value Description M/O
1 '07' String Pool Tag M
1-3 L Length M
L Data LV values of each string element in the string pool with the length L M
is BER coded onto 1, 2 or 3 bytes according to ISO/IEC 7816-6 [5].
7.1.8 Terminal response handler modifier

The current terminal response handler configuration can be modified temporarily by this TLV (e.g. to hide default
entries by using action IDs, to add new ones or to modify existing entries).

This TLV can be used at the page level and at the navigation unit level. If this TLV is present at the page level and also
at the navigation unit level, the last one will modify the first one. The content describes the action which shall be

3GPP

Release 8 35 3GPP TS 31.113 Vv8.0.0 (2009-02)

performed after the USAT Interpreter has received a general result byte of the terminal response within a proactive
session. If a syntaxerror or a logical error occurs in the terminal response handler modifier, the current terminal
response handler configuration remains unchanged.

Coding of the terminal response handler modifier TLV:

Length Value Description M/O/C
1 '08'/'88" Terminal response handler modifier tag M
1-3 A+2+B+C Length M
A Attributes Data (0]
2 Data General result range M
B TLV Inline Value TLV, containing text for user notification (e}
C TLVs Action TLVs — one ormore TLVs C

The following table gives an overview of conditions of presence for the Action TLVs depending on the modification
type indicated in the attributes:

Modification Type (see Attributes) Action TLV
Replace shall be present
Add / Append shall be present
Restore need not to be present; to be ignored, if present
Remove optionally present
7.18.1 Attribute
|b8| b7|b6|b5| b4|b3| b2|b1|
Modification type (see explanation below)
00: Replace
01: Add / Append
10: Restore
11: Remove
RFU
Follow bit

Modification type

A terminal response handler mod ifier can be combined with a terminal response handler configuration to produce a new
terminal response handler configuration using one of four operations:

- Replace operation
- Add/Append operation
- Restore operation
- Remove operation

Each of these operations given a current terminal response handler configuration and a terminal response handler
modifier produces a new current terminal response handler configuration. For the following description, the following
definitions apply:

Abbreviation Item Definition

Al Action Identifier a single value in the range of '00' to 'FF' identifying an action

GR General Result result of a USAT command; a single value in the range from '00' to 'FF'

GRR General Result Range | multiple consecutive General Result (GR) values

A Set of Actions a collection of zero or more single actions; one Action TLV represents
one single action

3GPP

Release 8 36 3GPP TS 31.113 Vv8.0.0 (2009-02)

Replace operation

For the replace operation a GRR and A with at least one single action shall be provided. The GRR is the range of GR on
which the operation applies. A is the set of actions which shall be linked with all GR within the given GRR.

This operation replaces all actions for all GR within the given GRR by the given action(s); all previously defined
action(s) for all the GR within this GRR shall be erased by the USAT Interpreter.

If a text for user notification is provided within the terminal response handler modifier TLV, this operation replaces the
existing text for all the GR within the given GRR by the given text.

Add/ Append operation

For the add/append operation a GRR and A with at least one single action shall be provided. The GRR is the range of
GR on which the operation applies. A is the set of actions which shall be linked with all GR within the given GRR.

For every GR within the GRR, the given action(s) are appended to the existing ones for these GR. If action(s) with same
action ID(s) exist already fora GR, the action(s) are replaced.

Ifatext for user notification is provided within the terminal response handler modifier TLV, this operation replaces the
existing text for all the GR within the given GRR by the given text.

Restore operation
For the restore operation a GRR shall be provided. The GRR is the range of GR on which the operation applies.

For every GR within the GRR, the action(s) shall be restored to the predefined action(s) of the systemterminal response
handler configuration.

For every GR within the GRR, the user notification text of the systemterminal response handler configuration shall be
restored. If the systemterminal response handler configuration does not contain a text for a GR in the given GRR, the
user notification text shall be removed for that GR.

If a text for user notification is provided within the terminal response handler modifier TLV, this user notification text
TLV shall be ignored by the USAT Interpreter.

Remove Operation

For the Remove operation a GRR shall be provided. If one or more Action TLV/(s) are provided, for each Action TLV
an Al shall be provided. The GRR is the range of GR on which the operation applies.

If no Action TLV is provided, for all the GR within the given GRR, the USAT Interpreter shall remove all existing
actions fromthe existing set of actions.

If at least one Action TLV is provided, for every GR within the GRR, the action(s) indicated by the given Al are
removed fromthe existing set of actions.

If the given action(s) to be removed do not exist in the existing set of actions(s) for a GR, the requested modification
shall be ignored for that GR.

If atext for user notification is provided within the terminal response handler modifier TLV, this operation replaces the
existing text for all the GR within the given GRR by the given text.

Validity period of the terminal res ponse handler modification:

All terminal response handler modifications are valid only within the context they have been introduced. There are 3
different contexts:

- Systemcontext: In this context the systemterminal response handler configuration is valid (see clause 4.3).

- Page context: A terminal response handler mod ifier within the page context can modify the response handler
configuration for the whole page. Just before entering another page, the modifications done by the terminal
response handler modifier of the current page are discarded and the terminal response handler configuration of
the system context as defined in the paragraph above is restored.

- Navigation unit context: A terminal response handler modifier within the navigation unit context can modify
the response handler configuration for the navigation unit containing the modifier. After leaving a navigation

3GPP

Release 8 37 3GPP TS 31.113 Vv8.0.0 (2009-02)

unit the modifications done by the terminal response handler modifier of this navigation unit are discarded and
the terminal response handler configuration of the page context is restored.

7.18.2 General result range
A general result range defines subsequent values of the general result in the terminal response to an USAT command.
- Arange consisting of only one value of the general result is coded by setting both bytes to the desired value.

- Avrange is coded by setting the first byte to the lowest value of the range and the second byte to the highest value
of the range.

Forexample:
- general result '10' shall be coded: '10 10}
- general result '1X'shall be coded: '10 1F
- general result 'XX"shall be coded: '00 FF;
- general result between 11" and '13' shall be coded: '11 13..

The general result range specifies the general results for which the modification applies: for every general result within
the general result range, corresponding operations shall be taken into account by the USAT Interpreter.

For exception handling, the following rules apply:

- Arange coded 'FF xx' (with xx between '00' and 'FE') is used to change a single exception action (e.g. no more
byte code).

- Avrange coded 'FF FF' is used to change all the exception actions.

Each exception range is linked to an exception case as follows:

Exception range Exception case Description
'FF 00’ TRH no matching GRR After the execution of a USAT command, there is no
action (a) in Agr
'FFO1' No more byte code No more byte code when process next byte code (e.g.
end of navigation unit)
'FF 02' Transport error while submitting | Failure during the submission of an outgoing message
data
'FF 03’ History list empty, or bottom of the | A“go back into historylist” system action '02' or a "Go
list reached Back" byte code command happen and the History List
is empty, or the anchor pointer reaches the bottom of
the list
'FF 04' Error during plug-in execution The execution of a plug-in during the rendering of the
"Execute Native Command" byte code generates an
error
'FF 05' to 'FF FE' - RFU - reserved for other exception not covered
currently in the present document

7.1.8.3 Text for user notification

This text is displayed by a DISPLAY TEXT command whenever a general result in response to a proactive command is
received, that is part of the general result range the text for user notification is given for.

If a Terminal Response Handler modifier contains a text for user notification TLV, then the text is handled by the
USAT Interpreter according to the operation descriptions in clause 7.1.8.1. The value part of this TLV may be empty (L
of the Inline Value TLV is '00". In this case, the text for user notification is to be removed for the respective general
results.

If this TLV is not available in the terminal response handler modifier TLV, the text for user notification remains
unchanged for the respective general results.

3GPP

Release 8

38

3GPP TS 31.113 Vv8.0.0 (2009-02)

After this DISPLAY TEXT command has been issued by the USAT Interpreter the actions defined for the general result
are to be handled regardless of the general result of the DISPLAY TEXT command itself.

The parameters for the DISPLAY TEXT command shall be as follows:

- The DCS forthe DISPLAY TEXT command shall be set according to the value type information of the Inline
Value TLV;

- The command qualifier to be used for the DISPLAY TEXT command shall be '81' ("wait for user to clear

message'

7.18.4

"and "high priority").

Action

The action TLV defines the behaviour of the USAT Interpreter when the general result of the terminal response (TR) is
part of the associated general result range.

Length Value Description M/O/C
1 '09'/'89" Action TLVtag M
1-3 A+1+B+C Length M
A Attributes Data O]
1 1 Action ID M
B TLV Action to be performed C
Cc TLV Inline Value TLV, containing the action description of this action. This is | C
a text assigned to this action to be used as text string of item within an
item data object ofa SELECT ITEM command.

The following table gives an overview of conditions of presence for the Action to be performed TLV and the Inline
Value TLV depending on the modification type indicated in the attributes of the terminal response handler modifier:

Modification Type Action to be performed TLV Inline Value TLV
Replace shall be present shall be present
Add / Append shall be present shall be present
Restore not applicable, see clause 7.1.8 not applicable, see clause 7.1.8
Remove need not to be present; to be ignored, if need not to be present; to be ignored, If
present present
7.1.84.1 Attributes

|b8|b7|b6|b5|b4|b3|b2|b1|

RFU

Follow bit

——Execution handling (behavior after execution of a single USAT
Interpreter byte code as "action to be performed")
0: execute next byte code within current USAT Interpreter
navigation unit
1: execute current proactive command within current USAT
Interpreter navigation unit again

The following figure gives an overview of the return behaviour of the terminal response handler depending on the

attribute value.

3GPP

Release 8 39 3GPP TS 31.113 Vv8.0.0 (2009-02)

Page Execution Terminal Response Handler
Environment Execution Environment

Page

-

Navigation Unit

Terminal response handling
USAT Interpreter Byte Code according to current Terminal
P Response Handler Configuratiom

A

USAT Interpreter Byte Code execute next byte
code within
current USAT
Interpreter
navigation unit

-
-~

Terminal response handling
according to current Terminal
Response Handler Configuratiom

Navigation Unit

USAT Interpreter Byte Code

execute current
proactive
command within
current USAT
Interpreter
navigation unit
again

USAT Interpreter Byte Code

\

h 4

Figure 7.1

This attribute is to be considered only for certain types of actions to be performed (see table in clause 7.1.8.4.3).

7.1.8.4.2 Action ID

Every action shall be uniquely identified by an action ID. This allows to remove or to update a targeted item in the
action list without reconstructing the whole action list.

IDs are separated into two ranges:
- '00'-"1F predefined systemaction IDs;

- '20'-'FF' service defined action IDs for navigation and other commands. These action IDs shall be uniquely
assigned to the actions defined for a general result range by the service.

7.1.8.4.3 Action to be performed

The action to be performed is either predefined by the USAT Interpreter system (systemaction) or flow control
information (navigation action) or a single USAT Interpreter byte code to be executed.

This TLV is mandatory if the modification type within the attribute byte of the terminal response handler modifier
indicates "Replace" or "Add / Append".

A systemaction is indicated within the action TLV by a predefined systemaction 1D only:
- process next byte code;
- quit USAT Interpreter without user confirmation;

- go backone entry in history list;

3GPP

Release 8 40 3GPP TS 31.113 v8.0.0 (2009-02)
- retry last proactive command within current USAT Interpreter navigation unit (the command which generated
the current general result).
For systemactions the attribute of the action TLV shall be ignored by the USAT Interpreter.

A navigation action is indicated by a service given action ID and one of the following USAT Interpreter data structures
as "action to be performed":

- page reference TLV,
- anchor reference TLV.
For navigation actions the attribute of the action TLV shall be ignored by the USAT Interpreter.

A single USAT Interpreter byte code to be executed is indicated by a service given action ID and one of the following
USAT Interpreter byte codes as "action to be performed":

- Display Tex;

- Get Input;

- Set Variable;

- Execute USAT Command,;
- Execute Native Command.

The behavior of the USAT Interpreter after execution of the single USAT Interpreter byte code is given in the following
table:

General result for the USAT command Comment
‘00°...'0F (ok) behave as define in attribute of action TLV
'11' (backward move requested) execute current proactive command within current USAT

Interpreter navigation unit again or return to the wait state if
the wait state is currently active

'10" (Proactive SIM session temrminated by the user) quit USAT Interpreter without user confirmation
“12'.1F quit USAT Interpreter without user confirmation
20°..."2F (worth to retry) quit USAT Interpreter without user confirmation
‘30°...3F (not worth to retry) quit USAT Interpreter without user confirmation

Summary of action management in Terminal Response Handler mechanis m:

3GPP

Release 8 41 3GPP TS 31.113 Vv8.0.0 (2009-02)

Action to be performed

| Action ID | used TLV | attribute handling
System actions
process next byte code '00° none attribute byte shall be
quit USAT Interpreter without user confirmation '01' none ignored
go back one entryin history list '02' none
retry last proactive command within current USAT '03' none
Interpreter navigation unit
RFU system actions '04'to 1F" [RFU
Navigation actions
branch to another page defined by | page reference TLV | attribute byte shall be
branch to another navigation unit service or ignored
(20'to anchor reference TLV
'FF)
Single USAT Interpreter byte codes
Execute Native Command byte code Execute Native behavior after execution of
Command byte code | a single USAT Interpreter
TLV byte code as "action to be
Execute Display Text byte code Display Text byte performed":
code TLV - execute next byte
Execute Set Variable byte code defined by | Set Variable byte code within current
service code TLV USAT Interpreter
Execute Get Input byte code (20'to Get Input byte code navigation unit
'FF) TLV - execute current
Execute USAT Command byte code Execute USAT proactive command
Command byte code within current USAT
TLV Interpreter navigation
unitagain

NOTE: The retry action should be used only in conjunction with other actions or a notification te xt for a general
result range to avoid the immediate repetition of the USAT command causing retry (possible senseless
loop).

7.1.8.4.4 Action description

In the case of several actions (action list) assigned to the same general result,a SELECT ITEM command shall be
constructed by the USAT Interpreter using the corresponding action descriptions as items.

This TLV is mandatory if the modification type within the attribute byte of the terminal response handler modifier
indicates "Replace™ or "Add / Append”.

If only one action is defined for the general result, the action is executed by the USAT Interpreter without building the
SELECT ITEM command.

After this SELECT ITEM command has been issued by the USAT Interpreter, an action shall be performed depending
on the general result of the SELECT ITEM command itself:

General result for the SELECT ITEM Comment
'00"..."OF" (ok) the action defined for the option selected by the usershall
be perfomed
'11' (backward move requested) execute current proactive command within current USAT

Interpreter navigation unit again or return to the wait state if
the wait state is currently active

10" (Proactive SIM session temrminated by the user) quit USAT Interpreter without user confirmation
'12'.'1F' quit USAT Interpreter without user confirmation
'20"..."2F" (worth to retry) quit USAT Interpreter without user confirnation
'30"..."3F" (not worth to retry) quit USAT Interpreter without user confirmation

3GPP

Release 8 42 3GPP TS 31.113 Vv8.0.0 (2009-02)

The parameters for the SELECT ITEM command shall be as follows:
- Alpha identifier not used,;

- The command qualifier to be used for the SELECT ITEM command shall be '03' ("presentation type is specified
in bit 2" and "presentation as a choice of navigation options™).

7.2 Navigation Unit

A navigation unit is a component of a page. It is named using an anchor. A navigation unit is referenced using an
anchor reference.

Length Value Description M/O
1 '0A / '8A Navigation Unit Tag M
1-3 A+B+C+D Length M
A Data Attributes O
B TLV Anchor (name of a navigation unit) @)
C TLVs Terminal response handler modifier - one ormore TLVs @)
D TLVs USAT Interpreter Byte Codes — one ormore TLVs o

The following clauses specify the attributes and TLV5s used in the navigation unit TLV.

7.2.1 Attributes

|b8| b7|b6|b5| b4|b3| b2|b1|
'——Resetvar
0: keep temporary variables values from previous navigation
unit(s) in this page
1: resetall the temporary variables when entering the
navigation unit

DoNotHistorize
0: insert this navigation unit’s anchor in the history list
1: do notinsert this navigation unit's anchor in the history list

ChainNextNU
0: execute the "No more byte code" exception case of the
terminal response handler, if the last byte code of current
navigation unit contains no navigation commands
1. startrendering of the next navigation unitin the page after
execution of the last byte code of this navigation unit

TerminalResponseHandlerConfigurationinheritance
0: inherntterminal response handler configuration from
current page and defaultsystem configuration.
1: do notinheritterminal response handler configuration
from page but only from default system configuration.
RFU

Follow bit

7.2.2 Anchor

The content of this TLV is a sequence of bytes identifying the navigation unit. It is mandatory to provide this TLV, if a
navigation unit of the current page or another page needs to branch to this navigation unit.

Coding:

3GPP

Release 8 43 3GPP TS 31.113 v8.0.0 (2009-02)
Length Value Description M/O
1 ‘0B’ Anchor Tag M
1-3 L Length M
L Data Unique identification of navigation unit within the page. Asequence M
of bytes to uniquely identify the Anchor. This identification shall not
contain a "#"-character (coded '23") and is coded by the external
system entity.
7.2.3 Terminal response handler modifier

The current terminal response handler configuration can be modified temporarily by this TLV (e.g. to hide default
entries by using action IDs, to add new ones or to modify existing entries).

Coding:

See clause 7.1.8.

71.2.4

USAT Interpreter Byte Codes

These TLVs contain the executable part of the page.

Coding:

See clause 8.

7.3 Anchor Reference

This TLV is used to refer to a navigation unit in the current page or in another page.

Length Value Description M/O

1 '0C' Anchor Reference Tag M
1-3 L Length M
L Data Anchor Reference Name M

An anchor reference name is the value part of a page identification TLV (unique identification of the page, see

clause 7.1.2) followed by a '23' ("#") and the value part of the anchor TLV (unique identification of navigation unit, see
clause 7.2.2) within the page. Either the page identification part or the anchor part (including "#"), but not both, can be
omitted. If the page identification part is omitted the reference is to an anchor on the current page. If the anchor name
part is omitted the reference is to the first navigation unit of the referenced page.

7.4 Variable Identifier List
This TLV is used to list a sequence of variables.
Length Value Description M/O
1 ‘0D Variable Identifier List Tag M
1 L Length M
L Data Variable IDs (up to 64 Variable IDs) M
7.5 Inline Value

This TLV inserts a byte array, which often is simply running tex, at the point of its appearance.

The Inline Value content may contain variable substitution indicators to indicate variable references. Therefore the
Inline Value content has to be structured in Length-Value and Variable Substitution Indicator - Variable ID pairs. This
structure shall be used even if the Inline Value content does not contain any variable substitution indicators. The
possibly available constant data values and variable references have to be rendered according to clause 6.3 Method 1
during processing of this TLV by the USAT Interpreter. If the type of the possibly substituted variable values is

3GPP

Release 8 44 3GPP TS 31.113 Vv8.0.0 (2009-02)

different from the type indicated in the attribute of this TLV, the USAT Interpreter shall perform a type conversion or
generate a "Type mis match" error according to the following table:

from DCS to DCS comment
SMS default *
SMS packed not supported, error generated
binary SMS default cast allowed, no change of sequence of bytes
UCS2 not supported, error generated
unknown cast allowed, no change of sequence of bytes
SMS default not supported, error generated
SMS packed *
binary SMS packed cast allowed, no change of sequence of bytes
UCS2 not supported, error generated
unknown cast allowed, no change of sequence of bytes
SMS default cast allowed, no change of sequence of bytes
SMS packed cast allowed, no change of sequence of bytes
binary binary *
UCS2 cast allowed, no change of sequence of bytes
unknown cast allowed, no change of sequence of bytes
SMS default conversion supplied, according to TS 31.101 [4]
SMS packed not supported, error generated
binary ucCs2 cast allowed, no change of sequence of bytes
UCS2 *
unknown cast allowed, no change of sequence of bytes
SMS default cast allowed, no change of sequence of bytes
SMS packed cast allowed, no change of sequence of bytes
binary unknown cast allowed, no change of sequence of bytes
UCS2 cast allowed, no change of sequence of bytes
unknown *

Coding of the Inline Value TLV:

Value Description M/O
Length
1 '‘OE'/ '8E' Inline Value Tag M
1-3 A+B Length M
A Data Attributes 0
B Data Inline value content ¢}

Coding of the attributes:

|b8|b7|b6|b5|b4|b3|b2|b1|

Value type information [see clause 6.2]

RFU
Follow bit

If the value type information indicates "unknown", then the DCS attribute of the page shall be applied.

7.6

This TLV inserts a byte array, which often is simply running text, at the point of its appearance. Usage and syntaxand

Inline Value 2

behaviour of this TLV is identical to the Inline Value TLV, but another tag value is used.

Length Value Description M/O
1 'OF'/ '8F' Inline Value 2 Tag M
1-3 A+B Length M
A Data Attributes o
B Data Inline Value 2 content @)

3GPP

Release 8 45 3GPP TS 31.113 Vv8.0.0 (2009-02)

Coding :See Inline Value TLV.

7.7 Input List

This TLV contains a list of Variable Identifier List TLVs and Inline Value TLVs.

Length Value Description M/O
1 '10' Input List Tag M
1-3 L Length M
L TLVs Anysequence of M

- Variable Identifier List TLVs

and /or

- Inline Value TLVs

7.8

TLV.

Ordered TLV List

This TLV is used to associate a list of other TLVs. The order and the possible types of contained TLVs within an
ordered TLV list is specified within the byte codes using this TLV. The number of actual contained TLVs is implicitly
given by the length indication of the Ordered TLV List. It is allo wed, that the ordered TLV list does not contain any

Depending on the context (the byte code using this TLV) each optional TLV within the Ordered List of TLVs shall
have a different tag value.

Length Value Description M/O
1 '11' Ordered TLV List Tag M
1-3 A+, . +Z Length M
A TLV First TLV O/M
Z T.I._.V Last TLV Oo/M
7.9 Page Reference

This TLV can represent a page, an anchor within the current page, or an anchor within another page.

If the Anchor Reference TLV or the Variable Identifier List TLV is available, then the USAT Interpreter shall start
rendering the requested locally stored Anchor. If the Anchor is not found locally, a "Jump to undefined" error is
generated.

If the Submit Configuration TLV is available (that indicates that the page is not locally stored on the USIM, i.e. e.g.
stored at an external systementity), then the USAT Interpreter shall build a request to the external system entity
according to clause 7.10 .If the transmission to the external systementity fails, the USAT Interpreter shall execute the
"Transport error while submitting data" exception case of the terminal response handler mechanis m.

Length Value Description M/O
1 '12' Page Reference Tag M
1-3 A Length M
A TLV either M

- Anchor Reference TLV or

- Variable Identifier List TLV (referring to a variable containing the
value part of an Anchor Reference, only the first variable ID shall
be considered by the USAT Interpreter, remaining variable IDs
shall be ignored) or

- Submit Configuration TLV

79.1 Anchor Reference

Reference to a locally stored anchor.

3GPP

Release 8 46 3GPP TS 31.113 Vv8.0.0 (2009-02)

Coding:

See clause 7.3.

7.9.2 Variable Identifier List

Referring to a variable containing the value part of an Anchor Reference. Only the first variable ID within the variable
ID list shall be considered by the USAT Interpreter. Possibly remaining variable 1Ds shall be ignored.

Coding:

See clause 7.4.

7.9.3 Submit Configuration

This TLV describes the information which shall be sent to the external systementity.

Length Value Description M/O
1 '13'/'93' Submit Configuration Tag M
1-3 A+B+C+D Length M
A Data Attributes)
B TLV Submit Data TLV M
(submit information, text possibly containing variable references)
C TLV Inline Value TLV, o
text to be displayed during the waitstate active.
D TLV Gateway Address TLV, to be incorporated into the operational layer, @)
referto TS 31.114 [2]

7931 Attributes

|b8| b7|b6|b5| b4|b3| b2|b1|
——SendReferer

0: Page Identification TLV notto be used in Submit TLV
1: Page Identification TLV to be used in Submit TLV

ProcessingBehaviour (see clause 4.2.3)

0: enter waitstate and wait for a specific response from an
external system entity and keep the proactive session
alive, do not process next byte code

1: do notenter wait state, process next byte code

RFU
Follow bit

3GPP

Release 8 47 3GPP TS 31.113 Vv8.0.0 (2009-02)

If the SendReferer attribute is set, the Page Identification TLV of the current page shall be incorporated into the
generated Submit TLV prior to the transmission to the external system entity.

79.3.2 Submit Data

The submit data information is a sequence of bytes possibly containing constant data values and variable references to
be substituted according to clause 6.3 method 2. The sequence of bytes shall be structured into Length - Value and
Variable Substitution Indicator - Variable 1D pairs to ensure, that variable references can be detected. The content of the
submit information is coded by the external systementity and possibly contains a request for the next page to be
transmitted to the USAT Interpreter by an external systementity.

After variable substitution this TLV is used within the Submit TLV to provide information to the external system entity.
See clause 7.10 for the structure of data provided to the external system entity.

Length Value Description M/O
1 '14' Submit Data Tag M
1-3 A Length M
A Data Byte sequence, according to clause 6.3 containing possibly variable @)
references
7.9.3.3 Text to be displayed during the active wait state

This TLV shall only be considered by the USAT Interpreter if the wait state is entered.

If this Inline Value TLV is given in the Submit Configuration TLV, the value part of this Inline Value TLV shall
override the default Text String of the DISPLAY TEXT command to notify the user about the wait state (see

clause 4.2.2).If the Inline Value TLV is not given in the Submit Configuration TLV, the default text shall be taken for
the Text String of the DISPLAY TEXT command to notify the user about the wait state.

7934 Gateway Address

The Gateway Address TLV contains data (the Gateway Address Information) to address aspecific Gateway in the
USAT Interpreter Gateway System. The coding of the Gateway Address Information is out of the scope of the present
document.

The way the Gateway Address TLV is handled by the USAT Interpreter is specified in TS 31.114 [2].

Length Value Description M/O
1 '15'/'95' Gateway Address Tag M
1-3 A+B Length M
A Data Attributes O
B Data Gateway Address Information @)
Attributes:

|b8| b7|b6|b5| b4|b3| b2|b1|
'——SendAdditionallnformation TLV as specified in TS 31.114 [2]

0: Do notsend additional information TLV
1: Do send additional information TLV

RFU
Follow bit

3GPP

Release 8 48 3GPP TS 31.113 Vv8.0.0 (2009-02)

7.10 Submit

This TLV is used to provide information from the USAT Interpreter to the external systementity. It shall be used only
in the direction fromthe USAT Interpreter to the external systementity.

Length Value Description M/O/C
1 '16' Submit Tag M
1-3 A+B Length M
A TLV Submit Data TLV M
B TLV Page Identification TLV (if indicated in attribute “sendReferer” of C
Submit Configuration TLV)

7.10.1 Submit Data

The submit data information is a sequence of bytes. The origin of this TLV is the Submit Data TLV in the Submit
Configuration TLV with variables substituted according to clause 6.3 method 2.

Length Value Description M/O
1 '14' Submit Data Tag M
1-3 A Length M
A Data Byte sequence, according to clause 6.3 containing substituted @)
variable references

7.10.2 Page ldentification

This TLV shall be available if and only if the SendReferer bit in the attributes of the Submit Configuration TLV was
set. It contains the page identification of the current page.

8 USAT Interpreter byte codes

Each USAT Interpreter byte code is a TLV. Each byte code has its own byte code tag value, optional attributes and a
list of arguments. Arguments, if present, shall appear in the order given.

The byte codes make use of the USAT Interpreter TLVs as follows:

Attribut Variable Variable | Inline Inline Page Ordered | Input Simple
e Referenc | Identifier | Value Value 2 Referenc | TLV List List TLV
Bytes es List TLV TLV TLV eTLV TLV TLV | Indicator
Set Variable v v v
Assign and v v v v v
Branch
Extract 4
Go Back 1
Branch on
Variable v v v v v
Value
Exit 1 v
Execute
USAT 1 v v
Command
Execute
Native 1 v v
Command
Get Length v v
Get TLV v v
Value
Display Text 1 v
Get Input 1 v v v

3GPP

Release 8 49 3GPP TS 31.113 Vv8.0.0 (2009-02)

8.1 Set Variable

This byte code sets one or more variables either to a value contained in the corresponding Inline Value TLV or to the
concatenated contents of the referenced variables in the Variable Identifier List TLV. This byte code can be used to e.g.
copy the content of one variable to another variable or to concatenate a list of variables and/or constant text into another
variable. All pairs of Variable ID and Inline Value TLV or Variable Identifier List TLVs are used independently, i.e. the
Variable ID is used to store the result of the following TLV only.

Length Value Description M/O
1 '40' Set Variable Tag M
1-3 1+A+..+1+X |Length M
1 Data Variable ID to store the result of the following TLV M
A TLV Inline Value TLV or Variable Identifier List TLV M
1 Data Variable ID to store the result of the following TLV ©)
X TLV Inline Value TLV or Variable Identifier List TLV 0]

Possible errors:

Error Code Description Action
No error OK Continue
Syntax error Syntaxerror Stop
Reference to undefined Reference to undefined variable Stop
Problem in memory Memory allocation problem Stop
management
Type mismatch Error in variables management Stop

At least one pair of Variable ID and Inline Value TLV or Variable Identifier List TLV shall be present in the Set
Variable byte code.

If a Variable Identifier List TLV is used, the DCS of the variable, which stores the result of the concatenation, shall be
set using the following rules:

- Ifallvariables have the same type, then the DCS of the result variable shall be set to the same as the DCS of the
first variable in the list;

- Ifvariables have different types, then the DCS of the result variable shall be set to "unknown".

8.2 Assign and Branch

This byte code may display a menu on the UE and may assign a selected value to a variable according to the selection
of the user.

The TLVs contained in the Ordered TLV List TLVs define whether the USAT Interpreter shall build a SELECT ITEM
command according to TS 31.111 [1] or perform an action immed iately.

When a SELECT ITEM command is built by the USAT Interpreter, the command qualifier to be used shall be '03.

Length Value Description M/O
1 '41' Assign and Branch Tag M
1-3 1+A+...+1+X |Length M
1 Data Destination Variable ID, identifier of the variable to be set M
A TLV Inline Value TLV: Contains the select item alpha-identifier (according @)
to TS 31.111 [1])
B TLV Ordered TLV List TLV (see description below) containing possibly: M

- Inline Value 2 TLV
- Inline Value TLV
- Page Reference TLV

X TLV Ordered TLV List TLV (see description below) @)

3GPP

Release 8 50 3GPP TS 31.113 Vv8.0.0 (2009-02)

Possible errors:

Error Code Description Action
No error OK Continue
Reference to undefined Reference to undefined variable Stop
Problem in memory Memory allocation problem Stop
management
Syntax error Syntaxerror Stop
USAT command failed USAT command failed.(SELECT ITEM could not be built) Stop
Type mismatch Error in variables management Stop

Exp lanation of used arguments:

8.2.1 Destination Variable Identifier

The content of this value identifies the destination variable. The value contained in the selected Inline value TLV within
the Ordered TLV List TLV will be assigned to this destination variable by the USAT Interpreter.

8.2.2 Inline TLV containing Select Item Title

The content of this TLV is running text which specifies the alpha identifier to be used by the USAT Interpreter when
generating a SELECT ITEM command fromthe "Assign and Branch" byte code according to TS 31.111[1].

8.2.3 Ordered TLV List TLV

One or more of these TLVs shall be contained in the "Assign and Branch" byte code.

Each of these TLVs encapsulate the
"Inline Value 2",containing the text of a single item of the SELECT ITEM command;
"Inline Value", containing a value to be assigned to the destination variable, if the item is selected; and
"Page Reference", containing a destination for a branch, if the item is selected.

TLVs in the given order, which determine the action to be performed.

General variable assignments and navigation operations may be performed by the "Assign and Branch" byte code
dependent on the data provided in the Ordered TLV List TLVs.

The "Assign and Branch" byte code can contain one or more Ordered TLV List TLVs. If more than one Ordered TLV
List TLVs are present within the same "Assign and Branch™" byte code, the following rules shall apply:

— Ifone or more Ordered TLV List TLVs containing an Inline Value 2 TLV are present in the same Assign and
Branch TLV in addition to one or more Ordered TLV List TLVs not containing an Inline Value 2 TLV, the
USAT Interpreter shall ignore the Ordered TLV List TLVs which do not contain the Inline Value 2 TLV. l.e. the
items of the generated SELECT ITEM command are only determined by the Ordered TLV List TLVs which
contain an Inline Value 2 TLV. Any actions defined by the Ordered TLV List TLVs not containing an Inline
Value 2 TLV are ignored.

— Ifonly Ordered TLV List TLVs not containing an Inline Value 2 TLV are present in the same Assign and
Branch TLV, the USAT Interpreter shall take into account the first Ordered TLV List TLV only.

When optional TLVs within the Ordered TLV List TLV are omitted, special cases can be encoded according to the
following table:

3GPP

Release 8 51 3GPP TS 31.113 Vv8.0.0 (2009-02)

Inline Inline value (to be | Page Reference
Value 2 assigned to
destination
variable)
present present present "Display, Assign and Branch"

When the user has selected this item (described by the Inline
Value 2 TLV) from the list, the USAT Interpreter shall assign
the value of the Inline value TLV to the destination variable
and branch to the page or the navigation unit specified within
the Page Reference TLV.

present present not present "Set Variable Selected"

When the user has selected this item (described by the Inline
Value 2 TLV) from the list, the USAT Interpreter shall assign
the value of the Inline Value TLV to the destination variable
and process next byte code.

present not present present "Go Selected"

When the user has selected this item (described by the Inline
Value 2 TLV) from the list, the USAT Interpreter shall branch
to the page or the navigation unitspecified within the Page
Reference TLV. A destination variable identifier shall be
ignored for this case.

present not present not present "Display and Process next byte code"

When the user has selected this item (described by the Inline
Value 2 TLV) from the list, the USAT Interpreter shall process
the next byte code. Adestination variable identifier shall be
ignored for this case.

not present present present "Assign and Branch”

The USAT Interpreter shall assign the value of the Inline
Value TLV to the destination variable and branch to the page
or the navigation unit specified within the Page Reference
TLV.

not present present not present "Set Variable"

The USAT Interpreter shall assign the value of the Inline
value TLV to the destination variable.

not present not present present "Direct Go"

The USAT Interpreter shall directly branch to the page or the
navigation unit specified within the Page Reference TLV. The
destination variable identifier shall be ignored for this case.
not present not present not present not valid, if occurs a “Syntax error” shall be issued.

If the Ordered TLV List TLVs contained in the "Assign and Branch™ byte code resulted in the generation of a SELECT
ITEM command with only one item according to the above defined rules, the USAT Interpreter shall immed iately
performthe action assigned to this item but not generate the SELECT ITEM command. For this optimisation the
assigned actions are as follows:

— "Display, Assign and Branch'': Assign the value of the Inline value TLV to the destination variable and branch
to the page or the navigation unit specified within the Page Reference TLV.

— "Set Variable Selected": Assign the value of the Inline Value TLV to the destination variable and process next
byte code.

— "Go Selected™: Branch to the page or the navigation unit specified within the Page Reference TLV.

— "Display and Process next byte code™: Process the next byte code.

3GPP

Release 8 52 3GPP TS 31.113 Vv8.0.0 (2009-02)

8.3 Extract

This byte code extracts a byte array froma value and stores the result in a variable.

Length Value Description M/O
1 '42' Extract Tag M
1 4 Length M
1 Data Variable ID, which shall contain the result M
1 Data Variable ID, containing the source data M
1 | Zero based startindexin the byte array M
1 N Maximum number of bytes to extract, ‘00" indicates to retrieve all M
remaining bytes

Possible errors:

Error Code Description Action
No error OK Continue
Syntaxerror Syntaxerror Stop
Problem in memory Memory allocation problem Stop
management
Reference to undefined Reference to undefined variable Stop
Out of range Index out of range. Stop

8.4 Go Back

This byte code forces branching to the last anchor pushed on the history list. It has no impact on the history list itself.

Length Value Description M/O
1 '43'/'C3' Go Back Tag M
1 A Length M
A Data Attributes 0]

Possible errors:

Error Code Description Action
No error OK Continue
Jump to undefined Reference to undefined (case of history containing no Stop
previous anchors any more)

Attributes:

|b8| b7|b6|b5| b4|b3| b2|b1|
——RestartCurrentNU

0: Do notrestart current navigation unit
1: Do restartthe current navigation unit, history listignored

RFU
Follow bit

3GPP

Release 8 53 3GPP TS 31.113 Vv8.0.0 (2009-02)

8.5 Branch On Variable Value

This byte code compares a variable to a list of values that have an associated Page Reference. When a match is found,
the referenced page shall be executed. If no match is found, the first Page Reference after the Ordered TLV List shall be
used to branch. If this last Page Reference TLV is not contained in the byte code, no branch shall be executed and the
USAT Interpreter shall continue to render the next byte code after the Branch on Variable Value byte code.

Length Value Description M/O
1 ‘44’ Branch on Variable Value Tag M
1 1+A+...+X+Y |Length M
1 Data Variable ID (containing the value to match) M
A TLV Ordered TLV List TLV (see description below) containing: M
- Variable Identifier List TLV (referring to one variable containing
the value to be compared with the match value, additional
Variable IDs to be ignored) or Inline Value TLV
- Page Reference TLV, to branch to, if value matches
X TLV Ordered TLV List TLV)
Y TLV Page Reference TLV, if no match is found, go to this reference (@)
Possible errors:
Error Code Description Action
No error OK Continue
Reference to undefined Reference to undefined variable Stop
Jump to undefined Page Reference not found. Stop
Type mismatch Error in variables management Stop

Exp lanation of used arguments:

85.1 Variable ID

This variable shall contain the value to be compared.

85.2 Ordered TLV List

In each of these TLVs the following TLVs are encapsulated:

- Variable Identifier List TLV (referring to one variable containing the value to be compared with the match value;
additional Variable 1Ds to be ignored);

OR
Inline Value TLV (directly containing the value to be compared with the match value);

- Page Reference TLV.

The Page Reference TLV contains the location to be branched to, if the comparison is successful.

8.5.3 Page Reference

If no match was found, the reference contained in here is used to branch. If this TLV is not available, no branch is
executed and the USAT Interpreter continues to render the next byte code after the Branch on Variable Value byte code.

8.6 Exit

If the TerminateSession Attribute is notset, the USAT Interpreter shall behave as defined by the current terminal
response handler configuration for the case of "Proactive SIM session terminated by the user".

3GPP

Release 8

If the TerminateSession Attribute is set, the proactive session is terminated immed iately by the USAT Interpreter. The

54 3GPP TS 31.113 Vv8.0.0 (2009-02)

USAT Interpreter shall respond to the UE with SW1/SW2="9000" in this case.

If the USAT Interpreter had been called USIM internally (by an proprietary internal interface), the Variable Identifier
List TLV may be used to provide return values to the calling function. Handling of these internal return values isout of
the scope of the present document.

If the USAT Interpreter does not support the mechanis m of providing return values, it shall ignore the possibly available

Variable Identifier List TLV.

Length Value Description M/O
1 '45'/'C5' Exit Tag M
1 A+B Length M
A Data Attributes o
B TLV Variable Identifier List TLV (containing return values) o
Possible errors:
Error Code Description Action
No error OK Stop
Reference to undefined Variables in Variable Identifier list are not available Stop

Attributes:

|b8|b7|b6|b5|b4|b3|b2|b1|

——TerminateSession

configuration
1. terminate session immediately

RFU
Follow bit

8.7

Execute USAT Command

This byte code executes an USAT command using the provided arguments.

3GPP

0: exitdetermined by current terminal response handler

Release 8 55 3GPP TS 31.113 Vv8.0.0 (2009-02)

Length Value Description M/O/C
1 '46'/'C6' Execute USAT Command Tag M
1 A+5+B Length M
A Data Attributes (@]
1 Data General Result code variable ID. C

The variable referenced by this variable ID is used to hold the
General Result code extracted from the Terminal Response of the
executed USAT command.

This variable ID shall be present if and onlyif indicated in the
"Behaviour" bits of the attribute byte.

1 Data USAT command output variable ID. C
The variable referenced by this variable ID is used to hold the output
of the USAT command according to clause 8.7.5. The content of the
USAT command output variable depends on the
"ResultOptimisationRequired" bit of the attribute byte.

This variable ID shall be presentif and onlyif indicated in the "Output
variable" bit of the attribute byte.

1 Cmd type Command type value according to TS 31.111 [1] M
1 Cmd qual. Command qualifier value according to TS 31.111 [1] M
1 Destdev. Destination device according to TS 31.111 [1] M
B TLVs Sequence of @)
and Simple - simple TLVs of the proactive command as defined in
TLV Indicators TS 31.111 [1]
- and/or Simple TLV Indicators
Possible errors:
Error Code Description Action
No error OK Continue
Reference to undefined Reference to undefined Stop
Problem in memory Memory problem in the preparation of the USAT command Stop
management
Syntaxerror Try to initialise a text element Stop
USAT command failed USAT Command could not be delivered to UE Stop
USAT command not allowed | due to configuration of the USAT Interpreter Stop
Type mismatch Error in variables management Stop

Exp lanation of used arguments:

3GPP

Release 8

8.7.1 Attributes

56 3GPP TS 31.113 Vv8.0.0 (2009-02)

|b8|b7|b6|b5|b4|b3|b2|b1|

——ResultOptimisationRequired
0: optimisation required (see clause 8.7.5)
1. optimisation not required (see clause 8.7.5)

Behaviour
01: perform next USAT byte code, regardless of General
Result. The terminal response handler mechanism shall
not be invoked. General Result code variable ID shall be
present.

00: Stop, if General Resultindicates temporary or fatal error.
For other general result values, the terminal response
handler mechanism shall be invoked. General Result
code variable ID shall not be present.

10: Stop, if General Resultindicates fatal error. For other
general result values, the terminal response handler
mechanism shall be invoked. General Result code
variable ID shall be present.

11: Whatever the value of the General Result, the terminal
response handler mechanism shall be invoked. General
Result code variable ID shall be present.

Output variable
0: USAT command output variable ID shall not be present
1: USAT command output variable ID shall be present

RFU

8.7.2 Simple TLV

Follow bit

This TLV shallbe asimple TLV coded as described in TS 31.111 [1] for the USAT proactive command to be executed.

8.7.3 Simple TLV Indicator

A Simple TLV Indicator is a placeholder for a Simple TLV. A Simple TLV Indicator is coded as follows:

Coding Description
'00' This value indicates the Simple TLV Indicator
Length This value indicates the length of the following data
belonging to the Simple TLV Indicator
Result Tag This value represents the Tag value of the resulting

Simple TLV

Simple TLV Indicator
content

The Simple TLV Indicator content may contain variable
substitution indicators to indicate variable references.
Therefore the Simple TLV Indicator content has to be
structured into Length - Value and Variable Substitution
Indicator - Variable ID pairs. The possibly available
variable references have to be expanded according to
clause 6.3 Method 1 during processing of this indicator
by the USAT Interpreter.

The result of processing the Simple TLV Indicator shall be a Simple TLV. When the USAT Interpreter processes a
Simple TLV Indicator the Result Tag shall be the Tag of the resulting Simple TLV. The value part shall be formed of
the Simple TLV Indicator content and the length of the resulting Simple TLV is the length of the Simple TLV Indicator
content after possible variable substitution.

3GPP

Release 8 57 3GPP TS 31.113 Vv8.0.0 (2009-02)

8.7.4 Sequence of Simple TLVs and Simple TLV Indicators

The sequence of these Simple TLVs and Simple TLV Indicators is translated by the USAT Interpreter to formthe
sequence of Simple TLVs of an USAT command (TS 31.111 [1]). When expanding Simple TLV Indicators to Simple
TLVs the length of the BER-TLV of the resulting USAT command shall be adjusted by the USAT Interpreter before
issuing the command to the UE.

When executing a Execute USAT command byte code, the USAT Interpreter issues a regular USAT command to the
UE using the USAT protocol. The translation procedure fromthe Execute USAT Command TLV to an USAT
command can be visualised in principle as follows:

Translation of an USAT Interpreter byte code in a USAT Command
USAT Interpreter byte code

| Tag | Len |Cmd typelCmd quall Dest dev | TLV 1 |

USAT Command + adjustment

Command tag

Command Device Source device tag
details length identities tag (UICC=0x81)
Command Command
details t; i
clarstag Number Device

identities length

Figure 8.1

8.7.5 Result of an Execute USAT Command

The result of executing an USAT command is a Terminal Response structure containing a list of Simple TLVs as
defined in TS 31.111[1].

If the General Result code variable ID is available the USAT Interpreter shall extract the General Result byte from the
Result TLV of the Terminal Response structure and shall store the General Result byte into the variable referenced by
the given General Result code variable ID. The extracted General Result (a single byte according to TS 31.111 [1]) can
be used e.g. for error handling on application byte code level.

If the General Result code variable ID is not available the USAT Interpreter does not extract the General Result byte
fromthe Result TLV of the Terminal Response structure.

If the Output variable attribute bit in the attributes indicates that the USAT command output variable ID is present, the
Terminal Response structure itself is processed by the USAT Interpreter as specified in the following 2 clauses (8.5.5.1
and 8.7.5.2).

If the Output variable attribute bit in the attributes indicates that the USAT command output variable ID is not present
the USAT Interpreter does not store the Terminal response structure. The ResultOptimisationRequire attribute bit shall
be ignored by the USAT Interpreter in that case.

8.75.1 Optimisation not Required

If the ResultOptimisationRequired bit in the attributes is set to "optimisation not required", the complete Terminal
Response structure as specified in TS 31.111[1] is stored in the USAT command output variable as referenced by the
given USAT command output variable ID. The stored Terminal Response structure starts with the tag of the Command
Details as specified in TS 31.111 [1].

The Get TLV Value byte code can be used in this case to extract specific information from the Terminal Response
structure.

3GPP

Release 8 58 3GPP TS 31.113 Vv8.0.0 (2009-02)

8.75.2 Optimisation Required

Only the first TLVs after the Result Simple TLV within a Terminal Response (see TS 31.111 [1]) shall be processed by
the USAT Interpreter as follows:

- Ifthe first TLV after the Result Simple TLV is a Text String TLV according to TS 31.111 [1], the value part
without the DCS byte is assigned to the variable referenced by the USAT command output variable ID. The DCS
is removed from the V field of the Text String TLV, but used for variable management internally by the USAT
Interpreter.

- Inall other cases, the value part of the first TLV after the Result Simple TLV is assigned to the variable
referenced by the USAT command output variable ID. The type "unknown" shall be used for variable
manage ment internally by the USAT Interpreter.

8.8 Execute Native Command

This byte code is used to execute an operating systemcall, "plug-in" or an application external to the USAT Interpreter.

The attribute indicates if the execution returns to the USAT Interpreter or not. Arguments are passed for input and
output. The output is stored in a list of variables.

Length Value Description M/O
1 '47'1'CT' Execute Native Command Tag M
1 A+2+B+C Length M
A Data Attributes O
2 Data NCI of application or plug-in M
B TLV Input List TLV containing arguments ®)
C TLV Variable Identifier List TLV for output of application or plug-in @)

The NCI (Native Code Identifier) has a size of 2 bytes and is binary coded, most significant byte first. The values ‘0000
to "7TFFF' are defined in clause 9. Other values may be used for proprietary imp lementations.

Possible errors:

Error Code Description Action
No error OK Continue
Reference to undefined Reference to undefined Stop
Jump to undefined Execute element does not exist Stop
Problem in memory Memory problem in the preparation of the structure Stop
management
User Abort Execute was aborted by user Exception
(NOTEL1L)
Syntax Error Incorrect number of arguments passed to the execute Exception
element. (NOTE1)
Execution Error Execute element generated an internal error. Exception
(NOTE1L)
Type mismatch Error in variables management Stop
NOTEL: In case of error generated by the plug-in execution, the USAT interpreter shall execute the "Error
during plug-in execution" exception case of the Terminal Response Handler.

88.1 Attributes

|b8| b7|b6|b5| b4|b3| b2|b1|
—ExitFlag
0: Behaves as a function call to the native command
1: Behaves as a continuation; execution does notreturn to

page.
RFU

Follow bit

3GPP

Release 8

8.8.2

59 3GPP TS 31.113 Vv8.0.0 (2009-02)

Result of a Native Function Call

When the native function call returns, the values produced by the call are stored in the variables referenced by the

output list.

8.9 Get Length

This byte code instructs the USAT Interpreter to calculate the length of all variable contents of the variables in the
Variable List and to assign the result to the output variable.

Length Value Description M/O
1 '48' Get Length Tag M
1-3 1+A Length M
1 Data Variable ID (output, containing the BER encoded result length in M
binary format according to ISO/IEC 7816-6 [5])
A TLV Variable Identifier List TLV, Variable List for length calculation M
Possible errors:
Error Code Description Action
No error OK Continue
Problem in memory Memory allocation problem Stop
management
Reference to undefined Reference to undefined variable Stop

8.10

Get TLV Value

This byte code instructs the USAT Interpreter to extract the value part of a TLV froma sequence of TLVs and to assign

the resulting value to the output variable.

If the requested tag value is not found in the sequence of TLVs, the output variable is generated with no content (i.e. the

length of content of the variable is 0).

Length Value Description M/O
1 '49' Get TLV Value Tag M
1-3 2+A Length M
1 Data Variable ID (output, containing the value of the requested TLV) M
1 Data Tag value to search for M
A TLV Variable Identifier List TLV, each referenced variable shall contain a M
list of TLVs (e.g. generated Temminal Response of Execute USAT
Command)
Possible errors:
Error Code Description Action
No error OK Continue
Problem in memory Memory allocation problem Stop
management
Reference to undefined Reference to undefined variable Stop

3GPP

Release 8

8.11

Display Text

60 3GPP TS 31.113 Vv8.0.0 (2009-02)

This byte code instructs the USAT Interpreter to issue a DISPLAY TEXT command according to TS 31.111 [1].

This command is used to display text of informational nature without require any input from user. The USAT
Interpreter shall use the DCS value according to the indication given in the attributes of the Inline Value TLV. Ifno
attributes are given in the Inline Value TLV, the coding scheme indication of the current page shall be used.

Length Value Description M/O
1 ‘4N | 'CA’ Display Text Tag M
1-3 1+A Length M
1 Data Attributes @]
A TLV Inline Value TLV, containing text to be displayed M
The following parameters shall be used for the generated DISPLAY TEXT command:
Field Comment
Command Details High Priority shall always be used. Other
accordingto TS 31.111 [1] | command parameters shall be used
according to the information provided in the
attribute byte.
Coding of the attributes:
|b8| b7|b6|b5| b4|b3| b2|b1|
—Userinteraction
0: Wait for user to clearmessage
1: Clear message after delay
RFU
Follow bit
Possible errors:
Error Code Description Action
No error OK Continue
Reference to undefined Reference to undefined variable Stop
Type mismatch Error in variables management Stop
8.12 Get Input
This command is used to request multiple character input from user.
Length Value Description M/O
1 '4B'/'CB' Get Input Tag M
1-3 A+1+B+C Length M
A Data Attributes 0]
1 Data Variable ID (for storing the entered characters, the variable type M
information of the variable is set according to the DCS indication
received from the UE. The DCS received from the UE is notstored in
the variable value.)
B TLV Inline Value TLV, containing text to be displayed (e.g. the question, to M
be used in the text string TLV ofthe GET INPUT USAT command)
C TLV Inline Value 2 TLV, containing the default text for the default text TLV (0]
ofthe GET INPUT USAT command

Coding of the attributes:

3GPP

Release 8

|b8|b7|b6|b5|b4|b3|b2|b1|

61 3GPP TS 31.113 Vv8.0.0 (2009-02)

Requested character set for input
0: SMS default
1:UCSs2

Requested input mode of UE
0: Digits
1: Alphabet set

Minimum length of input string
4 bits to encode the minimum length of input,
minimum length in the range 0-15

RFU
Follow Bit

The following parameters shall be used for the generated GET INPUT command:

Field

Comment

Response length

Minimum length:
the value supplied by the attribute byte is to
be used;

Maximum length:
'FF' shall be used

Command Qualifier

UE may echo user input on the display;,
User input to be in unpacked format;
No help information available;

If more parameters are necessary for the Get Input command, for security reasons (e.g. user input shall not be revealed
in any way), the Execute USAT command byte code shall be used.

Possible errors:

Error Code Description Action
No error OK Continue
Problem in memory Memory allocation problem Stop
management
Reference to undefined Reference to undefined variable Stop
Type mismatch Error in variables management Stop
9 Native Commands

Native Commands or "plug-ins" shall be used to provide specific functionality not contained in the USAT Interpreter
byte code set. This can be e.g. operating system calls, execution of specific security algorithms, calcu lation routines or
conversion routines. All native commands are called using the Execute Native Command byte code.

Each native command shall have a Native Code Identifier. The Native Code Identifier has a size of 2 bytes and is binary
coded, most significant byte first. The NCI values '0000' to '7FFF' are specified in this clause. Other values may be used
for proprietary imp lementations.

Native Commands defined below are optionally to be supported by the USAT Interpreter. If any of these Native
Commands are supported by the USAT Interpreter (which are specified within the present document using a NClI
specified in the present document), they shall be implemented according to the present document.

Native commands specified by the present document:

3GPP

Release 8 62 3GPP TS 31.113 Vv8.0.0 (2009-02)

NCI Name Chapter

'00 00 RFU

'00 01" P7 — PKCS#7 Signature Plug-In 9.121
‘00 02' FP — Fingerprint Plug-In 9.1.2.2
'00 03 AD — Asymmetric Decryption Plug-In 9.1.2.3
'00 04" DE — Triple DES Encryption Plug-In 9.1.3.1
'00 05 DD - Triple DES Decryption Plug-In 9.13.2
'00 06 DS — Triple DES Sign Plug-In 9.1.3.3
‘00 07 DU — Triple DES Unwrap Plug-In 9.134
'00 08' CP — Change PIN Plug-In 9.1.4.1
‘00 09 RP — Reset PIN Plug-In 9.1.4.2
'00 OA-'7F FF' RFU

9.1 Security Plug-ins

9.1.1 Common Topics

9.1.1.1 Security Policy
Security policy related issues like
- principles of key management and key life cycle management

- practices and procedures to be followed when carrying out technical and administrative aspects of key
manage ment

- responsibilities and accountability of each party involved
- the types of records (i.e. audit trail information) to be kept

are all outside the scope of the present document.

911.2 Classification of PINs

The majority of plug-ins specified in subclause 9.1 normally (configuration dependent) include a PIN, and possibly also
a PUK, verification step. This step is necessary to identify the user and obtain exp licit authorisation before certain
sensitive operations can be performed. The PIN(s) required by the security plug-ins bear no relation to the UICC

PINs [4] (e.g. the USIM application PINs), and shall be completely controlled by the USAT Interpreter.

Theoretically, there can be as many PINs as there are keys, even if this seems unwise froma practical point of view.

9.1.13 Key Diversification

Key diversification is a technical term that signifies the possibility to associate a key with conditions stating for what
purpose(s) the key may be used. Normally key diversification is used to improve the security of a systemby
eliminating certain security threats and reducing system comp lexity.

This specification mandates that:
- key diversification shall be implemented for all keys accessible to the security plug-ins

- key usage enforcement shall be implemented in every security plug-in that requires a key for it's operation

9.1.14 Output Parameters

The security plug-ins defined in subclause 9.1 conformto a model whereby a plug-in always generate one, or at most
two, output variables. The first variable, called the Plug-in Status Code, indicates the status of the plug-in upon
termination.

The second variable, called the Functional Output, is used to hold the result from the primary function of the plug-in,
whenever this is applicable (not all plug-ins have a defined output).

3GPP

Release 8 63 3GPP TS 31.113 Vv8.0.0 (2009-02)

Obviously this only applies when the Error Code returned by the Execute Native Command byte code is "No error',
otherwise the USAT Interpreter would unconditionally stop.

9.1.2 PKI Plug-ins

9.1.2.1 P7 - PKCS#7 Signature Plug-In

9.1.211 Description

The P7 plug-in is used to provide a digital signature based on a private (RSA) key stored on the USIM card. The output
of the plug-in is comp liant with the WMLScript Crypto Library SignText function. As such, P7 will also be compliant
with other important specifications like PKCS#1 and PKCS#7.

9.1.21.2 NCI

The NCI for this plug-in is '00 01".

9.1.2.1.3 Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the
following table:

Length Value Description M/O/C
1 ‘00°/01°/ Key identifier type. Indicates the type of the key identifier supplied in M
‘02’703’ the next parameter:

e ‘00’ = No keyidentifier supplied. The plug-in shall choose a
default key, if such a key exists, or abort with Plug-in Status
Code "PS: No such key".

e ’'01'=User keyhash. SHA-1 hash of the user public keyis
supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this keyis not
available, abort with Plug-in Status Code "PS: No such key".

e ‘02’ =Listof trusted key hashes. One ormore SHA-1 hash
values of trusted CA public key(s) are supplied in the next
parameter. The plug-in shall use a signature key that is certified
by the one of the indicated CAs or, if such a key is not available,
abortwith Plug-in Status Code "PS: No such key".

e ‘03’ =Indexof RSAkey.

1 Data Index of RSAkey (AKI). C
20 Data User key hash. C
A Data List of trusted key hashes. The format of the field shall be LV, where C
the length is BER encoded onto 1, 2 or 3 bytes according ISO/IEC
7816-6 [5], and the value is the concatenation of all hash values.
1 ‘04’708’ Character encoding scheme M
e ‘04’ = GSMdefault (unpacked). See TS 23.038 ([3]) for further
reference
e ‘08 =UCS2
B Data Options. M
C Data Text to be signed (TTBS). Represented in the indicated character M

encoding scheme.

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error"” and plug-in
termination.

Coding of the "Options™ field:

3GPP

Release 8 64 3GPP TS 31.113 Vv8.0.0 (2009-02)

|b8| b7|b6|b5| b4|b3| b2|b1|
——Contentflag

0: Do notinclude TTBS in the output
1: Include the TTBS in the output

Keyhash flag
0: Do notinclude hash of the public keyin the output

1: Include hash of the public key in the output

Certificate flag
0: Do notinclude a URL to the public key certificate in the output
1: Include a URL (or list of URLS) to the public key certificate(s)
in the output

ICCID flag
0: Do notinclude the ICCID in the output
1: Include the ICCID in the output

Message digest flag
0: Do notinclude the message digest of the TTBS in the output
1: Include the message digest of the TTBS in the output

Keyindexflag
0: Do notinclude the index of the RSAkeyin the output
1: Include the index of the RSAkey in the output

RFU

Follow bit
0: No more option bytes available
1: Another option byte available as next byte

9.1.214 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Contents
1 Plug-in Status Code (see subclause 9.1.2.1.6).
2 Functional Output. A SignedContent data structure as described in
subclause D.1.2.3 or a textual error message.

9.1.2.15 Execution

The detailed execution of the plug-in is described in subclause D.1.1.

9.1.2.1.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK™" ‘00’ There was no error.
"PS: User cancel" 21 The user cancelled the operation.
"PS: No such key" 22 The requested key s not available.
9.1.2.2 FP — Fingerprint Plug-In
9.1.2.21 Description

The FP plug-in is used to provide a digital signature based on a private (RSA) key stored on the USIM card. The plug-in
output contains a PKCS#1 comp liant digital signature and is as such in line with important specifications like PKCS#1
and PKCS#7.

3GPP

Release 8 65 3GPP TS 31.113 Vv8.0.0 (2009-02)

The plug-in follows a principle whereby an (encoded) excerpt of the data is displayed to the user before it is signed. The
data itself would in a sensible application be represented as a DER encoded value.

9.1.2.2.2 NCI

The NCI for this plug-in is '00 02".

9.1.2.2.3 Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the
following table:

Length Value Description M/O/C
1 ‘00°701°703’ | Keyidentifier type. Indicates the type of the key identifier supplied in M
the next parameter:

e ‘00’ = No keyidentifier supplied. The plug-in shall choose a
default key, if such a key exists, or abort with Plug-in Status
Code "PS: No such key".

e ’'01'=User keyhash. SHA-1 hash of the user public keyis
supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this keyis not
available, abort with Plug-in Status Code "PS: No such key".

e ‘03’ =Indexof RSAkey.

1 Data Index of RSAkey (AKI). C
20 Data User key hash. C
A Data Options. M
B Data Data-to-be-signed. To be truly PKCS#1 compliant, this should be a M

DER encoded value of the Digestinfo ASN.1 type, as specified in
PKCS#1. B shall be equal to or greater than 16.

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error” and plug-in termination.

Coding of the "Options" field:

|b8|b7|b6|b5|b4|b3|b2|b1|
—RFU

Key hash flag
0: Do notinclude hash of the public keyin the output
1: Include hash of the public key in the output

Certificate flag
0: Do notinclude a URL to the public key certificate in the output

1:Include a URL (or list of URLS) to the public key certificate(s)
in the output

ICCID flag
0: Do notinclude the ICCID in the output

1: Include the ICCID in the output

RFU

Keyindexflag
0: Do notinclude the index of the RSAkey in the output
1: Include the index of the RSAkey in the output

RFU

Follow bit
0: No more option bytes available
1: Another option byte available as next byte

3GPP

Release 8 66 3GPP TS 31.113 Vv8.0.0 (2009-02)

9.1.2.24 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Contents
1 Plug-in Status Code (see subclause 9.1.2.2.6).
2 Functional Output. A WrappedContent data structure as described in
subclause D.2.2.2 or a textual error message.

9.1.2.25 Execution

The detailed execution of the plug-in is described in subclause D.2.1.

9.1.2.2.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK" ‘00’ There was no error.
"PS: User cancel" 21 The user cancelled the operation.
"PS: No such key" 22 The requested key s not available.
9.1.2.3 AD — Asymmetric Decryption Plug-In
9.1.2.3.1 Description

This plug-in is used for application-level asymmetric (RSA) decryption.

It is crucial that the application utilizing this plug-in protects the output fromthe plug-in in some way, e.g. by using
(cryptographic) blinding.

9.1.2.3.2 NCI
The NCI for this plug-in is '00 03".

9.1.2.3.3 Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the
following table:

Length Value Description M/O/C
1 ‘00°/01°/03" | Keyidentifier type. Indicates the type of the key identifier supplied in M
the next parameter:

e ‘00’ = No keyidentifier supplied. The plug-in shall choose a
default key, if such a key exists, or abort with Plug-in Status
Code "PS: No such key".

e ’01'=User keyhash. SHA-1 hash of the user public keyis
supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this keyis not
available, abort with Plug-in Status Code "PS: No such key".

e ‘03’ =Indexof RSAkey.

1 Data Index of RSAkey (AKI). C
20 Data User key hash. C
A Data Ciphertext. A byte string of the same (byte) length as the modulus of M

the decryption key. Ashall be equal to or greater than 16.

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

9.1.2.34 Output Parameters

The following table describes the output of the plug-in:

3GPP

Release 8 67 3GPP TS 31.113 Vv8.0.0 (2009-02)

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.2.3.6).
2 Functional Output. The plaintext as described in subclause D.3.2 or a
textual error message.

9.1.2.35 Execution

The detailed execution of the plug-in is described in subclause D.3.1.

9.1.2.3.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK" ‘00’ There was no error.
"PS: User cancel” 271 The user cancelled the operation.
"PS: No such key" ‘22’ The requested keyis not available.

9.1.3 Triple DES Plug-ins

9.1.3.1 DE — Triple DES Encryption Plug-In

9.13.11 Description

The DEplug-in is used to encrypt arbitrary application-level data. It is typically called froma page to encrypt data
before it is transmitted to a network application.

9.1.3.1.2 NCI

The NCI for this plug-in is '00 04",

9.1.3.13 Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the
following table:

Length Value Description M/O/C
1 Data Index of key. M
A Data Options. M
8 Data IV (according to b1 of Options). C
B Data Data to encrypt (plaintext). M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug -in termination.

Coding of the "Options" field:

3GPP

Release 8

|b8|b7|b6|b5|b4|b3|b2|b1|

68 3GPP TS 31.113 Vv8.0.0 (2009-02)

——vilag

0: IV notincluded and shall be setto '00 ... 00’
1: IVincluded

Cipher spec.
00: 3DES EDE ECB with two keys
01: 3DES EDE CBC with two keys
10: 3DES EDE ECB with three keys
11: 3DES EDE CBC with three keys

RFU

Follow bit
0: No more option bytes available
1: Another option byte available as next byte

ECB mode combined with IV shall be regarded as a "Syntax Error".

9.13.14 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.3.1.6).
2 Functional Output. The encrypted plaintext (i.e. ciphertext). 1 to 8 bytes
longer than the length of the plaintext.
9.1.3.15 Execution

The detailed execution of the plug-in is described in subclause F.1.1.

9.1.3.1.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK™ ‘00° There was no error.
"PS: User cancel" 21 The user cancelled the operation.
"PS: No such key" 22’ The requested keyis not available.
9.1.3.2 DD — Triple DES Decryption Plug-In

9.1.3.21 Description

The DD plug-in is used to decrypt arbitrary application-level data. It is typically called froma page to decrypt data that

has been encrypted by a network application.

9.1.3.2.2 NCI

The NCI for this plug-in is '00 05",

9.1.3.2.3 Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the

following table:

3GPP

Release 8 69 3GPP TS 31.113 Vv8.0.0 (2009-02)

Length Value Description M/O/C
1 Data Index of key. M
A Data Options. M
8 Data IV (according to b1 of Options). C
B Data Data to decrypt (ciphertext). M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error"* and plug-in termination.

Coding of the "Options" field:

|b8| b7|b6|b5| b4|b3| b2|b1|

——vilag
0: IV notincluded and shall be setto '00 ... 00’
1: IVincluded

Cipher spec.
00: 3DES EDE ECB with two keys

01: 3DES EDE CBC with two keys
10: 3DES EDE ECB with three keys
11: 3DES EDE CBC with three keys

RFU

Follow bit
0: No more option bytes available
1: Another option byte available as next byte

ECB mode combined with 1V shall be regarded as a ""Syntax Error".

9.1.3.24 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.3.2.6).
2 Functional Output. The decrypted ciphertext (i.e. plaintext). 1 to 8 bytes
shorter than the length of the ciphertext.

9.1.3.25 Execution

The detailed execution of the plug-in is described in subclause F.2.1.

9.1.3.2.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK™ ‘00’ There was no error.
"PS: User cancel" 21 The user cancelled the operation.
"PS: No such key" 22 The requested keyis not available.
9.1.3.3 DS — Triple DES Sign Plug-In
9.1.331 Description

The DS plug-in is used to calculate a message authentication code (MAC) for arbitrary application-level data. The
MAC can be used as a data integrity mechanismto verify that data has not been altered in an unauthorised manner. It
can also be used as a message authentication mechanism to provide assurance that a message has been originated by an
entity in possession of the secret key.

3GPP

Release 8 70 3GPP TS 31.113 Vv8.0.0 (2009-02)

The MAC is calculated according to ISO/IEC 9797 (algorithm 3, padding method 2) [10].

9.1.33.2 NCI

The NCI for this plug-in is '00 06".

9.1.3.3.3 Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the
following table:

Length Value Description M/O/C

1 Data Index of key M

A Data Options M

1 ‘04’108’ Character encoding scheme M
e ‘04’ = GSMdefault (unpacked),see TS 23.038 ([3])
e ‘08 =UCS2

B Data Text to be signed (TTBS). Represented in the indicated character M
encoding scheme.

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error” and plug -in termination.

Coding of the "Options" field:

|b8|b7|b6|b5|b4|b3|b2|bl|

Truncation flag
0: 4 byte output (mostsignificant bytes)
1: 8 byte output

RFU

Follow bit
0: No more option bytes available
1: Another option byte available as next byte

9.1.3.34 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content

1 Plug-in Status Code (see subclause 9.1.3.3.6).

2 Functional Output. The signature (MAC) on the text to be signed. The
length of the signature is 4 or 8 bytes as indicated by the "Truncation
flag".

9.1.3.35 Execution

The detailed execution of the plug-in is described in subclause F.3.1.

9.1.3.3.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK" ‘00’ There was no error.
"PS: User cancel" 21 The user cancelled the operation.
"PS: No such key" 22 The requested key s not available.

3GPP

Release 8 71 3GPP TS 31.113 Vv8.0.0 (2009-02)

9.134 DU — Triple DES Unwrap Plug-In

9.1.34.1 Description

The DU plug-in is a key-management plug-in that enables a party in possession of a certain secret key, called a key
encryption key, to replace an USAT Interpreter related key stored in the USIM at its own desire.

9.1.34.2 NCI

The NCI for this plug-in is '00 07".

9.1.343 Arguments

The arguments (i.e. the value part of the inline value TLV within the input list TLV) shall be according to the following
table:

Length Value Description M/O/C
1 Data Index of the keyto be updated. M
A Data Options. M
B Data Encrypted key data. M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug -in termination.

Coding of the "Options™ field:

|b8| b7|b6|b5| b4|b3| b2|b1|

—L—Aigorithm ID
00: 3DES EDE CBC with three keys + ISO/IEC 9797 MAC
01: 3DES EDE CBC with two keys + SHA-1 MDC
10: 3DES EDE CBC with two keys + ISO/IEC 9797 MAC
11: 3DES EDE CBC with three keys + SHA-1 MDC

RFU

Wrapped key length:
00: 16 bytes
01: 24 bytes
10: RFU
11: RFU

RFU

Follow bit
0: No more option bytes available
1: Another option byte available as next byte

9.1.344 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.3.4.6).
9.1.345 Execution

The detailed execution of the plug-in is described in subclause F.4.1.

9.1.3.4.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

3GPP

Release 8 72 3GPP TS 31.113 Vv8.0.0 (2009-02)

Plugin Status Code Coding Description
"PS: OK" ‘00’ There was no error.
"PS: No such key" 22 The requested keyis not available.

9.1.4 PIN Management Plug-ins

These plug-ins shall be used to manage USAT Interpreter related PINs.

9.141 CP — Change PIN Plug-In

9.14.1.1 Description

The CP plug-in shall be used to change a PIN to a value specified by the user. The user is requested to enter first the old
PIN and then the new PIN twice, before the PIN is changed.

9.14.1.2 NCI

The NCI for this plug-in is '00 08".

9.14.1.3 Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the
following table:

Length Value Description M/O/C
1 01’/ Key identifier type. Indicates the type of the key identifier supplied in M
‘03’704 the next parameter:

e ’'01'=User keyhash. SHA-1 hash of the user public keyis
supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this keyis not
available, abort with Plug-in Status Code "PS: No such key
error".

e ‘03’ =Indexof RSAkey.

e ‘04’ =Indexof secret key.

1 Data Index of secret key. C
1 Data Index of RSA key. C
20 Data User key hash. C

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

9.14.1.4 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.4.1.6).
9.14.15 Execution

The detailed execution of the plug-in is described in subclause E.1.1.

9.14.1.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

3GPP

Release 8 73 3GPP TS 31.113 Vv8.0.0 (2009-02)

Plugin Status Code Coding Description
"PS: OK" ‘00’ There was no error.
"PS: User cancel” 27 The user cancelled the operation.
"PS: No such key" 22’ The requested keyis not available.
9.14.2 RP — Reset PIN Plug-In
9.14.21 Description

The RP plug-in shall be used by a specially trusted party to set a PIN value OTA to a value of its own choice remotely.

9.1.4.2.2 NCI

The NCI for this plug-in is '00 09".

9.1.4.2.3 Arguments

The arguments (i.e. the value part of the Inline Value TLV within the Input List TLV) shall be according to the
following table:

Length Value Description M/O/C
1 01’/ Key identifier type. Indicates the type of the keyidentifier supplied in M
‘03’704’ the next parameter:

e '01'=User key hash. SHA-1 hash of the user public key is
supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this keyis not
available, or abort with Plug-In Status Code "PS: No such key".

e ‘03’ =Indexof RSAkey.

e ‘04’ =Indexof secretkey.

1 Data Index of secret key. C
1 Data Indexof RSAkey. C
20 Data User key hash. C
A Data Options. M
B Data Encrypted PIN data (EP). M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

Coding of the "Options" field:

|b8|b7|b6|b5|b4|b3|b2|b1|

Algorithm identifier
000: RFU
001: RFU
010: RFU
011: 3DES EDE CBC with two keys + SHA-1 MDC
100: 3DES EDE CBC with two keys + ISO/IEC 9797 MAC
101: 3DES EDE CBC with three keys + SHA-1 MDC
110: 3DES EDE CBC with three keys + ISO/IEC 9797 MAC
111: RFU

RFU

Follow bit
0: No more option bytes available
1: Another option byte available as next byte

9.14.24 Output Parameters

The following table describes the output of the plug-in:

3GPP

Release 8 74 3GPP TS 31.113 Vv8.0.0 (2009-02)
Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.4.2.6).
9.1.4.25 Execution

The detailed execution of the plug-in is described in subclause E.2.1.

9.1.4.2.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding

Description

"PS: OK" ‘00’

There was no error.

"PS: No such key" 22’

The requested keyis not available.

10 End to End Security

10.1

This is for further study.

Encrypt

10.2

This is for further study.

Decrypt

11 Modes of operation

This is for further study.

11.1 Pull

This is for further study.

11.2 Push / Cell Broadcast

This is for further study.

12 Error handling and coding

This chapter describes how the USAT Interpreter shall behave when an error occurs. A table indicating the values for

the different error codes is provided.

12.1

Setting of the environment variable "error code”

After having executed a byte code, the USAT Interpreter shall set the value of the environment variable " Error code
generated by the last byte code command executed” ('05') according to the execution result. The possible execution
results for a given byte code command are listed in the definition of this byte code command. The values for all possible

error codes are listed in the table in clause 12.3.

3GPP

Release 8 75 3GPP TS 31.113 Vv8.0.0 (2009-02)

12.2 User notification of the execution

In each byte code command description, for each possible error code, an action is indicated. This action can be either
"continue™ or "stop".If the action indicated is "continue”, the USAT Interpreter shall process the next by te code without
notifying the user.

If the action is "stop", the USAT Interpreter shall notify the user by displaying an error message to the user. For the
DISPLAY TEXT USAT command used, the command qualifier options:

"wait for use to clear message”
shall be used.
The error messages displayed by the USAT Interpreter
— shall be able to be modified by the operator at the personalisation stage;
— shall be able to be different for each error code.

After having displayed this message, for any general result of the terminal response, the USAT Interpreter shall quit.

12.3 Error coding

For the indication of errors occurring during byte code processing error codes listed in the following table are defined.
This information can be accessed using the Error Code variable (‘05" in the systeminformation partition.

Type of error Coding
No error ‘0000
Syntaxerror '6F01'
Jump to undefined '6F02'
Problem in memory management '6F03'
Security problem '6F04'
Reference to undefined '6F05'
Out of range '6F06’
User abort '6F07"
Execution error '6F08'
USAT command failed '6F09'
USAT command not allowed '6FOA
USAT Interpreter transmission error '6FOB'
Type mismatch '6FOC'
General unspecific error '6FFF

3GPP

Release 8

76

3GPP TS 31.113 Vv8.0.0 (2009-02)

13 Tag Values

The present document uses the following Tag values:

Tag Value Usage
'01'/'81" Page Tag
'02' Page Identification Tag
'03' Page Unlock Code Tag
'04' One Time Password Tag
'05' Keep Alive List Tag
'06' Service ID Tag
‘07" String Pool Tag
'08'/'88" Terminal response handler modifier Tag
'09'/'89' Action TLV Tag
'0A" ['8A Navigation Unit Tag
‘0B’ Anchor Tag
'0C’ Anchor Reference Tag
‘0D’ Variable Identifier List Tag
'OE'/ '8E' Inline Value Tag
'OF'/ '8F' Inline Value 2 Tag
'10' Input List Tag
'11' Ordered TLV List Tag
12 Page Reference Tag
'13'/'93' Submit Configuration Tag
14 Submit Data Tag
'15'/'95" Gateway Address Tag
'16' Submit Tag
'17'to '3F RFU for data structures
'40' Set Variable Tag
‘41" Assign and Branch Tag
'42' Extract Tag
'43'/'C3' Go Back Tag
'44' Branch on Variable Value Tag
'45'['C5' Exit Tag
'46'/'C6’ Execute USAT Command Tag
47 ['CT’ Execute Native Command Tag
'48' Get Length Tag
'49' Get TLV Value Tag
'4A' | 'CA' Display Text Tag
'4B'/'CB' Get Input Tag
'AC'to '7F' RFU for commands

All other Tag values are RFU.

3GPP

Release 8 77 3GPP TS 31.113 Vv8.0.0 (2009-02)

Annex A (informative):
Terminal Response Handler Flow Charts

After an USAT command a General Result is returned and the returned General Result is checked according to the
current Terminal Response Handler Configuration. The further processing depends on the current Terminal Response
Handler Configuration which may have been modified by Terminal Response Handler Modifier TLVs.

3GPP

Release 8 78 3GPP TS 31.113 V8.0.0 (2009-02)

Terminal Response Handler
Execution Environment

TRH Modifier TLVs

imodify

Current TRH
configuration

Check General Result and
handle according to the
—— P matching entry of the
current TRH
Configuration

Text for user
notification
present in TRH
Modifier TLV?

yes

'

DISPLAY TEXT
(Text for user
notification)

SELECT ITEM
(action list)

More than one
action registered
for the general
result range?

Is General Result
within '00' to '0F'?

Execute "action to be
performed”

System or
Navigation
action

Specific handling
(see chapter
"7.1.8.4.4 Action
description™)

Return to Page Execution
Environment according to
the system action or the
navigation task

Type of
action?

Single USAT Interpreter
byte codes

Return to Page Execution
Environment according to
the attribute byte of the
Action TLV

Figure A.1

3GPP

Release 8 79 3GPP TS 31.113 Vv8.0.0 (2009-02)

Annex B (informative):
Example of Accessing USAT Interpreter Functionality in
Wireless Mark-up Language

B.1 Introduction

B.1.1 Purpose

The annexdemonstrates how USAT Interpreter functionality can be provided to the application developer by usage of a
mark-up language without requiring in-depth knowledge of USAT Commands. The annex is informative and the
functionality does not have to be limited to what is proposed here.

The annexproposes how to form WML [B3] code to address USIM Application Toolkit commands and Plug-In
extensions. The WML code constitutes the deck delivered fro man application provider as a response to a request for an
application.

The intention is to provide a necessary base for developing applications in WML. The annexthus describes a limited set
of WML that can be regarded as the minimal support needed for application development.

B.1.2 Terminology

The present document uses the terms Implicit and Explicit calls when discussing access to USAT and Plug-In
functionality. The distinction is that when the term Implicit is made it refers to cases where the WML cod e does not
indicate that a specific command is called but the rendering of the WML will be encoded to use specific commands.

When using the termexplicit, it refers to cases where the WML code specifically states that it intends to call a specific
function.

As an example, one can say that the following WML code is an implicit call of the USAT command displayText since
that function will be used to render the WML

<wml>
<card id="implicit">
<p>
Displayed
</p>
</card>
</wml>

The explicit version of that WML would be

<wml>
<card id="explicit">
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/atk/displayText?text=Displayed" />
</do>
</p>
</card>
</wml>

3GPP

Release 8 80 3GPP TS 31.113 Vv8.0.0 (2009-02)

B.1.3 Definitions and abbreviations

Acronym Definition
DCS Data Coding Scheme
PID Protocol IDentifier
WAP Wireless Application Protocol
WML Wireless Mark-up Language
ucs Universal Character Set
URL Uniform Resource Locators
USIM Universal Subscriber Identity Module
UTF Unicode Transformation Format
XML eXtensible Mark-up Language

B.2 Namespace

The WML code makes use of the concept of namespace to address the functionality. The WML code in the present

document uses the efi scheme, as defined by WAP Forum in reference [B4], to address USAT commands, Card plug-
ins and other explicitly addressed functionality. The concepts used in the namespace for addressing this functionality is
described in that specification.

According to the terminology of the EFI Framework specification, the USAT Interpreter can be introduced as an EF
Class. The addressing is then fully compliant with those ideas, regardless of future development.

According to the EFI Framework specification, the WML namespace used for addressing services from WML is
structured according to the below.

efi://vnd.3gpp.interpreter/atk/sendSm

In the terminology used in the EFI Framework, the above URL uses the default imp lementation of the
vnd.3gpp.interpreter class as the server and calls the service named atk/sendSm.

B.2.1 The USAT Interpreter EF Class

The USAT Interpreter is viewed as an EF Class with the name vnd.3gpp.interpreter. Its services are named using an
internally hierarchical structure to group the command types.

According to the EFI Framework, service names can contain the "/" which can be used to give a logical grouping to the
services supplied by the class. The USAT Interpreter class uses this notation to place services in logical groups. The
service groups address USAT Commands, Card resident plug-ins and interpreter internal functionality in appropriate
groups.

The service grouping used is listed in the below table.

Service Type Service Group
USAT commands atk/
Client side plug-in cpi/
Server side Plug-In spi/
USIM Manufacturer specifics Ssp/
Interpreter Internals ipi/

The present document only specifies specific forms forthe atk, spi and ipi groups of services.

B.2.2 Examples
The following lists a few examples of URLs that are used to address different type of functionality.

The following URL addresses the USAT command powe rOffCard with argument card

efi://vnd.3gpp.interpreter/atk/powerOf fCard?card=<value>

3GPP

Release 8 81 3GPP TS 31.113 V8.0.0 (2009-02)

The following URL addresses a client side plug-in with name sign, which is called with argument doc containing the
data to be signed and key1d identifying the key to be used.

efi://vnd.3gpp.interpreter/cpi/sign?doc=<text>gkeyId=<value>

The following URL addresses the USIM Manufacturer specific function dospecifics with data as contained by data.

efi://vnd.3gpp.interpreter/ssp/doSpecifics?data=11624

Here are some examples of more comp lete code using the addressing principles.

<wml>
<card id="play">
<p>
I will play you a tone!
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/atk/playTone?toneId=03&
timeUnit=01& duration=10&text=Hej" />
</do>
</p>
</card>
</wml>

<wml>
<card id="test">
<p>
Calling funny plugin
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/cpi/doGuess?
age=$ (age) & ; outputVar=output ">
<setvar name="age" value="35"/>
</go>
</do>
Olle has a mobile of the brand $(output)!
</p>
</card>
</wml>

B.3 WML

This clause gives an introduction to the WML and extended functionality.

B.3.1 WML Syntax

B.3.1.1 The WML page

A WML page is either stored at an application provider, or stored in compiled form on the USIM.

B.3.1.2 Entities

Entities are used to specify characters in the document character set which either need to be escaped in WML or may be
difficult to enter in a text editor. WM L text can contain numeric or named character entities. All entities begin with an
ampersand and end with a semicolon.

The following predefined named entities are supported:

Entity Character

& &

' apostrophe

< <

> >

 non-breaking space
­ soft hyphen

" "

3GPP

Release 8 82 3GPP TS 31.113 Vv8.0.0 (2009-02)

B.3.1.3 Elements

Elements may contain a start tag, content and an end tag. Elements have one of two structures:

<tag/> or <tag>content</tag>

B.3.1.4 Attributes

Attributes specify additional information about an element and are always specified in the start tag of an element. For
example:

<tag attr="abcd" /> or <tag attr="abcd">content</tag>

All attribute values are quoted using double quotation marks (™).

B.3.1.5 Variables

Variables can be used in the place of strings and are substituted at run-time with their current values. Anywhere the
variable syntax is legal, an $ character followed by (VARIABLENAME) indicates a variab le substitution:

$ (VARIABLENAME)
The setvar, input and select elements can be used to set a variable.

Different variables may contain characters fromdifferent character sets. The type of a variable is set the first time the
variable is defined in the WML document (for instance in a setvar, input or select element).

Variables have to be named with characters supported by 1SO-8859-1.

A sequence of two dollar signs ($$) represents a single dollar sign, where variable syntax is legal.

B.3.2 Extended functionality interface

Some commands on the USAT Interpreter are not possible to address using WML [B3] tags. In those cases, an EFI [B4]
syntax is used according to the following example:

<go href="efi://vnd.3gpp.interpreter/atk/functionName?argl=al"/>
The syntax is described in clause B.2.

The function name is unique for the command. All commands are called with different arguments, see clause B.5, and
the arguments are used for both input and output data. The name of the function defines which command to be called.

B.4 Implicit calls using WML syntax

Supported WML tags are described in this clause.

B.4.1 Prologue

A WML document always starts with an XM L declaration and a document type declaration.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE wml PUBLIC "-//3GPP//DTD USAT-WML 1.0//EN"
"http://www.3gpp.org/DTD/USAT-WML10.dtd">

B.4.2 Character encoding

The document always begins with an XML declaration containing the encoding attribute.

3GPP

Release 8 83 3GPP TS 31.113 Vv8.0.0 (2009-02)

The following examp les show the declarations for two different character encoding:

<?xml version="1.0" encoding="UTF-8" ?>
or
<?xml version="1.0" encoding="IS0-8859-1" 2>

This example shows how Unicode can be used for text that are to be input and output on the telephone, and for the
content of variables. It also shows that the Unicode variable content can be passed to the application provider as a
parameter value to the "go href" command. The whole URL in "go href" is limited to contain valid URL
characters. However, the content of the variables that are passed in the query string can be Unicode, e.g. in the example,
the content of the variable DRINK is Unicode.

<7xml version="1._8" encoding="UTF-8" %>
<*DOCTYPE wml PUBLIC *'-//3GPP/DTD USAT-WHML 1.8//EH"
“http://wew._3gpp.org/DTD/USAT-WHLY . B.dtd">
<wml:
{card>
<pr
<select name="DRINK" title="T&f{t 2 ">
<option value="T]f" >A] K </option>
<option value"E E" >EE (/option>
<option value 3% " >3 X <foption>
<fselect>
{7 3% H1 2= $ (DRINK)
<do type="accept™>
<go href="http://webserver/path/page.asp?drink=5(DRINK)" />
<fdoz
</p>
<fcard>
<fuml>

Figure B.1

B.4.3 Elements

The order of elements in a WML document is significant since the USAT interpreter will interpret the elements in
sequence.

In the following subclauses, the last column in the attribute tables indicates if the attribute is Optional(O) or
Mandatory(M).

The mapping of implicit WM L tags to USAT commands are exp lained in the following table.

WML tag USAT Command

wml -

p If containing text, DISPLAY TEXT is used.
br -

input GET INPUT

card -

option SELECT ITEM (In the selecttag.)
select SELECT ITEM

go SELECTITEM/ SEND SM
setvar -

noop -

do -

refresh -

B.4.3.1 wml element
The WML element defines a WML document and encloses all information in the document.

Syntax

3GPP

Release 8 84

<wml>content</wml>

B.4.3.2 card element

3GPP TS 31.113 Vv8.0.0 (2009-02)

The card element defines a container of text and elements in a WM L document. A document may contain multip le card
elements but card elements may not be nested. The first card element in a document is the start card.

Syntax

<card>content</card>

Attribute Explanation
id This attribute specifies a unique id of the card within the deck. (@)
newcontext This attribute specifies if the current USAT interpreter contextis to bere- O

initialised. Allowed values: true or false (Default).

<card id="cardl">

</card>

B.4.3.3 p element
The p element, or paragraph element, delimits a text clause.
No arguments are supported for the p element.

Syntax

<p>content</p>

B.4.34 brelement
The brelement inserts a line break in the displayed text.
The
element can not take any arguments.

Syntax

B.4.3.5 input element

The input element defines an input field where the user may enter information.

Syntax

<input/>

3GPP

Release 8 85 3GPP TS 31.113 Vv8.0.0 (2009-02)

Attribute Explanation

name This attribute specifies the name of variable to set. M

value This attribute specifies the default value of the variable named in the @)
name attribute.

format This attribute Expected data format entered by the user. The following (0]

values are allowed:
*M - Anycharacter. (Default)
*N - Anynumeric character.

emptyok This attribute specifies whether or not empty input will be accepted @)
Allowed values: true or false (Default).

maxlength This attribute specifies the max number of bytes that can be entered by 0]
the user.

title This attribute specifies the prompting string. @)

class This attribute specifies the type of the variable. The following values are @)
allowed:

SMSDefault - Defaultforan ISO-8859 WML document.
UCS2 - Default foran UTF-8 WML document.

<input title="Please enter your phone number" name="PHONE" format="*N" maxlength="20"/>

B.4.3.6 select Element

The select element defines and displays a set of optional list items from which the user can select an item. An
option element is required for each item in the list, see clause B.4.3.7. The name of the menu, normally displayed by
the telephone, is specified by the tit1le attribute.

Either the name or iname attribute can be used. If the i name attribute is used, the value attribute in the contained
option elements will be overridden with the calculated index

Syntax

<select>content</select>

Attribute Explanation

title This attribute specifies the title of the menu. (0]
name This attribute specifies the name of the variable to set. (@)
iname This variable specifies the name of the variable to set with the index @)

result of the selection. See the WAP WML specification [B3].

B.4.3.7 option element

The option element represents a list item in a list defined by the select element. The content consists of text that is
displayed as the option text. This text is used as the value of the value attribute if that attribute is not present. Empty
itemtext strings are not supported.

When an option is selected, the variable named in the enclosing select element is set to the value given by the
value attribute. Then the USAT interpreter navigates to the URI specified by the onpick attribute if present.

Syntax

<option>content</option>

Attribute Explanation

value This attribute specifies what the variable named in select attribute o
name is setto, if this option elementis selected.

onpick This attribute specifies a destination URI to go to, if this option @]

elementis selected.

This example illustrates the use of select and option. Ifthe userselects the "Banking" option, a jump will occur to

"card2". If the user selects the "Gambling" option, a jump will occur to “card3". If “[Home]" is selected a GET request
will be sent for the "home.wml" document. Note that the value attribute in the option element can not be used for

anything if the corresponding onpi ck attribute refers to an external URL.

3GPP

Release 8 86 3GPP TS 31.113 Vv8.0.0 (2009-02)

<select title="Please choose service" name="SELECTION">

<option value="BANKING" onpick="#card2">Banking</option>

<option value="GAMBLING" onpick="#card3">Gambling</option>

<option value="Not used." onpick="http://www.3gpp.org/home.wml">[Home]</option>
</select>

B.4.3.8 goelement

The go element declares a go taskto a URL or to a specified card in the document. The go element may also be used
for performing USAT interpreter or Gateway specific commands.

Note that after each "go href" referring to an external URL, no more WM L elements will be executed. Using text or
WML tags aftera"go href" referring to an external URL may cause problems for the application.

The URL may contain variable references.
The URL starts with "https://", if SSLis to be used for connecting to the application server.

For referencing a card, a hash sign (#') is used:

<go href="#CARD" />

Syntax

<go/>

<go>content<go>

Attribute Explanation

href This attribute identifies the destination URI. M

method This attribute specifies the http submission method to be used by the @)
Gateway. The following values are allowed:
get - HTTP GET will be used. (Default)
post - HTTP POST will be used.

<card>

<p>

<input title="Variable" name="VARIABLE"/>
<do type="accept'">
<go href="http://www.3gpp.org/page.jsp?f=$ (VARIABLE) & 1=StaticText "/>
</do>
</p>
</card>

<card>
<p>
<input title="First name" name="FIRSTNAME"/>
<input title="Last name" name="LASTNAME"/>
<input title="Age" name="AGE"/>
<do type="accept'">
<go method="post" href="http://www.3gpp.org/page.jsp?
f=$ (FIRSTNAME) & 1=$ (LASTNAME) & a=$ (AGE) "/ >
</do>
</p>
</card>

A card reference starts with the character '#'.

<card 1d="CARD1">
<p>
<do type="accept">
<go href="#CARD2"/>
</do>
</p>
</card>
<card id="CARD2">
<p>
You have jumped to CARD2.
</p>
</card>

3GPP

Release 8 87 3GPP TS 31.113 Vv8.0.0 (2009-02)

B.4.3.9 setvar element
The setvar element sets the value of a variable.

The class attribute is used for setting the type of the variable according to the present document.

Syntax
<setvar/>
Attribute Explanation
name This attribute specifies the name of the variable to be set. M
value This attribute specifies the value the variable is set to. May only contain M
fixed text. Variables are not allowed.
class This attribute specifies an optional type specification of the variable,used O
for conversion purposes in the Gateway. The following values are
allowed:
SMSDefault
SMSDefault.packed
Ucs2

binary.base64 - The variable contains binary data coded
according to base64 encoding. This is the default value if the "class"
attribute is omitted. The "binary.base64" class is used for instance when
encrypted data is sent to the content. The type in the USAT interpreter
will be "Binary" (Default).

The variable COUNTRY is set to "Sweden". The variable may later be used by referring to $ (COUNTRY) .

<setvar name="COUNTRY" value="Sweden"/>

setvar is contained in a refresh element

<card id="setexample2">

<p>

<do type="accept">
<refresh>
<setvar name="HEXVARIABLE" class="binary.base64" value="A678F5D3"/>
</refresh>

</do>

<do type="accept">
<go href="http://www.3gpp.org?a=$ (HEXVARIABLE) " />
</do>

</p>

</card>

setvar is contained in a go element. The variables are set before the go element is executed.

<card id="setexample3">
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3ggp.interpreter/cpi/encrypt?
al=$ (KEY1l) &a2=$ (KEY2) & ; outputVar=out" >
<setvar name="KEY1" class="binary.base64" value="F5FF34FF" />
<setvar name="KEY2" class="binary.base64" value="90AB45DA"/>
</go>
</do>
</p>
</card>

B.4.3.10 noop element
The noop element specifies that nothing will be done. The noop element requires a start tag only.
Syntax

<noop/>

3GPP

Release 8 88 3GPP TS 31.113 Vv8.0.0 (2009-02)

B.4.3.11 do element

The do element is a general mechanis m for the user to act upon the current card. The supported types are accept and
vnd. 3gpp.org. Both of these imply that the task following the do element is always executed.

This means that the execution of the script does not stop at the do element. If a stop before the do element is desired, a
construction as in the WML example given below can be used.

Syntax

<do>content</do>

Attribute Explanation

type This attribute specifies the type of the do element. The following values M
are allowed:
vnd.3gpp.org - When the do element contains a USAT interpreter
specific command.
accept - All other cases.

<wml>

<card id="command">
<p>

<input title="Enter your age:" name="AGE"/>
<do type="accept'">
<go href="http://www.3gpp.org/survey.asp?f=$ (AGE) & name=Martin" />
</do>
</p>
</card>
</wml>

B.4.3.12 refresh Element

The refresh element surrounds the setvar tag. The refresh tag has no function in itself.
Syntax

<refresh>content</refresh>

B.5 Explicit calls using WML syntax

This clause demonstrates how the namespace can be used to explicitly address USAT Commands, USAT Interpreter
specific functions and Plug-ins. The purpose is to demonstrate how this can be done rather than to describe how the
complete command set of the USAT Interpreter is addressed.

Mandatory parameters need always be present in an explicit call and the optional attributes may be left out. The last
column in the following tables indicates if the attribute is M-mandatory or O-optional.

An argument value can include a variable, which is substituted at run-time with its current value.

B.5.1 Services for USAT Commands

Access to USAT commands is grouped into the service group atk. Anything that belongs to this group of services can
be coded, by the gateway, by using generic coding on the byte code level.

The following table lists the logical group of services used for calling USAT commands.

Service Name
atk/launchBrowser
atk/playTone
atk/provideLocallnfo
atk/refresh
atk/runATCommand

3GPP

Release 8 89 3GPP TS 31.113 Vv8.0.0 (2009-02)

atk/sendUSSD
atk/sendSM
atk/setupCall
atk/setldleModeText

For detailed information on the parameters and data format, see TS 31.111 [1]. Although the "GO" tag is used, no
message is sent to the server, as the commands are executed locally on the USIM.

The following clauses handle these functions in detail. The parameter names as listed in the tables below are the same
as the ones that are to be used in the URL query string. The parameter names are case sensitive.

B.5.1.1 Launch Browser

This command causes the USIM to request that the ME start a browser to interpret the content corresponding to the
URL.

Service name: atk/launchBrowser?qualifier=&URL=

Argument Argument value

qualifier The Command Detalls to use (see TS 31.111 [1]). The value is (0]
given in decimal format. The default value is 0.

URL The URL whose contents is to be displayed. M

A browser will be launched and the URL "http://www.3gpp.org/page.wml" will be fetched.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/atk/launchBrowser?
URL=http: //www.3gpp.org/page .wml" />
</do>
</p>
</card>

B.5.1.2 Playtone

This command makes the mobile station play a tone.

Service name: atk/playTone?toneId=&timeUnit=&duration=&text=

Argument Argument value

toneld 01:Dial tone M
02: Called subscriber busy
03: Congestion
04: Radio path acknowledge
05: Radio path not available
06: Error / special information
07: Call waiting time
08: Ringing tone

timeUnit 00: minutes M
01:seconds
02: tenths of seconds

duration Coded as integer multiples of the time unit used. Decimal value. M
Allowed values: 0-255.

text Text to display. (Corresponds to the alpha identifier according to (0]

TS 31.111 [1])

In this example, the mobile phone is requested to play a congestion tone with duration of 10 seconds. Since text string is
empty, no text will be displayed.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/atk/playTone?
toneld=03&timeUnit=01& duration=10"/>

3GPP

Release 8 90 3GPP TS 31.113 Vv8.0.0 (2009-02)

</do>
</p>
</card>

B.5.1.3 Provide Local Information

This command is used to get location information fromthe mobile station. Different location parameters can be fetched
fromthe mobile phone and put into a variable.

Service name: atk/provideLocalInfo?qualifier=&outputVar=

Argument Argument value

qualifier 00: location information (7 bytes) M
01:IMEI of ME (8 bytes)
02: Network measurement results and BCCH list (16 bytes)
03: Date, time and time zone (7 bytes)
04: Language setting (2 bytes)
05: Timing advance (2 bytes)
outputVar Variable to contain output data. M

In this example, the IMEI is fetched and put in the variable imeiOutput. On the next line, the IMEI is sent to a
content provider.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/atk/providelLocalInfo?
qualifier=01l&outputVar=imeiOutput" />
</do>
<do type="accept'">
<go href="http://www.arne.se?IMEI=$ (imeiOQutput) "/>
</do>
</p>
</card>

B.5.14 Refresh

This command makes the USIM notify the mobile phone of changes in the USIM configuration as the result of USIM
application activity. Depending on the command qualifier, d ifferent tasks will be performed. For more information see
TS 31.111[1].

Service name: atk/refresh?qualifier=&numberOfFiles=&fileList=

Argument Argument value

qualifier 00: USIMInitialisation and Full File Change Notification M
01: File Change Notification (requires file list)
02: USIM Initialisation and File Change Notification (requires
file list)
03: USIM Initialisation
04:USIMReset

numberOfFiles Number of files included in £ilelist. Decimal value. (0]
Default: 0.
fileList List of files. (0]

In the example, a USIM initialisation is requested, and in addition, the mobile phone in notified that two files on the
USIM have been updated, 3F00/2F05 and 3F00/7F10/6F 3A.

<card id="command">
<p>
<do type="vnd.3gpp.org">
<go href ="efi://vnd.3gpp.interpreter/atk/refresh?qualifier=02&
numberOfFiles=02& fileList=3F002F053F007F106F3A" />
</do>
</p>
</card>

3GPP

Release 8 91 3GPP TS 31.113 Vv8.0.0 (2009-02)

Full paths are given to files. Each file path is at least 4 octets in length. An entry in the file description begins with
'3FXX"and there is no delimiters between files.

B.5.15 Run AT Command

This command makes the USIM request the ME to execute an AT Command.

Service name: atk/runATCommand?command=&text=&iconId=

Argument Argument value
command The AT Command string that is to be executed M
text Text to be displayed to the user. (0]
iconld The identifier of an icon to show instead of text. (0]
<card id="command">
<p>
<do type="vnd.3gpp.org">
<go href ="efi://vnd.3gpp.interpreter/atk/runATCommand?
command=ATD0706746151 samp; text=Calling"/>
</do>
</p>
</card>
B.5.1.6 Send USSD
This command sends a byte string by the Unstructured Supplementary Service.
Service name: atk/sendUSSD?text=&ussd=
Argument Argument value
text Text to display. (0]
ussd According to [B1]. M

In this example, a USSD message with the contents "*21*1222#" is sent to the network.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/atk/sendUSSD?
text=MessageText&ussd=*21*12224"/>
</do>
</p>
</card>

B.5.1.7 Send SM

This command sends a plain text SM to a particular destination.

Service name: atk/sendSM?userData=&pid=&dcs=&bNumber=&smscAddress=

Argument Argument value

userData Text in the SM. (@]

pid Protocol identifier. Decimal value. Default; 0. (0]

dcs Data Coding Scheme, according to TS 23.038 [3]. Decimal (0]
value.

bNumber The called party number. M

smscAddress The number of the service center. (@]

In this example, a text SM, with contents as entered by the user, is sent to MSISDN "0706754321". As "PID" and
"DCS" are omitted, the default values "0" and 242" decimally are used. The Service Centre "+46705008999" is used,
regardless of the default value in the mobile phone.

<card>
<p>
<input title="Please enter message" name="m"/>
<do type="vnd.3gpp.org">

3GPP

Release 8 92 3GPP TS 31.113 Vv8.0.0 (2009-02)

<go href="efi://vnd.3gpp.interpreter/atk/sendSM?userData=$ (m) &
bNumber=0706754321& smscAddress=+46705008999" />
</do>
</p>
</card>

B.5.1.8 Setup call
This command requests the mobile phone to initiate a call.

Service name:
atk/setupCall?qualifier=&text=&capability=&timeUnit=&duration=&bNumber=

Argument Argument value

qualifier 00: onlyif not currently busy M
01:onlyif not currently busy, with redial
02: putting all other calls on hold
03: putting all other calls on hold, with redial
04: disconnecting all other calls
05: disconnecting all other calls, with redial

text Text to display. (Corresponds to the alpha identifier according to (0]
TS 31.111[1])

capability Capability Configuration Parameters. For coding, see [B2]. (0]
Default: None.

timeUnit This argument is mandatory if duration attribute is used. O
Default: Not used.
00: minutes
01:seconds
02: tenths of seconds

duration Coded as integer multiples of the time unit used. Decimal value. (0]
Allowed values: 0-255. Default: Not used.

bNumber The called party number. M

In this example, the USIM requests the mobile phone to set up a call to *0707789613", if not currently busy with
another call. No text is displayed, no Capability Configuration Parameters are attached, and no automatic retries to set

up the call will be made.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/atk/setupCall?
qualifier=00& bNumber=0707789613"/>
</do>
</p>
</card>

B.5.1.9 Setldle Mode Text
This command sets a text on the idle screen of the mobile station.

If no text attribute is included or the text attribute consists of an empty string, the existing idle mode text on the mobile
phone will be removed.

Service name: atk/setIdleModeText?text=

Argument Argument value

text The idle mode text to display. (0]

This example will set the idle mode text to "Welcome™.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/atk/setIdleModeText?
text=Welcome"/>
</do>
</p>
</card>

3GPP

Release 8 93 3GPP TS 31.113 Vv8.0.0 (2009-02)

B.5.2 Services for Interpreter Commands

These are commands that are directed to the Interpreter itself and thus are internally handled by the interpreter. Unless
otherwise stated, the encoding of the result variables match the format of the information as specified in other parts of

this specification.

The following table lists the logical group of services used for calling interpreter internal functions.

Service Name

ipi/getinterpreterVersion
ipi/getBufferSize
ipi/getNativeCommandList
ipi/getTemminalProfile
ipi/getErrorCode
ipi/getMaxPageSize
ipi/getissuerUrl
ipi/getlssuerUrlHash

B.5.2.1 GetlInterpreter Version Information
This command reads the version information of the USAT Interpreter and assigns it to the specified variable.
Service name: ipi/getInterpreterVersion?outputvVar=

Argument Argument value
outputVar Variable to contain output data. M

B.5.2.2 GetlInterpreter Buffer Size

This command reads the size of the receive and send buffer of the USAT Interpreter and assigns it to the specified
variable.

Service name: ipi/getBufferSize?outputVar=

Argument Argument value
outputVar Variable to contain output data. M

In the following example, the interpreter buffer size and version information are put into the variables "bufferSize" and
"version" respectively. On the next line, the information is sent back to the Application Provider.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/ipi/getInterpreterVersion?
outputVar=version"/>
</do>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/ipi/getBufferSize?
outputVar=bufferSize" />
</do>
<do type="accept">
<go href="http://www.server.com?VERSION=$ (version) &8BUFFER=$ (bufferSize)" />
</do>
</p>
</card>

B.5.2.3 Get Native Command List
This command reads the list of supported native commands.

Service name: ipi/getNativeCommandList?outputVar=

3GPP

Release 8 94 3GPP TS 31.113 Vv8.0.0 (2009-02)

Argument Argument value

outputVar Variable to contain the output list of supported Native Commands M

B.5.24 Get Terminal Profile

This command gets the Terminal Profile as got at runtime by the USAT Interpreter.

Service name: ipi/getTerminalProfile?outputVar=

Argument Argument value

outputVar Variable to contain the binary encoded terminal profﬂe M

B.5.25 Get Error Code for Last Byte Code Command

This command gets the Error Code generated by the last executed byte code command.

Service name: ipi/getErrorCode?outputVar=

Argument Argument value

outputVar Variable to contain the error code M

B.5.26 Get Maximum Size for Temporary Storage of Page

This command gets the maximum page size for temporary storage of one page.

Service name: ipi/getMaxPageSize?outputVar=

Argument Argument value

outputVar Variable to contain the maximum size of a page M

B.5.2.7 Get USAT Interpreter Issuer URL
This command gets the URL of the issuer of the USAT Interpreter.

Service name: ipi/getIssuerUrl?outputVar=

Argument Argument value

outputVar Variable to contain the URL of the issuer of the USAT Interpreter M

B.5.2.8 Get USAT Interpreter Issuer URL Hash
This command gets the 4 most significant byte of the SHA-1 hash of the URL of the issuer of the USAT Interpreter.

Service name: ipi/getIssuerUrl?outputVar=

Argument Argument value

outputVar Variable to contain the hash of the URL M

B.5.2.9 GetUser Name
This command gets the name of the end user, if the end user has set the values.

Service name: ipi/getUserName?outputVar=

Argument Argument value

outputVar Variable to contain the name of the end user M

3GPP

Release 8 95 3GPP TS 31.113 Vv8.0.0 (2009-02)

B.5.2.10 Get User Emaill

This command gets the email of the end user, if the user has chosen to set it.

Service name: ipi/getUserEmail?outputVar=

Argument Argument value

outputVar Variable to contain the email of the end user. M

B.5.3 Services for Calling Client Plug-Ins

This clause illustrates the way the addressing for calling a card plug-in is done and the principles for handling the
arguments to the plug-in. The addressing enables the application to call any plug-in that is available for the application.
The actual plug-ins that are available for the application depends on the configuration of the USAT Interpreter. On the
byte code level, the card plug-ins are called in a generic way. The translation to generic format is done by the gateway.

To exemplify the calling of plug-ins from the application, an example plug-in with the name myPlugin is used. It is
assumed that there are seven arguments to the plug-in as described in the table below.

a# Argument Argument value

al homeTown The home town of the user M
a2 currentTown The town where the user currentlyis. M
a3 homePhone The home phone number of the user @)
a4 buyTicket This parameter acts as a Boolean value. If itis set (0]

to 1, a ticket will be reserved. If setto O, only
timetable is provided. The default behaviour is to
provide timetable information only.

a5 timeTolLeave If set, the parameter gives a date when the user (0]
wishes to start travelling.

a6 timeToArrive If set, this parameter gives a date when the user o
wishes to arrive.

a7 transport The desired means of transport for the user. 0]

As a calling convention for plug-ins, the parameter names are enumerated using a as a prefix. The enumeration order
indicates the order in which the arguments are sent to the plug-in. Optional parameters that are not used are left out
fromthe URL query string.

The order of the parameters in the query string is insignificant. It is the naming of the parameters that control the order
when calling the plug-in.

This service will call the plug-in myP1lugin. Any other plug-in is called in the same manner based on its
documentation. The plug-in services are always placed in the cpi service group.

Service name: cpi/myPlugin
In this example, the plug-in myP1lugin is called using only arguments 1,2 and 7 as described by the documentation.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/cpi/myPlugin?
a2=Stockhomé& a7=Train&al=Paris" />
</do>
</p>
</card>

The WML code above causes the gateway to construct a call to the generic plug-in mechanis mto call a plug-ins whose
name is myPlugin. The arguments to the generic call are inserted in the order the naming enumerates them.

3GPP

Release 8 96 3GPP TS 31.113 Vv8.0.0 (2009-02)

B.6 Access to Special Features

This chapter describes how to modify the behaviour of the USAT Interpreter. This includes modifying the Terminal
Response Handler and variable management.

B.6.1 Variable Management

The byte code of the USAT Interpreter provides mechanis ms for sharing access to variables between pages. The
behaviour can be initiated from WML by using the constructs exemplified in this chapter.

Service Name

spi/lkeepAlive

B.6.1.1 Keep Alive and Protect Variables

The functionality to control saving of variables between decks is reached through aservice. What is given is a list of
variables that are to be shared with the next deck. Up to 64 variables can be indicated.

In the context of variable management, the one time password is used to control access to variables. Together with the
Page Unlock Code, it provides a possibility for sharing variable values between decks in a protected manner. This is
controlled by giving an argument to control password protection of the variables.

Service name:spi/keepAlive?variablelList=&password=

Argument Argument value

VariableList List of the variables that are to be made available to the following (0]
page. If the argumentis not present, all variables will be kept

UsePassword Indicates if the variables are to be protected by a usage of the (0]

combination of a one-time password and a page unlock. Values
can be “yes” or “no”. The default value is “no”.

password Gives the application provider the possibility to e xplicitly specify (0]
the password to be used for protecting the variables

The service is valid for the whole deck and is thus called in a template at deck level.

<wml>
<template>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/spi/keepAlive?
variablelList='A, B, NAME’&usePassword=yes
& ; pas sword=gurksmorgas"/>
</do>
</template>

B.6.2 Terminal Response Handler Modifier

This chapter illustrates how the Terminal Response Handler can be modified. The Terminal Response Handler Modifier
allows modification of the default behaviour for the Terminal Response Handler. In this context, modification includes
addition to and overriding of the default behaviour. The Terminal Response Handler can be modified for the whole page
and/or for each Navigation Unit.

When the service for modifying the Terminal Response Handler is called froma card, the scope is card. When the call
is handled as a template at the deck level, it is valid for the whole deck.

The following table lists the logical group of services used for performing Terminal Response Handler modification.

3GPP

Release 8 97 3GPP TS 31.113 Vv8.0.0 (2009-02)

Service Name

trh/replace
trh/add

trh/restore
trh/remove

The arguments to be supplied vary for the services.

B.6.2.1 Replace

Service name:
trh/replace?start=&end=&text=&actionDesc=&actionId=&href=&displayText=&
variableName=&setvarValue=&getInputString

The replace operation erases all previously defined actions for a result range and adds the one supplied as an argument

Argument Argument value
Start The start of the general result range that is to be modified M
End The end of the general result range thatis to be modified M
Text Text to display to the user when handling this general resultrange. O
actionDesc Text to describe the action. To be used in User Interface for select C
item when asking the user which action to perform when multiple
actions are defined for the general result range.
actionld Unique identifier of the action to be performed M
Href Indicates where to branch execution if the intended action is a Ci
navigation action. The href argument can also be used if the
intended action is to execute a native command, call a USAT
Command or perform another action as specified in this appendix.
displayText Text to be displayed if the desired action is to execute a DISPLAY C;
TEXT
variableName Name of variable to set. If this argument is present, either the C:
setvarValue or getlnputString is to be supplied. In the case where
setvarValue is supplied, as set variable is executed. If
getlnputString is supplied, the user is asked for input by supplying
the string.
setvarValue Value to assign to the variable. This argument is to be present C:1
onlyif the setvarName is given.
getinputString Text to display to the user when asking for input. Ci

The principle is to express the range that is to be modified and an action to be performed for that range. The actions that
can be used require somewhat different arguments. The arguments having the “C;"-property are mutually dependent as
described above. If the actions are systemactions, which means that the actionld is '00' — '03', none of the "C"
arguments are to be supplied. If the action to be performed is a navigation action, the argument href is used. This
attribute is also used for calling USAT Commands and Native Commands as defined elsewhere in this appendix

The example below will modify the Terminal Response Handler by replacing the action for the general result value of
'10" with a call to a USAT Command for setting a new idle mode text. The change is valid for the current card.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/trh/replace?
start=10& end=10&
text=Changing%20Idle Mode Text&
actionId=42&href="efi://vnd.3gpp.interpreter/atk/setIdleModeText?
text=Welcome’ " />
</do>
</p>
</card>

In the following example, the same change is applied to the whole deck.

3GPP

Release 8

<wml>
<template>

98

<do type="vnd.3gpp.org">

<go href="efi://vnd.3gpp.interpreter/trh/replace?
start=10& end=10&
text=Changing%$20Idle%20Mode%$20Text& ;

3GPP TS 31.113 Vv8.0.0 (2009-02)

actionId=42&href="efi://vnd.3gpp.interpreter/atk/setIdleModeText?

text=Welcome’ "/>

</do>
</template>

<card>
<p>

This is the card

</p>
</card>
</wml>

B.6.22 Add

Service name: trh/add?start=&end=&text=gactionDesc=&actionId=&href=&displayText=&
variableName=&setvarValue=&getInputString

The add operation adds a new action for an existing general result range or defines a new general result range and the
corresponding action.

Argument Argument value
Start The start of the general result range thatis to be modified M
End The end of the general result range thatis to be modified M
Text Text to display to the user when handling this general resultrange. O
ActionDesc Text to describe the action. To be used in User Interface for select C
item when asking the user which action to perform when multiple
actions are defined for the general result range.
Actionld Unique identifier of the action to be performed M
Href Indicates where to branch execution if the intended action is a Ci1
navigation action. The href argument can also be used if the
intended action is to execute a native command, call a USAT
Command or perform another action as specified in this appendix.
DisplayText Text to be displayed if the desired action is to execute a DISPLAY C;
TEXT
VariableName Name of variable to set. If this argumentis present, either the Ci
setvarValue or getinputString is to be supplied. In the case where
setvarValue is supplied, as set variable is executed. If
getinputString is supplied, the user is asked for input by supplying
the string.
SetvarValue Value to assign to the variable. This argumentis to be present C:1
onlyif the setvarName is given.
GetlnputString Text to display to the user when asking for input. Ci
The principle is exactly the same as for the replace mod ification.
B.6.2.3 Restore
Service name: trh/restore?start=&end=&
The operation restores the general result range.
Argument Argument value
Start The start of the general result range that is to be modified M
End The end of the general result range thatis to be modified M

3GPP

Release 8 99 3GPP TS 31.113 Vv8.0.0 (2009-02)

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/trh/restore?
start=10& end=10"/>
</do>
</p>
</card>

B.6.24 Remove

Service name: trh/remove?start=&end=&actionId=

The remove operation removes the specified action fromthe general result range that is specified.

Argument Argument value

Start The start of the general result range that is to be modified M
End The end of the general result range thatis to be modified M
actionld Unique identifier of the action to be performed M

This service will modify the Terminal Response Handler by removing the action of changing idle mode text for the
general result value of '10'.

<card>
<p>
<do type="vnd.3gpp.org">
<go href="efi://vnd.3gpp.interpreter/trh/remove?
start=10& end=10&
actionId=42"/>
</do>
</p>
</card>

B.7 References

[B1] 3GPP TS 22.030: "Man-Machine Interface (MMI) of the User Equipment (UE)".
[B2] 3GPP TS 24.008: "Mobile radio interface layer 3 specification; Core Network Protocols — Stage 3".

[B3] Wireless Application Protocol Forum: "Wireless Markup Language Specification. Version 1.3. 19 February
2000. Available: http://www.wapforum.org/".

[B4] Wireless Application Protocol: "EFI Frame work. Draft Version 0.15".

3GPP

Release 8 100 3GPP TS 31.113 Vv8.0.0 (2009-02)

Annex C (informative):
Terminal Response Handler Modifier examples

This annexprovides examples for the operations of the terminal response header modifier. Starting point for the examples is the partly shown systemterminal response handler
configuration, which is in this case the unmodified default terminal response handler configuration as specified in table 4.1 with an assumed text for user notification for the
general exception cases ("Error")..

The first row in the following tables shows the text for user notification assigned to a general result. A terminal response handler modifier can provid e such a text for a whole
range of general results. "--" indicates, that no user notification text is assigned to a general result.

The second row in the following tables shows the single action(s) assigned to a general result. For general results without an assigned action (indicated by "--" in the tables), the
USAT Interpreter uses the "TRH no matching GRR" exception case, which is indicated with the exception range 'FF 00'. If more than one action is assigned to a general result,
the USAT Interpreter issues a SELECT ITEM command, using the action description texts of the actions as items to let the user choose between the options. A terminal response
handler modifier can provide such a set of actions for a whole range of general results. a. indicates an action a with the assigned Action ID 'xx". For one general result, the
Action ID uniquely identifies an action. For different general results, the same action ID in the service defined range (Action ID '20'to 'FF') could identify different actions. To
distinguish between different actions with the same Action ID, the Action ID index is appended with a character. E.g. a4 represents a different action than a-q,, even if the
Action ID '20' is the same.

The third row the following tables shows the general result values to which the user notification texts and actions are assigned to.

Starting configuration, partly reflection the default terminal response handler configuration as specified in table 4.1:

Table C.1

Text for user -- -- -- -- -- -- -- -- -- -- -- -- -- -- "Error"
notification assigned to
a general result

Single action(s) for a ao aoo aoo aor ao aor aoz aor - - aor aor aor aor
general result; aos aoz aog
the index indicates the
assigned Action ID

general result value '00' ‘01" 'OF' ‘10 ‘11' '12' 13' '14' '15' '16' '20' 21 ‘22 'FF'

3GPP

Release 8

101

3GPP TS 31.113 Vv8.0.0 (2009-02)

C.1 Replace Operation

The following terminal response handler modifier is applied as a replace operation to table C.1:

Table C.2
Text for user "Proceed?"
notification assigned to
a general result range
Single action(s) for a aor
general result range; a'20a
the index indicates the aor
assigned Action ID
general result value '00' ['o1 ... ['OF '10' ['11 '12' [13 ['14 ['15' ['16' [... [20' [21 [22' [... ['FF

This terminal response handler modifier is applied to the general result range '10 11'. The new text for user notification for that result range is "Proceed?". The set of actions for
that general result range is one systemaction (‘Action 1D '01': process next byte code) and two service defined actions with the Action IDs 20" and "21". The result of a replace
operation of table C.2 on table C.1 is shown in the following table:

Table C.3
Text for user -- -- -- -- "Proce | "Proce | -- -- -- -- -- -- -- -- "Error"
notification assigned to ed?" ed?"
a general result
Single action(s) for a aqo aq aoo aor aor aor aoz aor -- -- aor aor aor ao1
general result; a20a ao0a aos a0z a0z
the index indicates the aar a2y
assigned Action ID
general result value '00' '01' 'OF' '10' '11' '12' 13' '14' '15' '16' ‘20 21" '22' 'FF

3GPP

Release 8 102 3GPP TS 31.113 Vv8.0.0 (2009-02)

C.2 Add/Append Operation

The following terminal response handler modifier is applied as an add/append operation to table C.3:

Table C.4
Text for user "Cont.?"
notification assigned to
a general result range
Single action(s) for a a20p
general result range; az
the index indicates the azs
assigned Action ID aos
general result value '00' ['o1 ... ['OF ['10' ‘11 ['12' [13 ['14 ['15' '16' [... [20' [21 [22' [... ['FF

This terminal response handler modifier is applied to the general result range '11 15'. The new text for user notification for that result range is "Cont.?". The set of actions for that
general result range are four service defined actions with the Action IDs ‘20" and '22' to '24'. Note that for this example action '20b' represents another action than '20a’ to show
this specific case. The result of an add/append operation of table C.4 on table C.3 is shown in the following table:

Table C.5

Text for user -- -- -- -- "Proce | "Cont. | "Cont. ["Cont. |"Cont. |"Cont. |-- -- -- -- "Error"
notification assigned to ed?" a e " " "
a general result
Single action(s) for a aoo aoo aoo aor aor aor aoz aor a20b' - aor aor aor aor
general result; ar2oa arop arop ar2op' ar2op' a2 aos aos aos
the index indicates the any aor ay oy Ay s
assigned Action ID a aos ag s Ao

azs as asy a2y

g
general result value '00' 01" 'OF '10' '11' 12’ 13’ 14’ '15' '16' 20’ 21 22’ 'FF

Note, that in this specific case, for the general result '11' action a,y is replaced by a,q,, which are different. a-o0, for general result '10' remains unchanged and represents a
different action than aqy for general result '10', even if the same Action ID is used.

3GPP

Release 8 103

3GPP TS 31.113 Vv8.0.0 (2009-02)

C.3 Remove Operation

The following terminal response handler modifier is applied as a remove operation to table C.5:

Table C.6
Text for user "GoOn?"
notification assigned to
a general result range
Single action(s) for a azo
general result range; a
the index indicates the
assigned Action ID
general result value '00' ['o1 ... ['OF '10' ['11 '12' [13 ['14 ['15' ['16' [... [20' [21 [22' [... ['FF

This terminal response handler modifier is applied to the general result range '10 11'. The new text for user notification for that result range is "GoOn?". Actions with Action Ids

'20"and '21' are to be removed. The result of a remove operation of table C.6 on table C.5 is shown in the following table:

Table C.7

Text for user -- -- -- -- "GoOn | "GoOn | "Cont. ["Cont. ["Cont. ["Cont. |[-- -- -- -- "Error"
notification assigned to " a e " " "
a general result
Single action(s) for a aoo aoo aoo aor aor aor a0z aor a0 -- aor aor aor aor
general result; ar ar ar2op aop' a2ob' a aos aos aos
the index indicates the az oy Az oy s
assigned Action ID aog aos ag s Ao

azg a4 a4
general result value '00' 01’ 'OF '10' 11 12 13 14 '15' '16' 20 21" '22' 'FF

3GPP

Release 8

104

3GPP TS 31.113 Vv8.0.0 (2009-02)

C4

Restore Operation

The following terminal response handler modifier is applied as a restore operation to table C.7:

Table C.8

Text for user
notification assigned to
a general result range

Single action(s) for a
general result range;
the index indicates the
assigned Action ID

general result value

00°

| 'Ol'

| IOFI

I 1101

11 — 15

16

| -201

| v21n

| v22v

| IFFI

This terminal response handler modifier is applied to the general result range '11 15". No texts and no actions for the general result range are to be provided. All actions and user
notification texts of the systemterminal response handler are restored for the given general result range. The result of a restore operation of table C.8 on table C.7 is shown in the

following table:

Table C.9
Text for user -- -- -- -- "GoOn | -- -- -- -- -- -- -- -- -- "Error"
notification assigned to "
a general result
Single action(s) for a aqo aq aoo aor ao aor aoz aor -- -- aor aor aor ao1
general result; aor Aoz a0z a0z
the index indicates the
assigned Action ID
general result value '00' '01' 'OF' '10' '11' '12' 13' '14' '15' '16' ‘20 21" '22' 'FF

3GPP

Release 8

105 3GPP TS 31.113 Vv8.0.0 (2009-02)

C.5

Special case: Empty text for user notification

For the operations add/append, replace and remove, the text for user notification may have an empty value part. In that case, the text for user notification is removed for the

respective general results.

E.g. for an add/append operation:

Table C.10

Text for user
notification assigned to
a general result range

Single action(s) for a
general result range;
the index indicates the
assigned Action ID

ao
a

general result value

00"

[or

['OF

10"

[T

120 |13 [14 |15 |16 [.. [200 21 [227 .. ['FF

This terminal response handler modifier is applied to the general result range '10 11'. The text for user notification for that result range is to be removed. Actions with Action IDs
'20"and '22' are to be added. The result of an add/append operation of table C.10 on table C.9 is shown in the following table:

Table C.11
Text for user -- -- -- -- -- -- -- -- -- -- -- -- -- -- "Error"
notification assigned to
a general result
Single action(s) for a ao ao aoo aor ao aor aoz aon -- -- aor aor aon aon
general result; ag ag aos aos Aoz
the index indicates the aar a2
assigned Action ID a2
general result value '00' '01' 'OF' '10' 11 '12' 13’ '14' '15' '16' 20 21" '22' 'FF

3GPP

Release 8 106 3GPP TS 31.113 Vv8.0.0 (2009-02)

C.6 Special case: No text for user notification

For the operations add/append, replace and remove, the text for user notification is optional. If no text for user notification is given in the terminal response handler modifier, the
text for user notification is remains unchanged for the respective general results.

E.g. for an add/append operation:

Table C.12

Text for user .
notification assigned to
a general result range

Single action(s) for a Aar
general result range; ass
the index indicates the
assigned Action ID

general result value 00 [0l [.. [OF [10° |11 [12° |13 14 [15 |16 [.. [200 21 [22° .. FF

This terminal response handler modifier is applied to the general exception case 'FF FF'. The text for user notification for all exception cases remains unchanged as no text for
user notification TLV is provided. Actions with Action IDs '34' and '35 are to be added to all exception cases. The result o fan add/append operation of table C.12 on table C.11is
shown in the following table:

Table C.13
Text for user - - - - -- - -- - - - - -- -- - "Error”
notification assigned to
a general result
Single action(s) for a aq ao aoo aor ag aor aoz aon -- -- aor aor aon aor
general result; ao ao aoz aoz aoz azs
the index indicates the aor a2 aszs
assigned Action ID a2
general result value '00’ 01’ 'OF '10° 11 12’ 13’ 14’ '15' '16' 20 21" 22' 'FF

3GPP

Release 8 107

C.7 Special case: Modify a single exception case

3GPP TS 31.113 Vv8.0.0 (2009-02)

Forall Terminal Response Handler operations, it is possible to modify the action linked to a single exception case using the general result range 'FF xx' (with xx between '00" and

'FE).

E.g. for an add/append operation:

Table C.14

Text for user "End -

notification assigned to of

a general result range page"

Single action(s) for a EOY

general result range;

the index indicates the

assigned Action ID

General result value ‘00" |01 | ['OF [710° [11° [12° [13° [14 [15 [16° [.. [200 210 T[22 FF' FF'

Exception type No Other
more | excepti
byte ons
code

This terminal response handler modifier is applied to the "No more byte code™ exception case 'FF 01'. The new text for user notification for that exception case is "End of page".

The set of actions for that exception case are one systemaction ("Action 1D '01'": process next byte code) and three service defined actions with the Action IDs '34'and '35' to '40'.

The result of an add/append operation of table C.14 on table C.13 is shown in the following table:

Table C.15

Text for user -- -- -- -- -- -- -- -- -- -- -- -- -- -- "End "Error"

notification assigned to of

a general result page”

Single action(s) for a aq ao aoo aor ao ao aoz aon -- -- aor aor aon aon aor

general result; azo aoo aos aoz aoz ass ass

the index indicates the aar a2z ass ass

assigned Action ID agy a0

general result value ‘00 ‘01" 'OF '10' 171" 12 13 14 '15' '16' ‘20 21 22 'FF' 'FF'

Exception type No Other
more | excepti
byte ons
code

3GPP

Release 8 108 3GPP TS 31.113 Vv8.0.0 (2009-02)

Annex D (normative):
PKI Plug-ins Implementation Specification

This annexprovides a detailed description of the PKI plug-ins described in subclause 9.1.2.

D.1 P7

D.1.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the P7 execution.

(START)

A 4

Display
TTBS

Get
Response

v

Key CANCEL
pressed?

OK

\ 4

Select
NO KEY key CANCEL
v

User
identification

v

Generate
signature

A\ 4

(FINISHED)

Figure D.1: P7 Flow diagram

The plug-in starts by showing the text-to-be-signed to the user and then awaits user confirmation. The user confirms by
pressing a confirmation-button (any button resulting in a Terminal Response with a general result range '00 OF') or

cancels by pressing a cancellation-button (any other general result value). If the user confirms, he shall be asked to enter
his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The termination states shall be mapped to output variables according to:

3GPP

3GPP TS 31.113 Vv8.0.0 (2009-02)

Release 8 109
State Plug-in Status Code | Functional Output Description
FINISHED | "PS: OK" SignedContent data | Indicates success.
CANCEL ["PS:User cancel” “error:userCancel” The user aborted the operation.
NO KEY | "PS: No such key" “error:noCert’ The requested keywas not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code
table in subclause 8.8.

D111

User Identification

The "User identification™ procedure is rather complex since it involves many states as well as alternative execution
paths. The remainder of this subclause illustrates, using a combination of flow diagrams and sequence diagrams, the
general characteristics of the user identification process.

(START)

PIN
terminated?

blocked?

NO

P
«

Verify

A 4

(PIN BLOCKED)

\ 4

PIN
terminated

h 4

(PIN TERMINATED)

YES

Enter
new PIN

Y

(PIN VERIFIED)

A 4

(PIN TERMINATED)

Figure D.2: User Identification Overview

If the execution stops in a "PIN TERMINATED" or "PIN BLOCKED" state, this shall lead to Error Code "Execution
Error" and plug-in termination.

3GPP

Release 8 110 3GPP TS 31.113 Vv8.0.0 (2009-02)

4

USAT USER PLUG-IN OPERATING
INTERPRETER SYSTEM

| | |

1 1 1

' ' GET INPUT !

: | "Enter PIN:" (PT 1) :

: / |‘ ﬁ

1 . . [} 1

' Exit plug-in: 1\ Cancel "y

i "PS: User cancel” ‘:‘ """"""""" p

o m e 44

1] 1

I ./ PIN P

! ! ! VERIFY PIN

| | -

| | ro

1 1 DISPLAY TEXT I 1 Wrong PIN

| | "Wrong PIN. Attempts left: 2" (PT 2) t----=----

: Jo oo

1 7\ !

| Exit plug-in: i ‘\ Cancel '

| "PS: User cancel")‘:' F-=------=----=---- >

) [|

d------=-=-=--=--- Fy-~—~~——=—-—=—=-=------ 1

| 1 (]

| . /I Ack i

1 1 . \

! - »

| | |

| | |

1] 1

' ' DISPLAY TEXT i PIN blocked

| ' "PIN blocked" (PT 3) € —mmm -

| Exitplug-in:, e - == mmmmmmmmmmm— = K

' "Execution Error" ' '

S i R s y

|] 1 PIN OK

| | <

1 |

Figure D.3: Verify PIN

"Verify PIN" procedure is implemented according to the figure D.3.

The maximum and minimum length restrictions on the PIN value shall be included into the GET INPUT command and
b3 of the command qualifier of the GET INPUT command shall be set to 1 (i.e. user input shall not be revealed in any
way) in order to hide the PIN code entered by the user on the display of the UE.

Ifthe PIN is entered incorrectly, the "Wrong PIN" (Prompt text nr 2) text shall be displayed concatenated with the
number of attempts left. E.g. if the "Wrong PIN" message is "Wrong PIN. Attempts left: "and there are two atte mpts left
before blocking, the message displayed on the screen shall be *Wrong PIN. Attempts left: 2".

3GPP

Release 8 111 3GPP TS 31.113 Vv8.0.0 (2009-02)

USAT USER PLUG-IN OPERATING
INTERPRETER SYSTEM

GET INPUT
“Enter PUK:" (PT 4)

A
=kl _____/|

Exit plug-in: Cancel
"PS: User cancel" .

i

|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IS
- -

1
1
1
]
|
]
)
1
1
|
]
)
A |
| | [
I '/ PUK H
X i ! VERIFY PUK
| | L
| | 'y
| 1 DISPLAY TEXT I 1+ Wrong PUK
| i "Wrong PUK. Attempts left: 2" (PT5) (€ - - - = - - - -
' H_________________‘_.l
| [
| N [
! . . [N |
! Exit plug-in: 1y Cancel '
| "PS: User cancel” ‘:‘ reTTTT T T T T T T T ",’:
) [|
d----=-=-=------- Fry-~ "~~~ ----------- 15
| | N
: ' Ack t
\
! o »
]] |
]] |
| | |
! ! DISPLAY TEXT ' PIN terminated
1 1 "PIN terminated" (PT 6) D
' Exit plug-in: € ———————mmm—————— - 1
' "Execution Error" ' '
I< ————————————— b - - e, ., —,——-—-——— - -
| 1 PUK OK
1
1
]

Y

Figure D.4: Verify PUK

"Verify PUK" procedure is implemented according to the figure D.4.

The maximum and minimum length restrictions on the PUK value shall be included into the GET INPUT command and
b3 of the command qualifier of the GET INPUT command shall be set to 1 (i.e. user input shall not be revealed in any
way) in order to hide the PUK code entered by the user on the display of the UE.

If the PUK is entered incorrectly, the "Wrong PUK" (prompt text no 5) message shall be displayed concatenated with
the number of attempts left. E.g. if the "Wrong PUK" message is "Wrong PUK. Attempts left: " and there are two
attempts left before blocking, the message displayed on the screen shall be "Wrong PUK. Attempts left: 2.

PUK functionality is an optional feature of the present specification.

3GPP

Release 8

112

3GPP TS 31.113 Vv8.0.0 (2009-02)

USAT USER PLUG-IN OPERATING

INTERPRETER SYSTEM
| | | |
1 1 1 1
! ' GET INPUT ! !
: 1_"Enter new PIN:" (PT7) ! :
| /) 3 |
1 1 1 1
] Exit plug-in: 1\ Cancel I !
: "PS: User cancel" ‘:’ “““““““““ > :
R e i R :
1 1 1l 1
| i/ NewPIN v |
] !]
!] L |
! | GET INPUT . |
X i /"Confirm new PIN:" (PT 8) Y X
| A . |
1 . i]] 1 \ 1
' Exitplug-in: '\ Cancel . !
! "PS: User cancel" [>: 1 !
- m e m - - = L i i -+ | |
| | [|
]]]]
' ' New PIN again ' ,' '
! P | MODIFY PIN 1
! : g N
! ' DISPLAY TEXT S
! ' "No match. Try again” (PT 9) U
| P e !
! m ¥
' Exit plug-in: . Cancel Y
1 1\ 1
' "PS: User cancel" ‘r L ’: !
P g 4!

\ PIN MODIFIED

[

Ml
I
I

Figure D.5: Enter New PIN

"Enter New PIN" procedure is implemented according to the figure D.5.

The user is requested to enter the new PIN twice. If the two PIN entries does not match, the procedure shall restart. The
use may abort the procedure (and the plug-in) at any time by pressing a cancellation-button (a button with a Terminal

Response not in the general result range '00 OF'. If the user enters two identical PIN values, the plug-in shall modify the
corresponding PIN value to the value entered.

Following prompt texts are used in the "User Identification" procedure:

Prompt Prompt Text example Command type Associated procedure
Text #

1 "Enter PIN:" GET INPUT (digits only, hidden, max. and | Verify PIN
min. length set accordingly)

2 "Wrong PIN. Attempts left: 2" [DISPLAY TEXT (high priority, wait for user | Verify PIN
to clear message)

3 "PIN blocked" DISPLAY TEXT (high priority, wait for user | Verity PIN
to clear message)

4 "Enter PUK:" GET INPUT (digits only, hidden, max. and Verify PUK
min. length set accordingly)

5 "Wrong PUK. Attempts left: DISPLAY TEXT (high priority, wait for user | Verify PUK

2" to clear message)

6 "PIN terminated” DISPLAY TEXT (high priority, wait for user | Verify PUK
to clear message)

7 "Enter new PIN:" GET INPUT (digits only, hidden, max. and Enter new PIN
min. length set accordingly)

8 "Confirm new PIN:" GET INPUT (digits only, hidden, max. and Enter new PIN
min. length set accordingly)

9 "No match. Try again." DISPLAY TEXT (high priority, wait for user | Enter new PIN
to clear message)

3GPP

Release 8 113 3GPP TS 31.113 Vv8.0.0 (2009-02)

D.1.2 Signature Calculation

The output from the P7 plug-in is a SignedContent data structure as specified in [13]. The (ordered) steps to produce
this datastructure are as follows:

1. Template expansion
2. Signing
3. Output formatting
Each step is described thoroughly in the following sections.

D.1.21 Template Expansion

The template expansion constructs the signer's authenticated attributes. These are:

Attribute oD Binary OID

contentType pkcs-9 3 '2A 86 48 86 F7 0D 01 09 03"
messageDigest pkcs9 4 '2A 86 48 86 F7 OD 01 09 04'
signeNonce pkcs-9 25 3 '2A86 48 86 F7 0D 01 09 19 03'

See [11] for further information regarding these attributes.

First, construct the following 91-byte buffer ('xx' indicates an undefined value):

31 59
30 18
06 09 2A 86 48 86 F7 0D 01 09 03 -— contentType
31 OB
06 09 2A 86 48 86 F7 0D 01 07 01 -- data
30 18
06 OA 2A 86 48 86 F7 0D 01 09 19 03 —-- signerNonce
31 0A
04 08 xxX XX XX XX XX XX XX XX —-- random nonce
30 23
06 09 2A 86 48 86 F7 0D 01 09 04 -— messageDigest
31 16
04 14 xx xxX XX XX XX XX XX XX XX -- SHA-1 digest

XX XX XX XX XX XX XX XX XX XX XX

The authenticated attributes are included in ascending order compared as byte strings.
Now perform the following steps.

1. Generate R, an 8 byte nonce, and replace B47 to B54 of the buffer with R. Recommended standards for
implementing pseudorandom bit generators are ANSI X9.19 or FIPS 186.

NOTE: The nonceshould be a pseudorandom number generated securely in the USIM and of good quality.

2. Generate
MD = SHA-1(TTBS).
Replace B72to B91 of the buffer with MD.

The expanded buffer constitutes the input to the signature generation operation.

D.1.2.2 Signature Generation Operation

Generate the signature

3GPP

Release 8 114 3GPP TS 31.113 Vv8.0.0 (2009-02)

S = RSASSA-PKCS1-vl_5-SIGN(K, M)
where K is the selected private key and M is the output fromthe previous step.

The hash function required in EMSA-PKCS1-vl_5-ENCODE shall be SHA-1. See [9] for further details.

D.1.2.3 Output data formatting

The SignedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers the
required steps.

B:='01
B:=B]||'0T
B:=B]||k]||S
siLen =0

IF key hash flag is set
siLen :=siLen + 21

END

IFICCID flag is set
siLen :=siLen + 11

END

IF keyindexflag is set
siLen :=siLen + 2

END

IF certificate flag is set
z:=0
FOR all certificate URLs

urlLen = ||URL]|
z:=z +urlLen + 2

END
siLen :=siLen + z

END

B :=B||siLen

IFICCID flag is set
B:=B|| ‘80" || ICCID

END

IF keyindexflag is set
B:=B||'81" || AKI

END

IF keyhash flag is set
B:=B||'01"||KH

END

IF certificate flag is set
FOR all certificate URLs

urlLen = ||URL]]|
B:=B || ‘05’ || urlLen || URL
END
END
B:=B||'0T
IF character encoding scheme is UCS2
B:=B|| ‘0O3E8’
ELSE
B:=B||‘07D0O’
END

IF contentflag is set
ttbsLen = ||[TTBS||
B:=B||'01’ || ttbsLen || TTBS
ELSE
B:=B|| ‘00’
END
IF message digestflag is set
B:=B||"1E"|| ‘80’ || MD

ELSE
B:=B||'09

END

B:=B||‘'02'||R

3GPP

Release 8 115 3GPP TS 31.113 Vv8.0.0 (2009-02)

After the last step, the variable B contains the Functional Output.
k, siLen and ttbsLen shall all be encoded in two bytes, big endian.
NOTE: Using ICCID as a Signerinfo has no equivalent in [13].

NOTE: The value'07 DO (2000 decimal) is used due to fact that IANA [15] has not assigned a character set
number for the GSM default character set.

D.2 FP

D.2.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the FP execution.

(START)

A 4

Request
authorisation

Get
Response

A 4

Key CANCEL
pressed?
OK
\ 4

Select
NO KEY key CANCEL

\ 4

User
identification

v

Generate
signature

\4
(FINISHED)

Figure D.6: FP Flow Diagram

The plug-in starts by displaying the authorisation request to the user and the await user confirmation.

The authorisation request itself consists of the authorisation prompt concatenated with the authorisation value, which is
an excerpt of the data-to-be-signed (DTBS). The authorisation value shall be displayed using a two-digit he xadecimal
representation for every byte. The digits of the hexadecimal alphabet shall be "0123456789A BCDEF", i.e. lower -case
letters are not allowed. If DTBS is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with

3GPP

Release 8 116 3GPP TS 31.113 v8.0.0 (2009-02)
the most significant byte. To improve readability, the hexadecimal digits shall be grouped 4-and-4, with space between
the groups. Splitting a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorisation value with information received via some other channel, the user confirms
by pressing a confirmation-button (any button resulting in a Terminal Response with general result range '00 OF') or
cancels by pressing a cancellation-button (any other general result value). If the user confirms, he shall be asked to enter
his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The "User identification™ procedure is identical to the procedure described in subclause D.1.1.1.

The termination states shall be mapped to output variables according to:

State Plug-in Status Code Functional Output Description
FINISHED ["PS: OK" WrappedContent data | Indicates success.
CANCEL | "PS: User cancel" “error:userCancel” The user aborted the operation.
NO KEY | "PS: No such key" “error:noCert’ The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code
table in subclause 8.8.

D.2.2 Signature Calculation

The output from the FP plug-in is a WrappedContent data structure as specified in subclause D.2.3. The (ordered) steps
to produce this datastructure are as follows:

1. Signing
2. Output formatting
Each step is described thoroughly in the following subclauses.
D.221 Signature Generation Operation
Generate the signature
S = RSASSA-PKCS1-v1_5-SIGN(K, DTBS)
where K is the selected private key and DTBS is supplied as an input parameter.

In EMSA-PKCS1-v1l_5-ENCODE, only steps from (including) step 3 shall be executed. The following equality (using
PKCS#1 terminology) apply for the computation of the remaining steps:

T=DTBS and [|T||=|DTBS||

3GPP

Release 8 117 3GPP TS 31.113 Vv8.0.0 (2009-02)

D.2.2.2 Output data formatting

The WrappedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers
the required steps.

B:='02
B:=B||k]|S
siLen:=0

IF keyhash flag is set
siLen :=siLen + 21
END
IF ICCID flag is set
siLen :=siLen + 11
END
IF keyindexflag is set
siLen :=siLen + 2
END
IF certificate flag is set
z:=0
FOR all certificate URLs
urlLen = ||URL]|
z:=z+urlLen+2
END
siLen :=siLen +z
END
B :=B || siLen
IFICCID flag is set
B:=B|| ‘80’ || ICCID
END
IF keyindexflag is set
B:=B||'81" || AKI
D

IF key hash flag is set
B:=B||'01"||KH

END

IF certificate flag is set
FOR all certificate URLs

urlLen = ||URL]|
B:=B|| ‘05 || urlLen || URL
END

END

k and siLen shall be encoded in two bytes, big endian.

After the last step, the variable B contains the Functional Output.

D.2.3 Format of WrappedContent

For completeness, the formal definition of WrappedContent is included below (it is described using the same
presentation language as used in [13]).

struct {
opaque signature<0.. 2716-1>;
} Signature;

enum {
sha key hash (1),
certificate url(5),
iccid (128),
aki (129),
(255)

} SignerInfoType;

3GPP

Release 8 118 3GPP TS 31.113 Vv8.0.0 (2009-02)

Item Description
sha_key_hash The SHA-1 hash of the public key, encoded as specified in [14].
certificate_und AURL where the certificate is located.
iccid The (raw) ICCID.
aki The Index of the used private key.
struct {

SignerInfoType signer info type;

switch (signer info type) {

case sha key hash: opaque hash[20];

case certificate url: opaque url<0..255>;
case iccid: opaque iccid[10];

case aki: uint8;

bi

} SignerInfo;

struct {

uint8 version;

Signature signature;

SignerInfo signer infos<0..2716-1>;
} WrappedContent;

ltem Description

version Version of the WrappedContent structure. The current version is 2.

signature Signature

signer_infos Information about the signer. This may contain zero items (in case the signer is
implicit). Also, there may be multiple items of Signerinfo present (public key hash and
a certificate).

3GPP

Release 8 119 3GPP TS 31.113 Vv8.0.0 (2009-02)

D.3 AD

D.3.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the AD execution.

(START)

A 4

Request
authorization

Get
Response

A 4

Key CANCEL
pressed?
OK
\ 4

Select
NO KEY key (CANCEL

A 4

User
identification

v

Decrypt

A 4
(FINISHED)

Figure D.7: AD Flow Diagram

The plug-in starts by displaying the authorisation request to the user and the await user confirmation.

The authorisation request itself consists of the authorisation prompt concatenated with the authorisation value, which
is an excerpt of the ciphertext (C). The authorisation value shall be displayed using a two -digit hexadecimal
representation for every byte. The digits of the hexadecimal alphabet shall be *0123456789ABCDEF", i.e. lower-case
letters are not allowed. If C is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with the
most significant byte. To improve readability, the hexadecimal digits shall be grouped 4-and-4, with space between the
groups. Splitting a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorisation value with information received via some other channel, the user confirms
by pressing a confirmation-button (any button resulting in a Terminal Response with a general result range '00 OF") or
cancels by pressing a cancellation-button (any other general result value). If the user confirms, he shall be asked to enter
his PIN and after that, if the PIN was valid, the plug-in decrypts the data.

The "User identification™ procedure is identical to the procedure described in subclause D.1.1.1.

The termination states shall be mapped to output variables according to:

3GPP

Release 8 120 3GPP TS 31.113 Vv8.0.0 (2009-02)

State Plug-in Status Code | Functional Output Description
FINISHED | "PS: OK" decrypted data Indicates success.
CANCEL ["PS:User cancel” “error:userCancel” The user aborted the operation.
NO KEY | "PS: No such key" “error:noCert’ The requested keywas not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code
table in subclause 8.8.

D.3.2 Decryption calculation

The decrypted ciphertext (i.e. plaintext), is generated by computing the following steps.

1. Convert the ciphertext C to an integer ciphertext representative c:

¢ = 0S2IP(C)
2. Calculate the integer message representative m:
m = RSADP (K, c)

where K is the selected private key.

3. Convert the message representative mto an encoded message M of length k bytes:
M = 120SP (m, k)

M represents the decrypted ciphertext, and hence the Functional Output.

D.4 Non-functional Requirements

D.4.1 Customisation Requirements
1. Allcustomisation requirements with regard to PINs and PUKSs listed in E.3.1 apply equally here.

2. Itshall be possible to enable or disable the "Authorisation request” and the subsequent user confirmation by
performing an administrative task at personalisation time.

3. The authorisation prompt shall be configurable through an administrative task at personalisation time. UCS2
and GSM default alphabets shall be supported.

4. Itshould be possible to configure the number of digits displayed in the authorisation value through an
administrative task at personalisation time. The number of digits displayed shall be 4, 8, 12 or 16, with 16 as
the default.

5. The list of URL(s) linked to a private key shall be updatable through an administrative task at personalisation
time.

6. The list of trusted key hashes linked to a private key shall be updatable through an administrative tas k at
personalisation time.

D.4.2 Architectural Requirements

1. Allarchitectural requirements with regard to PINs and PUKSs listed in E.3.2 apply equally here.

3GPP

Release 8 121 3GPP TS 31.113 Vv8.0.0 (2009-02)

Annex E (normative):
PIN Management Plug-ins Implementation Specification

This annexprovides a detailed description of the PIN management plug-ins defined in subclause 9.1.4.

E1 CP

E.1.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the CP execution.

(START)

\ 4

Select
NO KEY | target PIN

A 4

User
identification

Y

A 4 (CANCEL)

Enter new
PIN

A 4
(FINISHED)

Figure E.1: CP Flow Diagram

The plug-in execution starts with locating the PIN to be changed based on the key identifier input parameter.

After locating the target PIN, the user is requested to enter the PIN (if the PIN is not blocked) and thereafter prompted
twice fora new PIN as described in subclause D.1.1.1.

If the user is subjected to a PUK verification due to blocked PIN, the "Enter new PIN" procedure shall only be executed
once.

The termination states shall be mapped to output variables according to:

State Plug-in Status Code | Functional Output Description
FINISHED | "PS: OK" - Indicates success.
CANCEL ["PS:User cancel" “error:userCancel” The user aborted the operation.
NOKEY | "PS: No such key' “error:noKey’ Can not locate target PIN.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code
table in subclause 8.8.

Sub procedures "User identification" and "Enter new PIN" are all described in detail in subclause D.1.1.1.

The maximum and minimum length restrictions on the PIN value shall be checked before PIN modification. If violated,
the plug-in shall set the Error Code to "Execution Error" and terminate.

3GPP

Release 8 122 3GPP TS 31.113 Vv8.0.0 (2009-02)

E2 RP

E.2.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the RP execution.

(START)

Select
NO KEY key

A 4

Decrypt and
verify

A 4

Reset PIN
value

'
(FINISHED)

Figure E.2: RP Flow Diagram

The termination states shall be mapped to output variables according to:

State Plug-in Status Code | Functional Output Description
FINISHED | "PS: OK" - Indicates success.
NO KEY | "PS: No such key" “error:noKey’ Can not locate target PIN.

In case of a serious error not listed above, an imple mentation may use any of the Error Codes listed in the error code
table in subclause 8.8.

Changing the PIN value is simply copying the new PIN value to the appropriate location, possibly stripping of the
padding bytes and/or converting the PIN value to an internal format. The "remaining attempts" counter shall always be
reset to its maximum value at the same time.

The maximum and minimum length restrictions on the PIN value shall be checked. If violated, the plug-in shall set the
Error Code to "Execution Error" and terminate.

E.2.2 Decryption and Verification

This procedure includes decryption of the encrypted PIN data, as well as verification of it's authenticity.

To decrypt and verify the encrypted PIN data, select the correct algorithmbased on the algorithm identifier and
thereafter decrypt and verify according to the selected algorithm.

An implementation shall support at least one algorithm.

Algorithms employing SHA-1 are preferred prior to algorithms employing ISO/IEC 9797.

E221 3DES EDE CBC with two keys + SHA-1 MDC

The decrypted PIN data shall be formatted according to the table below:

3GPP

Release 8 123 3GPP TS 31.113 Vv8.0.0 (2009-02)

Bytes Description M/O | Length
1-8 Nonce. 8 bytes of random data. M 8
9-16 PIN value. Each digitin the PIN shall be encoded with its | M 8

corresponding GSM default alphabet value. All unused
digits atthe end shall be encoded as ‘FF'.
17 -24 PIN checksum. Truncated SHA-1 MDC. M 8

To decrypt and verify the PIN data, do the following:
1. Calculate the decrypted PIN data
DP = TDEA DECR(EP)

using the following cipher parameterisation:

Keys Ky, K2
Cipher mode Outer CBC using two keys in EDE operation.
\ '00 ... 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen
V).
a) Calculate

MD = SHA1(unencrypted parameters || DP<1..16>).
The unencrypted parameters ("Key identifier type", "Key identifier" and "Options™) shall be included in the
checksum calcu lation to avoid certain rep lay attacks.

b) Calculate the PIN checksum

PC = MD<1.8>

¢) Compare PC with DP<17..24>. If identical, proceed to the next step. Otherwise, set Error Code to "Execution
Error" and terminate.

d) Success. The new PIN is DP<9..16>.

E.2.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC

The decrypted PIN data shall be formatted according to the table below:
Bytes Description M/O | Length
1-8 Nonce. 8 bytes of random data. M 8
9-16 PIN value. Each digitin the PIN shall be encoded withits | M 8

corresponding GSM default alphabet value. All unused
digits atthe end shall be encoded as ‘FF'.
17 -24 PIN checksum . ISO/IEC 9797 MAC. M 8

To decrypt and verify the PIN data, do the following:

1. Calculate the decrypted PIN data
DP = TDEA DECR(EP)

using the following cipher parameterisation:

Keys Kl, Ko

Cipher mode Outer CBC using two keys in EDE operation.

\ ’00 ... 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen
V).

3GPP

Release 8 124 3GPP TS 31.113 Vv8.0.0 (2009-02)

2. Calculate

PM = ISO_IEC_9797_PAD2(unencrypted parameters || DP<1..16>).

The unencrypted parameters (‘Key identifier type', 'Key identifier' and 'Options’) shall be included in the checksum

calculation to avoid certain replay attacks.

3. Calculate

PC = ISO_IEC_9797_ALG3(PM).

Using terminology from [10], keys K and K’ shall be derived by complementing alternate sub-strings of four bits of

Kiand K, respectively, commencing with the four most significant bits.

8 bytes of output from the MAC calculation shall be used (i.e. m=64 using ISO/IEC 9797 terminology).

4. Compare PC with DP<17..24>. If identical, proceed to the next step. Otherwise, set the Error Code to 'Execution
Error’ and terminate.

5. Success. The new PIN is DP<9..16>.

E.2.2.3 3DES EDE CBC with three keys + SHA-1 MDC

This algorithm is identical to the algorithm described in E.6.2.1, except that the 3DES cip her shall be parameterized
with three DES keys.

E2.24 3DES EDE CBC with three keys + ISO/IEC 9797 MAC

This algorithm is identical to the algorithm described in E.6.2.2, except that the 3DES cipher shall be parameterized
with three DES keys. For the MAC calcu lation, only K; and K; shall be used.

E.3 Non-functional Requirements

E.3.1 Customisation Requirements

1. Maximum number of attempts before blocking/termination for PINs and PUKSs shall be configurable through
an administrative task at personalisation time.

2. PIN and PUK values shall be configurable through administrative tasks at personalisation time.

3. Allprompts displayed to the user during PIN/PUK verification shall be configurable through an administrative
task at personalisation time. UCS2 and GSM default alphabets shall be supported.

4. Allprompts displayed to the user during the PIN change procedure shall be configurable through an
administrative task at personalisation time. UCS2 and GSM default alphabets shall be supported.:

5. The possibility to use the "Reset PIN" plug-in to reset a PIN shall be configurable on a per PIN basis, using an
administrative task at personalisation time. I.e. some PINs may not be allowed to be reset via the "Reset PIN"
plug-in, while others are.

6. Minimum and maximum PIN lengths shall be configurable using an administrative task at personalisation
time. The same boundaries shall be shared by all PINs.

E.3.2 Architectural Requirements

1. Itshall be possible to associate every key (private or secret) with a unique PIN. It shall also be possible for
keys to share PINs, if so desired. The associations between keys and PINs shall be configurable through an
administrative task at personalisation time. A key that is not linked to a PIN shall not be subjected to PIN
verification before it is accessed.

3GPP

Release 8 125 3GPP TS 31.113 Vv8.0.0 (2009-02)

2. Is shall be possible to associated a unique "Enter PIN" prompt (i.e. the first prompt displayed in the PIN
verification procedure) to every PIN, and thereby to every key. This is to ensure that the user is given the
possibility to recognize a key before using it. All other prompts may be shared between PINs.

3. ltshallbe possible to associate every PIN with a unique PUK.
4. PIN lengths between 4 and 8 digits shall be supported.

5. Successfully entering a PIN shall only grant access to the underlying key (private or secret) for the remaining
duration of the plug-in execution. l.e. the next time the plug-in is executed, a new PIN verification is required.

6. A "terminated"” PIN, i.e. a PIN who's PUK has be unsuccessfully exercised for the maximum allowed number
of times, shall not be usable, changeable or reset-able by any means. In other words, it shall be unconditionally
unrecoverable.

3GPP

Release 8 126 3GPP TS 31.113 Vv8.0.0 (2009-02)

Annex F (normative):
Triple DES Plug-ins Implementation Specification

This annexprovides a detailed description of the triple DES plug-ins outlined in subclause 9.1.3 of this document.

F.1 DE

F.1.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DE execution.

(START)

\ 4

Select
NO KEY | key

A 4

User
identification

Y

A 4 (CANCEL)

Encrypt

A 4
(FINISHED)

Figure F.1: DE Flow Diagram

The termination states shall be mapped to output variables according to:

State Plug-in Status Code | Functional Output Description
FINISHED ["PS: OK" encrypted data Indicates success.
CANCEL | "PS:User cancel" “error:userCancel” The user aborted the operation.
NO KEY | "PS: No such key" “error:noKey’ The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code
table in subclause 8.8.

The "User identification™ procedure is identical to the procedure described in subclause D.1.1.1.

F.1.2 Encrypt Procedure

To encrypt the plaintext, do the following:

1. Calculate the padded message

PM = PKCS5_PAD(Plaintext).

3GPP

Release 8 127 3GPP TS 31.113 Vv8.0.0 (2009-02)

2. Calculate the encrypted message
EM = TDEA_ENCR(PM)

using the following cipher parameterisation:

Keys Ki, K2 and possibly Kz as indicated by ‘Cipher spec’.
Cipher mode ECB or CBC as indicated by "Cipher spec".
v Indicated by "IV flag".

3. EM is the Functional Output.

F.2 DD

F.2.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DD execution.

(START)

\ 4

Select
NO KEY key

\ 4

User
identification

A 4

h 4 (CANCEL)

Decrypt

A 4
(FINISHED)

Figure F.2: DD Flow Diagram

The termination states shall be mapped to output variables according to:

State Plug-in Status Code | Functional Output Description
FINISHED | ‘PS: OK’ decrypted data Indicates success.
CANCEL | ‘PS: User cancel “error:userCancel” The user aborted the operation.
NO KEY | ‘PS: No such key “error:noKey’ The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code
table in subclause 8.8.

The "User identification™ procedure is identical to the procedure described in subclause D.1.1.1.

F.2.2 Decrypt Procedure

To decrypt the ciphertext, do the following:

3GPP

Release 8 128

1. Calculate the padded plaintext message
DM = TDEA_DECR(Ciphertext)

using the following cipher parameterisation:

Keys K1, K2 and possibly Kz as indicated by "Cipher spec".

Cipher mode ECB or CBC as indicated by "Cipher spec".
v Indicated by "IV flag".

2. Calculate the plaintext message

M = PKCS5_UNPAD(DM).
3. Mis the Functional Output..

3GPP

3GPP TS 31.113 Vv8.0.0 (2009-02)

Release 8 129 3GPP TS 31.113 Vv8.0.0 (2009-02)

F.3 DS

F.3.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DS execution.

(START)

Display

TTBS

Get
Response

A 4

Key CANCEL
pressed?

v
OK (CANCEL
A 4 A
User
identification
A 4
o Generate
.l signature

A 4
(FINISHED)

Figure F.3: DS Flow Diagram

As the figure illustrates, the plug-in shall check if the selected key has an associated PIN, and in this case display the
text-to-be-signed to the user using the indicated character encoding scheme, and await user confirmation. The user
confirms by pressing a confirmation-button (any button resulting in a Terminal Response with a general result range '00
OF") or cancels by pressing a cancellation-button (any other general result value).

The termination states shall be mapped to output variables according to:

3GPP

Release 8

130

3GPP TS 31.113 Vv8.0.0 (2009-02)

State Plug-in Status Code | Functional Output Description
FINISHED | "PS: OK" signed data Indicates success.
CANCEL ["PS:User cancel” “error:userCancel” The user aborted the operation.
NO KEY | "PS: No such key" “‘error:noKey’ The requested keywas not available.

In case of a serious error not listed above, an imple mentation may use any of the Error Codes listed in the error code
table in subclause 8.8.

The "User identification™ procedure is identical to the procedure described in subclause D.1.1.1.

F.3.2

MAC Calculation Procedure

To calculate the MAC, do the following:

1. Calculate the padded message

PM = ISO_IEC_9797_PAD2(TTBS)
2. Calculate the MAC

MAC = ISO_IEC_9797_ALG3(PM)

using the following cipher parameterisation:

Keys

Truncation

Ky, K2

3. MAC is the Functional Output.

As indicated by "Truncation flag".

F.4

F.4.1

DU

Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DU execution.

(START)

Select
NO KEY keys

v

\ 4

Decrypt and
verify

\ 4

Install new
key

A\ 4

(FINISHED)

Figure F.4: DU Flow Diagram

The termination states shall be mapped to output variables according to:

3GPP

Release 8 131 3GPP TS 31.113 Vv8.0.0 (2009-02)

State Plug-in Status Code | Functional Output Description
FINISHED | "PS: OK" - Indicates success.
NO KEY | "PS: No such key" “error:noKey’ The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code
table in subclause 8.8.

Installing the new key means simply copying the key material to the location referenced by key index input parameter.

F.4.2 Decryption and Verification Procedure
This procedure includes decryption of the encrypted key data, as well as verification of its authenticity.

To decrypt and verify the key data, select the correct algorithm based on the algorithm identifier field and thereafter
proceed according to the selected algorithm.

An implementation shall support at least one algorithm.

Algorithms employing SHA-1 are preferred prior to algorithms employing ISO/IEC 9797.

F4.2.1 3DES EDE CBC with two keys + SHA-1 MDC

The decrypted key datashall be formatted according to the table below.

Bytes Description M/O | Length
1-8 Random nonce. M 8
9-P Key material M 16 or 24
Q-R Key checksum. M 8

The values P,Q and R are calcu lated from wrapped key length according to the following table:

Wrapped P Q R
key length

16 24 25 32
24 32 33 40

To decrypt and verify the key data, do the following:

2. Select the key pointed to by the key index input parameter. This is the destination key ,Kp.
a) Based on the key index parameter, locate the unwrap key, K.

b) Calculate the decrypted key data
DK = TDEA_DECR(Encrypted key data)

using the following cipher parameterisation:

Keys Kiand K> of Ky.

Cipher mode Quter CBC in EDE operation.

v ‘00 ... 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen
V).

a) Calculate the message digest
MD = SHA1(unencrypted parameters || DK<1.P>)

The unencrypted parameters ('Index of secret key' and 'Options®) shall be included in the checksum calculation
to avoid certain replay attacks.

3GPP

Release 8 132 3GPP TS 31.113 Vv8.0.0 (2009-02)

b) Calculate the key checksum

KC = MD<1..8>

¢) Compare KC with DK<Q..R>. If identical, proceed to the next step. Otherwise, the plug-in shall set the Error
Code to 'Execution Error'and terminate.

d) Success.

F.4.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC

The format of the decrypted key data is the same as in the previous subclause (F.4.2.1).

To decrypt and verify the key data, do the following:

3. Select the key pointed to by the key index input parameter. This is the destination key, Kp.
a) Based on the key index parameter, locate the unwrap key, K.

b) Calculate the decrypted key data
DK = TDEA_DECR(Encrypted key data)

using the following cipher parameterisation:

Keys Kiand Kz of Ku.

Cipher mode Outer CBC in EDE operation.

v '00 ... 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen
V).

a) Calculate the padded message
PM = ISO_IEC_9797_PAD2(unencrypted parameters || DK<1..P>)

The unencrypted parameters ('Index of secret key' and 'Options’) shall be included in the checksum calculation
to avoid certain replay attacks.

b) Calculate the key checksum
KC = ISO_IEC_9797_ALG3(PM)

Using terminology from[10], keys K and K’ shall be derived by complementing alternate sub-strings of four bits
of Ky and K respectively, commencing with the four most significant bits.

8 bytes of output from the MAC calculation shall be used (i.e. m=64 using ISO/IEC 9797 terminology).

¢) Compare KC with DK<Q..R>. If identical, proceed to the next step. Otherwise, the plug-in shall set the Error
Code to "Execution Error" and terminate.

d) Success.

F.4.2.3 3DES EDE CBC with three keys + SHA-1 MDC

This algorithm is identical to the algorithm described in F.4.2.1, except that the 3DES cipher shall be parameterized
with three DES keys.

F.4.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC

This algorithm is identical to the algorithm described in F.4.2.2, except that the 3DES cipher shall be parameterized
with three DES keys. For the MAC calcu lation, only K; and K; shall be used.

3GPP

Release 8 133 3GPP TS 31.113 Vv8.0.0 (2009-02)

F.5 Non-functional Requirements

F.5.1 Customisation Requirements

1. Allcustomisation requirements with regard to PINs and PUKSs listed in E.3.1apply equally here.

2. OTA modifiability of a key using the DU plug-in shall be configurable through an administrative task at
personalisation time.

F.5.2 Architectural Requirements

1. Allarchitectural requirements with regard to PINs and PUKSs listed in E.3.2 apply equally here.

3GPP

Release 8 134 3GPP TS 31.113 V8.0.0 (2009-02)

Annex G (informative):
Change History

Change history
Date TSG# |TSGDoc.| CR |Rev | Cat Subject/Comment Old New
2001-09 [TP-13 |[TP-010208 Approved at TSG-T #13 2.0.0 5.0.0
2001-12 | TP-14 |TP-010245 | 001 F |Addition of SendAdditionallnformation attribute 5.0.0 5.1.0
002 F | Collection of clarffications
003 C [Changes to USAT Interpreter system information
partition table
004 B |comparison with a variable value
2002-03 [TP-15 |TP-020066 [005 B |Functional Additions to WML Annex 5.1.0 5.2.0
006 F |Miscellaneous corrections and clarifications on the
speciffication.
007 F |Clarification on behaviour on Single Actions for Terminal
Response Handler
008 B |Addition of security plug-ins
2002-06 | TP-16 |TP-020115 (009 F |Miscellaneous corrections and clarifications on the 5.2.0 6.0.0
specffication
010 F |Clarification of history management
011 F |Removal of ciphering of the One Time Password
012 F |Error on access to permanent variable
013 F |Clarification of the Terminal Response Handler
Mechanism
017 F |Clarification of the Assign and Branch command
014 B [Terminal Response Handler Modifier "remove" attribute
enhancements
015 B [Addition of error handling
016 B | Addition of functionality for security plug-ins
2002-09 | TP-17 |TP-020213(019 A |Reference to non existing local pages 6.0.0 6.1.0
021 A [Clarification of Execute USAT Command
023 A [Handling of operational pull messages and post mode
024 B |Terminal Response Handler Modifier exception
mechanism enhancement.
2003-03 [TP-19 |TP-030022| 026 F |Several Corrections 6.1.0 6.2.0
2004-12 [TP-26 |TP-040259 | 028 A |Correction of reference to SCP specification 6.2.0 6.3.0
2007-06 | CT#36 - - - - |Update to Rel-7 version (MCC) 6.3.0 7.0.0
2008-12 | CT#42 - - - - |Update to Rel-8 + addition of LTE logo 7.0.0 8.0.0

3GPP

	Foreword
	1 Scope
	2 References
	3 Definitions, abbreviations and symbols
	3.1 Definitions
	3.2 Abbreviations
	3.3 Symbols

	4 Model of computation
	4.1 Navigation
	4.2 Communication with the external system entity
	4.2.1 Incoming pages from the external system entity
	4.2.2 Outgoing data to the external system entity
	4.2.3 Wait State

	4.3 Terminal response handler mechanism
	4.3.1 Operation of the Terminal Response Handler
	4.3.1.1 Definitions
	4.3.1.2 Operation

	4.3.2 Default Terminal Response Handler configuration

	4.4 Activation
	4.5 Page format overview
	4.6 History list

	5 TLV Format
	5.1 Coding of the tag byte
	5.2 Attributes in TLVs
	5.3 Coding of attribute bytes

	6 Variables
	6.1 Usage areas
	6.1.1 Environment variable usage area
	6.1.1.1 USAT Interpreter system information partition
	6.1.1.1.1 Write access to the partition
	6.1.1.1.2 Read access of the partition

	6.1.1.2 USIM issuer information partition
	6.1.1.2.1 Write access to the partition
	6.1.1.2.2 Read access of the partition

	6.1.1.3 End user information partition
	6.1.1.3.1 Write access to the partition
	6.1.1.3.2 Read access of the partition

	6.1.2 Permanent variable area
	6.1.2.1 Write access to the permanent variable area
	6.1.2.2 Read access of the permanent variable area

	6.1.3 Temporary variable area
	6.1.3.1 Write access to the temporary variable area
	6.1.3.2 Read access of the temporary variable area
	6.1.3.3 Lifetime of temporary variables

	6.1.4 Page string element
	6.1.4.1 Write access to page string elements
	6.1.4.2 Read access of page string elements

	6.2 Variable values
	6.3 Variable substitution

	7 Used USAT Interpreter data structures
	7.1 Page
	7.1.1 Attributes
	7.1.2 Page Identification
	7.1.3 Page Unlock Code
	7.1.4 One Time Password
	7.1.5 Keep Alive List
	7.1.6 Service ID
	7.1.7 String Pool
	7.1.8 Terminal response handler modifier
	7.1.8.1 Attribute
	7.1.8.2 General result range
	7.1.8.3 Text for user notification
	7.1.8.4 Action
	7.1.8.4.1 Attributes
	7.1.8.4.2 Action ID
	7.1.8.4.3 Action to be performed
	7.1.8.4.4 Action description

	7.2 Navigation Unit
	7.2.1 Attributes
	7.2.2 Anchor
	7.2.3 Terminal response handler modifier
	7.2.4 USAT Interpreter Byte Codes

	7.3 Anchor Reference
	7.4 Variable Identifier List
	7.5 Inline Value
	7.6 Inline Value 2
	7.7 Input List
	7.8 Ordered TLV List
	7.9 Page Reference
	7.9.1 Anchor Reference
	7.9.2 Variable Identifier List
	7.9.3 Submit Configuration
	7.9.3.1 Attributes
	7.9.3.2 Submit Data
	7.9.3.3 Text to be displayed during the active wait state
	7.9.3.4 Gateway Address

	7.10 Submit
	7.10.1 Submit Data
	7.10.2 Page Identification

	8 USAT Interpreter byte codes
	8.1 Set Variable
	8.2 Assign and Branch
	8.2.1 Destination Variable Identifier
	8.2.2 Inline TLV containing Select Item Title
	8.2.3 Ordered TLV List TLV

	8.3 Extract
	8.4 Go Back
	8.5 Branch On Variable Value
	8.5.1 Variable ID
	8.5.2 Ordered TLV List
	8.5.3 Page Reference

	8.6 Exit
	8.7 Execute USAT Command
	8.7.1 Attributes
	8.7.2 Simple TLV
	8.7.3 Simple TLV Indicator
	8.7.4 Sequence of Simple TLVs and Simple TLV Indicators
	8.7.5 Result of an Execute USAT Command
	8.7.5.1 Optimisation not Required
	8.7.5.2 Optimisation Required

	8.8 Execute Native Command
	8.8.1 Attributes
	8.8.2 Result of a Native Function Call

	8.9 Get Length
	8.10 Get TLV Value
	8.11 Display Text
	8.12 Get Input

	9 Native Commands
	9.1 Security Plug-ins
	9.1.1 Common Topics
	9.1.1.1 Security Policy
	9.1.1.2 Classification of PINs
	9.1.1.3 Key Diversification
	9.1.1.4 Output Parameters

	9.1.2 PKI Plug-ins
	9.1.2.1 P7 - PKCS#7 Signature Plug-In
	9.1.2.1.1 Description
	9.1.2.1.2 NCI
	9.1.2.1.3 Arguments
	9.1.2.1.4 Output Parameters
	9.1.2.1.5 Execution
	9.1.2.1.6 Errors

	9.1.2.2 FP – Fingerprint Plug-In
	9.1.2.2.1 Description
	9.1.2.2.2 NCI
	9.1.2.2.3 Arguments
	9.1.2.2.4 Output Parameters
	9.1.2.2.5 Execution
	9.1.2.2.6 Errors

	9.1.2.3 AD – Asymmetric Decryption Plug-In
	9.1.2.3.1 Description
	9.1.2.3.2 NCI
	9.1.2.3.3 Arguments
	9.1.2.3.4 Output Parameters
	9.1.2.3.5 Execution

	9.1.2.3.6 Errors

	9.1.3 Triple DES Plug-ins
	9.1.3.1 DE – Triple DES Encryption Plug-In
	9.1.3.1.1 Description
	9.1.3.1.2 NCI
	9.1.3.1.3 Arguments
	9.1.3.1.4 Output Parameters
	9.1.3.1.5 Execution
	9.1.3.1.6 Errors

	9.1.3.2 DD – Triple DES Decryption Plug-In
	9.1.3.2.1 Description
	9.1.3.2.2 NCI
	9.1.3.2.3 Arguments
	9.1.3.2.4 Output Parameters
	9.1.3.2.5 Execution
	9.1.3.2.6 Errors

	9.1.3.3 DS – Triple DES Sign Plug-In
	9.1.3.3.1 Description
	9.1.3.3.2 NCI
	9.1.3.3.3 Arguments
	9.1.3.3.4 Output Parameters
	9.1.3.3.5 Execution
	9.1.3.3.6 Errors

	9.1.3.4 DU – Triple DES Unwrap Plug-In
	9.1.3.4.1 Description
	9.1.3.4.2 NCI
	9.1.3.4.3 Arguments
	9.1.3.4.4 Output Parameters
	9.1.3.4.5 Execution
	9.1.3.4.6 Errors

	9.1.4 PIN Management Plug-ins
	9.1.4.1 CP – Change PIN Plug-In
	9.1.4.1.1 Description
	9.1.4.1.2 NCI
	9.1.4.1.3 Arguments
	9.1.4.1.4 Output Parameters
	9.1.4.1.5 Execution
	9.1.4.1.6 Errors

	9.1.4.2 RP – Reset PIN Plug-In
	9.1.4.2.1 Description
	9.1.4.2.2 NCI
	9.1.4.2.3 Arguments
	9.1.4.2.4 Output Parameters
	9.1.4.2.5 Execution
	9.1.4.2.6 Errors

	10 End to End Security
	10.1 Encrypt
	10.2 Decrypt

	11 Modes of operation
	11.1 Pull
	11.2 Push / Cell Broadcast

	12 Error handling and coding
	12.1 Setting of the environment variable "error code"
	12.2 User notification of the execution
	12.3 Error coding

	13 Tag Values
	Annex A (informative): Terminal Response Handler Flow Charts
	Annex B (informative): Example of Accessing USAT Interpreter Functionality in Wireless Mark-up Language

	B.1 Introduction
	B.1.1 Purpose
	B.1.2 Terminology
	B.1.3 Definitions and abbreviations

	B.2 Namespace
	B.2.1 The USAT Interpreter EF Class
	B.2.2 Examples

	B.3 WML
	B.3.1 WML Syntax
	B.3.1.1 The WML page
	B.3.1.2 Entities
	B.3.1.3 Elements
	B.3.1.4 Attributes
	B.3.1.5 Variables

	B.3.2 Extended functionality interface

	B.4 Implicit calls using WML syntax
	B.4.1 Prologue
	B.4.2 Character encoding
	B.4.3 Elements
	B.4.3.1 wml element
	B.4.3.2 card element
	B.4.3.3 p element
	B.4.3.4 br element
	B.4.3.5 input element
	B.4.3.6 select Element
	B.4.3.7 option element
	B.4.3.8 go element
	B.4.3.9 setvar element
	B.4.3.10 noop element
	B.4.3.11 do element
	B.4.3.12 refresh Element

	B.5 Explicit calls using WML syntax
	B.5.1 Services for USAT Commands
	B.5.1.1 Launch Browser
	B.5.1.2 Play tone
	B.5.1.3 Provide Local Information
	B.5.1.4 Refresh
	B.5.1.5 Run AT Command
	B.5.1.6 Send USSD
	B.5.1.7 Send SM
	B.5.1.8 Set up call
	B.5.1.9 Set Idle Mode Text

	B.5.2 Services for Interpreter Commands
	B.5.2.1 Get Interpreter Version Information
	B.5.2.2 Get Interpreter Buffer Size
	B.5.2.3 Get Native Command List
	B.5.2.4 Get Terminal Profile
	B.5.2.5 Get Error Code for Last Byte Code Command
	B.5.2.6 Get Maximum Size for Temporary Storage of Page
	B.5.2.7 Get USAT Interpreter Issuer URL
	B.5.2.8 Get USAT Interpreter Issuer URL Hash
	B.5.2.9 Get User Name
	B.5.2.10 Get User Email

	B.5.3 Services for Calling Client Plug-Ins

	B.6 Access to Special Features
	B.6.1 Variable Management
	B.6.1.1 Keep Alive and Protect Variables

	B.6.2 Terminal Response Handler Modifier
	B.6.2.1 Replace
	B.6.2.2 Add
	B.6.2.3 Restore
	B.6.2.4 Remove

	B.7 References
	Annex C (informative): Terminal Response Handler Modifier examples

	C.1 Replace Operation
	C.2 Add/Append Operation
	C.3 Remove Operation
	C.4 Restore Operation
	C.5 Special case: Empty text for user notification
	C.6 Special case: No text for user notification
	C.7 Special case: Modify a single exception case
	Annex D (normative): PKI Plug-ins Implementation Specification

	D.1 P7
	D.1.1 Plug-in Execution
	D.1.1.1 User Identification

	D.1.2 Signature Calculation
	D.1.2.1 Template Expansion
	D.1.2.2 Signature Generation Operation
	D.1.2.3 Output data formatting

	D.2 FP
	D.2.1 Plug-in Execution
	D.2.2 Signature Calculation
	D.2.2.1 Signature Generation Operation
	D.2.2.2 Output data formatting

	D.2.3 Format of WrappedContent

	D.3 AD
	D.3.1 Plug-in Execution
	D.3.2 Decryption calculation

	D.4 Non-functional Requirements
	D.4.1 Customisation Requirements
	D.4.2 Architectural Requirements
	Annex E (normative): PIN Management Plug-ins Implementation Specification

	E.1 CP
	E.1.1 Plug-in Execution

	E.2 RP
	E.2.1 Plug-in Execution
	E.2.2 Decryption and Verification
	E.2.2.1 3DES EDE CBC with two keys + SHA-1 MDC
	E.2.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC
	E.2.2.3 3DES EDE CBC with three keys + SHA-1 MDC
	E.2.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC

	E.3 Non-functional Requirements
	E.3.1 Customisation Requirements
	E.3.2 Architectural Requirements
	Annex F (normative): Triple DES Plug-ins Implementation Specification

	F.1 DE
	F.1.1 Plug-in Execution
	F.1.2 Encrypt Procedure

	F.2 DD
	F.2.1 Plug-in Execution
	F.2.2 Decrypt Procedure

	F.3 DS
	F.3.1 Plug-in Execution
	F.3.2 MAC Calculation Procedure

	F.4 DU
	F.4.1 Plug-in Execution
	F.4.2 Decryption and Verification Procedure
	F.4.2.1 3DES EDE CBC with two keys + SHA-1 MDC
	F.4.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC
	F.4.2.3 3DES EDE CBC with three keys + SHA-1 MDC
	F.4.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC

	F.5 Non-functional Requirements
	F.5.1 Customisation Requirements
	F.5.2 Architectural Requirements
	Annex G (informative): Change History

