

3GPP TS 31.113 V8.0.0 (2009-02)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network and Terminals;

Universal Subscriber Identity Module Application Toolkit
(USAT) interpreter byte codes

(Release 8)

The present document has been developed within the 3
rd

 Generation Partnership Project (3GPP
 TM

) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP
 TM

 system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 2

Keywords

UMTS, SIM, card, LTE

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 3

Contents

Foreword ..9

1 Scope ..10

2 References ...10

3 Definitions, abbreviations and symbols ..11
3.1 Definitions .. 11
3.2 Abbreviations ... 12
3.3 Symbols... 13

4 Model of computation ..14
4.1 Navigation... 15
4.2 Communicat ion with the external system entity .. 15
4.2.1 Incoming pages from the external system entity ... 15
4.2.2 Outgoing data to the external system entity ... 15
4.2.3 Wait State ... 16
4.3 Terminal response handler mechanism.. 17
4.3.1 Operation of the Terminal Response Handler .. 18
4.3.1.1 Definitions.. 18
4.3.1.2 Operation .. 18
4.3.2 Default Terminal Response Handler configuration... 18
4.4 Activation.. 19
4.5 Page format overview ... 21
4.6 History list .. 21

5 TLV Format ..22
5.1 Coding of the tag byte... 23
5.2 Attributes in TLVs .. 23
5.3 Coding of attribute bytes .. 23

6 Variables ...24
6.1 Usage areas ... 24
6.1.1 Environment variable usage area.. 25
6.1.1.1 USAT Interpreter system informat ion partition .. 25
6.1.1.1.1 Write access to the partition.. 27
6.1.1.1.2 Read access of the partition... 27
6.1.1.2 USIM issuer informat ion partition ... 27
6.1.1.2.1 Write access to the partition.. 27
6.1.1.2.2 Read access of the partition... 27
6.1.1.3 End user information partit ion.. 27
6.1.1.3.1 Write access to the partition.. 27
6.1.1.3.2 Read access of the partition... 27
6.1.2 Permanent variable area ... 28
6.1.2.1 Write access to the permanent variable area .. 28
6.1.2.2 Read access of the permanent variable area ... 28
6.1.3 Temporary variab le area .. 29
6.1.3.1 Write access to the temporary variab le area ... 29
6.1.3.2 Read access of the temporary variable area ... 29
6.1.3.3 Lifet ime of temporary variables ... 30
6.1.4 Page string element ... 30
6.1.4.1 Write access to page string elements ... 30
6.1.4.2 Read access of page string elements.. 30
6.2 Variable values... 30
6.3 Variable substitution ... 30

7 Used USAT Interpreter data structures ..32
7.1 Page.. 32
7.1.1 Attributes .. 33
7.1.2 Page Identification .. 33

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 4

7.1.3 Page Unlock Code... 33
7.1.4 One Time Password .. 34
7.1.5 Keep Alive List.. 34
7.1.6 Service ID ... 34
7.1.7 String Pool .. 34
7.1.8 Terminal response handler modifier .. 34
7.1.8.1 Attribute.. 35
7.1.8.2 General result range.. 37
7.1.8.3 Text for user notification ... 37
7.1.8.4 Action.. 38
7.1.8.4.1 Attributes .. 38
7.1.8.4.2 Action ID.. 39
7.1.8.4.3 Action to be performed .. 39
7.1.8.4.4 Action description... 41
7.2 Navigation Unit.. 42
7.2.1 Attributes .. 42
7.2.2 Anchor... 42
7.2.3 Terminal response handler modifier .. 43
7.2.4 USAT Interpreter Byte Codes... 43
7.3 Anchor Reference .. 43
7.4 Variable Identifier List ... 43
7.5 Inline Value .. 43
7.6 Inline Value 2 ... 44
7.7 Input List ... 45
7.8 Ordered TLV List .. 45
7.9 Page Reference... 45
7.9.1 Anchor Reference.. 45
7.9.2 Variable Identifier List ... 46
7.9.3 Submit Configuration ... 46
7.9.3.1 Attributes .. 46
7.9.3.2 Submit Data ... 47
7.9.3.3 Text to be displayed during the active wait state .. 47
7.9.3.4 Gateway Address .. 47
7.10 Submit ... 48
7.10.1 Submit Data.. 48
7.10.2 Page Identification .. 48

8 USAT Interpreter byte codes...48
8.1 Set Variable .. 49
8.2 Assign and Branch .. 49
8.2.1 Destination Variable Identifier ... 50
8.2.2 Inline TLV containing Select Item Title ... 50
8.2.3 Ordered TLV List TLV .. 50
8.3 Extract ... 52
8.4 Go Back... 52
8.5 Branch On Variable Value ... 53
8.5.1 Variable ID ... 53
8.5.2 Ordered TLV List.. 53
8.5.3 Page Reference .. 53
8.6 Exit ... 53
8.7 Execute USAT Command.. 54
8.7.1 Attributes .. 56
8.7.2 Simple TLV.. 56
8.7.3 Simple TLV Indicator .. 56
8.7.4 Sequence of Simple TLVs and Simple TLV Indicators ... 57
8.7.5 Result of an Execute USAT Command... 57
8.7.5.1 Optimisation not Required .. 57
8.7.5.2 Optimisation Required ... 58
8.8 Execute Native Command ... 58
8.8.1 Attributes .. 58
8.8.2 Result of a Native Function Call .. 59
8.9 Get Length .. 59

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 5

8.10 Get TLV Value .. 59
8.11 Display Text ... 60
8.12 Get Input ... 60

9 Native Commands..61
9.1 Security Plug-ins.. 62
9.1.1 Common Topics .. 62
9.1.1.1 Security Po licy ... 62
9.1.1.2 Classification of PINs .. 62
9.1.1.3 Key Diversification .. 62
9.1.1.4 Output Parameters .. 62
9.1.2 PKI Plug-ins ... 63
9.1.2.1 P7 - PKCS#7 Signature Plug-In ... 63
9.1.2.1.1 Description ... 63
9.1.2.1.2 NCI .. 63
9.1.2.1.3 Arguments .. 63
9.1.2.1.4 Output Parameters .. 64
9.1.2.1.5 Execution.. 64
9.1.2.1.6 Errors... 64
9.1.2.2 FP – Fingerprint Plug-In .. 64
9.1.2.2.1 Description ... 64
9.1.2.2.2 NCI .. 65
9.1.2.2.3 Arguments .. 65
9.1.2.2.4 Output Parameters .. 66
9.1.2.2.5 Execution.. 66
9.1.2.2.6 Errors... 66
9.1.2.3 AD – Asymmetric Decryption Plug-In ... 66
9.1.2.3.1 Description ... 66
9.1.2.3.2 NCI .. 66
9.1.2.3.3 Arguments .. 66
9.1.2.3.4 Output Parameters .. 66
9.1.2.3.5 Execution.. 67
9.1.2.3.6 Errors... 67
9.1.3 Trip le DES Plug-ins.. 67
9.1.3.1 DE – Trip le DES Encryption Plug-In.. 67
9.1.3.1.1 Description ... 67
9.1.3.1.2 NCI .. 67
9.1.3.1.3 Arguments .. 67
9.1.3.1.4 Output Parameters .. 68
9.1.3.1.5 Execution.. 68
9.1.3.1.6 Errors... 68
9.1.3.2 DD – Triple DES Decryption Plug-In ... 68
9.1.3.2.1 Description ... 68
9.1.3.2.2 NCI .. 68
9.1.3.2.3 Arguments .. 68
9.1.3.2.4 Output Parameters .. 69
9.1.3.2.5 Execution.. 69
9.1.3.2.6 Errors... 69
9.1.3.3 DS – Triple DES Sign Plug-In ... 69
9.1.3.3.1 Description ... 69
9.1.3.3.2 NCI .. 70
9.1.3.3.3 Arguments .. 70
9.1.3.3.4 Output Parameters .. 70
9.1.3.3.5 Execution.. 70
9.1.3.3.6 Errors... 70
9.1.3.4 DU – Triple DES Unwrap Plug-In... 71
9.1.3.4.1 Description ... 71
9.1.3.4.2 NCI .. 71
9.1.3.4.3 Arguments .. 71
9.1.3.4.4 Output Parameters .. 71
9.1.3.4.5 Execution.. 71
9.1.3.4.6 Errors... 71

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 6

9.1.4 PIN Management Plug-ins... 72
9.1.4.1 CP – Change PIN Plug-In ... 72
9.1.4.1.1 Description ... 72
9.1.4.1.2 NCI .. 72
9.1.4.1.3 Arguments .. 72
9.1.4.1.4 Output Parameters .. 72
9.1.4.1.5 Execution.. 72
9.1.4.1.6 Errors... 72
9.1.4.2 RP – Reset PIN Plug-In ... 73
9.1.4.2.1 Description ... 73
9.1.4.2.2 NCI .. 73
9.1.4.2.3 Arguments .. 73
9.1.4.2.4 Output Parameters .. 73
9.1.4.2.5 Execution.. 74
9.1.4.2.6 Errors... 74

10 End to End Security ...74
10.1 Encrypt .. 74
10.2 Decrypt .. 74

11 Modes of operation ..74
11.1 Pull ... 74
11.2 Push / Cell Broadcast .. 74

12 Error handling and coding...74
12.1 Setting of the environment variable "error code" .. 74
12.2 User notificat ion of the execution... 75
12.3 Error coding .. 75

13 Tag Values ..76

Annex A (informative): Terminal Response Handler Flow Charts ...77

Annex B (informative): Example of Accessing USAT Interpreter Functionality in Wireless

Mark-up Language ...79

B.1 Introduction ...79
B.1.1 Purpose .. 79
B.1.2 Terminology ... 79
B.1.3 Definitions and abbreviations.. 80

B.2 Namespace ..80
B.2.1 The USAT Interpreter EF Class .. 80
B.2.2 Examples ... 80

B.3 WML ..81
B.3.1 WML Syntax .. 81
B.3.1.1 The WML page.. 81
B.3.1.2 Entit ies .. 81
B.3.1.3 Elements ... 82
B.3.1.4 Attributes .. 82
B.3.1.5 Variables ... 82
B.3.2 Extended functionality interface ... 82

B.4 Implicit calls using WML syntax...82
B.4.1 Prologue .. 82
B.4.2 Character encoding.. 82
B.4.3 Elements.. 83
B.4.3.1 wml element ... 83
B.4.3.2 card element ... 84
B.4.3.3 p element... 84
B.4.3.4 br element ... 84
B.4.3.5 input element.. 84
B.4.3.6 select Element .. 85
B.4.3.7 option element ... 85

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 7

B.4.3.8 go element .. 86
B.4.3.9 setvar element .. 87
B.4.3.10 noop element .. 87
B.4.3.11 do element .. 88
B.4.3.12 refresh Element .. 88

B.5 Explicit calls using WML syntax...88
B.5.1 Services for USAT Commands ... 88
B.5.1.1 Launch Browser .. 89
B.5.1.2 Play tone ... 89
B.5.1.3 Provide Local Informat ion... 90
B.5.1.4 Refresh .. 90
B.5.1.5 Run AT Command .. 91
B.5.1.6 Send USSD... 91
B.5.1.7 Send SM.. 91
B.5.1.8 Set up call ... 92
B.5.1.9 Set Idle Mode Text .. 92
B.5.2 Services for Interpreter Commands .. 93
B.5.2.1 Get Interpreter Version Information .. 93
B.5.2.2 Get Interpreter Buffer Size .. 93
B.5.2.3 Get Nat ive Command List ... 93
B.5.2.4 Get Terminal Profile ... 94
B.5.2.5 Get Error Code for Last Byte Code Command .. 94
B.5.2.6 Get Maximum Size for Temporary Storage of Page ... 94
B.5.2.7 Get USAT Interpreter Issuer URL ... 94
B.5.2.8 Get USAT Interpreter Issuer URL Hash ... 94
B.5.2.9 Get User Name .. 94
B.5.2.10 Get User Email .. 95
B.5.3 Services for Calling Client Plug-Ins... 95

B.6 Access to Special Features ..96
B.6.1 Variable Management... 96
B.6.1.1 Keep Alive and Protect Variables .. 96
B.6.2 Terminal Response Handler Modifier.. 96
B.6.2.1 Replace.. 97
B.6.2.2 Add .. 98
B.6.2.3 Restore .. 98
B.6.2.4 Remove ... 99

B.7 References ...99

Annex C (informative): Terminal Response Handler Modifier examples 100

C.1 Replace Operation.. 101

C.2 Add/Append Operation... 102

C.3 Remove Operation ... 103

C.4 Restore Operation .. 104

C.5 Special case: Empty text for user notification ... 105

C.6 Special case: No text for user notification .. 106
C.7 Special case: Modify a single exception case...107

Annex D (normative): PKI Plug-ins Implementation Specification .. 108

D.1 P7 ... 108
D.1.1 Plug-in Execution ..108
D.1.1.1 User Identification ..109
D.1.2 Signature Calculat ion ...113
D.1.2.1 Template Expansion ...113
D.1.2.2 Signature Generation Operation ...113
D.1.2.3 Output data formatting ...114

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 8

D.2 FP ... 115
D.2.1 Plug-in Execution ..115
D.2.2 Signature Calculat ion ...116
D.2.2.1 Signature Generation Operation ...116
D.2.2.2 Output data formatting ...117
D.2.3 Format of WrappedContent ...117

D.3 AD .. 119
D.3.1 Plug-in Execution ..119
D.3.2 Decryption calculat ion ...120

D.4 Non-functional Requirements ... 120
D.4.1 Customisation Requirements ..120
D.4.2 Architectural Requirements ...120

Annex E (normative): PIN Management Plug-ins Implementation Specification 121

E.1 CP... 121
E.1.1 Plug-in Execution ..121

E.2 RP... 122
E.2.1 Plug-in Execution ..122
E.2.2 Decryption and Verification ..122
E.2.2.1 3DES EDE CBC with two keys + SHA-1 MDC...122
E.2.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC..123
E.2.2.3 3DES EDE CBC with three keys + SHA-1 MDC ..124
E.2.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC ...124

E.3 Non-functional Requirements ... 124
E.3.1 Customisation Requirements ..124
E.3.2 Architectural Requirements ...124

Annex F (normative): Triple DES Plug-ins Implementation Specification 126

F.1 DE .. 126
F.1.1 Plug-in Execution ..126
F.1.2 Encrypt Procedure ...126

F.2 DD .. 127
F.2.1 Plug-in Execution ..127
F.2.2 Decrypt Procedure...127

F.3 DS .. 129
F.3.1 Plug-in Execution ..129
F.3.2 MAC Calcu lation Procedure ...130

F.4 DU .. 130
F.4.1 Plug-in Execution ..130
F.4.2 Decryption and Verification Procedure...131
F.4.2.1 3DES EDE CBC with two keys + SHA-1 MDC...131
F.4.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC..132
F.4.2.3 3DES EDE CBC with three keys + SHA-1 MDC ..132
F.4.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC ...132

F.5 Non-functional Requirements ... 133
F.5.1 Customisation Requirements ..133
F.5.2 Architectural Requirements ...133

Annex G (informative): Change History ... 134

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 9

Foreword

This Technical Specification (TS) has been produced by the 3
rd

 Generat ion Partnership Pro ject (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal

TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an

identifying change of release date and an increase in version number as fo llows:

Version x.y.z

where:

x the first digit :

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

updates, etc.

z the third digit is incremented when editorial on ly changes have been incorporated in the document.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 10

1 Scope

The present document specifies the byte codes that are recognised by an USAT Interpreter. The byte codes primary

purpose is to provide efficient programmatic access to the SIM Application Toolkit commands.

The design objectives of the byte code set are:

- Compact representation for efficient transmission over the air interface.

- Minimisation of USAT Interpreter complexity to minimise SIM footprint and ease compliance testing.

- Easily configured and extended.

- Source language independent although XML-style mark-up languages are exp licit ly envisioned.

- Transport bearer independent (e.g. SMS, GPRS...)

- Transport protocol independent.

- Independent from design of external entit ies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present

document.

 References are either specific (identified by date of publication, edit ion number, version number, etc.) o r

non-specific.

 For a specific reference, subsequent revisions do not apply.

 For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including

a GSM document), a non-specific reference implicit ly refers to the latest version of that document in the same

Release as the present document.

[1] 3GPP TS 31.111: "USIM Application Toolkit (USAT)".

[2] 3GPP TS 31.114: "USAT Interpreter protocol and admin istration".

[3] 3GPP TS 23.038: "Alphabets and language-specific informat ion".

[4] 3GPP TS 31.101: "UICC-terminal interface; Physical and logical characteristics".

[5] ISO/IEC 7816-6 (1995): "Identificat ion cards – Integrated circuit(s) cards with contacts - Part 6:

Inter-industry data elements".

[6] void.

[7] IETF RFC 1738: "Uniform Resource Locators (URL)".

[8] Schneier, Bruce: "Applied Cryptography Second Edition: Protocols, Algorithms and Source code

in C", John Wiley & Sons, 1996, ISBN 0-471-12845-7.

[9] RSA Laboratories: "PKCS #1 v2.0: RSA Cryptography Standard",

www.rsasecurity.com/rsalabs/pkcs/.

[10] ISO/IEC 9797-1:1999(E): "Information technology – Security techniques – Message

Authentication Codes (MACs)".

[11] RSA Laboratories: "PKCS#9 v2.0: Selected Object Classes and Attribute Types",

http://www.rsasecurity.com/rsalabs/pkcs/.

[12] FIPS PUB 180-1: "Secure Hash Standard (SHS)".

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 11

[13] Wireless Application Forum: "Wireless Application Protocol – WMLScript Crypto Library

Specification", Version 20-Jun-2001.

[14] Wireless Application Forum: "Wireless Application Protocol – Wireless Transport Layer Security

Specification", Version 18-Feb-2000.

[15] IANA assigned character sets, http://www.iana.org/assignments/character-sets.

[16] RSA Laboratories: "PKCS #5 v2.0: Password-Based Cryptography Standard",

http://www.rsasecurity.com/rsalabs/pkcs/.

[17] 3GPP TS 31.112: "USAT Interpreter Arch itecture Description; Stage 2".

3 Definitions, abbreviations and symbols

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

anchor: named location on a page to which references can be made and at which rendering by the USAT Interpreter is

initiated

NOTE: Anchors can be referenced by anchor reference TLVs .

attribute: A property assigned to a TLV. The attribute can consist of a single bit or of a sequence of consecutive bits

within the attribute bytes of a TLV.

attribute byte(s): sequence of consecutive bytes in the value part of a TLV containing the attributes of that TLV

current page: page which is currently rendered by the USAT Interpreter

current terminal response handler configuration: terminal response handler configuration currently valid

external system entity: any entity outside the USAT Interpreter, able to communicate with the USAT Interpreter (e.g.

USAT Gateway, content/application system)

default terminal response handler configuration: the terminal response handler configuration as specified in clause

4.3.2

general result range: general result range is a range of general results in the terminal response of an USAT command

(refer to TS 31.111 [1])

navigation unit: b lock of a service description that can be referenced (by its anchor) and hence independently activated

page: context of an USAT Interpreter rendering, the default scope of USAT Interpreter variables and the unit of

transmission between an external system entity and the USAT Interpreter

protected variable: shared variable, which is protected by an one time password

service: collection of pages that defines an unitary capability of the mobile equipment from the point of view of the

user. Examples include remote database access, electronic mail, and alerts

service ID: unique ID to identify a service on the external system entity

shared variable: variable to be shared with the following page

NOTE: Shared variables can be provided to the next page in a protected or non protected manner.

string pool: list of predefined variables provided by the current page within the page TLV

NOTE: The string pool is mainly used for optimisation purposes.

system terminal res ponse handler configuration: default terminal response handler configuration possibly modified

by personalisation

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 12

terminal res ponse handler configuration: configuration used by the terminal response handler mechanism to allow

the mapping of actions to general results of USAT commands (see 4.3.1.1)

variable ID: identifier to reference a variab le within a variab le usage area

wait state: state which is possibly entered by the USAT Interpreter to wait for a response from the external system

entity after information has been submitted to the external system entity

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

3DES Trip le DES

AKI Asymmetric Key Index

AD Asymmetric Decryption Plug-in

ASN.1 Abstract Syntax Notation One (1)

C Conditional

CA Cert ification Authority

CBC Cipher Block Chaining (Mode)

CHV Card Holder Verificat ion

CP Change PIN Plug-in

DCS Data Coding Scheme

DD Trip le DES Decrypt Plug-in

DE Trip le DES Encrypt Plug-in

DER Distinguished Encoding Rules of ASN.1

DES Data Encryption Standard

DS Trip le DES Sign Plug-in

DU Trip le DES Unwrap Plug-in

ECB Electronic Code-book (mode)

EDE Encrypt-Decrypt-Encrypt

FP Fingerprint Plug-in

IANA Internet Assigned Numbers Authority

ICCID Integrated Circu it Card IDentificat ion

ID IDentifier

IV Initialisation Vector

LSB Least Significant Bit

M Mandatory

MAC Message Authentication Code

MDC Modification Detection Code

MSB Most Significant Bit

NCI Native Code Identifier

NU Navigation Unit

O Optional

OID Object Identifier

OTA Over-the-Air

OTP One Time Password

P7 PKCS#7 Signature Plug-in

PIN Personal Identification Number

PKCS Public-Key Cryptography Standards

PS Plug-in Status Code

PUK PIN Unblocking Key

RFU Reserved for Future Use

RP Reset PIN Plug-in

RSA Algorithm invented by Rivest, Adleman and Shamir

SHA-1 Secure Hash Algorithm 1

SMS Short Message Service

SW1/SW2 Status Word 1 / Status Word 2

TLV Tag Length Value

TR Terminal Response

TS Technical Specification

TTBS Text To Be Signed

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 13

UCS2 Universal two byte coded Character Set

UE User Equipment

URL Uniform Resource Locators

USAT USIM Application Toolkit

USIM Universal Subscriber Identity Module

WAP Wireless Application Protocol

WIM Wireless Identity Module

WTLS Wireless Transport Layer Security

XML eXtensible Markup Language

3.3 Symbols

For the purposes of the present document, the following symbol applies:

'0' to '9' and 'A' to 'F' The sixteen hexadecimal dig its

Single b its are identified by b1 to b8, where b1 is the LSB and b8 is the MSB of the byte containing the bit.

RFU b its and bytes are to be set to '0'.

Symbols used in annexes:

<i..j> Sub-string extraction operator. Extracts bytes i through j. 1 i j.

X || Y Concatenation of byte-strings X and Y (in that order).

|| .|| Byte length operator.

bn Individual b it in a byte. Range from bit 1 (least significant), denoted b1, to bit 8 (most

significant), denoted b8.

Bn Individual byte in a byte-string. Range from byte 1 (leftmost), denoted B1, to byte n

(rightmost), denoted Bn.

c Ciphertext representative. An integer between 0 and n-1.

C Ciphertext. Input parameter to the AD plug-in.

DP Decrypted PIN data.

DTBS Data-to-be-signed. Input parameter to the FP plug-in.

EM Encrypted message.

DM Decrypted message.

EMSA-PKCS1-v1_5-ENCODE PKCS#1 encoding function. See [9] for further reference

EP Encrypted PIN data.

I2OSP Integer-to-Octet-String conversion primitive. See [9] for further reference.

ICCID Raw ICCID. 10 bytes length.

ISO_IEC_9797_ALG3 ISO/IEC 9797 MAC algorithm 3. See [10] for further reference.

ISO_IEC_9797_PAD2 ISO/IEC 9797 padding method 2. See [10] for further reference.

k Length in bytes of the modulus.

K RSA private key.

K1, K2, K , K’ DES keys.

KC An 8 byte key checksum.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 14

KH SHA-1 hash of the public key. The hash shall be computed from the unsigned modulus

to be in line with WAP WTLS and WAP WIM.

m Message representative. An integer between 0 and n-1.

M Message, a byte string.

MAC A ISO/IEC 9797 message authentication code

MD A SHA-1 hash value.

N Modulus. An integer.

OS2IP Octet-String-to-Integer conversion primitive. See [9] for further reference.

PC An 8 byte PIN checksum.

PKCS5_PAD PKCS#5 padding function. See [16] for further reference.

PKCS5_UNPAD Inverse of PKCS5_PAD. See [16] for further reference.

PM A padded message.

R Random nonce. 8 bytes length.

RSADP RSA decryption primit ive. See [9] for further reference.

RSASP1 RSA signature primit ive. See [9] for further reference.

RSASSA-PKCS1-v1_5-SIGN PKCS#1 signature generation function. See [9] for further reference.

S Raw signature of byte length k .

SHA1 SHA-1 hash function. See [12] for further reference.

TDEA_DECR Trip le DES decryption algorithm. See [8] for details regard ing the algorithm.

TDEA_ENCR Trip le DES encryption algorithm. See [8] for details regard ing the algorithm.

TTBS Text-to-be-signed. Byte string. Input parameter to P7 plug-in.

4 Model of computation

A service is mobile device (user equipment) functionality as seen by the user, for example e-mail, informat ion access or

order entry.

A service is composed of one or more pages. Pages describe informat ion presented to the subscriber and retrieve input

from the subscriber. The unit of transmission to the user equipment as well as the unit of USAT Interpreter

interpretation is the page. The set of all pages describing a service is called the service description.

Pages are composed of navigation units. Anchors reference the beginning of navigation units. Therefore anchors are

points in a service description that can be branched to from other points in the service description. Each page has an

implicit anchor at the beginning of the page.

In some mark-up languages pages are known as decks and anchors are known as cards.

The USAT Interpreter renders pages and provides a way to navigate from within pages to anchors belonging to the

same page or other pages. The requirements of the USAT Interpreter include a way to automatically go back to

previously visited anchors.

When reaching the last byte code of a page, the USAT Interpreter shall behave like ending a navigation unit.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 15

4.1 Navigation

A page expressed as compiled byte code instructions is stored as a unit in the USAT Interpreter. The page is the

smallest unit that the external system entity can provide to the USAT Interpreter. A page is partitioned into one or more

navigation units each of which can be referenced using anchors. In other words, navigation units and anchors are

included in pages.

The anchor is defined as being the elementary navigation target. The USAT Interpreter can skip from one anchor to

another, backwards and forwards based either on control flow constructs or user interaction. If a navigation unit

contains no instructions to branch to an anchor within the current page or another page, the behaviour of the USAT

Interpreter is defined by the terminal response handler mechanism. This keeps the proactive session alive and allows

further navigation.

Pages are stored in the USAT Interpreter. The structure of pages is described later in the present document. These pages

are stored either permanently in the USAT Interpreter o r received and interpreted on the fly.

Pages and navigation units are referenced using anchor references as described below.

To be able to create mult iple-page services, page references within USAT Interpreter commands are used to fetch new

pages or to link pages together.

The behaviour of the USAT Interpreter in response on user interaction (e.g. backward move, p roactive session

terminated, help informat ion requested) is defined by the current terminal response handler configuration. The terminal

response handler configuration can be modified by a terminal response handler modifier with in the page or navigation

unit context.

If no terminal response handler modifier is defined in the page context or in the navigation unit context, the system

terminal response handler configuration shall be used.

4.2 Communication with the external system entity

This clause provides an overview of the communicat ion of the USAT Interpreter with the external system entity. The

present document describes the format of content exchanged between the external system entit y and the USAT

Interpreter. The protocol and bearer used for the communication with a USAT Interpreter Gateway System is specified

in TS 31.114 [2]. The protocol and bearer used for the communication with other external system entities is out of the

scope of the present document.

4.2.1 Incoming pages from the external system entity

Any information obtained by the USAT Interpreter from the external system entity shall be formatted as a Page TLV.

After obtaining a Page TLV from the external system entity the USAT Interpreter shall start rendering the obtained

page according to the present document.

4.2.2 Outgoing data to the external system entity

The submission of outgoing data can be triggered by the USAT Interpreter byte codes:

- Assign and Branch;

- Branch on Variab le Value; and

implicitly by a "go back" history navigation action.

A service can trigger the submission of outgoing data by providing a Page Reference TLV containing a Submit

Configurat ion TLV within the byte codes mentioned above.

The Submit Configuration TLV contains the parameters to be used to build a Submit TLV structure, which will be

provided to the external system entity then.

The Submit TLV structure is used only in the direction from the USAT Interpreter to the external system entity. Al l

informat ion provided by the USAT Interpreter to the external system entity shall be formatted as a Submit TLV

structure. The Submit TLV structure consists of a Submit Data TLV and optionally of a Page Identification TLV.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 16

The Submit Data TLV is used in two forms :

- In the direction from the external system entity to the USAT Interpreter, the value part of the Submit Data TLV

contained in the Submit Configuration TLV may consist of any byte sequence possibly containing variable

references.

- In the direction from the USAT Interpreter to the external system entity, all variable references within the

Submit Data TLV contained in the Submit Configurat ion TLV are substituted according to method 2 in clause

6.3. The resulting Submit Data TLV containing the substituted variable references with variable content shall

then be used within the Submit TLV to be submitted by the USAT Interpreter to the external system entity.

4.2.3 Wait State

When rendering a Page Reference TLV containing a Submit Configuration TLV havin g the "ProcessingBehaviour"

attribute set (post mode, not expecting a related answer from the external system entity, see TS 31.112 [17]), the USAT

Interpreter shall perform the following actions:

- provide the Submit TLV to the protocol layer to be transmitted to the external system entity (see clause 4.2.2);

- If the transport layer successfully executed the given information

- process next byte code.

- If the transport layer could not execute the given information successfully

- execute the "Transport error while submitting data" exception case of the terminal response handler

mechanis m.

When rendering a Page Reference TLV containing a Submit Configuration TLV having the "ProcessingBehaviour"

attribute not set, the USAT Interpreter shall perform the following actions:

- Generate a new RequestID value, by incrementing the RequestID value. If the Request ID value reaches its

maximum value, the RequestID value shall start at 0 again.

- Provide the RequestID to the protocol layer to be incorporated into the transport protocol (refer to

TS 31.114 [2]).

- Provide the Submit TLV to the protocol layer to be transmitted to the external system entity (see clause 4.2.2).

If the transport layer successfully executed the given information

- enter the wait state.

If the transport layer could not execute the given information successfully

- execute the "Transport error while submitting data" exception case of the terminal response handler

mechanis m.

In the wait state, the USAT Interpreter shall keep the proactive session alive. Therefore, a DISPLAY TEXT USAT

command shall be issued by the USAT Interpreter to notify the user that the USAT Interpreter has entered the wait

state.

The text to be used for the text string of the DISPLAY TEXT command shall be taken from the In line Value TLV of the

Submit Configuration TLV requesting the wait state.

If this In line Value TLV is not availab le in the Submit Configurat ion TLV when entering the wait state, then a default

text shall be taken by the USAT Interpreter. This default text can be personalised and later on changed by

administrative means.

For the DISPLAY TEXT USAT command the command qualifier option:

- "clear message after delay".

shall be used.

The USAT Interpreter shall handle the wait state according to figure 4.1.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 17

"ok", or

"no response from user"

DISPLAY

TEXT

TR Handler

General Result

analysis
Requested page

received?

no

yes

other General Results

exit wait

state and

render

requested

Page
exit wait

state

according to

TR Handler

Start

Figure 4.1: State diagram

The terminal response handler is activated by the USAT Interpreter, when the general result range of the DISPLAY

TEXT command is not '00 0F' ("ok") and not '12 12' ("no response from user"). The terminal response handler shall use

the current terminal response handler configuration (i.e. the configuration of the current navigation unit).

Incoming pages shall be handled as follows.

When getting a page during the wait state being active, the protocol layer shall check the received Reques tID:

- If the provided RequestID does not match the expected RequestID, the page is discarded and the wait state

remains active. The current page is not affected by the discarded page.

- If the provided RequestID does match the expected RequestID, the wait state is terminated by the USAT

Interpreter and the received page is rendered.

If the wait state has been terminated before the expected RequestID has been received (e.g. the wait state was cancelled

by the user, the UE was switched off...), the protocol layer shall d iscard pages from the external system entity, which

have been received as operational pull messages (see TS 31.114 [2] and TS 31.112 [17]).

4.3 Terminal response handler mechanism

For any general result of an USAT command, the USAT Interpreter shall branch to the terminal response handler. The

terminal response handler shall handle the general result according to the following rules.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 18

4.3.1 Operation of the Terminal Response Handler

4.3.1.1 Definitions

For the description of the Terminal Response Handler Mechanism the following defin itions and abbreviations apply:

Abbreviation Item Definition
AI Action Identifier a single value in the range of '00' to 'FF' identifying an action
GR General Result result of a USAT command; a single value in the range from '00' to 'FF'

GRR General Result Range multiple consecutive General Result (GR) values
a Single Action A single action identified by an external system or service defined Action

Identifier(AI). a 'xx' is a single action with the AI 'xx'.

A Set of Actions a collection of zero or more single actions (a).
AGR General Result Actions A set of Actions (A) applying to a specific General Result (GR).

TRHC Terminal Response
Handler Configuration

A collection of AGR, so that there is one Set of Actions for each General
Result (GR).

4.3.1.2 Operation

The execution of any USAT command generates a general result (GR). The behaviour of the USAT Interpreter after the

execution of a USAT command is determined by the generated general result and the current terminal response handler

configuration as follows:

While the USAT Interpreter is in execution there is always one active terminal response handler configuration called the

current terminal response handle configuration .

Let the generated general result be GR. The USAT Interpreter shall check the current terminal response handler

configuration for the corresponding AGR for that GR. By defin ition, for each GR an AGR shall exist. As specified in

4.3.1.1 an AGR might have no, one or more actions (a) applied to it.

If the AGR contains only one action (a), then the single action (a) in A GR shall be performed by the USAT Interpreter

without user confirmation. If there are several actions in the A GR, then the USAT Interpreter shall issue a SELECT

ITEM command to let the user select one action (a) out of AGR that shall be used by the USAT Interpreter. The handling

of the SELECT ITEM command is described in clause 7.1.8.4.4.

Besides the actions assigned to general results received after USAT commands execution, the T RH modifier allows also

to change the USAT Interpreter behavior when an exception occurs. In case of an exception, the corresponding

exception action will apply. Each exception action can be changed by using the terminal response handler modifier with

the reserved general result range 'FF xx' (with xx between '00' and 'FE'). The reserved general result range 'FF xx' are

called exception range. It is also possible to change all the exception actions using the "general exceptions" ('FF FF'). In

the default terminal response handler table (clause 4.3.2, table 4.1), the range 'FF FF' is called "general exceptions".

Exception examples:

- no more byte code when process next byte code (e.g. end of navigation unit);

- After the execution of a USAT command, there is no action (a) in AGR.

4.3.2 Default Terminal Response Handler configuration

A default terminal response handler configuration is defined in the present document (see table 4.1). The proposed

default terminal response handler configuration may be modified at personalizat ion stage by the card issuer.

The possibly modified resulting terminal response handler configuration is called the system terminal response handler

configuration, which shall be used by the USAT Interpreter. The system terminal response handler configuration can be

the same as the default terminal response handler configuration or it can d iffer from it, depending on the decision of the

card issuer.

NOTE: A service should take into account, that the system terminal response handler configurat ion might be

different from the default terminal response handler configuration. The service might need to have

knowledge of the system terminal response handler configuration in order to behave as intended.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 19

The system terminal response handler configuration can be modified temporarily by the terminal response handler

modifier (see clause 7.1.8).

If the USAT Interpreter branches to another page due to the terminal response handler configuration, the standard inter

page variable management shall apply (see clause 6.1.3.1).

Default terminal response handler configuration.

Table 4.1

 Action ID General result range

 'FF FF' '14 14' '00 0F' '13 13' '12 12' '11 11' '10 10' '20 2F' '30 3F'

G
e
n

e
ra

l

E
x
c
e
p

ti
o

n
s

U
S

S
D

/S
S

tr

a
n

s
a
c
ti
o

n

te
rm

in
at

e
d

o
k

h
e
lp

 r
e
q
u

e
st

n
o

 r
e
s
p
o

n
se

fr

o
m

 u
s
e
r

b
a
c
k
w

a
rd

 m
o

v
e

re
q

u
e
s
te

d

q
u

it

w
o

rt
h

 t
o

 r
e
-t

ry

n
o

t
w

o
rt

h
 t
o

 r
e-

tr
y

S
y

s
te

m
 a

c
ti

o
n

s

process next byte code '00' X

quit USAT Interpreter '01' X X X X X X

go back one entry in
history list

'02' X

retry last proactive
command within current

USAT Interpreter

navigation unit

'03' X
X

(note)

NOTE: In the case of SET UP CALL, the system action "retry last proactive command within current USAT Interpreter
navigation unit" should be deactivated by the service.

The USAT Interpreter may support storage of texts for user notification fo r the general result ranges of the system

terminal response handler configuration. If texts for user notification are availab le, the texts shall be used according to

clause 7.1.8.3.

For each of the system actions a text shall be assigned and shall to be used in the SELECT ITEM if more than one

action is assigned to a general result (see clause 4.3.1.2). These texts shall be specified by the card issuer and shall be

provided by personalisation.

4.4 Activation

Activation of USAT Interpreter depends on USAT Interpreter current state. The USAT Interpreter state corresponds to

the presence or the origin of proactive session generated by USAT Interpreter. A state can be:

- Idle (i.e. no proactive session is running);

- Rendering a page (i.e. proactive session issued from byte code command);

- Wait state (see section 4.2.3).

The USAT Interpreter can be activated (i.e. be caused to leave the idle state and start rendering a page) in different

ways:

- locally from the UE using menu selection;

- locally from the UE as the result of an event;

- by an incoming page initiated by an external system entity (push mode according to TS 31.112 [17]); or

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 20

- optionally by an internal application using a proprietary interface.

The rendering of a page shall be independent of the means of activation.

In id le state of the USAT Interpreter, the protocol layer (see TS 31.114 [2]) shall discard pages from the external system

entity, which have been received as operational pull messages (see TS 31.114 [2] and TS 31.112 [17]).

With respect to activation locally from the UE using menu selection, the SETUP MENU command as described in

TS 31.111 [1] can contain one or more links to a Page Identification TLV which identifies a locally stored page. When

one of these identifiers is selected, and when USAT Interpreter is in id le state, the USAT Interpreter is activated and

renders the referenced page. If the referenced local page does not exist the USAT Interpreter shall gene rate a "Jump to

undefined" error (see chapter 12). Registering of pages to the main menu is up to administrative means.

An event (as specified in TS 31.111 [1] or proprietary events defined by the card issuer) is linked to a Page

Identificat ion TLV which identifies a locally stored page. When the UE sends an ENVELOPE command containing an

event, and when USAT Interpreter is in idle state, the USAT Interpreter is activated and renders the referenced page. If

an event is received not referencing to a page, the event shall be ignored by the USAT Interpreter. If the referenced

local page does not exist the USAT Interpreter shall generate a "Jump to undefined" error (see chapter 12). For security

reasons, setting up events is up to administrative means.

If an event occurs while the USAT Interpreter is not in idle state, the USAT Interpreter shall queue the event and shall

postpone executing the event until the USAT Interpreter enters idle state again.

The USAT Interpreter shall be ab le to queue at least one event. Events shall be executed in the order the events have

been occurred.

If the USAT Interpreter is not able to store an event (e.g. because the event queue is full already), it is up to the

implementation of the USAT Interpreter to handle this situation.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 21

4.5 Page format overview

Figure 4.2 g ives an overview of the construction and elements of a page to be rendered by the USAT Interpreter.

Page

Page Parameters

Navigation Unit #1

Name (Anchor)

Byte Code #1

Byte Code Parameter #1

Byte Code Parameter #n

Byte Code #n

...

...

Byte Code Parameter #2

Navigation Unit #n

...

Navigation Unit #2

Byte Code #2

Figure 4.2: Overview of page format

A transmission initiated by the USAT Interpreter to the external system entity is performed when the USAT Interpreter

executes a byte code containing a Page Reference TLV containing a Submit Configuration TLV (see clause 7.9.3)

referring to a page which is not locally stored.

Page Reference TLVs are used in the following byte code commands:

- Assign and Branch;

- Branch on Variab le Value.

4.6 History list

The history list is a list of anchor references. This history list also owns an anchor reference pointer which points to a

specific entry in the history list. When a navigation unit is completely rendered (i.e. when the USAT Interpreter starts to

render another navigation unit), its anchor reference is added on the top of the history list, and the anchor pointer points

on it. A navigation unit is not added to this list in fo llowing cases:

- If an appropriate attribute flag is set in the navigation unit;

- if the navigation unit does not have any anchor name.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 22

The maximum number of entries in the history list is N (anchor references) where N is greater than or equal to zero. If

N=0, the h istory list mechanism and related navigation actions become deactivated.

If the history list is full, the bottom-most entry is removed from the list in order to free space for a new top-most entry.

The history is reset (is emptied) whenever the USAT Interpreter is in itialised.

The USAT Interpreter allows navigation based on the history list and the anchor reference pointer. The history

navigation action "go back one entry in history list" means that the navigation unit corresponding to the pointed anchor

reference shall be rendered, and the anchor reference pointer is immediately moved down in the list. The origin of this

action can be either the system action '02' in terminal response handler configuration, or the Go Back byte code

command.

The moving of this anchor reference pointer in the history list does not modify the history list itself.

If the anchor reference pointer reaches the bottom of the history list or the history list does not contain any entry, and if

a "go back" history navigation action has to be performed in this situation, then the "History list empty, or bottom of the

list reached" exception case of the terminal response handler mechanism shall be performed.

Retry-last-proactive-command, system action '03' of the terminal response handler configuration shall not modify the

history list.

If, at any time, the anchor reference pointer does not point to the top-most anchor reference in the history list, and if a

navigation action other than the "go back" history navigation action (e.g. Assign and Branch byte code command) is

performed, then any anchor references between the anchor reference pointer and the top -most entry are deleted from the

history list, that means the entry referenced by the anchor reference pointer becomes the top -most entry in the history

list.

If the USAT Interpreter does not find the requested anchor locally while processing a "go back" history navigation

action, an outgoing message shall be sent to the external system entity to retrieve the page the requested anchor

reference belongs to. The Submit TLV shall be formatted in the same way as the previously used Submit TLV to

retrieve this page and the USAT Interpreter shall start to render the navigation unit the anchor reference points to.

NOTE: Service providers should take care of that the "go back" history navigation action on remote pages could

generate security issues.

5 TLV Format

The Tag Length Value (TLV) is the basic data structure element. If the value part of a TLV contains other TLV

elements it is called a BER-TLV or a template TLV. If not, it is called a simple TLV. Refer to ISO/IEC 7816-6 [5] fo r

more in formation on data objects.

The tag byte contains a seven-bit tag value and an attribute byte-present bit in the MSB. If the attribute byte-present bit

is set then the leading byte(s) in the value field contain attribute informat ion for the element identified by the tag.

Length Value Description M/O

1 T Tag M

1-3 L Length of following data, a length value of '00' is allowed M

L V The data value associated with the tag O

The length is BER coded onto 1, 2 or 3 bytes according to ISO/IEC 7816-6 [5].

The value of a TLV is the content of its value field and therefore evaluation of a TLV yields its value.

TLVs shall appear in the order given in the present document. Additional TLVs may be appended to the TLVs given in

the present document. If TLVs are expected by the USAT Interpreter and are missing the execution result of the byte

code shall be "Syntax error", as stated in chapter 12. Then the USAT Interpreter shall behave as described in chapter 12.

TLVs not supported by the USAT Interpreter shall be ignored by the USAT Interpreter.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 23

5.1 Coding of the tag byte

The tag byte of all TLVs described in the present document is as follows:

b8 b7 b6 b5 b4 b3 b2 b1

Attribute
byte

present
bit

Tag value coded on 7 bits

Attribute byte present bit Value

Attribute byte present as first byte of V 1

Attribute byte not present as first byte of V 0

5.2 Attributes in TLVs

Every TLV can have one or more attributes bytes if indicated by the attribute byte present bit of the tag byte. The

coding of an attribute byte is shown below. Attributes provided in the attribute byte shall be related to the belonging

TLV. The meaning of the attributes of a TLV is TLV specific and specified in the TLV descriptions.

An attribute given in an attribute byte can consist of a single bit or a combination of consecutive bits forming an

attribute value.

The default value of an attribute value or an attribute bit within an attribute byte is always '0'. The '0' value of an

attribute shall be used by the USAT Interpreter, if the attribute is not available in the TLV.

Whenever the attributes for a tag require more than 7 bits within an attribute byte, the number of attribute bytes will be

extended. The extension of the attribute byte shall be indicated by the MSB of the attribute byte, which is called the

follow b it.

Attributes or attribute bytes not expected or not known by the USAT Interpreter shall be ignored by the USAT

Interpreter.

5.3 Coding of attribute bytes

The MSB of each attribute byte indicates if another attribute byte follows or not. The MSB is called fo llow b it. The

remain ing seven bits of an attribute byte contain TLV specific attributes, either coded as a single bit or as a combination

of consecutive bits.

The context, namely the tag, completely determines the order, span and semantics of the bit -packed attribute values. An

attribute consisting of more than 1 bit may span two attribute bytes.

General coding:

 b8 b7 b6 b5 b4 b3 b2 b1

 Attribute #1

 Attribute #2

 Attribute #3

 Attribute #4

 Attribute #5

 Attribute #6

 Attribute #7

 Follow bit

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 24

Follow b it coding:

Follow bit Value

Another attribute byte available as next byte of V 1

No more attribute bytes available 0

Other coding example where attribute #2 consists of a single bit, attribute #3 consists of a 4 b it value and attribute #1

consists of a 2 b it value.

 b8 b7 b6 b5 b4 b3 b2 b1

 Attribute #1

 Attribute #2

 Attribute #3

 Follow bit

6 Variables

Variables are name-value pairs. The name is called the variab le identifier (ID) and the value is called the variable value.

Operations are provided to refer to a variable value by using its variable ID and for setting and resetting the value

associated with a variable.

Variables can be stored in the following usage areas:

- Environment variable area;

- Permanent variable area;

- Temporary variab le area;

- Page string element.

Variables have one of the following variable types:

- SMS default 7-bit coded alphabet as specified in TS 23.038 [3] with b it 8 set to 0;

- SMS default 7-bit coded alphabet as specified in TS 23.038 [3] packed;

- Binary;

- UCS2 coded string.

The list can be extended.

6.1 Usage areas

Variables are referred by using an unified one byte notation. The one byte variable reference is called the v ariable ID.

b8 and b7 of the variable ID are used to indicate the belonging of a variable to a certain usage area. The remain ing 6 b its

are used to reference a certain variable within the usage area.

Due to the used coding, the number of variables per area is restricted to 64.

The coding of the variable ID is as follows:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 25

b8 b7 b6 b5 b4 b3 b2 b1

0 0 belongs to Environment usage area

0 1 belongs to Permanent usage area
1 0 belongs to Temporary usage area

1 1 belongs to Page String Element usage area
 x x x x x x identifier of the variable within the usage area

Except for the Page String Element usage area, the size of the different usage areas is to be defined by the card issuer

and configured during the personalisation proces s of the USAT Interpreter.

6.1.1 Environment variable usage area

This usage area consists of 3 different partitions:

- USAT Interpreter system informat ion partition;

- USIM issuer informat ion partition;

- End user information partit ion.

6.1.1.1 USAT Interpreter system information partition

The USAT Interpreter partit ion is preloaded during the manufacturing process of the USIM or during the runtime of the

USAT Interpreter.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 26

At least the following information shall be stored:

Variable ID Description Coding

'00' ICCID of UICC Binary coding as for EFICCID specified in TS 31.101 [4]

'01' USAT Interpreter version Byte 1: Issuer Version
USAT Interpreter issuer specific version. The coding
and value of this byte depends on the USAT
Interpreter issuer. The USAT Interpreter issuer is
stored in variable '07' and variable '08'.

Bytes 2-3: TS 31.113, Version (this TS)

Byte 2: first digit (x according to the foreword of the
present document) of the version of the supported TS
31.113; BCD coded

Byte 3: second digit (y according to the foreword of the
present document) of the version of the supported TS
31.113; BCD coded

Bytes 4-5: Version of TS 31.114 [2]

Byte 2: first digit (x according to the foreword of the
present document) of the version of the supported TS
31.114; BCD coded

Byte 3: second digit (y according to the foreword of the
present document) of the version of the supported TS
31.114; BCD coded

further bytes are RFU

Example:

Issuer version: '22'
TS 31.113 version: 5.2.0
TS 31.114 version: 5.12.3

resulting coding:
'22 05 02 05 12'

'02' USAT Command Filter This includes the list of allowed USAT Commands.
Coding as specified in TS 31.114 [2].

NOTE: Content is dynamic, i.e. it is impacted by the

current configuration
'03' USAT Interpreter Native Commands List of supported native commands. Coding: Sequence of

NCIs. Each NCI coded in 2 bytes.

'04' Terminal Profile as got at runtime Binary coded as defined in TS 31.111 [1] for TERMINAL
PROFILE

'05' Error Code as generated by the last
byte code command executed

Binary coded as specified in clause 12

'06' Maximum page size for temporary
storage of one page

Binary coded, most significant byte first:
Number of bytes available for page storage.

'07' USAT Interpreter issuer identification URL of USAT Interpreter issuer, coding according to RFC
1738 [7] <host> of URL.

'08' Hash Value of URL of USAT
Interpreter issuer identification

4 most significant (left most) bytes of SHA-1 hash of the
content of variable '07'

'09' Reception Buffer Size Binary coded, most significant byte first:

 Receive buffer size in bytes available for
messages to be received by the USAT Interpreter.

This size includes all possibly needed space for transport
headers, security, routing information, concatenation
information and so on.

'0A' USAT Interpreter Byte Code Filter This includes the list of allowed USAT Interpreter byte
codes.
Coding as specified in TS 31.114 [2].

NOTE: Content is dynamic, i.e. it is impacted by the

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 27

Variable ID Description Coding

current configuration.

'0B' Transmission Buffer Size Binary coded, most significant byte first:

 Transmit buffer size in bytes available for
messages to be sent by the USAT Interpreter.

This size includes all possibly needed space for transport
headers, security, routing information, concatenation
information and so on.

 '0C'... '13' RFU

6.1.1.1.1 Write access to the partition

This partition shall not be updated by admin istrative means after the personalisation process. The variables in this

partition may be changed by the USAT Interpreter itself, if e .g. the configuration of the USAT Interpreter changes

(e.g. addition of a new native code functionality).

6.1.1.1.2 Read access of the partition

The informat ion stored in this partition can be freely accessed by any page executed by the USAT Interpreter.

6.1.1.2 USIM issuer information partition

The informat ion stored in this partition is under the control of the USIM issuer. The USIM issuer is responsible to

allocate variable IDs for his own purposes in the range from '14' to '28'. The used variable IDs shall be publishe d to

content providers.

6.1.1.2.1 Write access to the partition

This partition can be updated by the USIM issuer by administrative means.

6.1.1.2.2 Read access of the partition

The informat ion stored in this partition can be freely accessed by any page executed by the USAT Interpreter.

6.1.1.3 End user information partition

The informat ion stored in this partition is under the control of the end user. If the user decides to store informat ion in

this partition, the following variable IDs shall be used:

Variable ID Description Coding

'29' User name SMS default 7-bit coded alphabet as defined in TS 23.038 [3]
with bit 8 set to 0
 or
UCS2 coded

'2A' User e-mail address SMS default 7-bit coded alphabet as defined in TS 23.038 [3]
with bit 8 set to 0

'2B' ... '3F' RFU

6.1.1.3.1 Write access to the partition

This area can only be updated by the end user. How this is implemented is out of the scope of the present document.

6.1.1.3.2 Read access of the partition

The informat ion stored in this partition can be freely accessed by any page executed by the USAT Interpreter.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 28

6.1.2 Permanent variable area

This area is used to store permanently variab les which can be accessed even after the USIM was reset. This area is

organised as a cyclic variable buffer. If the buffer is full, a new entry shall delete the oldest entries until enough space is

made available to store the new entry.

Each entry consists of the service ID of the page storing the variable in this area, the variab le ID and the content of the

variable. A variab le is identified by the couple {variable ID, service ID}. Therefore, in the permanent variab le area, two

different variables can share the same variable ID. For pages using this variable area, it is mandatory to provide the

service ID in the Page TLV. The assignment of service IDs is up to an external system entity.

6.1.2.1 Write access to the permanent variable area

Any page which provides a service ID may store permanent variables.

6.1.2.2 Read access of the permanent variable area

The informat ion in this area can be freely accessed by pages providing a service ID within the Page TLV, which is

contained in the list of permanently stored variables. A page shall have access to those variables only, which have the

same service ID as stored in the Page TLV.

If a page, which does not provide a Service ID TLV, attempts to access a variable, the USAT Interpreter shall generate

a "security error".

If a page attempts to read a variable, which has never been initialised by the service the page belongs to, the USA T

Interpreter shall generate a "reference to undefined" error.

Example:

Step 1: page 1, with service ID "1111", creates a permanent variable. Its variable ID is '41' and its content is "Toto".

Step 2: page 2, with service ID "222222", attempts to read the variable '41' content. The USAT Interpreter generates a

"reference to undefined" error because the variable {'41', "222222"} does not exist yet.

Step 3: page 3, with service ID "222222", creates a permanent variable. Its variab le ID is '41' and its cont ent is

"Fellow".

Step 4: page 4, with service ID "1111", attempts to read the variable '41' content. The result is "Toto" and not "Fellow".

This example shows that page 2 does not overwrite the page 1 variables.

Permanent variable area

Service

ID

Variable

ID

Content

"1111" '41' "Toto"

"222222" '41' "Fellow"

… … …

Page 1

 Service ID = "1111"

 Write Variable ID = '41',

content = "Toto"

Page 3

 Service ID = "222222"

 Write Variable ID = '41',

content = "Fellow"

Page 4

 Service ID = "1111"
 Read Variable ID = '41'

1

3
4

Page 2

 Service ID = "222222"

 Read Variable ID = '41'

2

Figure 6.1: Example

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 29

6.1.3 Temporary variable area

Temporary variab les are used during the execution of the current page. If the USAT Interpreter is not able to create a

new temporary variab le due to the limits of the temporary variable area memory space, the USAT Interpreter shall

generate a "Problem in memory management " error. Temporary variab les may be shared with the following page.

Temporary variab les are used for 2 purposes:

- as variables defined and used within the current page;

- as variables to be shared between the current page and the following page.

The current page shall define, which variables are to be kept for access of the following page. To ensure, that only a

dedicated following page can access the variables defined to be sharable, the current page may protect them with a One

Time Password (OTP). The fo llowing page shall present a Page Unlock TLV to get access to the shared variables. This

TLV contains the OTP of the preceding page.

If this mechanis m is used to protect shared variable, it might happen that a page is not able to access the protected

shared variables, if the sequence of pages provided to the USAT Interpreter is disturbed (e.g. by using backward

navigation between pages...).

6.1.3.1 Write access to the temporary variable area

Only the current page can allocate temporary variables. The current page can allocate temporary variables as many as it

is space available in this area.

To indicate how to provide variables to the next page, the KeepAll flag in the attribute of the current page and the OTP

TLV and the Keep Alive List TLV within the current Page TLV is used according to the following table.

KeepAll flag OTP TLV KeepAliveList
TLV

Actions

set present present not valid, if occurs, the KeepAll attribute shall be ignored, variables
listed in the Keep Alive List TLV shall be kept for the following page
and shall be protected by OTP

set present not present all temporary variables shall be kept for the following page and
shall be protected by OTP

set not present present not valid, if occurs, the variables listed in the Keep Alive List TLV
shall be kept for the following page and shall not be protected by
OTP

set not present not present all temporary variables shall be kept for the following page and
shall not be protected by OTP

not set present present variables listed in the Keep Alive List TLV shall be kept for the
following page and shall be protected by OTP

not set present not present not valid, no variables to be kept for the following page

not set not present present variables listed in the Keep Alive List TLV shall be kept for the
following page and shall not be protected by OTP

not set not present not present no variables to be kept for the following page

6.1.3.2 Read access of the temporary variable area

A current page can freely access temporary variables stored by this current page. Variables of the previous page shall

only be accessible according to the rules of the table in clause 6.1.3.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 30

In order to unlock the shared protected variables the Page Unlock TLV has to be present within the Page TLV. The

Page Unlock TLV shall contain the OTP of the previous page. If the OTP in the Page Unlock TLV matches the OTP

stored with the protected variables, the protected variables are made availab le to the current page as regular temporary

variables.

6.1.3.3 Lifetime of temporary variables

By default, all variables which are not kept exp licit ly to be shared by the following page are deleted, after the page is

processed.

If there are protected variables, but the current page does not contain a matching OTP, the protec ted variables are

deleted before processing the current page.

6.1.4 Page string element

This area is provided optionally by the current page. It can be used to store e.g. strings that are used several times in the

current page.

The first string element in the String Pool TLV shall be identified by the variable reference 'C0', the next with 'C1' and

so on.

6.1.4.1 Write access to page string elements

The informat ion contained in this area is read only.

6.1.4.2 Read access of page string elements

The informat ion can be accessed by the current page.

6.2 Variable values

The value associated with a variab le identifier is a length-byte string pair. The type of a variable value is determined by

the usage context. The USAT Interpreter shall keep track of the type of a variable. How the type of the variable is stored

internally within the USAT Interpreter is up to the implementation of the USAT Interpreter.

The length of the variable value is restricted to 65535 ('FFFF') bytes. Each variable has one of the following t ypes.

Type of variable coding (3 bits)

Unknown '000'

SMS default 7-bit coded alphabet as defined in
TS 23.038 [3] with bit 8 set to 0

'001'

SMS default 7-bit coded alphabet as defined in
TS 23.038 [3] packed

'010'

Binary format '011'

UCS2 coded string '100'
Other types RFU

The coding specified shall be used to indicate the type of variable, when variable substitution is used.

6.3 Variable substitution

Variable IDs may appear in fields exp licitly labelled as containing a variable identification. Var iable substitution can

take place in the following TLVs:

- Simple TLV Indicator (see clause "Execute USAT Command");

- Inline Value TLV;

- Inline Value 2 TLV;

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 31

- Submit Data TLV.

The value part of TLVs, where variab le substitution can take place, consists o f sequences of:

- length - value pairs to indicate constant text; or

- variable substitution indicator - variable ID pairs to indicate variab le substitutions.

Such sequences may appear in any order in value parts of TLVs where variable substitution may take p lace.

The variable substitution indicators are used to indicate that the next byte is a variab le ID.

Length - Value pair

Length Value Description M/O

1-3 L Length of the following data M

L V data O

The length L is BER coded onto 1, 2 or 3 bytes according to ISO/IEC 7816-6 [5]. If L indicates a length of '00', no data

shall be availab le.

Variable Substitution Indicator - Variable ID Pair

Length Value Description M/O

1 'C0' or 'C1' or
... or 'C7'

Variable substitution indicator, see table below M

1 ID Variable ID M

The least significant 3 bits of the variable substitution indicators shall be used to indicate the type of the variable coded

according to the table below.

Coding of variable substitution indicators:

Coding of variable
substitution indicator

Type of variable referenced to

'C0' unknown
'C1' SMS default 7-bit coded alphabet as defined in TS 23.038 [3] with

bit 8 set to 0
'C2' SMS default 7-bit coded alphabet as defined in TS 23.038 [3]

packed

'C3' Binary format
'C4' UCS2 coded string

'C5' ... 'C7' RFU

Whenever TLVs , where variable substitutions may take place, are encountered by the USAT Interpreter at runtime, one

of the following mechanisms are used, to replace the respective Length - Value pair(s) or the Variable Substitution

Indicator - Variable ID pair(s) depending on the context:

Method 1:

Length - Value pair:

- the length is removed from the running text;

- the value part remains unchanged;

Variable Substitution Indicator - Variable ID pair:

- the variable substitution indicator is removed from the running text;

- the type of the value corresponding to the following variable reference shall be checked against the type

indicated in the variab le substitution indicator. If the type of the value is different from the indicated t ype, the

USAT Interpreter shall generate a "Type mis match" error unless the indicated type was set to 'C0' ("unknown");

- the following variable reference is replaced by:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 32

- the current content of the variable (that means inserting the variable content into the running text).

Method 2:

Length - Value pair:

- the length is not removed from the running text;

- the value part remains unchanged;

Variable Substitution Indicator - Variable ID pair:

- the variable substitution indicator is not removed from the running text:

- the type of the value corresponding to the following variable reference shall be checked against the type

indicated in the variab le substitution indicator. If the type of the value is different from the indicated type, the

USAT Interpreter shall generate a "Type mis match" error unless the indicated type was set to 'C0' ("unknown");

- if the indicated type was set to 'C0' ("unknown"), the type information of the variab le substitution indicator in the

running text is updated with the actual type of the variable;

- the following variable reference is replaced by:

- the length of the content of the variable. The length is coded onto 1, 2 or 3 bytes according to

ISO/IEC 7816-6 [5];

- the current content of the variable (inserting the variable content into the text).

A variable value shall not contain a variable substitution, i.e. an inserted variable value is not rescanned for variable

IDs.

7 Used USAT Interpreter data structures

7.1 Page

A page is the unit which the USAT Interpreter does render and the default name scope of the temporary variab les.

Length Value Description M/O

1 '01' / '81' Page Tag M

1-3 A+B+C+D+
E+F+G+H+I

Length M

A Data Attributes O

B TLV Page Identification M

C TLV Page Unlock Code O

D TLV One Time Password O
E TLV Keep Alive List O

F TLV Service ID O

G TLV String Pool O

H TLVs Terminal response handler modifier - one or more TLVs O

I TLVs Navigation Units – one or more TLVs M

The following clauses specify the attributes and TLVs used in the Page TLV.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 33

7.1.1 Attributes

 b8 b7 b6 b5 b4 b3 b2 b1

 KeepAll (variables for following page)
0: not set, variables shall not be kept
1: set, variables shall be kept

 Dynamic /Static
0: static, page may be cached by the USAT Interpreter
1: dynamic, USAT Interpreter shall not cache the page

 DCS Attribute
used, if no explicit type of text is available

0: SMS default 7-bit coded alphabet as defined in
TS 23.038 [3] with bit 8 set to 0

1: UCS2

 RFU

 Follow bit

7.1.2 Page Identification

The content of this TLV is a sequence of bytes to uniquely identify the page. This reference may later on be used by the

USAT Interpreter to reference the page (e.g. for caching mechanisms or access ing the page by the end-user from the

menu structure).

Coding:

Length Value Description M/O

1 '02' Page Identification Tag M

1-3 L Length M

L Data Unique identification of the page. A sequence of bytes to uniquely
identify the Page. This identification shall not contain a #-character
(coded '23') and is coded by the external system entity.

M

7.1.3 Page Unlock Code

The content of this TLV is a sequence of bytes (the page unlock code) to be compared and verified by the USAT

Interpreter against an OTP provided by a previous page.

Coding:

Length Value Description M/O

1 '03' Page Unlock Code Tag M
1 L+1 Length (up to 1+8 bytes) M

1 ’XX’ Any one byte value. The USAT Interpreter shall ignore this byte M

L Data Page unlock code (one time password of the previous page) M

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 34

7.1.4 One Time Password

The content of this TLV is a sequence of bytes generated by random to protect the temporary variables of the current

page against unauthorised access.

Coding:

Length Value Description M/O

1 '04' One Time Password Tag M

1 L Length (up to 8 bytes) M

L Data One time password
(random value generated by an external system entity)

M

7.1.5 Keep Alive List

The content of this TLV is a list of variab le IDs indicating which variables of the current page may be shared with the

following page. The list shall not contain other variable IDs than variable IDs referring to temporary variables.

Coding:

Length Value Description M/O

1 '05' Keep Alive List Tag M

1 L Length (number of temporary variable IDs, up to 64 variables) M
L Data Variable IDs M

7.1.6 Service ID

The content of this TLV is a sequence of bytes to indicate that the current page shall belong to a certain service and is

mainly used to handle permanent variable management The assignment and coding of service IDs is up to an external

system entity. The length of a service ID shall not exceed 8 bytes.

Coding:

Length Value Description M/O

1 '06' Service ID Tag M

1 L Length (number of bytes of the service ID, <= 8 bytes) M

L Data Service ID, unique identification of a service M

7.1.7 String Pool

The content of this TLV is a list of strings coded in with the alphabet indicated in the DCS attribute used within the

page. Within the page the strings are referenced by using their variable references (range 'C0' to 'FF') within the page

string element area.

Coding:

Length Value Description M/O

1 '07' String Pool Tag M

1 – 3 L Length M
L Data LV values of each string element in the string pool with the length L

is BER coded onto 1, 2 or 3 bytes according to ISO/IEC 7816-6 [5].
M

7.1.8 Terminal response handler modifier

The current terminal response handler configuration can be modified temporarily by this TLV (e.g. to hide default

entries by using action IDs, to add new ones or to modify existing entries).

This TLV can be used at the page level and at the navigation unit level. If this TLV is present at the page level and also

at the navigation unit level, the last one will modify the first one. The content describes the action which shall be

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 35

performed after the USAT Interpreter has received a general result byte of the terminal response within a proactive

session. If a syntax error or a logical error occurs in the terminal response handler modifier, the current terminal

response handler configuration remains unchanged.

Coding of the terminal response handler modifier TLV:

Length Value Description M/O/C

1 '08' / '88' Terminal response handler modifier tag M

1-3 A+2+B+C Length M
A Attributes Data O

2 Data General result range M

B TLV Inline Value TLV, containing text for user notification O

C TLVs Action TLVs – one or more TLVs C

The following table gives an overview of conditions of presence for the Action TLVs depending on the modification

type indicated in the attributes:

Modification Type (see Attributes) Action TLV

Replace shall be present

Add / Append shall be present
Restore need not to be present; to be ignored, if present

Remove optionally present

7.1.8.1 Attribute

 b8 b7 b6 b5 b4 b3 b2 b1

 Modification type (see explanation below)
00: Replace
01: Add / Append
10: Restore
11: Remove

 RFU

 Follow bit

Modification type

A terminal response handler modifier can be combined with a terminal response handler configuration t o produce a new

terminal response handler configuration using one of four operations:

- Replace operation

- Add/Append operation

- Restore operation

- Remove operation

Each of these operations given a current terminal response handler configuration and a terminal response handler

modifier produces a new current terminal response handler configuration. For the fo llowing description, the following

definit ions apply:

Abbreviation Item Definition
AI Action Identifier a single value in the range of '00' to 'FF' identifying an action

GR General Result result of a USAT command; a single value in the range from '00' to 'FF'
GRR General Result Range multiple consecutive General Result (GR) values

A Set of Actions a collection of zero or more single actions; one Action TLV represents
one single action

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 36

Replace operation

For the replace operation a GRR and A with at least one single action shall be provided. The GRR is the range of GR on

which the operation applies. A is the set of actions which shall be linked w ith all GR within the given GRR.

This operation replaces all act ions for all GR within the given GRR by the given action(s); all p reviously defined

action(s) for all the GR within th is GRR shall be erased by the USAT Interpreter.

If a text for user notification is provided with in the terminal response handler modifier TLV, this operation replaces the

existing text for all the GR within the given GRR by the given text.

Add/Append operation

For the add/append operation a GRR and A with at least one single act ion shall be provided. The GRR is the range of

GR on which the operation applies. A is the set of actions which shall be linked with all GR within the given GRR.

For every GR within the GRR, the given action(s) are appended to the existing ones for these GR. If act ion(s) with same

action ID(s) exist already for a GR, the action(s) are replaced.

If a text for user notification is provided with in the terminal response handler modifier TLV, this operation replaces the

existing text for all the GR within the given GRR by the given text.

Restore operation

For the restore operation a GRR shall be provided. The GRR is the range of GR on which the operation applies.

For every GR within the GRR, the action(s) shall be restored to the predefined action(s) of the syst em terminal response

handler configuration.

For every GR within the GRR, the user notificat ion text of the system terminal response handler configuration shall be

restored. If the system terminal response handler configuration does not contain a text for a GR in the given GRR, the

user notification text shall be removed for that GR.

If a text for user notification is provided with in the terminal response handler modifier TLV, this user notification text

TLV shall be ignored by the USAT Interpreter.

Remove Operation

For the Remove operation a GRR shall be provided. If one or more Action TLV(s) are provided, for each Action TLV

an AI shall be provided. The GRR is the range of GR on which the operation applies.

If no Action TLV is provided, for all the GR within the given GRR, the USAT Interpreter shall remove all existing

actions from the existing set of actions.

If at least one Action TLV is provided, for every GR within the GRR, the action(s) indicated by the given AI are

removed from the existing set of actions.

If the given action(s) to be removed do not exist in the existing set of actions(s) for a GR, the requested modification

shall be ignored for that GR.

If a text for user notification is provided with in the terminal response handler modifier TLV, t his operation replaces the

existing text for all the GR within the given GRR by the given text.

Validity period of the terminal res ponse handler modification:

All terminal response handler modifications are valid only within the context they have been introduced. There are 3

different contexts:

- System context: In this context the system terminal response handler configuration is valid (see clause 4.3).

- Page context: A terminal response handler modifier within the page context can modify the response han dler

configuration for the whole page. Just before entering another page, the modificat ions done by the terminal

response handler modifier of the current page are discarded and the terminal response handler configuration of

the system context as defined in the paragraph above is restored.

- Navigation unit context: A terminal response handler modifier within the navigation unit context can modify

the response handler configuration for the navigation unit containing the modifier. After leav ing a navigation

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 37

unit the modificat ions done by the terminal response handler modifier of this navigation unit are discarded and

the terminal response handler configuration of the page context is restored.

7.1.8.2 General result range

A general result range defines subsequent values of the general result in the terminal response to an USAT command.

- A range consisting of only one value of the general result is coded by setting both bytes to the desired value.

- A range is coded by setting the first byte to the lowest value of the range and the second byte to the highest value

of the range.

For example:

- general result '10' shall be coded: '10 10';

- general result '1X' shall be coded: '10 1F';

- general result 'XX' shall be coded: '00 FF';

- general result between '11' and '13' shall be coded: '11 13'.

The general result range specifies the general results for which the modification applies: for every general result within

the general result range, corresponding operations shall be taken into account by the USAT Interprete r.

For exception handling, the fo llowing rules apply:

- A range coded 'FF xx' (with xx between '00' and 'FE') is used to change a single exception action (e.g. no more

byte code).

- A range coded 'FF FF' is used to change all the exception actions.

Each exception range is linked to an exception case as follows:

Exception range Exception case Description
'FF 00' TRH no matching GRR After the execution of a USAT command, there is no

action (a) in AGR
'FF 01' No more byte code No more byte code when process next byte code (e.g.

end of navigation unit)

'FF 02' Transport error while submitting
data

Failure during the submission of an outgoing message

'FF 03' History list empty, or bottom of the
list reached

A “go back into history list” system action '02' or a "Go
Back" byte code command happen and the History List
is empty, or the anchor pointer reaches the bottom of
the list

'FF 04' Error during plug-in execution The execution of a plug-in during the rendering of the
"Execute Native Command" byte code generates an
error

'FF 05' to 'FF FE' - RFU - reserved for other exception not covered
currently in the present document

7.1.8.3 Text for user notification

This text is displayed by a DISPLAY TEXT command whenever a general result in response to a proactiv e command is

received, that is part of the general result range the text fo r user notificat ion is given for.

If a Terminal Response Handler modifier contains a text for user notificat ion TLV, then the text is handled by the

USAT Interpreter according to the operation descriptions in clause 7.1.8.1. The value part of this TLV may be empty (L

of the Inline Value TLV is '00'. In this case, the text fo r user notificat ion is to be removed for the respective general

results.

If this TLV is not available in the terminal response handler modifier TLV, the text for user notification remains

unchanged for the respective general results.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 38

After this DISPLAY TEXT command has been issued by the USAT Interpreter the actions defined for the general result

are to be handled regardless of the general result of the DISPLAY TEXT command itself.

The parameters for the DISPLAY TEXT command shall be as follows:

- The DCS for the DISPLAY TEXT command shall be set according to the value type information of the In line

Value TLV;

- The command qualifier to be used for the DISPLAY TEXT command shall be '81' ("wait for user to clear

message" and "high priority").

7.1.8.4 Action

The action TLV defines the behaviour of the USAT Interpreter when the general result of the terminal response (TR) is

part of the associated general result range.

Length Value Description M/O/C

1 '09' / '89' Action TLV tag M

1-3 A+1+B+C Length M
A Attributes Data O

1 1 Action ID M

B TLV Action to be performed C

C TLV Inline Value TLV, containing the action description of this action. This is
a text assigned to this action to be used as text string of item within an
item data object of a SELECT ITEM command.

C

The following table gives an overview of conditions of presence for the Action to be performed TLV and the Inline

Value TLV depending on the modification type indicated in the attributes of the terminal response handler modifier:

Modification Type Action to be performed TLV Inline Value TLV

Replace shall be present shall be present
Add / Append shall be present shall be present

Restore not applicable, see clause 7.1.8 not applicable, see clause 7.1.8
Remove need not to be present; to be ignored, if

present
need not to be present; to be ignored, if
present

7.1.8.4.1 Attributes

 b8 b7 b6 b5 b4 b3 b2 b1

 Execution handling (behavior after execution of a single USAT
Interpreter byte code as "action to be performed")

0: execute next byte code within current USAT Interpreter
navigation unit

1: execute current proactive command within current USAT
Interpreter navigation unit again

 RFU

 Follow bit

The following figure g ives an overview of the return behaviour of the terminal response handler depending on the

attribute value.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 39

Terminal Response Handler

Execution Environment

Page Execution

Environment

Page

.

.

.

Navigation Unit

USAT Interpreter Byte Code

USAT Interpreter Byte Code

.

.

.

Navigation Unit

USAT Interpreter Byte Code

USAT Interpreter Byte Code

.

.

.

execute next byte

code within

current USAT

Interpreter

navigation unit

execute current

proactive

command within

current USAT

Interpreter

navigation unit

again

Terminal response handling

according to current Terminal

Response Handler Configuratiom

Terminal response handling

according to current Terminal

Response Handler Configuratiom

Figure 7.1

This attribute is to be considered only for certain types of actions to be performed (see table in clause 7.1.8.4.3).

7.1.8.4.2 Action ID

Every action shall be uniquely identified by an action ID. This allows to remove or to update a targeted item in the

action list without reconstructing the whole action list.

IDs are separated into two ranges:

- '00' - '1F' predefined system action IDs;

- '20' - 'FF' service defined action IDs fo r navigation and other commands. These action IDs shall be uniquely

assigned to the actions defined for a general result range by the service.

7.1.8.4.3 Action to be performed

The action to be performed is either p redefined by the USAT Interpreter system (system action) or flow control

informat ion (navigation action) or a single USAT Interpreter byte code to be executed.

This TLV is mandatory if the modification type within the attribute byte of the terminal response handler modifier

indicates "Replace" or "Add / Append".

A system action is indicated within the action TLV by a predefined system action ID only:

- process next byte code;

- quit USAT Interpreter without user confirmation;

- go back one entry in history list;

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 40

- retry last proactive command within current USAT Interpreter navigation unit (the command which generated

the current general result).

For system actions the attribute of the action TLV shall be ignored by the USAT Interpreter.

A navigation action is indicated by a service given action ID and one of the following USAT Interpreter data structures

as "action to be performed":

- page reference TLV;

- anchor reference TLV.

For navigation actions the attribute of the action TLV shall be ignored by the USAT Interpreter.

A single USAT Interpreter byte code to be executed is indicated by a service given action ID and one of the following

USAT Interpreter byte codes as "action to be performed":

- Display Text;

- Get Input;

- Set Variable;

- Execute USAT Command;

- Execute Native Command.

The behavior of the USAT Interpreter after execution of the single USAT Interpreter byte code is given in the following

table:

General result for the USAT command Comment

‘00’...‘0F’ (ok) behave as define in attribute of action TLV
'11' (backward move requested) execute current proactive command within current USAT

Interpreter navigation unit again or return to the wait state if
the wait state is currently active

'10' (Proactive SIM session terminated by the user) quit USAT Interpreter without user confirmation

‘12’...’1F’ quit USAT Interpreter without user confirmation
‘20’...’2F’ (worth to retry) quit USAT Interpreter without user confirmation

‘30’...’3F’ (not worth to retry) quit USAT Interpreter without user confirmation

Summary of action management in Terminal Response Handler mechanis m:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 41

Action to be performed

 Action ID used TLV attribute handling

System actions

process next byte code '00' none attribute byte shall be
ignored

quit USAT Interpreter without user confirmation '01' none

go back one entry in history list '02' none
retry last proactive command within current USAT
Interpreter navigation unit

'03' none

RFU system actions '04' to '1F' RFU

Navigation actions

branch to another page defined by
service
('20' to
'FF')

page reference TLV
or
anchor reference TLV

attribute byte shall be
ignored branch to another navigation unit

Single USAT Interpreter byte codes

Execute Native Command byte code

defined by
service
('20' to
'FF')

Execute Native
Command byte code
TLV

behavior after execution of
a single USAT Interpreter
byte code as "action to be
performed":

- execute next byte
code within current
USAT Interpreter
navigation unit

- execute current
proactive command
within current USAT
Interpreter navigation
unit again

Execute Display Text byte code Display Text byte
code TLV

Execute Set Variable byte code Set Variable byte
code TLV

Execute Get Input byte code Get Input byte code
TLV

Execute USAT Command byte code Execute USAT
Command byte code
TLV

NOTE: The retry action should be used only in conjunction with other actions or a notification te xt fo r a general

result range to avoid the immediate repetit ion of the USAT command causing retry (possible senseless

loop).

7.1.8.4.4 Action description

In the case of several actions (action list) assigned to the same general result, a SELECT ITEM comman d shall be

constructed by the USAT Interpreter using the corresponding action descriptions as items.

This TLV is mandatory if the modification type within the attribute byte of the terminal response handler modifier

indicates "Replace" or "Add / Append".

If only one action is defined for the general result, the action is executed by the USAT Interpreter without building the

SELECT ITEM command.

After this SELECT ITEM command has been issued by the USAT Interpreter, an action shall be performed depending

on the general result of the SELECT ITEM command itself:

General result for the SELECT ITEM Comment

'00'...'0F' (ok) the action defined for the option selected by the user shall
be performed

'11' (backward move requested) execute current proactive command within current USAT
Interpreter navigation unit again or return to the wait state if
the wait state is currently active

'10' (Proactive SIM session terminated by the user) quit USAT Interpreter without user confirmation

'12'...'1F' quit USAT Interpreter without user confirmation
'20'...'2F' (worth to retry) quit USAT Interpreter without user confirmation

'30'...'3F' (not worth to retry) quit USAT Interpreter without user confirmation

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 42

The parameters for the SELECT ITEM command shall be as follows:

- Alpha identifier not used;

- The command qualifier to be used for the SELECT ITEM command shall be '03' ("presentation type is specified

in bit 2" and "presentation as a choice of navigation options").

7.2 Navigation Unit

A navigation unit is a component of a page. It is named using an anchor. A navigation unit is referenced using an

anchor reference.

Length Value Description M/O

1 '0A' / '8A' Navigation Unit Tag M

1-3 A+B+C+D Length M

A Data Attributes O
B TLV Anchor (name of a navigation unit) O

C TLVs Terminal response handler modifier - one or more TLVs O

D TLVs USAT Interpreter Byte Codes – one or more TLVs O

The following clauses specify the attributes and TLVs used in the navigation unit TLV.

7.2.1 Attributes

 b8 b7 b6 b5 b4 b3 b2 b1

 ResetVar
0: keep temporary variables values from previous navigation

unit(s) in this page
1: reset all the temporary variables when entering the

navigation unit

 DoNotHistorize
0: insert this navigation unit’s anchor in the history list
1: do not insert this navigation unit’s anchor in the history list

 ChainNextNU
0: execute the "No more byte code" exception case of the

terminal response handler, if the last byte code of current
navigation unit contains no navigation commands

1: start rendering of the next navigation unit in the page after
execution of the last byte code of this navigation unit

 TerminalResponseHandlerConfigurationInheritance
0: inherit terminal response handler configuration from

current page and default system configuration.
1: do not inherit terminal response handler configuration

from page but only from default system configuration.

 RFU

 Follow bit

7.2.2 Anchor

The content of this TLV is a sequence of bytes identifying the navigation unit. It is mandatory to provide this TLV, if a

navigation unit of the current page or another page needs to branch to this navigation unit.

Coding:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 43

Length Value Description M/O

1 '0B' Anchor Tag M

1-3 L Length M

L Data Unique identification of navigation unit within the page. A sequence
of bytes to uniquely identify the Anchor. This identification shall not
contain a "#"-character (coded '23') and is coded by the external
system entity.

M

7.2.3 Terminal response handler modifier

The current terminal response handler configuration can be modified temporarily by this TLV (e.g. to hide default

entries by using action IDs, to add new ones or to modify existing entries).

Coding:

See clause 7.1.8.

7.2.4 USAT Interpreter Byte Codes

These TLVs contain the executable part of the page.

Coding:

See clause 8.

7.3 Anchor Reference

This TLV is used to refer to a navigation unit in the current page or in another page.

Length Value Description M/O

1 '0C' Anchor Reference Tag M
1-3 L Length M

L Data Anchor Reference Name M

An anchor reference name is the value part of a page identificat ion TLV (unique identification of the page, see

clause 7.1.2) followed by a '23' ("#") and the value part of the anchor TLV (unique identification of navigation unit, see

clause 7.2.2) with in the page. Either the page identification part or the anchor part (including "#"), but not both, can be

omitted. If the page identificat ion part is omitted the reference is to an anchor on the current page. If the anchor name

part is omitted the reference is to the first navigation unit of the referenced page.

7.4 Variable Identifier List

This TLV is used to list a sequence of variables.

Length Value Description M/O

1 '0D' Variable Identifier List Tag M

1 L Length M
L Data Variable IDs (up to 64 Variable IDs) M

7.5 Inline Value

This TLV inserts a byte array, which often is simply running text, at the point of its appearance.

The Inline Value content may contain variable substitution indicators to indicate variable references. Therefore the

Inline Value content has to be structured in Length-Value and Variable Substitution Indicator - Variab le ID pairs. Th is

structure shall be used even if the In line Value content does not contain any variable substitution indicators. The

possibly available constant data values and variable references have to be rendered according to clause 6.3 Method 1

during processing of this TLV by the USAT Interpreter. If the type of the possibly subst ituted variable values is

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 44

different from the type indicated in the attribute of this TLV, the USAT Interpreter shall perform a type conversion or

generate a "Type mis match" error according to the following table:

from DCS to DCS comment

SMS default

SMS default

*

SMS packed not supported, error generated

binary cast allowed, no change of sequence of bytes

UCS2 not supported, error generated
unknown cast allowed, no change of sequence of bytes

SMS default

SMS packed

not supported, error generated

SMS packed *

binary cast allowed, no change of sequence of bytes

UCS2 not supported, error generated
unknown cast allowed, no change of sequence of bytes

SMS default

binary

cast allowed, no change of sequence of bytes

SMS packed cast allowed, no change of sequence of bytes

binary *

UCS2 cast allowed, no change of sequence of bytes
unknown cast allowed, no change of sequence of bytes

SMS default

UCS2

conversion supplied, according to TS 31.101 [4]

SMS packed not supported, error generated

binary cast allowed, no change of sequence of bytes

UCS2 *
unknown cast allowed, no change of sequence of bytes

SMS default

unknown

cast allowed, no change of sequence of bytes

SMS packed cast allowed, no change of sequence of bytes

binary cast allowed, no change of sequence of bytes

UCS2 cast allowed, no change of sequence of bytes
unknown *

Coding of the In line Value TLV:

Length

Value Description M/O

1 '0E' / '8E' Inline Value Tag M

1-3 A+B Length M

A Data Attributes O

B Data Inline value content O

Coding of the attributes:

 b8 b7 b6 b5 b4 b3 b2 b1

 Value type information [see clause 6.2]

 RFU

 Follow bit

If the value type information indicates "unknown", then the DCS attribute of the page shall be applied.

7.6 Inline Value 2

This TLV inserts a byte array, which often is simply running text, at the point of its appearance. Usage and syntax and

behaviour of this TLV is identical to the In line Value TLV, but another tag value is used.

Length Value Description M/O

1 '0F' / '8F' Inline Value 2 Tag M

1-3 A+B Length M

A Data Attributes O

B Data Inline Value 2 content O

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 45

Coding :See In line Value TLV.

7.7 Input List

This TLV contains a list of Variable Identifier List TLVs and In line Value TLVs.

Length Value Description M/O

1 '10' Input List Tag M
1-3 L Length M

L TLVs Any sequence of
- Variable Identifier List TLVs
and / or
- Inline Value TLVs

M

7.8 Ordered TLV List

This TLV is used to associate a list of other TLVs. The order and the possible types of contained TLVs within an

ordered TLV list is specified within the byte codes using this TLV. The number of actual contained TLVs is implicitly

given by the length indication of the Ordered TLV List. It is allo wed, that the ordered TLV list does not contain any

TLV.

Depending on the context (the byte code using this TLV) each optional TLV within the Ordered List of TLVs shall

have a different tag value.

Length Value Description M/O

1 '11' Ordered TLV List Tag M

1-3 A+...+Z Length M

A TLV First TLV O/M

...
Z TLV Last TLV O/M

7.9 Page Reference

This TLV can represent a page, an anchor within the current page, or an anchor within another page.

If the Anchor Reference TLV or the Variable Identifier List TLV is available, then the USAT Interpreter shall start

rendering the requested locally stored Anchor. If the Anchor is not found locally, a "Jump to undefined" error is

generated.

 If the Submit Configurat ion TLV is available (that indicates that the page is not locally stored on the USIM, i.e. e .g.

stored at an external system entity), then the USAT Interpreter shall build a request to the external system entity

according to clause 7.10 .If the transmission to the external system entity fails, the USAT Interpreter shall execute the

"Transport error while submitt ing data" exception case of the terminal response handler mechanis m.

Length Value Description M/O

1 '12' Page Reference Tag M
1-3 A Length M

A TLV either
- Anchor Reference TLV or
- Variable Identifier List TLV (referring to a variable containing the

value part of an Anchor Reference, only the first variable ID shall
be considered by the USAT Interpreter, remaining variable IDs
shall be ignored) or

- Submit Configuration TLV

M

7.9.1 Anchor Reference

Reference to a locally stored anchor.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 46

Coding:

See clause 7.3.

7.9.2 Variable Identifier List

Referring to a variable containing the value part of an Anchor Reference. Only the first variable ID within the variable

ID list shall be considered by the USAT Interpreter. Possibly remaining variable IDs shall be ignored.

Coding:

See clause 7.4.

7.9.3 Submit Configuration

This TLV describes the informat ion which shall be sent to the external system entity.

Length Value Description M/O

1 '13' / '93' Submit Configuration Tag M

1-3 A+B+C+D Length M
A Data Attributes O

B TLV Submit Data TLV
(submit information, text possibly containing variable references)

M

C TLV Inline Value TLV,
text to be displayed during the wait state active.

O

D TLV Gateway Address TLV, to be incorporated into the operational layer,
refer to TS 31.114 [2]

O

7.9.3.1 Attributes

 b8 b7 b6 b5 b4 b3 b2 b1

 SendReferer
0: Page Identification TLV not to be used in Submit TLV
1: Page Identification TLV to be used in Submit TLV

 ProcessingBehaviour (see clause 4.2.3)
0: enter wait state and wait for a specific response from an

external system entity and keep the proactive session
alive, do not process next byte code

1: do not enter wait state, process next byte code

 RFU

 Follow bit

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 47

If the SendReferer attribute is set, the Page Identification TLV of the current page shall be incorporated into the

generated Submit TLV prior to the transmission to the external system entity.

7.9.3.2 Submit Data

The submit data information is a sequence of bytes possibly containing constant data values and variable references to

be substituted according to clause 6.3 method 2. The sequence of bytes shall be structured in to Length - Value and

Variable Substitution Indicator - Variable ID pairs to ensure, that variable references can be detected. The content of the

submit information is coded by the external system entity and possibly contains a request for the next page to be

transmitted to the USAT Interpreter by an external system entity.

After variab le substitution this TLV is used within the Submit TLV to provide informat ion to the external system entity.

See clause 7.10 for the structure of data provided to the externa l system entity.

Length Value Description M/O

1 '14' Submit Data Tag M

1-3 A Length M
A Data Byte sequence, according to clause 6.3 containing possibly variable

references
O

7.9.3.3 Text to be displayed during the active wait state

This TLV shall only be considered by the USAT Interpreter if the wait state is entered.

If this In line Value TLV is given in the Submit Configuration TLV, the value part of this In line Value TLV shall

override the default Text String of the DISPLAY TEXT command to notify the user about the wait state (see

clause 4.2.2).If the In line Value TLV is not given in the Submit Configuration TLV, the default text shall be taken for

the Text String of the DISPLAY TEXT command to notify the user about the wait state.

7.9.3.4 Gateway Address

The Gateway Address TLV contains data (the Gateway Address Informat ion) to address a specific Gateway in the

USAT Interpreter Gateway System. The coding of the Gateway Address Information is out of the scope of the present

document.

The way the Gateway Address TLV is handled by the USAT Interpreter is specified in TS 31.114 [2].

Length Value Description M/O

1 '15' / '95' Gateway Address Tag M

1-3 A+B Length M

A Data Attributes O
B Data Gateway Address Information O

Attributes:

 b8 b7 b6 b5 b4 b3 b2 b1

 SendAdditionalInformation TLV as specified in TS 31.114 [2]
0: Do not send additional information TLV
1: Do send additional information TLV

 RFU

 Follow bit

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 48

7.10 Submit

This TLV is used to provide informat ion from the USAT Interpreter to the external system entity. It shall be used only

in the direction from the USAT Interpreter to the external system entity.

Length Value Description M/O/C

1 '16' Submit Tag M
1-3 A+B Length M

A TLV Submit Data TLV M

B TLV Page Identification TLV (if indicated in attribute “sendReferer” of
Submit Configuration TLV)

C

7.10.1 Submit Data

The submit data information is a sequence of bytes. The origin of this TLV is the Submit Data TLV in the Submit

Configurat ion TLV with variab les substituted according to clause 6.3 method 2.

Length Value Description M/O

1 '14' Submit Data Tag M

1-3 A Length M

A Data Byte sequence, according to clause 6.3 containing substituted
variable references

O

7.10.2 Page Identification

This TLV shall be available if and only if the SendReferer b it in the attributes of the Submit Configuration TLV was

set. It contains the page identification of the current page.

8 USAT Interpreter byte codes

Each USAT Interpreter byte code is a TLV. Each byte code has its own byte code tag value, optional attributes and a

list of arguments. Arguments, if present, shall appear in the order g iven.

The byte codes make use of the USAT Interpreter TLVs as follows:

 Attribut
e

Bytes

Variable
Referenc

es

Variable
Identifier
List TLV

Inline
Value
TLV

Inline
Value 2

TLV

Page
Referenc

e TLV

Ordered
TLV List

TLV

Input
List
TLV

Simple
TLV

Indicator

Set Variable

Assign and
Branch

Extract

Go Back 1
Branch on
Variable

Value

Exit 1

Execute
USAT

Command
1

Execute
Native

Command
1

Get Length

Get TLV
Value

Display Text 1

Get Input 1

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 49

8.1 Set Variable

This byte code sets one or more variables either to a value contained in the corresponding Inline Value TLV or to the

concatenated contents of the referenced variables in the Variable Identifier List TLV. This byte code can be used to e.g.

copy the content of one variable to another variable or to concatenate a list of variables and/or constant text into another

variable. All pairs of Variab le ID and In line Value TLV or Variable Identifier List TLVs are used independently, i.e. the

Variable ID is used to store the result of the following TLV only.

Length Value Description M/O

1 '40' Set Variable Tag M
1-3 1+A+...+1+X Length M

1 Data Variable ID to store the result of the following TLV M

A TLV Inline Value TLV or Variable Identifier List TLV M

...

1 Data Variable ID to store the result of the following TLV O
X TLV Inline Value TLV or Variable Identifier List TLV O

Possible errors:

Error Code Description Action

No error OK Continue

Syntax error Syntax error Stop
Reference to undefined Reference to undefined variable Stop

Problem in memory
management

Memory allocation problem Stop

Type mismatch Error in variables management Stop

At least one pair of Variab le ID and In line Value TLV or Variable Identifier List TLV shall be present in the Set

Variable byte code.

If a Variable Identifier List TLV is used, the DCS of the variable, which stores the result of the concatenation, shall be

set using the following rules:

- If all variables have the same type, then the DCS of the result variable shall be set to the same as the DCS of the

first variable in the list;

- If variables have different types, then the DCS of the result variab le shall be set to "unknown".

8.2 Assign and Branch

This byte code may display a menu on the UE and may assign a selected value to a variable accord ing to the selection

of the user.

The TLVs contained in the Ordered TLV List TLVs define whether the USAT Interpreter shall build a SELECT ITEM

command according to TS 31.111 [1] or perform an action immediately.

When a SELECT ITEM command is built by the USAT Interpreter, the command qualifier to be used shall be '03'.

Length Value Description M/O

1 '41' Assign and Branch Tag M

1-3 1+A+...+1+X Length M

1 Data Destination Variable ID, identifier of the variable to be set M

A TLV Inline Value TLV: Contains the select item alpha-identifier (according
to TS 31.111 [1])

O

B TLV Ordered TLV List TLV (see description below) containing possibly:
- Inline Value 2 TLV
- Inline Value TLV
- Page Reference TLV

M

...
X TLV Ordered TLV List TLV (see description below) O

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 50

Possible errors:

Error Code Description Action

No error OK Continue

Reference to undefined Reference to undefined variable Stop
Problem in memory
management

Memory allocation problem Stop

Syntax error Syntax error Stop

USAT command failed USAT command failed.(SELECT ITEM could not be built) Stop

Type mismatch Error in variables management Stop

Explanation of used arguments:

8.2.1 Destination Variable Identifier

The content of this value identifies the destination variable. The value contained in the selected Inline value TLV with in

the Ordered TLV List TLV will be assigned to this destination variable by the USAT Interpreter.

8.2.2 Inline TLV containing Select Item Title

The content of this TLV is running text which specifies the alpha identifier to be used by the USAT Interpreter when

generating a SELECT ITEM command from the "Assign and Branch" byte code according to TS 31.111 [1].

8.2.3 Ordered TLV List TLV

One or more of these TLVs shall be contained in the "Assign and Branch" byte code.

Each of these TLVs encapsulate the

- "Inline Value 2",containing the text of a single item of the SELECT ITEM command;

- "Inline Value", containing a value to be assigned to the destination variable, if the item is selected; and

- "Page Reference", containing a destination for a branch, if the item is selected.

TLVs in the given order, which determine the action to be performed.

General variab le assignments and navigation operations may be performed by the "Assign and Branch" byte code

dependent on the data provided in the Ordered TLV List TLVs.

The "Assign and Branch" byte code can contain one or more Ordered TLV List TLVs. If more than one Ordered TLV

List TLVs are present within the same "Assign and Branch" byte code, the following rules shall apply :

 If one or more Ordered TLV List TLVs containing an Inline Value 2 TLV are present in the same Assign and

Branch TLV in addition to one or more Ordered TLV List TLVs not containing an Inline Value 2 TLV, the

USAT Interpreter shall ignore the Ordered TLV List TLVs which do not contain the Inline Value 2 TLV. I.e . the

items of the generated SELECT ITEM command are only determined by the Ordered TLV List TLVs which

contain an Inline Value 2 TLV. Any actions defined by the Ordered TLV List TLVs not containing an Inline

Value 2 TLV are ignored.

 If only Ordered TLV List TLVs not containing an Inline Value 2 TLV are present in the same Assign and

Branch TLV, the USAT Interpreter shall take into account the first Ordered TLV List TLV only.

When optional TLVs within the Ordered TLV List TLV are omitted, special cases can be encoded according to the

following table:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 51

Inline
Value 2

Inline value (to be
assigned to
destination

variable)

Page Reference

present present present "Display, Assign and Branch"
When the user has selected this item (described by the Inline
Value 2 TLV) from the list, the USAT Interpreter shall assign
the value of the Inline value TLV to the destination variable
and branch to the page or the navigation unit specified within
the Page Reference TLV.

present present not present "Set Variable Selected"
When the user has selected this item (described by the Inline
Value 2 TLV) from the list, the USAT Interpreter shall assign
the value of the Inline Value TLV to the destination variable
and process next byte code.

present not present present "Go Selected"
When the user has selected this item (described by the Inline
Value 2 TLV) from the list, the USAT Interpreter shall branch
to the page or the navigation unit specified within the Page
Reference TLV. A destination variable identifier shall be
ignored for this case.

present not present not present "Display and Process next byte code"
When the user has selected this item (described by the Inline
Value 2 TLV) from the list, the USAT Interpreter shall process
the next byte code. A destination variable identifier shall be
ignored for this case.

not present

present present "Assign and Branch"
The USAT Interpreter shall assign the value of the Inline
Value TLV to the destination variable and branch to the page
or the navigation unit specified within the Page Reference
TLV.

not present

present not present "Set Variable"
The USAT Interpreter shall assign the value of the Inline
value TLV to the destination variable.

not present

not present present "Direct Go"
The USAT Interpreter shall directly branch to the page or the
navigation unit specified within the Page Reference TLV. The
destination variable identifier shall be ignored for this case.

not present not present not present not valid, if occurs a “Syntax error” shall be issued.

If the Ordered TLV List TLVs contained in the "Assign and Branch" byte code resulted in the generation of a SELECT

ITEM command with only one item according to the above defined rules, the USAT Interpreter shall immediately

perform the action assigned to this item but not generate the SELECT ITEM command. For this optimisation the

assigned actions are as follows:

 "Display, Assign and Branch": Assign the value of the Inline value TLV to the destination variable and branch

to the page or the navigation unit specified with in the Page Reference TLV.

 "Set Variable Selected": Assign the value of the Inline Value TLV to the destination variable and process next

byte code.

 "Go Selected": Branch to the page or the navigation unit specified within the Page Reference TLV.

 "Display and Process next byte code": Process the next byte code.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 52

8.3 Extract

This byte code extracts a byte array from a value and stores the result in a variable.

Length Value Description M/O

1 '42' Extract Tag M

1 4 Length M

1 Data Variable ID, which shall contain the result M

1 Data Variable ID, containing the source data M

1 I Zero based start index in the byte array M
1 N Maximum number of bytes to extract, '00' indicates to retrieve all

remaining bytes
M

Possible errors:

Error Code Description Action

No error OK Continue
Syntax error Syntax error Stop

Problem in memory
management

Memory allocation problem Stop

Reference to undefined Reference to undefined variable Stop

Out of range Index out of range. Stop

8.4 Go Back

This byte code forces branching to the last anchor pushed on the history list. It has no impact on the history list itself.

Length Value Description M/O

1 '43' / 'C3' Go Back Tag M

1 A Length M

A Data Attributes O

Possible errors:

Error Code Description Action

No error OK Continue

Jump to undefined Reference to undefined (case of history containing no
previous anchors any more)

Stop

Attributes:

 b8 b7 b6 b5 b4 b3 b2 b1

 RestartCurrentNU
0: Do not restart current navigation unit
1: Do restart the current navigation unit, history list ignored

 RFU

 Follow bit

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 53

8.5 Branch On Variable Value

This byte code compares a variab le to a list of values that have an associated Page Reference. When a match is found,

the referenced page shall be executed. If no match is found, the first Page Reference after the Ordered TLV List shall be

used to branch. If this last Page Reference TLV is not contained in the byte code, no branch shall be executed and the

USAT Interpreter shall continue to render the next byte code after the Branch on Variable Value byte code.

Length Value Description M/O

1 '44' Branch on Variable Value Tag M

1 1+A+...+X+Y Length M

1 Data Variable ID (containing the value to match) M

A TLV Ordered TLV List TLV (see description below) containing:
- Variable Identifier List TLV (referring to one variable containing

the value to be compared with the match value, additional
Variable IDs to be ignored) or Inline Value TLV

- Page Reference TLV, to branch to, if value matches

M

...

X TLV Ordered TLV List TLV O
Y TLV Page Reference TLV, if no match is found, go to this reference O

Possible errors:

Error Code Description Action

No error OK Continue

Reference to undefined Reference to undefined variable Stop
Jump to undefined Page Reference not found. Stop

Type mismatch Error in variables management Stop

Explanation of used arguments:

8.5.1 Variable ID

This variable shall contain the value to be compared.

8.5.2 Ordered TLV List

In each of these TLVs the following TLVs are encapsulated:

- Variable Identifier List TLV (referring to one variable containing the value to be compared with the match value;

additional Variab le IDs to be ignored);

 OR

 Inline Value TLV (d irectly containing the value to be compared with the match value);

- Page Reference TLV.

The Page Reference TLV contains the location to be branched to, if the comparison is successful.

8.5.3 Page Reference

If no match was found, the reference contained in here is used to branch. If this TLV is not available, no branch is

executed and the USAT Interpreter continues to render the next byte code after the Branch on Variable Value byte code.

8.6 Exit

If the TerminateSession Attribute is not set, the USAT Interpreter shall behave as defined by the current terminal

response handler configuration for the case of "Proactive SIM session terminated by the user".

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 54

If the TerminateSession Attribute is set, the proactive session is terminated immediately by the USAT Interpreter. The

USAT Interpreter shall respond to the UE with SW1/SW2='9000' in this case.

If the USAT Interpreter had been called USIM internally (by an proprietary internal interface), the Variable Identifier

List TLV may be used to provide return values to the calling function. Handling of these internal return values isout of

the scope of the present document.

If the USAT Interpreter does not support the mechanis m of provid ing return values, it shall ignore the possibly available

Variable Identifier List TLV.

Length Value Description M/O

1 '45' / 'C5' Exit Tag M

1 A+B Length M
A Data Attributes O

B TLV Variable Identifier List TLV (containing return values) O

Possible errors:

Error Code Description Action

No error OK Stop
Reference to undefined Variables in Variable Identifier list are not available Stop

Attributes:

 b8 b7 b6 b5 b4 b3 b2 b1

 TerminateSession
0: exit determined by current terminal response handler

configuration
1: terminate session immediately

 RFU

 Follow bit

8.7 Execute USAT Command

This byte code executes an USAT command using the provided arguments.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 55

Length Value Description M/O/C

1 '46' / 'C6' Execute USAT Command Tag M

1 A+5+B Length M

A Data Attributes O

1 Data General Result code variable ID.
The variable referenced by this variable ID is used to hold the
General Result code extracted from the Terminal Response of the
executed USAT command.
This variable ID shall be present if and only if indicated in the
"Behaviour" bits of the attribute byte.

C

1 Data USAT command output variable ID.
The variable referenced by this variable ID is used to hold the output
of the USAT command according to clause 8.7.5. The content of the
USAT command output variable depends on the
"ResultOptimisationRequired" bit of the attribute byte.
This variable ID shall be present if and only if indicated in the "Output
variable" bit of the attribute byte.

C

1 Cmd type Command type value according to TS 31.111 [1] M

1 Cmd qual. Command qualifier value according to TS 31.111 [1] M

1 Dest dev. Destination device according to TS 31.111 [1] M

B TLVs
and Simple

TLV Indicators

Sequence of
- simple TLVs of the proactive command as defined in

TS 31.111 [1]
- and / or Simple TLV Indicators

O

Possible errors:

Error Code Description Action

No error OK Continue

Reference to undefined Reference to undefined Stop

Problem in memory
management

Memory problem in the preparation of the USAT command Stop

Syntax error Try to initialise a text element Stop
USAT command failed USAT Command could not be delivered to UE Stop

USAT command not allowed due to configuration of the USAT Interpreter Stop

Type mismatch Error in variables management Stop

Explanation of used arguments:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 56

8.7.1 Attributes

 b8 b7 b6 b5 b4 b3 b2 b1

 ResultOptimisationRequired
0: optimisation required (see clause 8.7.5)
1: optimisation not required (see clause 8.7.5)

 Behaviour
01: perform next USAT byte code, regardless of General

Result. The terminal response handler mechanism shall
not be invoked. General Result code variable ID shall be
present.

00: Stop, if General Result indicates temporary or fatal error.

For other general result values, the terminal response
handler mechanism shall be invoked. General Result
code variable ID shall not be present.

10: Stop, if General Result indicates fatal error. For other

general result values, the terminal response handler
mechanism shall be invoked. General Result code
variable ID shall be present.

11: Whatever the value of the General Result, the terminal

response handler mechanism shall be invoked. General
Result code variable ID shall be present.

 Output variable
0: USAT command output variable ID shall not be present
1: USAT command output variable ID shall be present

 RFU

 Follow bit

8.7.2 Simple TLV

This TLV shall be a simple TLV coded as described in TS 31.111 [1] for the USAT proactive command to be executed.

8.7.3 Simple TLV Indicator

A Simple TLV Indicator is a placeholder for a Simple TLV. A Simple TLV Indicator is coded as follows:

Coding Description

'00' This value indicates the Simple TLV Indicator
Length This value indicates the length of the following data

belonging to the Simple TLV Indicator

Result Tag This value represents the Tag value of the resulting
Simple TLV

Simple TLV Indicator
content

The Simple TLV Indicator content may contain variable
substitution indicators to indicate variable references.
Therefore the Simple TLV Indicator content has to be
structured into Length - Value and Variable Substitution
Indicator - Variable ID pairs. The possibly available
variable references have to be expanded according to
clause 6.3 Method 1 during processing of this indicator
by the USAT Interpreter.

The result of processing the Simple TLV Indicator shall be a Simple TLV. When the USAT Interpreter p rocesses a

Simple TLV Indicator the Result Tag shall be the Tag of the resulting Simple TLV. The value part shall be formed of

the Simple TLV Ind icator content and the length of the resulting Simple TLV is the length of the Simple TLV Indicator

content after possible variable substitution.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 57

8.7.4 Sequence of Simple TLVs and Simple TLV Indicators

The sequence of these Simple TLVs and Simple TLV Indicators is translated by the USAT Interpreter to fo rm the

sequence of Simple TLVs of an USAT command (TS 31.111 [1]). When expanding Simple TLV Indicators to Simple

TLVs the length of the BER-TLV of the resulting USAT command shall be adjusted by the USAT Interpreter before

issuing the command to the UE.

When executing a Execute USAT command byte code, the USAT Interpreter issues a regular USAT command to the

UE using the USAT protocol. The t ranslation procedure from the Execute USAT Command TLV to an USAT

command can be visualised in princip le as follows:

USAT Command + substitution

USAT Interpreter byte code

+ adjustment

Len Cmd type Cmd qual Dest dev TLV indicator

n
TLV 1

D0 Len 01 CNo Ty Qual03 0202

Command tag

81 Dest BytesBytes

More TLVs/ TLV indicators..

More Bytes…

Command

details tag

Device

identities tag

Source device tag

(UICC= 0x81)

Command

details length

Device

identities length

Translation of an USAT Interpreter byte code in a USAT Command

Command

Number

Tag

Figure 8.1

8.7.5 Result of an Execute USAT Command

The result of executing an USAT command is a Terminal Response structure containing a list of Simple TLVs as

defined in TS 31.111 [1].

If the General Result code variable ID is availab le the USAT Interpreter shall extract the General Result byte from the

Result TLV of the Terminal Response structure and shall store the General Result byte into the variable referenced by

the given General Result code variable ID. The extracted General Result (a single byte according to TS 31.111 [1]) can

be used e.g. for error handling on application byte code level.

If the General Result code variable ID is not available the USAT Interpreter does not extract the General Result byte

from the Result TLV of the Terminal Response structure.

If the Output variable attribute bit in the attributes indicates that the USAT command output variable ID is present, the

Terminal Response structure itself is processed by the USAT Interpreter as specified in the following 2 clauses (8.5.5.1

and 8.7.5.2).

If the Output variable attribute bit in the attributes indicates that the USAT command output variable ID is not present

the USAT Interpreter does not store the Terminal response structure. The ResultOptimisationRequire attribute bit shall

be ignored by the USAT Interpreter in that case.

8.7.5.1 Optimisation not Required

If the ResultOptimisationRequired bit in the attributes is set to "optimisation not required", the complete Terminal

Response structure as specified in TS 31.111 [1] is stored in the USAT command output variable as referenced by the

given USAT command output variable ID. The stored Terminal Response structure starts with the tag of the Command

Details as specified in TS 31.111 [1].

The Get TLV Value byte code can be used in this case to ext ract specific informat ion from the Terminal Response

structure.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 58

8.7.5.2 Optimisation Required

Only the first TLVs after the Result Simple TLV with in a Terminal Response (see TS 31.111 [1]) shall be processed by

the USAT Interpreter as fo llows:

- If the first TLV after the Result Simple TLV is a Text String TLV according to TS 31.111 [1], the value part

without the DCS byte is assigned to the variable referenced by the USAT command output variable ID. The DCS

is removed from the V field of the Text String TLV, but used for variable management internally by the USAT

Interpreter.

- In all other cases, the value part of the first TLV after the Result Simple TLV is assigned to the variable

referenced by the USAT command output variable ID. The type "unknown" shall be used for variable

management internally by the USAT Interpreter.

8.8 Execute Native Command

This byte code is used to execute an operating system call, "plug-in" or an applicat ion external to the USAT Interpreter.

The attribute indicates if the execution returns to the USAT Interpreter o r not. Arguments are passed for input and

output. The output is stored in a list of variab les.

Length Value Description M/O

1 '47' / 'C7' Execute Native Command Tag M

1 A+2+B+C Length M

A Data Attributes O

2 Data NCI of application or plug-in M

B TLV Input List TLV containing arguments O
C TLV Variable Identifier List TLV for output of application or plug-in O

The NCI (Nat ive Code Identifier) has a size of 2 bytes and is binary coded, most significant byte first. The values '0000'

to '7FFF' are defined in clause 9. Other values may be used for proprietary implementations.

Possible errors:

Error Code Description Action

No error OK Continue

Reference to undefined Reference to undefined Stop

Jump to undefined Execute element does not exist Stop

Problem in memory
management

Memory problem in the preparation of the structure Stop

User Abort Execute was aborted by user Exception
(NOTE1)

Syntax Error Incorrect number of arguments passed to the execute
element.

Exception
(NOTE1)

Execution Error Execute element generated an internal error. Exception
(NOTE1)

Type mismatch Error in variables management Stop

NOTE1: In case of error generated by the plug-in execution, the USAT interpreter shall execute the "Error
during plug-in execution" exception case of the Terminal Response Handler.

8.8.1 Attributes

 b8 b7 b6 b5 b4 b3 b2 b1

 ExitFlag
0: Behaves as a function call to the native command
1: Behaves as a continuation; execution does not return to

page.

 RFU

 Follow bit

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 59

8.8.2 Result of a Native Function Call

When the native function call returns, the values produced by the call are stored in the variab les referenced by the

output list.

8.9 Get Length

This byte code instructs the USAT Interpreter to calculate the length of all variab le contents of the variables in the

Variable List and to assign the result to the output variable.

Length Value Description M/O

1 '48' Get Length Tag M

1-3 1+A Length M
1 Data Variable ID (output, containing the BER encoded result length in

binary format according to ISO/IEC 7816-6 [5])
M

A TLV Variable Identifier List TLV, Variable List for length calculation M

Possible errors:

Error Code Description Action

No error OK Continue

Problem in memory
management

Memory allocation problem Stop

Reference to undefined Reference to undefined variable Stop

8.10 Get TLV Value

This byte code instructs the USAT Interpreter to extract the value part of a TLV from a sequence of TLVs and to assign

the resulting value to the output variable.

If the requested tag value is not found in the sequence of TLVs, the output variable is generated with no content (i.e. the

length of content of the variable is 0).

Length Value Description M/O

1 '49' Get TLV Value Tag M
1-3 2+A Length M

1 Data Variable ID (output, containing the value of the requested TLV) M

1 Data Tag value to search for M

A TLV Variable Identifier List TLV, each referenced variable shall contain a
list of TLVs (e.g. generated Terminal Response of Execute USAT
Command)

M

Possible errors:

Error Code Description Action

No error OK Continue

Problem in memory
management

Memory allocation problem Stop

Reference to undefined Reference to undefined variable Stop

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 60

8.11 Display Text

This byte code instructs the USAT Interpreter to issue a DISPLAY TEXT command according to TS 31.111 [1].

This command is used to display text of informational nature without require any input from user. The USAT

Interpreter shall use the DCS value accord ing to the indication given in the attributes of the Inline Value TLV. If no

attributes are given in the Inline Value TLV, the coding scheme ind ication of the current page shall be used.

Length Value Description M/O

1 '4A' / 'CA' Display Text Tag M

1-3 1+A Length M

1 Data Attributes O

A TLV Inline Value TLV, containing text to be displayed M

The following parameters shall be used for the generated DISPLAY TEXT command:

Field Comment

Command Details
according to TS 31.111 [1]

High Priority shall always be used. Other
command parameters shall be used
according to the information provided in the
attribute byte.

Coding of the attributes:

 b8 b7 b6 b5 b4 b3 b2 b1

 UserInteraction
0: Wait for user to clear message
1: Clear message after delay

 RFU

 Follow bit

Possible errors:

Error Code Description Action

No error OK Continue

Reference to undefined Reference to undefined variable Stop
Type mismatch Error in variables management Stop

8.12 Get Input

This command is used to request mult iple character input from user.

Length Value Description M/O

1 '4B' / 'CB' Get Input Tag M

1-3 A+1+B+C Length M

A Data Attributes O

1 Data Variable ID (for storing the entered characters, the variable type
information of the variable is set according to the DCS indication
received from the UE. The DCS received from the UE is not stored in
the variable value.)

M

B TLV Inline Value TLV, containing text to be displayed (e.g. the question, to
be used in the text string TLV of the GET INPUT USAT command)

M

C TLV Inline Value 2 TLV, containing the default text for the default text TLV
of the GET INPUT USAT command

O

Coding of the attributes:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 61

 b8 b7 b6 b5 b4 b3 b2 b1

 Requested character set for input
0: SMS default
1: UCS2

 Requested input mode of UE
0: Digits
1: Alphabet set

 Minimum length of input string
4 bits to encode the minimum length of input,
minimum length in the range 0-15

 RFU

 Follow Bit

The following parameters shall be used for the generated GET INPUT command:

Field Comment

Response length Minimum length:
the value supplied by the attribute byte is to
be used;

Maximum length:
'FF' shall be used

Command Qualifier UE may echo user input on the display;
User input to be in unpacked format;
No help information available;

If more parameters are necessary for the Get Input command, for security reasons (e.g. user input shall not be revealed

in any way), the Execute USAT command byte code shall be used.

Possible errors:

Error Code Description Action

No error OK Continue

Problem in memory
management

Memory allocation problem Stop

Reference to undefined Reference to undefined variable Stop

Type mismatch Error in variables management Stop

9 Native Commands

Native Commands or "plug-ins" shall be used to provide specific functionality not contained in the USAT Interpreter

byte code set. This can be e.g. operating system calls, execution of specific security algorithms , calcu lation routines or

conversion routines. All native commands are called using the Execute Native Command byte code.

Each native command shall have a Native Code Identifier. The Native Code Identifier has a size of 2 bytes and is binary

coded, most significant byte first. The NCI values '0000' to '7FFF' are specified in this clause. Other values may be used

for proprietary implementations.

Native Commands defined below are optionally to be supported by the USAT Interpreter. If any of these Native

Commands are supported by the USAT Interpreter (which are specified within the present document using a NCI

specified in the present document), they shall be implemented according to the present document.

Native commands specified by the present document:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 62

NCI Name Chapter

'00 00' RFU
'00 01' P7 – PKCS#7 Signature Plug-In 9.1.2.1

'00 02' FP – Fingerprint Plug-In 9.1.2.2
'00 03' AD – Asymmetric Decryption Plug-In 9.1.2.3

'00 04' DE – Triple DES Encryption Plug-In 9.1.3.1
'00 05' DD – Triple DES Decryption Plug-In 9.1.3.2

'00 06' DS – Triple DES Sign Plug-In 9.1.3.3
'00 07' DU – Triple DES Unwrap Plug-In 9.1.3.4

'00 08' CP – Change PIN Plug-In 9.1.4.1
'00 09' RP – Reset PIN Plug-In 9.1.4.2
'00 0A'-'7F FF' RFU

9.1 Security Plug-ins

9.1.1 Common Topics

9.1.1.1 Security Policy

Security policy related issues like

- principles of key management and key life cycle management

- practices and procedures to be followed when carrying out technical and administrative aspects of key

management

- responsibilit ies and accountability of each party involved

- the types of records (i.e. audit trail informat ion) to be kept

are all outside the scope of the present document.

9.1.1.2 Classification of PINs

The majority of plug-ins specified in subclause 9.1 normally (configuration dependent) include a PIN, and possibly also

a PUK, verificat ion step. This step is necessary to identify the user and obtain exp licit authorisation before certain

sensitive operations can be performed. The PIN(s) required by the security plug -ins bear no relation to the UICC

PINs [4] (e.g. the USIM application PINs), and shall be completely controlled by the USAT Interpreter.

Theoretically, there can be as many PINs as there are keys, even if this seems unwise from a pract ical point of view.

9.1.1.3 Key Diversification

Key diversification is a technical term that signifies the possibility to associate a key with conditions stating for what

purpose(s) the key may be used. Normally key diversification is used to improve the security of a system by

eliminating certain security threats and reducing system complexity.

This specification mandates that:

- key diversification shall be implemented for all keys accessible to the security plug -ins

- key usage enforcement shall be implemented in every security plug-in that requires a key for it's operation

9.1.1.4 Output Parameters

The security plug-ins defined in subclause 9.1 conform to a model whereby a plug-in always generate one, or at most

two, output variables. The first variable, called the Plug-in Status Code, indicates the status of the plug-in upon

termination.

The second variable, called the Functional Output, is used to hold the result from the primary function of the plug -in,

whenever this is applicable (not all plug-ins have a defined output).

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 63

Obviously this only applies when the Error Code returned by the Execute Native Command byte code is "No error"',

otherwise the USAT Interpreter would unconditionally stop.

9.1.2 PKI Plug-ins

9.1.2.1 P7 - PKCS#7 Signature Plug-In

9.1.2.1.1 Description

The P7 p lug-in is used to provide a digital signature based on a private (RSA) key stored on the USIM card. The output

of the plug-in is compliant with the WMLScript Crypto Library SignText function. As such, P7 will also be compliant

with other important specifications like PKCS#1 and PKCS#7.

9.1.2.1.2 NCI

The NCI for this plug-in is '00 01'.

9.1.2.1.3 Arguments

The arguments (i.e . the value part of the Inline Value TLV within the Input List TLV) shall be according to the

following table:

Length Value Description M/O/C

1 ‘00’/’01’/
’02’/’03’

Key identifier type. Indicates the type of the key identifier supplied in
the next parameter:

 ‘00’ = No key identifier supplied. The plug-in shall choose a
default key, if such a key exists, or abort with Plug-in Status
Code "PS: No such key ".

 ’01' = User key hash. SHA-1 hash of the user public key is
supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this key is not
available, abort with Plug-in Status Code "PS: No such key".

 ‘02’ = List of trusted key hashes. One or more SHA-1 hash
values of trusted CA public key(s) are supplied in the next
parameter. The plug-in shall use a signature key that is certified
by the one of the indicated CAs or, if such a key is not available,
abort with Plug-in Status Code "PS: No such key".

 ‘03’ = Index of RSA key.

M

1 Data Index of RSA key (AKI). C

20 Data User key hash. C
A Data List of trusted key hashes. The format of the field shall be LV, where

the length is BER encoded onto 1, 2 or 3 bytes according ISO/IEC
7816-6 [5], and the value is the concatenation of all hash values.

C

1 ‘04’/’08’ Character encoding scheme

 ‘04’ = GSM default (unpacked). See TS 23.038 ([3]) for further
reference

 ‘08’ = UCS2

M

B Data Options. M
C Data Text to be signed (TTBS). Represented in the indicated character

encoding scheme.
M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error"’ and plug -in

termination.

Coding of the "Options" field:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 64

 b8 b7 b6 b5 b4 b3 b2 b1

 Content flag
0: Do not include TTBS in the output
1: Include the TTBS in the output

Key hash flag
0: Do not include hash of the public key in the output
1: Include hash of the public key in the output

 Certificate flag
0: Do not include a URL to the public key certificate in the output
1: Include a URL (or list of URLs) to the public key certificate(s)
 in the output

 ICCID flag
0: Do not include the ICCID in the output
1: Include the ICCID in the output

 Message digest flag
0: Do not include the message digest of the TTBS in the output
1: Include the message digest of the TTBS in the output

 Key index flag
0: Do not include the index of the RSA key in the output
1: Include the index of the RSA key in the output

 RFU

 Follow bit
0: No more option bytes available
1: Another option byte available as next byte

9.1.2.1.4 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Contents
1 Plug-in Status Code (see subclause 9.1.2.1.6).

2 Functional Output. A SignedContent data structure as described in
subclause D.1.2.3 or a textual error message.

9.1.2.1.5 Execution

The detailed execution of the plug-in is described in subclause D.1.1.

9.1.2.1.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK" ‘00’ There was no error.

"PS: User cancel" ‘21’ The user cancelled the operation.
"PS: No such key" ‘22’ The requested key is not available.

9.1.2.2 FP – Fingerprint Plug-In

9.1.2.2.1 Description

The FP p lug-in is used to provide a digital signature based on a private (RSA) key stored on the USIM card. The p lug-in

output contains a PKCS#1 compliant digital signature and is as such in line with important specifications like PKCS#1

and PKCS#7.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 65

The plug-in fo llows a principle whereby an (encoded) excerpt of the data is displayed to the user before it is signed. The

data itself would in a sensible application be represented as a DER encoded value.

9.1.2.2.2 NCI

The NCI for this plug-in is '00 02'.

9.1.2.2.3 Arguments

The arguments (i.e . the value part of the Inline Value TLV within the Input List TLV) shall be according to the

following table:

Length Value Description M/O/C

1 ‘00’/’01’/’03’ Key identifier type. Indicates the type of the key identifier supplied in
the next parameter:
 ‘00’ = No key identifier supplied. The plug-in shall choose a

default key, if such a key exists, or abort with Plug-in Status
Code "PS: No such key".

 ’01' = User key hash. SHA-1 hash of the user public key is
supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this key is not
available, abort with Plug-in Status Code "PS: No such key".

 ‘03’ = Index of RSA key.

M

1 Data Index of RSA key (AKI). C

20 Data User key hash. C

A Data Options. M

B

Data Data-to-be-signed. To be truly PKCS#1 compliant, this should be a
DER encoded value of the DigestInfo ASN.1 type, as specified in
PKCS#1. B shall be equal to or greater than 16.

M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

Coding of the "Options" field:

 b8 b7 b6 b5 b4 b3 b2 b1

 RFU

Key hash flag

0: Do not include hash of the public key in the output
1: Include hash of the public key in the output

 Certificate flag
0: Do not include a URL to the public key certificate in the output
1: Include a URL (or list of URLs) to the public key certificate(s)
 in the output

 ICCID flag
0: Do not include the ICCID in the output
1: Include the ICCID in the output

 RFU

 Key index flag
0: Do not include the index of the RSA key in the output
1: Include the index of the RSA key in the output

 RFU

 Follow bit
0: No more option bytes available
1: Another option byte available as next byte

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 66

9.1.2.2.4 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Contents
1 Plug-in Status Code (see subclause 9.1.2.2.6).

2 Functional Output. A WrappedContent data structure as described in
subclause D.2.2.2 or a textual error message.

9.1.2.2.5 Execution

The detailed execution of the plug-in is described in subclause D.2.1.

9.1.2.2.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK" ‘00’ There was no error.

"PS: User cancel" ‘21’ The user cancelled the operation.
"PS: No such key" ‘22’ The requested key is not available.

9.1.2.3 AD – Asymmetric Decryption Plug-In

9.1.2.3.1 Description

This plug-in is used for application-level asymmetric (RSA) decryption.

It is crucial that the application utilizing this plug-in protects the output from the plug-in in some way, e.g. by using

(cryptographic) blinding.

9.1.2.3.2 NCI

The NCI for this plug-in is '00 03'.

9.1.2.3.3 Arguments

The arguments (i.e . the value part of the Inline Value TLV within the Input List TLV) shall be according to the

following table:

Length Value Description M/O/C

1 ‘00’/’01’/’03’ Key identifier type. Indicates the type of the key identifier supplied in
the next parameter:

 ‘00’ = No key identifier supplied. The plug-in shall choose a
default key, if such a key exists, or abort with Plug-in Status
Code "PS: No such key".

 ’01' = User key hash. SHA-1 hash of the user public key is
supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this key is not
available, abort with Plug-in Status Code "PS: No such key".

 ‘03’ = Index of RSA key.

M

1 Data Index of RSA key (AKI). C
20 Data User key hash. C

A Data Ciphertext. A byte string of the same (byte) length as the modulus of
the decryption key. A shall be equal to or greater than 16.

M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug-in termination.

9.1.2.3.4 Output Parameters

The following table describes the output of the plug-in:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 67

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.2.3.6).

2 Functional Output. The plaintext as described in subclause D.3.2 or a
textual error message.

9.1.2.3.5 Execution

The detailed execution of the plug-in is described in subclause D.3.1.

9.1.2.3.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description

"PS: OK" ‘00’ There was no error.
"PS: User cancel" ‘21’ The user cancelled the operation.

"PS: No such key" ‘22’ The requested key is not available.

9.1.3 Triple DES Plug-ins

9.1.3.1 DE – Triple DES Encryption Plug-In

9.1.3.1.1 Description

The DE p lug-in is used to encrypt arbitrary application-level data. It is typically called from a page to encrypt data

before it is transmitted to a network applicat ion.

9.1.3.1.2 NCI

The NCI for this plug-in is '00 04'.

9.1.3.1.3 Arguments

The arguments (i.e . the value part of the Inline Value TLV within the Input List TLV) shall be according to the

following table:

Length Value Description M/O/C

1 Data Index of key. M
A Data Options. M

8 Data IV (according to b1 of Options). C

B Data Data to encrypt (plaintext). M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug -in termination.

Coding of the "Options" field:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 68

 b8 b7 b6 b5 b4 b3 b2 b1

 IV flag
0: IV not included and shall be set to ’00 … 00’
1: IV included

Cipher spec.
00: 3DES EDE ECB with two keys
01: 3DES EDE CBC with two keys
10: 3DES EDE ECB with three keys
11: 3DES EDE CBC with three keys

 RFU

 Follow bit

0: No more option bytes available
1: Another option byte available as next byte

ECB mode combined with IV shall be regarded as a "Syntax Error".

9.1.3.1.4 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.3.1.6).

2 Functional Output. The encrypted plaintext (i.e. ciphertext). 1 to 8 bytes
longer than the length of the plaintext.

9.1.3.1.5 Execution

The detailed execution of the plug-in is described in subclause F.1.1.

9.1.3.1.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK" ‘00’ There was no error.

"PS: User cancel" ‘21’ The user cancelled the operation.
"PS: No such key" ‘22’ The requested key is not available.

9.1.3.2 DD – Triple DES Decryption Plug-In

9.1.3.2.1 Description

The DD plug-in is used to decrypt arbitrary application-level data. It is typically called from a page to decrypt data that

has been encrypted by a network application.

9.1.3.2.2 NCI

The NCI for this plug-in is '00 05'.

9.1.3.2.3 Arguments

The arguments (i.e . the value part of the Inline Value TLV within the Input List TLV) shall be according to the

following table:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 69

Length Value Description M/O/C

1 Data Index of key. M

A Data Options. M

8 Data IV (according to b1 of Options). C

B Data Data to decrypt (ciphertext). M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error"' and plug -in termination.

Coding of the "Options" field:

 b8 b7 b6 b5 b4 b3 b2 b1

 IV flag
0: IV not included and shall be set to ’00 … 00’
1: IV included

Cipher spec.
00: 3DES EDE ECB with two keys
01: 3DES EDE CBC with two keys
10: 3DES EDE ECB with three keys
11: 3DES EDE CBC with three keys

 RFU

 Follow bit

0: No more option bytes available
1: Another option byte available as next byte

ECB mode combined with IV shall be regarded as a "Syntax Error".

9.1.3.2.4 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.3.2.6).

2 Functional Output. The decrypted ciphertext (i.e. plaintext). 1 to 8 bytes
shorter than the length of the ciphertext.

9.1.3.2.5 Execution

The detailed execution of the plug-in is described in subclause F.2.1.

9.1.3.2.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description
"PS: OK" ‘00’ There was no error.

"PS: User cancel" ‘21’ The user cancelled the operation.
"PS: No such key" ‘22’ The requested key is not available.

9.1.3.3 DS – Triple DES Sign Plug-In

9.1.3.3.1 Description

The DS p lug-in is used to calculate a message authentication code (MAC) for arbitrary applicat ion-level data. The

MAC can be used as a data integrity mechanis m to verify that data has not been altered in an unauthorised manner. It

can also be used as a message authentication mechanism to provide assurance that a message has been originated by an

entity in possession of the secret key.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 70

The MAC is calculated according to ISO/IEC 9797 (algorithm 3, padding method 2) [10].

9.1.3.3.2 NCI

The NCI for this plug-in is '00 06'.

9.1.3.3.3 Arguments

The arguments (i.e . the value part of the Inline Value TLV within the Input List TLV) shall be according to the

following table:

Length Value Description M/O/C

1 Data Index of key M
A Data Options M

1 ‘04’/’08’ Character encoding scheme

 ‘04’ = GSM default (unpacked), see TS 23.038 ([3])

 ‘08’ = UCS2

M

B Data Text to be signed (TTBS). Represented in the indicated character
encoding scheme.

M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug -in termination.

Coding of the "Options" field:

 b8 b7 b6 b5 b4 b3 b2 b1

 Truncation flag
0: 4 byte output (most significant bytes)
1: 8 byte output

 RFU

 Follow bit

0: No more option bytes available
1: Another option byte available as next byte

9.1.3.3.4 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.3.3.6).

2 Functional Output. The signature (MAC) on the text to be signed. The
length of the signature is 4 or 8 bytes as indicated by the "Truncation
flag".

9.1.3.3.5 Execution

The detailed execution of the plug-in is described in subclause F.3.1.

9.1.3.3.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description

"PS: OK" ‘00’ There was no error.
"PS: User cancel" ‘21’ The user cancelled the operation.
"PS: No such key" ‘22’ The requested key is not available.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 71

9.1.3.4 DU – Triple DES Unwrap Plug-In

9.1.3.4.1 Description

The DU plug-in is a key-management plug-in that enables a party in possession of a certain secret key, called a key

encryption key, to replace an USAT Interpreter related key stored in the USIM at its own desire.

9.1.3.4.2 NCI

The NCI for this plug-in is '00 07'.

9.1.3.4.3 Arguments

The arguments (i.e . the value part of the inline value TLV within the input list TLV) shall be according to the following

table:

Length Value Description M/O/C

1 Data Index of the key to be updated. M

A Data Options. M

B Data Encrypted key data. M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug -in termination.

Coding of the "Options" field:

 b8 b7 b6 b5 b4 b3 b2 b1

 Algorithm ID
00: 3DES EDE CBC with three keys + ISO/IEC 9797 MAC
01: 3DES EDE CBC with two keys + SHA-1 MDC
10: 3DES EDE CBC with two keys + ISO/IEC 9797 MAC
11: 3DES EDE CBC with three keys + SHA-1 MDC

RFU

 Wrapped key length:
00: 16 bytes
01: 24 bytes
10: RFU
11: RFU

 RFU

 Follow bit

0: No more option bytes available
1: Another option byte available as next byte

9.1.3.4.4 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.3.4.6).

9.1.3.4.5 Execution

The detailed execution of the plug-in is described in subclause F.4.1.

9.1.3.4.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 72

Plugin Status Code Coding Description

"PS: OK" ‘00’ There was no error.
"PS: No such key" ‘22’ The requested key is not available.

9.1.4 PIN Management Plug-ins

These plug-ins shall be used to manage USAT Interpreter related PINs.

9.1.4.1 CP – Change PIN Plug-In

9.1.4.1.1 Description

The CP plug-in shall be used to change a PIN to a value specified by the user. The user is requested to enter first the old

PIN and then the new PIN twice, before the PIN is changed.

9.1.4.1.2 NCI

The NCI for this plug-in is '00 08'.

9.1.4.1.3 Arguments

The arguments (i.e . the value part of the Inline Value TLV within the Input List TLV) shall be according to the

following table:

Length Value Description M/O/C

1 ’01’/
’03’/’04’

Key identifier type. Indicates the type of the key identifier supplied in
the next parameter:

 ’01' = User key hash. SHA-1 hash of the user public key is
supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this key is not
available, abort with Plug-in Status Code "PS: No such key
error".

 ‘03’ = Index of RSA key.
 ‘04’ = Index of secret key.

M

1 Data Index of secret key. C

1 Data Index of RSA key. C
20 Data User key hash. C

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug -in termination.

9.1.4.1.4 Output Parameters

The following table describes the output of the plug-in:

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.4.1.6).

9.1.4.1.5 Execution

The detailed execution of the plug-in is described in subclause E.1.1.

9.1.4.1.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 73

Plugin Status Code Coding Description

"PS: OK" ‘00’ There was no error.
"PS: User cancel" ‘21’ The user cancelled the operation.

"PS: No such key" ‘22’ The requested key is not available.

9.1.4.2 RP – Reset PIN Plug-In

9.1.4.2.1 Description

The RP plug-in shall be used by a specially trusted party to set a PIN value OTA to a value of its own choice remotely.

9.1.4.2.2 NCI

The NCI for this plug-in is '00 09'.

9.1.4.2.3 Arguments

The arguments (i.e . the value part of the Inline Value TLV within the Input List TLV) shall be according to the

following table:

Length Value Description M/O/C

1 ’01’/
’03’/’04’

Key identifier type. Indicates the type of the key identifier supplied in
the next parameter:
 ’01' = User key hash. SHA-1 hash of the user public key is

supplied in the next parameter. The plug-in shall use the private
key that corresponds to the public key hash or, if this key is not
available, or abort with Plug-In Status Code "PS: No such key".

 ‘03’ = Index of RSA key.

 ‘04’ = Index of secret key.

M

1 Data Index of secret key. C
1 Data Index of RSA key. C

20 Data User key hash. C

A Data Options. M

B Data Encrypted PIN data (EP). M

Malformed, out of range, or missing input parameters shall result in Error Code "Syntax Error" and plug -in termination.

Coding of the "Options" field:

 b8 b7 b6 b5 b4 b3 b2 b1

 Algorithm identifier
000: RFU
001: RFU
010: RFU
011: 3DES EDE CBC with two keys + SHA-1 MDC
100: 3DES EDE CBC with two keys + ISO/IEC 9797 MAC
101: 3DES EDE CBC with three keys + SHA-1 MDC
110: 3DES EDE CBC with three keys + ISO/IEC 9797 MAC
111: RFU

 RFU

 Follow bit

0: No more option bytes available
1: Another option byte available as next byte

9.1.4.2.4 Output Parameters

The following table describes the output of the plug-in:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 74

Output Variable # Content
1 Plug-in Status Code (see subclause 9.1.4.2.6).

9.1.4.2.5 Execution

The detailed execution of the plug-in is described in subclause E.2.1.

9.1.4.2.6 Errors

Possible Plug-in Status Codes (see 9.1.1.4 for additional information):

Plugin Status Code Coding Description

"PS: OK" ‘00’ There was no error.
"PS: No such key" ‘22’ The requested key is not available.

10 End to End Security

10.1 Encrypt

This is for further study.

10.2 Decrypt

This is for further study.

11 Modes of operation

This is for further study.

11.1 Pull

This is for further study.

11.2 Push / Cell Broadcast

This is for further study.

12 Error handling and coding

This chapter describes how the USAT Interpreter shall behave when an error occurs. A table indicating the values for

the different error codes is provided.

12.1 Setting of the environment variable "error code"

After having executed a byte code, the USAT Interpreter shall set the value of the environment variable " Error code

generated by the last byte code command executed" ('05') according to the execution result. The possible execution

results for a given byte code command are listed in the definit ion of this byte code command. The values for all possible

error codes are listed in the table in clause 12.3.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 75

12.2 User notification of the execution

In each byte code command description, for each possible erro r code, an action is indicated. This action can be either

"continue" or "stop".If the action indicated is "continue", the USAT Interpreter shall process the next by te code without

notifying the user.

If the action is "stop", the USAT Interpreter shall notify the user by displaying an error message to the user. For the

DISPLAY TEXT USAT command used, the command qualifier options:

 "wait for use to clear message"

shall be used.

The error messages displayed by the USAT Interpreter

 shall be able to be modified by the operator at the personalisation stage;

 shall be able to be different for each error code.

After having displayed this message, for any general result of the terminal response, the USAT Interpreter shall quit.

12.3 Error coding

For the indicat ion of erro rs occurring during byte code processing error codes listed in the following table are defined.

This informat ion can be accessed using the Error Code variable ('05') in the system information partit ion.

Type of error Coding

No error '0000'

Syntax error '6F01'
Jump to undefined '6F02'

Problem in memory management '6F03'
Security problem '6F04'

Reference to undefined '6F05'
Out of range '6F06'

User abort '6F07'
Execution error '6F08'

USAT command failed '6F09'
USAT command not allowed '6F0A'

USAT Interpreter transmission error '6F0B'
Type mismatch '6F0C'
General unspecific error '6FFF'

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 76

13 Tag Values

The present document uses the following Tag values :

Tag Value Usage

'01' / '81' Page Tag

'02' Page Identification Tag
'03' Page Unlock Code Tag
'04' One Time Password Tag

'05' Keep Alive List Tag
'06' Service ID Tag

'07' String Pool Tag
'08' / '88' Terminal response handler modifier Tag

'09' / '89' Action TLV Tag
'0A' / '8A' Navigation Unit Tag

'0B' Anchor Tag
'0C' Anchor Reference Tag

'0D' Variable Identifier List Tag
'0E' / '8E' Inline Value Tag

'0F' / '8F' Inline Value 2 Tag
'10' Input List Tag

'11' Ordered TLV List Tag
'12' Page Reference Tag
'13' / '93' Submit Configuration Tag

'14' Submit Data Tag
'15' / '95' Gateway Address Tag

'16' Submit Tag
'17' to '3F' RFU for data structures

'40' Set Variable Tag

'41' Assign and Branch Tag
'42' Extract Tag

'43' / 'C3' Go Back Tag
'44' Branch on Variable Value Tag

'45' / 'C5' Exit Tag
'46' / 'C6' Execute USAT Command Tag
'47' / 'C7' Execute Native Command Tag

'48' Get Length Tag
'49' Get TLV Value Tag

'4A' / 'CA' Display Text Tag
'4B' / 'CB' Get Input Tag

'4C' to '7F' RFU for commands

All other Tag values are RFU.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 77

Annex A (informative):
Terminal Response Handler Flow Charts

After an USAT command a General Result is returned and the returned General Result is checked according to the

current Terminal Response Handler Configurat ion. The further processing depends on the current Terminal Response

Handler Configuration which may have been modified by Terminal Response Handler Modifier TLVs.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 78

System or

Navigation

action

Single USAT Interpreter

byte codes

modify

no

yes

no

yes

Terminal Response Handler

Execution Environment

Text for user

notification

present in TRH

Modifier TLV?

Type of

action?

Is General Result

within '00' to '0F'?

Return to Page Execution

Environment according to

the attribute byte of the

Action TLV

DISPLAY TEXT

(Text for user

notification)

Execute "action to be

performed"

Return to Page Execution
Environment according to

the system action or the

navigation task

yes

no

More than one

action registered

for the general

result range?

SELECT ITEM
(action list)

Specific handling

(see chapter

"7.1.8.4.4 Action

description")

Start

Check General Result and

handle according to the

matching entry of the

current TRH

Configuration

Current TRH

configuration

TRH Modifier TLVs

Figure A.1

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 79

Annex B (informative):
Example of Accessing USAT Interpreter Functionality in
Wireless Mark-up Language

B.1 Introduction

B.1.1 Purpose

The annex demonstrates how USAT Interpreter functionality can be provided to the application developer by usage of a

mark-up language without requiring in-depth knowledge of USAT Commands. The annex is informative and the

functionality does not have to be limited to what is proposed here.

The annex proposes how to form WML [B3] code to address USIM Application Toolkit commands and Plug-In

extensions. The WML code constitutes the deck delivered fro m an application provider as a response to a request for an

application.

The intention is to provide a necessary base for developing applications in WML. The annex thus describes a limited set

of WML that can be regarded as the minimal support needed for applicat ion development.

B.1.2 Terminology

The present document uses the terms Implicit and Explicit calls when discussing access to USAT and Plug -In

functionality. The distinction is that when the term Implicit is made it refers to cases where the WML cod e does not

indicate that a specific command is called but the rendering of the WML will be encoded to use specific commands.

When using the term exp licit, it refers to cases where the WML code specifically states that it intends to call a specific

function.

As an example, one can say that the following WML code is an implicit call of the USAT command displayText since

that function will be used to render the WML

<wml>

 <card id="implicit">

 <p>

 Displayed

 </p>

 </card>

</wml>

The explicit version of that WML would be

<wml>

 <card id="explicit">

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/atk/displayText?text=Displayed"/>

 </do>

 </p>

 </card>

</wml>

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 80

B.1.3 Definitions and abbreviations

Acronym Definition

DCS Data Coding Scheme
PID Protocol IDentifier
WAP Wireless Application Protocol
WML Wireless Mark-up Language
UCS Universal Character Set
URL Uniform Resource Locators
USIM Universal Subscriber Identity Module
UTF Unicode Transformation Format
XML eXtensible Mark-up Language

B.2 Namespace

The WML code makes use of the concept of namespace to address the functionality. The WML code in the present

document uses the efi scheme, as defined by WAP Forum in reference [B4], to address USAT commands, Card plug-

ins and other explicitly addressed functionality. The concepts used in the namespace for addressing this functionality is

described in that specification.

According to the terminology of the EFI Framework specificat ion, the USAT Interpreter can be introduced as an EF

Class. The addressing is then fully compliant with those ideas, regardless of future development.

According to the EFI Framework specification, the WML namespace used for addressing services from WML is

structured according to the below.

efi://vnd.3gpp.interpreter/atk/sendSm

In the terminology used in the EFI Framework, the above URL uses the default implementation of the

vnd.3gpp.interpreter class as the server and calls the service named atk/sendSm.

B.2.1 The USAT Interpreter EF Class

The USAT Interpreter is viewed as an EF Class with the name vnd.3gpp.interpreter. Its services are named using an

internally h ierarchical structure to group the command types.

According to the EFI Framework, service names can contain the "/" which can be used to give a logical g rouping to the

services supplied by the class. The USAT Interpreter class uses this notation to place services in logical groups. The

service groups address USAT Commands, Card resident plug-ins and interpreter internal functionality in appropriate

groups.

The service grouping used is listed in the below table.

Service Type Service Group

USAT commands atk/
Client side plug-in cpi/
Server side Plug-In spi/
USIM Manufacturer specifics Ssp/
Interpreter Internals ipi/

The present document only specifies specific forms for the atk, spi and ipi groups of services.

B.2.2 Examples

The following lists a few examples of URLs that are used to address different type of functionality.

The following URL addresses the USAT command powerOffCard with argument card

efi://vnd.3gpp.interpreter/atk/powerOffCard?card=<value>

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 81

The following URL addresses a client side plug-in with name sign, which is called with argument doc containing the

data to be signed and keyId identify ing the key to be used.

efi://vnd.3gpp.interpreter/cpi/sign?doc=<text>&keyId=<value>

The following URL addresses the USIM Manufacturer specific function doSpecifics with data as contained by data.

efi://vnd.3gpp.interpreter/ssp/doSpecifics?data=11624

Here are some examples of more complete code using the addressing principles.

<wml>

 <card id="play">

 <p>

 I will play you a tone!

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/atk/playTone?toneId=03&

 timeUnit=01&duration=10&text=Hej" />

 </do>

 </p>

 </card>

</wml>

<wml>

 <card id="test">

 <p>

 Calling funny plugin

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/cpi/doGuess?

 age=$(age)&outputVar=output">

 <setvar name="age" value="35"/>

 </go>

 </do>

 Olle has a mobile of the brand $(output)!

 </p>

 </card>

</wml>

B.3 WML

This clause gives an introduction to the WML and extended functionality.

B.3.1 WML Syntax

B.3.1.1 The WML page

A WML page is either stored at an application provider, or stored in compiled form on the USIM.

B.3.1.2 Entities

Entit ies are used to specify characters in the document character set which either need to be escaped in WML or may be

difficult to enter in a text ed itor. WML text can contain numeric or named character entit ies. All entities begin with an

ampersand and end with a semicolon.

The following predefined named entities are supported:

Entity Character

& &
' apostrophe

< <
> >
 non-breaking space
­ soft hyphen
" "

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 82

B.3.1.3 Elements

Elements may contain a start tag, content and an end tag. Elements have one of two structures:

<tag/> or <tag>content</tag>

B.3.1.4 Attributes

Attributes specify additional informat ion about an element and are always specified in the start tag of an element. For

example:

<tag attr="abcd"/> or <tag attr="abcd">content</tag>

All attribute values are quoted using double quotation marks (").

B.3.1.5 Variables

Variables can be used in the place of strings and are substituted at run-time with their current values. Anywhere the

variable syntax is legal, an $ character fo llowed by (VARIABLENAME) indicates a variab le substitution:

$(VARIABLENAME)

The setvar, input and select elements can be used to set a variable.

Different variables may contain characters from d ifferent character sets. The type of a variab le is set the first time the

variable is defined in the WML document (for instance in a setvar, input o r select element).

Variables have to be named with characters supported by ISO-8859-1.

A sequence of two dollar signs ($$) represents a single dollar sign, where variab le syntax is legal.

B.3.2 Extended functionality interface

Some commands on the USAT Interpreter are not possible to address using WML [B3] tags. In those cases, an EFI [B4]

syntax is used according to the following example:

<go href="efi://vnd.3gpp.interpreter/atk/functionName?arg1=a1"/>

The syntax is described in clause B.2.

The function name is unique for the command. All commands are called with different arguments, see clause B.5, and

the arguments are used for both input and output data. The name of the function defines which command to be called.

B.4 Implicit calls using WML syntax

Supported WML tags are described in this clause.

B.4.1 Prologue

A WML document always starts with an XML declarat ion and a document type declaration.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE wml PUBLIC "-//3GPP//DTD USAT-WML 1.0//EN"

 "http://www.3gpp.org/DTD/USAT-WML10.dtd">

B.4.2 Character encoding

The document always begins with an XML declaration containing the encoding attribute.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 83

The following examples show the declarations for two different character encoding:

<?xml version="1.0" encoding="UTF-8" ?>

or

<?xml version="1.0" encoding="ISO-8859-1" ?>

This example shows how Unicode can be used for text that are to be input and output on the telephone, and for the

content of variables. It also shows that the Unicode variable content can be passed to the application provider as a

parameter value to the "go href" command. The whole URL in "go href" is limited to contain valid URL

characters. However, the content of the variables that are passed in the query string can be Unicode, e.g. in the example,

the content of the variable DRINK is Unicode.

Figure B.1

B.4.3 Elements

The order of elements in a WML document is significant since the USAT interpreter will interpret the elements in

sequence.

In the following subclauses, the last column in the attribute tables indicates if the attribute is Optional(O) or

Mandatory(M).

The mapping of implicit WML tags to USAT commands are exp lained in the following table.

WML tag USAT Command

wml -
p If containing text, DISPLAY TEXT is used.
br -
input GET INPUT
card -
option SELECT ITEM (In the select tag.)
select SELECT ITEM
go SELECT ITEM / SEND SM
setvar -
noop -
do -
refresh -

B.4.3.1 wml element

The WML element defines a WML document and encloses all information in the document.

Syntax

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 84

<wml>content</wml>

B.4.3.2 card element

The card element defines a container of te xt and elements in a WML document. A document may contain multip le card

elements but card elements may not be nested. The first card element in a document is the start card.

Syntax

<card>content</card>

Attribute Explanation

id This attribute specifies a unique id of the card within the deck. O
newcontext This attribute specifies if the current USAT interpreter context is to be re-

initialised. Allowed values: true or false (Default).

O

<card id="card1">

.

.

</card>

B.4.3.3 p element

The p element, or paragraph element, delimits a text clause.

No arguments are supported for the p element.

Syntax

<p>content</p>

B.4.3.4 br element

The br element inserts a line break in the displayed text.

The
 element can not take any arguments.

Syntax

B.4.3.5 input element

The input element defines an input field where the user may enter in formation.

Syntax

<input/>

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 85

Attribute Explanation

name This attribute specifies the name of variable to set. M
value This attribute specifies the default value of the variable named in the

name attribute.

O

format This attribute Expected data format entered by the user. The following
values are allowed:

*M - Any character. (Default)

*N - Any numeric character.

O

emptyok This attribute specifies whether or not empty input will be accepted

Allowed values: true or false (Default).

O

maxlength This attribute specifies the max number of bytes that can be entered by
the user.

O

title This attribute specifies the prompting string. O
class This attribute specifies the type of the variable. The following values are

allowed:
SMSDefault – Default for an ISO-8859 WML document.

UCS2 - Default for an UTF-8 WML document.

O

<input title="Please enter your phone number" name="PHONE" format="*N" maxlength="20"/>

B.4.3.6 select Element

The select element defines and displays a set of optional list items from which the user can select an item. An

option element is required for each item in the list, see clause B.4.3.7. The name of the menu, normally displayed by

the telephone, is specified by the title attribute.

Either the name or iname attribute can be used. If the iname attribute is used, the value attribute in the contained

option elements will be overridden with the calculated index.

Syntax

<select>content</select>

Attribute Explanation

title This attribute specifies the title of the menu. O
name This attribute specifies the name of the variable to set. O
iname This variable specifies the name of the variable to set with the index

result of the selection. See the WAP WML specification [B3].
O

B.4.3.7 option element

The option element represents a list item in a list defined by the select element. The content consists of text that is

displayed as the option text. This text is used as the value of the value attribute if that attribute is not present. Empty

item text strings are not supported.

When an option is selected, the variable named in the enclosing select element is set to the value given by the

value attribute. Then the USAT interpreter navigates to the URI specified by the onpick attribute if present.

Syntax

<option>content</option>

Attribute Explanation

value This attribute specifies what the variable named in select attribute

name is set to, if this option element is selected.

O

onpick This attribute specifies a destination URI to go to, if this option
element is selected.

O

This example illustrates the use of select and option. If the user selects the "Banking" option, a jump will occur to

"card2". If the user selects the "Gambling" option, a jump will occur to "card3". If "[Home]" is selected a GET request

will be sent for the "home.wml" document. Note that the value attribute in the option element can not be used for

anything if the corresponding onpick attribute refers to an external URL.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 86

<select title="Please choose service" name="SELECTION">

 <option value="BANKING" onpick="#card2">Banking</option>

 <option value="GAMBLING" onpick="#card3">Gambling</option>

 <option value="Not used." onpick="http://www.3gpp.org/home.wml">[Home]</option>

</select>

B.4.3.8 go element

The go element declares a go task to a URL or to a specified card in the document. The go element may also be used

for performing USAT interpreter or Gateway specific commands.

Note that after each "go href" referring to an external URL, no more WML elements will be executed. Using text o r

WML tags after a "go href" referring to an external URL may cause problems for the applicat ion.

The URL may contain variable references.

The URL starts with "https://", if SSL is to be used for connecting to the application server.

For referencing a card, a hash sign ('#') is used:

<go href="#CARD"/>

Syntax

<go/>

<go>content<go>

Attribute Explanation

href This attribute identifies the destination URI. M
method This attribute specifies the http submiss ion method to be used by the

Gateway. The following values are allowed:

get - HTTP GET will be used. (Default)

post - HTTP POST will be used.

O

<card>

 <p>

 <input title="Variable" name="VARIABLE"/>

 <do type="accept">

 <go href="http://www.3gpp.org/page.jsp?f=$(VARIABLE)&l=StaticText "/>

 </do>

 </p>

</card>

<card>

 <p>

 <input title="First name" name="FIRSTNAME"/>

 <input title="Last name" name="LASTNAME"/>

 <input title="Age" name="AGE"/>

 <do type="accept">

 <go method="post" href="http://www.3gpp.org/page.jsp?

 f=$(FIRSTNAME)&l=$(LASTNAME)&a=$(AGE)"/>

 </do>

 </p>

</card>

A card reference starts with the character '#'.

<card id="CARD1">

 <p>

 <do type="accept">

 <go href="#CARD2"/>

 </do>

 </p>

</card>

<card id="CARD2">

 <p>

 You have jumped to CARD2.

 </p>

</card>

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 87

B.4.3.9 setvar element

The setvar element sets the value of a variable.

The class attribute is used for setting the type of the variable according to the present document.

Syntax

<setvar/>

Attribute Explanation

name This attribute specifies the name of the variable to be set. M
value This attribute specifies the value the variable is set to. May only contain

fixed text. Variables are not allowed.
M

class This attribute specifies an optional type specification of the variable, used
for conversion purposes in the Gateway. The following values are
allowed:

SMSDefault

SMSDefault.packed

UCS2

binary.base64 - The variable contains binary data coded
according to base64 encoding. This is the default value if the "class"
attribute is omitted. The "binary.base64" class is used for instance when
encrypted data is sent to the content. The type in the USAT interpreter
will be "Binary" (Default).

O

The variable COUNTRY is set to "Sweden". The variable may later be used by referring to $(COUNTRY).

<setvar name="COUNTRY" value="Sweden"/>

setvar is contained in a refresh element

<card id="setexample2">

 <p>

 <do type="accept">

 <refresh>

 <setvar name="HEXVARIABLE" class="binary.base64" value="A678F5D3"/>

 </refresh>

 </do>

 <do type="accept">

 <go href="http://www.3gpp.org?a=$(HEXVARIABLE)"/>

 </do>

 </p>

</card>

setvar is contained in a go element. The variables are set before the go element is executed.

<card id="setexample3">

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3ggp.interpreter/cpi/encrypt?

 a1=$(KEY1)&a2=$(KEY2)&outputVar=out">

 <setvar name="KEY1" class="binary.base64" value="F5FF34FF"/>

 <setvar name="KEY2" class="binary.base64" value="90AB45DA"/>

 </go>

 </do>

 </p>

</card>

B.4.3.10 noop element

The noop element specifies that nothing will be done. The noop element requires a start tag only.

Syntax

<noop/>

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 88

B.4.3.11 do element

The do element is a general mechanis m for the user to act upon the current card. The supported types are accept and

vnd.3gpp.org. Both of these imply that the task following the do element is always executed.

This means that the execution of the script does not stop at the do element. If a stop before the do element is desired, a

construction as in the WML example given below can be used.

Syntax

<do>content</do>

Attribute Explanation

type This attribute specifies the type of the do element. The following values
are allowed:

vnd.3gpp.org - When the do element contains a USAT interpreter
specific command.

accept - All other cases.

M

<wml>

 <card id="command">

 <p>

 <input title="Enter your age:" name="AGE"/>

 <do type="accept">

 <go href="http://www.3gpp.org/survey.asp?f=$(AGE)&name=Martin"/>

 </do>

 </p>

 </card>

</wml>

B.4.3.12 refresh Element

The refresh element surrounds the setvar tag. The refresh tag has no function in itself.

Syntax

<refresh>content</refresh>

B.5 Explicit calls using WML syntax

This clause demonstrates how the namespace can be used to explicitly address USAT Commands, USAT Interpreter

specific functions and Plug-ins. The purpose is to demonstrate how this can be done rather than to describe how the

complete command set of the USAT Interpreter is addressed.

Mandatory parameters need always be present in an explicit call and the optional attributes may be left out. The last

column in the fo llowing tables indicates if the attribute is M-mandatory or O-optional.

An argument value can include a variable, which is substituted at run-time with its current value.

B.5.1 Services for USAT Commands

Access to USAT commands is grouped into the service group atk. Anything that belongs to this group of services can

be coded, by the gateway, by using generic coding on the byte code level.

The following table lists the logical group of services used for calling USAT commands.

Service Name

atk/launchBrowser
atk/playTone
atk/provideLocalInfo
atk/refresh
atk/runATCommand

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 89

atk/sendUSSD
atk/sendSM
atk/setupCall
atk/setIdleModeText

For detailed information on the parameters and data format, see TS 31.111 [1]. Although the "GO" tag is used, no

message is sent to the server, as the commands are executed locally on the USIM.

The following clauses handle these functions in detail. The parameter names as listed in the tables below are the same

as the ones that are to be used in the URL query string. The parameter names are case sensitive.

B.5.1.1 Launch Browser

This command causes the USIM to request that the ME start a browser to interpret the content corresponding to the

URL.

Service name: atk/launchBrowser?qualifier=&URL=

Argument Argument value

qualifier The Command Details to use (see TS 31.111 [1]). The value is
given in decimal format. The default value is 0.

O

URL The URL whose contents is to be displayed. M

A browser will be launched and the URL "http://www.3gpp.org/page.wml" will be fetched.

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/atk/launchBrowser?

 URL=http://www.3gpp.org/page.wml"/>

 </do>

 </p>

</card>

B.5.1.2 Play tone

This command makes the mobile station play a tone.

Service name: atk/playTone?toneId=&timeUnit=&duration=&text=

Argument Argument value

toneId 01: Dial tone

02: Called subscriber busy

03: Congestion

04: Radio path acknowledge

05: Radio path not available

06: Error / special information

07: Call waiting time

08: Ringing tone

M

timeUnit 00: minutes

01: seconds

02: tenths of seconds

M

duration Coded as integer multiples of the time unit used. Decimal value.

Allowed values: 0-255.

M

text Text to display. (Corresponds to the alpha identifier according to
TS 31.111 [1])

O

In this example, the mobile phone is requested to play a congestion tone with duration of 10 seconds. Since text string is

empty, no text will be displayed.

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/atk/playTone?

 toneId=03&timeUnit=01&duration=10"/>

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 90

 </do>

 </p>

</card>

B.5.1.3 Provide Local Information

This command is used to get location information from the mobile station. Different location parameters can be fetched

from the mobile phone and put into a variable.

Service name: atk/provideLocalInfo?qualifier=&outputVar=

Argument Argument value

qualifier 00: location information (7 bytes)

01: IMEI of ME (8 bytes)

02: Network measurement results and BCCH list (16 bytes)

03: Date, time and time zone (7 bytes)

04: Language setting (2 bytes)

05: Timing advance (2 bytes)

M

outputVar Variable to contain output data. M

In this example, the IMEI is fetched and put in the variable imeiOutput . On the next line, the IMEI is sent to a

content provider.

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/atk/provideLocalInfo?

 qualifier=01&outputVar=imeiOutput"/>

 </do>

 <do type="accept">

 <go href="http://www.arne.se?IMEI=$(imeiOutput)"/>

 </do>

 </p>

</card>

B.5.1.4 Refresh

This command makes the USIM notify the mobile phone of changes in the USIM configuration as the result of USIM

application activity. Depending on the command qualifier, d ifferent tasks will be performed. For more information see

TS 31.111 [1].

Service name: atk/refresh?qualifier=&numberOfFiles=&fileList=

Argument Argument value

qualifier 00: USIM Initialisation and Full File Change Notification

01: File Change Notification (requires file list)

02: USIM Initialisation and File Change Notification (requires
file list)

03: USIM Initialisation

04: USIM Reset

M

numberOfFiles Number of files included in filelist. Decimal value.

Default: 0.

O

fileList List of files. O

In the example, a USIM initialisation is requested, and in addition, the mobile phone in notified that two files on the

USIM have been updated, 3F00/2F05 and 3F00/7F10/6F3A.

<card id="command">

 <p>

 <do type="vnd.3gpp.org">

 <go href ="efi://vnd.3gpp.interpreter/atk/refresh?qualifier=02&

 numberOfFiles=02&fileList=3F002F053F007F106F3A"/>

 </do>

 </p>

</card>

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 91

Full paths are given to files. Each file path is at least 4 octets in length. An entry in the file description begins with

'3FXX' and there is no delimiters between files.

B.5.1.5 Run AT Command

This command makes the USIM request the ME to execute an AT Command.

Service name: atk/runATCommand?command=&text=&iconId=

Argument Argument value

command The AT Command string that is to be executed M
text Text to be displayed to the user. O
iconId The identifier of an icon to show instead of text. O

<card id="command">

 <p>

 <do type="vnd.3gpp.org">

 <go href ="efi://vnd.3gpp.interpreter/atk/runATCommand?

 command=ATD0706746151&text=Calling"/>

 </do>

 </p>

</card>

B.5.1.6 Send USSD

This command sends a byte string by the Unstructured Supplementary Serv ice.

Service name: atk/sendUSSD?text=&ussd=

Argument Argument value

text Text to display. O
ussd According to [B1]. M

In this example, a USSD message with the contents "*21*1222#" is sent to the network.

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/atk/sendUSSD?

 text=MessageText&ussd=*21*1222#"/>

 </do>

 </p>

</card>

B.5.1.7 Send SM

This command sends a plain text SM to a part icular destination.

Service name: atk/sendSM?userData=&pid=&dcs=&bNumber=&smscAddress=

Argument Argument value

userData Text in the SM. O
pid Protocol identifier. Decimal value. Default: 0. O

dcs Data Coding Scheme, according to TS 23.038 [3]. Decimal
value.

O

bNumber The called party number. M
smscAddress The number of the service center. O

In this example, a text SM, with contents as entered by the user, is sent to MSISDN "0706754321". As "PID" and

"DCS" are omitted, the default values "0" and "242" decimally are used. The Service Centre "+46705008999" is used,

regardless of the default value in the mobile phone.

<card>

 <p>

 <input title="Please enter message" name="m"/>

 <do type="vnd.3gpp.org">

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 92

 <go href="efi://vnd.3gpp.interpreter/atk/sendSM?userData=$(m)&

 bNumber=0706754321&smscAddress=+46705008999"/>

 </do>

 </p>

</card>

B.5.1.8 Set up call

This command requests the mobile phone to initiate a call.

Service name:
atk/setupCall?qualifier=&text=&capability=&timeUnit=&duration=&bNumber=

Argument Argument value

qualifier 00: only if not currently busy

01: only if not currently busy, with redial

02: putting all other calls on hold

03: putting all other calls on hold, with redial

04: disconnecting all other calls

05: disconnecting all other calls, with redial

M

text Text to display. (Corresponds to the alpha identifier according to
TS 31.111 [1].)

O

capability Capability Configuration Parameters. For coding, see [B2].
Default: None.

O

timeUnit This argument is mandatory if duration attribute is used.
Default: Not used.

00: minutes

01: seconds

02: tenths of seconds

O

duration Coded as integer multiples of the time unit used. Decimal value.
Allowed values: 0-255. Default: Not used.

O

bNumber The called party number. M

In this example, the USIM requests the mobile phone to set up a call to "0707789613", if not currently busy with

another call. No text is displayed, no Capability Configuration Parameters are attached, and no automatic retries to set

up the call will be made.

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/atk/setupCall?

 qualifier=00&bNumber=0707789613"/>

 </do>

 </p>

</card>

B.5.1.9 Set Idle Mode Text

This command sets a text on the idle screen of the mobile station.

If no text attribute is included or the text attribute consists of an empty string, the existing id le mode text on the mobile

phone will be removed.

Service name: atk/setIdleModeText?text=

Argument Argument value

text The idle mode text to display. O

This example will set the idle mode text to "Welcome".

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/atk/setIdleModeText?

 text=Welcome"/>

 </do>

 </p>

</card>

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 93

B.5.2 Services for Interpreter Commands

These are commands that are directed to the Interpreter itself and thus are internally handled by the interpreter. Unless

otherwise stated, the encoding of the result variables match the format of the informat ion as specified in other parts of

this specification.

The following table lists the logical group of services used for calling interpreter internal functions.

Service Name

ipi/getInterpreterVersion
ipi/getBufferSize
ipi/getNativeCommandList
ipi/getTerminalProfile
ipi/getErrorCode
ipi/getMaxPageSize
ipi/getIssuerUrl
ipi/getIssuerUrlHash

B.5.2.1 Get Interpreter Version Information

This command reads the version information of the USAT Interpreter and assigns it to the specified variable.

Service name: ipi/getInterpreterVersion?outputVar=

Argument Argument value

outputVar Variable to contain output data. M

B.5.2.2 Get Interpreter Buffer Size

This command reads the size of the receive and send buffer of the USAT Interpreter and assigns it to the specified

variable.

Service name: ipi/getBufferSize?outputVar=

Argument Argument value

outputVar Variable to contain output data. M

In the following example, the interpreter buffer size and version information are put into the variables "bufferSize" and

"version" respectively. On the next line, the information is sent back to the Application Provider.

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/ipi/getInterpreterVersion?

 outputVar=version"/>

 </do>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/ipi/getBufferSize?

 outputVar=bufferSize"/>

 </do>

 <do type="accept">

 <go href="http://www.server.com?VERSION=$(version)&BUFFER=$(bufferSize)"/>

 </do>

 </p>

</card>

B.5.2.3 Get Native Command List

This command reads the list of supported native commands.

Service name: ipi/getNativeCommandList?outputVar=

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 94

Argument Argument value

outputVar Variable to contain the output list of supported Native Commands M

B.5.2.4 Get Terminal Profile

This command gets the Terminal Profile as got at runtime by the USAT Interpreter.

Service name: ipi/getTerminalProfile?outputVar=

Argument Argument value

outputVar Variable to contain the binary encoded terminal profile M

B.5.2.5 Get Error Code for Last Byte Code Command

This command gets the Error Code generated by the last executed byte code command.

Service name: ipi/getErrorCode?outputVar=

Argument Argument value

outputVar Variable to contain the error code M

B.5.2.6 Get Maximum Size for Temporary Storage of Page

This command gets the maximum page size for temporary storage of one page.

Service name: ipi/getMaxPageSize?outputVar=

Argument Argument value

outputVar Variable to contain the maximum size of a page M

B.5.2.7 Get USAT Interpreter Issuer URL

This command gets the URL of the issuer of the USAT Interpreter.

Service name: ipi/getIssuerUrl?outputVar=

Argument Argument value

outputVar Variable to contain the URL of the issuer of the USAT Interpreter M

B.5.2.8 Get USAT Interpreter Issuer URL Hash

This command gets the 4 most significant byte of the SHA-1 hash of the URL of the issuer of the USAT Interpreter.

Service name: ipi/getIssuerUrl?outputVar=

Argument Argument value

outputVar Variable to contain the hash of the URL M

B.5.2.9 Get User Name

This command gets the name of the end user, if the end user has set the values.

Service name: ipi/getUserName?outputVar=

Argument Argument value

outputVar Variable to contain the name of the end user M

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 95

B.5.2.10 Get User Email

This command gets the email o f the end user, if the user has chosen to set it.

Service name: ipi/getUserEmail?outputVar=

Argument Argument value

outputVar Variable to contain the email of the end user. M

B.5.3 Services for Calling Client Plug-Ins

This clause illustrates the way the addressing for calling a card p lug-in is done and the principles for handling the

arguments to the plug-in. The addressing enables the application to call any plug-in that is available for the applicat ion.

The actual plug-ins that are available for the application depends on the configuration of the USAT Interpreter. On the

byte code level, the card p lug-ins are called in a generic way. The translation to generic format is done by the gateway.

To exemplify the calling of p lug-ins from the application, an example plug-in with the name myPlugin is used. It is

assumed that there are seven arguments to the plug-in as described in the table below.

a# Argument Argument value

a1 homeTown The home town of the user M
a2 currentTown The town where the user currently is. M
a3 homePhone The home phone number of the user O
a4 buyTicket This parameter acts as a Boolean value. If it is set

to 1, a ticket will be reserved. If set to 0, only
timetable is provided. The default behaviour is to
provide timetable information only.

O

a5 timeToLeave If set, the parameter gives a date when the user
wishes to start travelling.

O

a6 timeToArrive If set, this parameter gives a date when the user
wishes to arrive.

O

a7 transport The desired means of transport for the user. O

As a calling convention for plug-ins, the parameter names are enumerated using a as a prefix. The enumeration order

indicates the order in which the arguments are sent to the plug-in. Optional parameters that are not used are left out

from the URL query string.

The order of the parameters in the query string is insignificant. It is the naming of the parameters that control the order

when calling the plug-in.

This service will call the plug-in myPlugin. Any other plug-in is called in the same manner based on its

documentation. The plug-in services are always placed in the cpi service group.

Service name: cpi/myPlugin

In this example, the plug-in myPlugin is called using only arguments 1,2 and 7 as described by the documentation.

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/cpi/myPlugin?

 a2=Stockhom&a7=Train&a1=Paris"/>

 </do>

 </p>

</card>

The WML code above causes the gateway to construct a call to the generic plug-in mechanis m to call a plug-ins whose

name is myPlugin. The arguments to the generic call are inserted in the order the naming enumerates them.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 96

B.6 Access to Special Features

This chapter describes how to modify the behaviour of the USAT Interpreter. Th is includes modifying the Terminal

Response Handler and variable management.

B.6.1 Variable Management

The byte code of the USAT Interpreter provides mechanis ms for sharing access to variables between pages. The

behaviour can be initiated from WML by using the constructs exemplified in th is chapter.

Service Name

spi/keepAlive

B.6.1.1 Keep Alive and Protect Variables

The functionality to control saving of variables between decks is reached through a service. What is given is a list of

variables that are to be shared with the next deck. Up to 64 variables can be indicated.

In the context of variable management, the one time password is used to control access to variables. Together with the

Page Unlock Code, it p rovides a possibility for sharing variable values between decks in a protected manner. Th is is

controlled by giving an argument to control password protection of the variables.

Service name:spi/keepAlive?variableList=&password=

Argument Argument value

VariableList List of the variables that are to be made available to the following
page. If the argument is not present, all variables will be kept

O

UsePassword Indicates if the variables are to be protected by a usage of the
combination of a one-time password and a page unlock. Values
can be “yes” or “no”. The default value is “no”.

O

password Gives the application provider the possibility to explicitly specify
the password to be used for protecting the variables

O

The service is valid for the whole deck and is thus called in a template at deck level.

<wml>

 <template>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/spi/keepAlive?

 variableList=’A, B, NAME’&usePassword=yes

 &password=gurksmorgas"/>

 </do>

 </template>

B.6.2 Terminal Response Handler Modifier

This chapter illustrates how the Terminal Response Handler can be modified. The Terminal Response Handler Modifier

allows modification of the default behaviour for the Terminal Response Handler. In this context, modific ation includes

addition to and overriding of the default behaviour. The Terminal Response Handler can be modified for the whole page

and/or for each Navigation Unit.

When the service for modifying the Terminal Response Handler is called from a card, the scope is card. When the call

is handled as a template at the deck level, it is valid for the whole deck.

The following table lists the logical group of services used for performing Terminal Response Handler modificat ion.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 97

Service Name

trh/replace
trh/add
trh/restore
trh/remove

The arguments to be supplied vary for the services.

B.6.2.1 Replace

Service name:
trh/replace?start=&end=&text=&actionDesc=&actionId=&href=&displayText=&

variableName=&setvarValue=&getInputString

The replace operation erases all prev iously defined actions for a result range and adds the one supplied as an argument

Argument Argument value

Start The start of the general result range that is to be modified M
End The end of the general result range that is to be modified M
Text Text to display to the user when handling this general result range. O
actionDesc Text to describe the action. To be used in User Interface for select

item when asking the user which action to perform when multiple
actions are defined for the general result range.

C

actionId Unique identifier of the action to be performed M
Href Indicates where to branch execution if the intended action is a

navigation action. The href argument can also be used if the
intended action is to execute a native command, call a USAT
Command or perform another action as specified in this appendix.

C1

displayText Text to be displayed if the desired action is to execute a DISPLAY
TEXT

C1

variableName Name of variable to set. If this argument is present, either the
setvarValue or getInputString is to be supplied. In the case where
setvarValue is supplied, as set variable is executed. If
getInputString is supplied, the user is asked for input by supplying
the string.

C1

setvarValue Value to assign to the variable. This argument is to be present
only if the setvarName is given.

C1

getInputString Text to display to the user when asking for input. C1

The princip le is to express the range that is to be modified and an action to be performed for that range. The actions that

can be used require somewhat different arguments. The arguments having the "C1"-property are mutually dependent as

described above. If the actions are system actions, which means that the actionId is '00' – '03', none of the "C1"

arguments are to be supplied. If the action to be performed is a navigation action, the argument href is used. This

attribute is also used for calling USAT Commands and Native Commands as defined elsewhere in this appendix.

The example below will modify the Terminal Response Handler by rep lacing the action for the general result value of

'10' with a call to a USAT Command for setting a new idle mode text . The change is valid for the current card.

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/trh/replace?

 start=10&end=10&

 text=Changing%20Idle Mode Text&

 actionId=42&href=’efi://vnd.3gpp.interpreter/atk/setIdleModeText?

 text=Welcome’"/>

 </do>

 </p>

</card>

In the following example, the same change is applied to the whole deck.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 98

<wml>

 <template>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/trh/replace?

 start=10&end=10&

 text=Changing%20Idle%20Mode%20Text&

 actionId=42&href=’efi://vnd.3gpp.interpreter/atk/setIdleModeText?

 text=Welcome’"/>

 </do>

 </template>

 <card>

 <p>

 This is the card

 </p>

 </card>

</wml>

B.6.2.2 Add

Service name: trh/add?start=&end=&text=&actionDesc=&actionId=&href=&displayText=&

variableName=&setvarValue=&getInputString

The add operation adds a new action for an existing general result range or defines a new general result range and the

corresponding action.

Argument Argument value

Start The start of the general result range that is to be modified M
End The end of the general result range that is to be modified M
Text Text to display to the user when handling this general result range. O
ActionDesc Text to describe the action. To be used in User Interface for select

item when asking the user which action to perform when multiple
actions are defined for the general result range.

C

ActionId Unique identifier of the action to be performed M
Href Indicates where to branch execution if the intended action is a

navigation action. The href argument can also be used if the
intended action is to execute a native command, call a USAT
Command or perform another action as specified in this appendix.

C1

DisplayText Text to be displayed if the desired action is to execute a DISPLAY
TEXT

C1

VariableName Name of variable to set. If this argument is present, either the
setvarValue or getInputString is to be supplied. In the case where
setvarValue is supplied, as set variable is executed. If
getInputString is supplied, the user is asked for input by supplying
the string.

C1

SetvarValue Value to assign to the variable. This argument is to be present
only if the setvarName is given.

C1

GetInputString Text to display to the user when asking for input. C1

The princip le is exactly the same as for the replace modification.

B.6.2.3 Restore

Service name: trh/restore?start=&end=&

The operation restores the general result range.

Argument Argument value

Start The start of the general result range that is to be modified M
End The end of the general result range that is to be modified M

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 99

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/trh/restore?

 start=10&end=10”/>

 </do>

 </p>

</card>

B.6.2.4 Remove

Service name: trh/remove?start=&end=&actionId=

The remove operation removes the specified action from the general result range that is specified.

Argument Argument value

Start The start of the general result range that is to be modified M
End The end of the general result range that is to be modified M
actionId Unique identifier of the action to be performed M

This service will modify the Terminal Response Handler by removing the action of changing idle mode text for the

general result value of '10'.

<card>

 <p>

 <do type="vnd.3gpp.org">

 <go href="efi://vnd.3gpp.interpreter/trh/remove?

 start=10&end=10&

 actionId=42"/>

 </do>

 </p>

</card>

B.7 References

[B1] 3GPP TS 22.030: "Man-Machine Interface (MMI) of the User Equipment (UE)".

[B2] 3GPP TS 24.008: "Mobile radio interface layer 3 specification; Core Network Protocols – Stage 3".

[B3] Wireless Application Protocol Forum: "Wireless Markup Language Specification. Version 1.3. 19 February

2000. Available: http://www.wapforum.org/".

[B4] Wireless Application Protocol: "EFI Frame work. Draft Version 0.15".

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 100

Annex C (informative):
Terminal Response Handler Modifier examples

This annex provides examples for the operations of the terminal response header modifier. Start ing point for the examples is the partly shown system terminal response handler

configuration, which is in this case the unmodified default terminal response handler configuration as specified in table 4.1 with an assumed text for user notification for the

general exception cases ("Error")..

The first row in the following tables shows the text for user notification assigned to a general result. A terminal response handler modifier can provid e such a text for a whole

range of general results. "--" indicates, that no user notification text is assigned to a general result.

The second row in the fo llowing tables shows the single action(s) assigned to a general result. For general results without an assigned action (indicated by "--" in the tables), the

USAT Interpreter uses the "TRH no matching GRR" exception case, which is indicated with the exception range 'FF 00'. If more than one action is assigned to a general result,

the USAT Interpreter issues a SELECT ITEM command, using the action description texts of the actions as items to let the user choose between the options. A terminal response

handler modifier can provide such a set of actions for a whole range of general results. a 'xx' indicates an action a with the assigned Action ID 'xx'. For one general result, the

Action ID uniquely identifies an action. For different general results, the same action ID in the service defined range (Action ID '20' to 'FF') could identify d ifferent actions. To

distinguish between different actions with the same Action ID, the Action ID index is appended with a character. E.g. a '20a' represents a different action than a '20b', even if the

Action ID '20' is the same.

 The third row the following tables shows the general result values to which the user notificat ion texts and actions are assig ned to.

Starting configuration, part ly reflection the default terminal response handler configuration as specified in table 4.1:

Table C.1

Text for user
notification assigned to
a general result

-- -- -- -- -- -- -- -- -- -- -- ... -- -- -- ... "Error"

Single action(s) for a
general result;
the index indicates the
assigned Action ID

a'00' a'00' ... a'00' a'01' a'02' a'01' a'03' a'01' -- -- ... a'01'

a'03'
a'01'

a'03'
a'01'

a'03'
... a'01'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 101

C.1 Replace Operation

The following terminal response handler modifier is applied as a replace operation to table C.1:

Table C.2

Text for user
notification assigned to
a general result range

 "Proceed?"

Single action(s) for a
general result range;
the index indicates the
assigned Action ID

 a'01'
a'20a'
a'21'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

This terminal response handler modifier is applied to the general result range '10 11'. The new text for user notification for that result range is "Proceed?". The set of actions for

that general result range is one system action ('Action ID '01': process next byte code) and two service defined actions with the Action IDs '20' and '21'. The result of a rep lace

operation of table C.2 on table C.1 is shown in the following table:

Table C.3

Text for user
notification assigned to
a general result

-- -- -- -- "Proce
ed?"

"Proce
ed?"

-- -- -- -- -- ... -- -- -- ... "Error"

Single action(s) for a
general result;
the index indicates the
assigned Action ID

a'00' a'00' ... a'00' a'01'
a'20a'
a'21'

a'01'
a'20a'
a'21'

a'01' a'03' a'01' -- -- ... a'01'

a'03'
a'01'

a'03'
a'01'

a'03'
... a'01'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 102

C.2 Add/Append Operation

The following terminal response handler modifier is applied as an add/append operation to table C.3:

Table C.4

Text for user
notification assigned to
a general result range

 "Cont.?"

Single action(s) for a
general result range;
the index indicates the
assigned Action ID

 a'20b'
a'22'
a'23'

a'24'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

This terminal response handler modifier is applied to the general result range '11 15'. The new text for user notification for that result range is "Cont.?". The set of actions for th at

general result range are four service defined actions with the Action IDs '20' and '22' to '24'. Note that for this example action '20b' represents another action than '20a' to show

this specific case. The result of an add/append operation of table C.4 on table C.3 is shown in the following table:

Table C.5

Text for user
notification assigned to
a general result

-- -- -- -- "Proce
ed?"

"Cont.
?"

"Cont.
?"

"Cont.
?"

"Cont.
?"

"Cont.
?"

-- ... -- -- -- ... "Error"

Single action(s) for a
general result;
the index indicates the
assigned Action ID

a'00' a'00' ... a'00' a'01'
a'20a'
a'21'

a'01'
a'20b'
a'21'

a'22'
a'23'

a'24'

a'01'

a'20b'
a'22'
a'23'

a'24'

a'03'

a'20b'
a'22'
a'23'

a'24'

a'01'

a'20b'
a'22'
a'23'

a'24'

a'20b'
a'22'
a'23'

a'24'

-- ... a'01'

a'03'
a'01'

a'03'
a'01'

a'03'
... a'01'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

Note, that in this specific case, for the general result '11' act ion a '20a' is replaced by a'20b', which are different. a'20a' for general result '10' remains unchanged and represents a

different action than a '20a' for general result '10', even if the same Action ID is used.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 103

C.3 Remove Operation

The following terminal response handler modifier is applied as a remove operation to table C.5:

Table C.6

Text for user
notification assigned to
a general result range

 "GoOn?"

Single action(s) for a
general result range;
the index indicates the
assigned Action ID

 a'20'

a'22'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

This terminal response handler modifier is applied to the general result range '10 11'. The new text for user notification for that result range is "GoOn?". Actions with Action Ids

'20' and '21' are to be removed. The result of a remove operation of table C.6 on table C.5 is shown in the following table:

Table C.7

Text for user
notification assigned to
a general result

-- -- -- -- "GoOn
?"

"GoOn
?"

"Cont.
?"

"Cont.
?"

"Cont.
?"

"Cont.
?"

-- ... -- -- -- ... "Error"

Single action(s) for a
general result;
the index indicates the
assigned Action ID

a'00' a'00' ... a'00' a'01'
a'21'

a'01'
a'21'

a'23'

a'24'

a'01'

a'20b'
a'22'
a'23'

a'24'

a'03'

a'20b'
a'22'
a'23'

a'24'

a'01'

a'20b'
a'22'
a'23'

a'24'

a'20b'
a'22'
a'23'

a'24'

-- ... a'01'

a'03'
a'01'

a'03'
a'01'

a'03'
... a'01'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 104

C.4 Restore Operation

The following terminal response handler modifier is applied as a restore operation to table C.7:

Table C.8

Text for user
notification assigned to
a general result range

Single action(s) for a
general result range;
the index indicates the
assigned Action ID

general result value '00' '01' ... '0F' '10' '11' – ' 15' '16' ... '20' '21' '22' ... 'FF'

This terminal response handler modifier is applied to the general result range '11 15'. No texts and no actions for the general result range are to be provided. All actions and user

notification texts of the system terminal response handler are restored for the given general result range. The result of a restore operation of table C.8 on table C.7 is shown in the

following table:

Table C.9

Text for user
notification assigned to
a general result

-- -- -- -- "GoOn
?"

-- -- -- -- -- -- ... -- -- -- ... "Error"

Single action(s) for a
general result;
the index indicates the
assigned Action ID

a'00' a'00' ... a'00' a'01'
a'21'

a'02' a'01' a'03'

a'01' -- -- ... a'01'

a'03'
a'01'

a'03'
a'01'

a'03'
... a'01'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 105

C.5 Special case: Empty text for user notification

For the operations add/append, replace and remove, the text for user notification may have an empty value part. In that case, the text for user notification is removed for the

respective general results.

E.g. for an add/append operation:

Table C.10

Text for user
notification assigned to
a general result range

 ""

Single action(s) for a
general result range;
the index indicates the
assigned Action ID

 a'20'

a'22'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

This terminal response handler modifier is applied to the general result range '10 11'. The text fo r user notificat ion for th at result range is to be removed. Actions with Action IDs

'20' and '22' are to be added. The result of an add/append operation of table C.10 on table C.9 is shown in the following table:

Table C.11

Text for user
notification assigned to
a general result

-- -- -- -- -- -- -- -- -- -- -- ... -- -- -- ... "Error"

Single action(s) for a
general result;
the index indicates the
assigned Action ID

a'00' a'00' ... a'00' a'01'
a'20'
a'21'
a'22'

a'02'

a'20'
a'22'

a'01' a'03'

a'01' -- -- ... a'01'

a'03'
a'01'

a'03'
a'01'

a'03'
... a'01'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 106

C.6 Special case: No text for user notification

For the operations add/append, replace and remove, the text for user notification is optional. If no text for user notification is given in the terminal response handler modifier, the

text for user notification is remains unchanged for the respective general results.

E.g. for an add/append operation:

Table C.12

Text for user
notification assigned to
a general result range

 --

Single action(s) for a
general result range;
the index indicates the
assigned Action ID

 a'34'

a'35'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

This terminal response handler modifier is applied to the general exception case 'FF FF'. The text for user no tification for all exception cases remains unchanged as no text for

user notification TLV is provided. Actions with Action IDs '34' and '35' are to be added to all exception cases. The result o f an add/append operation of table C.12 on table C.11is

shown in the following table:

Table C.13

Text for user
notification assigned to
a general result

-- -- -- -- -- -- -- -- -- -- -- ... -- -- -- ... "Error"

Single action(s) for a
general result;
the index indicates the
assigned Action ID

a'00' a'00' ... a'00' a'01'
a'20'
a'21'
a'22'

a'02'

a'20'
a'22'

a'01' a'03'

a'01' -- -- ... a'01'

a'03'
a'01'

a'03'
a'01'

a'03'
... a'01'

a'34'

a'35'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF'

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 107

C.7 Special case: Modify a single exception case

For all Terminal Response Handler operations, it is possible to modify the action linked to a single exception case using the general result range 'FF xx' (with xx between '00' and

'FE').

E.g. for an add/append operation:

Table C.14

Text for user
notification assigned to
a general result range

 "End
of
page"

--

Single action(s) for a
general result range;
the index indicates the
assigned Action ID

 a'40''

General result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' 'FF' 'FF'
Exception type No

more
byte
code

Other
excepti
ons

This terminal response handler modifier is applied to the "No more byte code" exception case 'FF 01'. The new text for user n otification for that exception case is "End of page".

The set of actions for that exception case are one system action ('Action ID '01': process next byte code) and three service defined actions with the Action IDs '34' and '35' to '40'.

The result of an add/append operation of table C.14 on table C.13 is shown in the following table:

Table C.15

Text for user
notification assigned to
a general result

-- -- -- -- -- -- -- -- -- -- -- ... -- -- -- ... "End
of
page"

"Error"

Single action(s) for a
general result;
the index indicates the
assigned Action ID

a'00' a'00' ... a'00' a'01'
a'20'
a'21'
a'22'

a'02'

a'20'
a'22'

a'01' a'03'

a'01' -- -- ... a'01'

a'03'
a'01'

a'03'
a'01'

a'03'
... a'01'

a'34'

a'35'

a'40''

a'01'

a'34'

a'35'

general result value '00' '01' ... '0F' '10' '11' '12' 13' '14' '15' '16' ... '20' '21' '22' ... 'FF' 'FF'

Exception type No
more
byte
code

Other
excepti
ons

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 108

Annex D (normative):
PKI Plug-ins Implementation Specification

This annex provides a detailed description of the PKI p lug-ins described in subclause 9.1.2.

D.1 P7

D.1.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the P7 execution.

START

FINISHED

Display
TTBS

Get
Response

Key
pressed?

Select
key

User
identification

Generate
signature

CANCEL NO KEY

OK

CANCEL

Figure D.1: P7 Flow diagram

The plug-in starts by showing the text-to-be-signed to the user and then awaits user confirmation. The user confirms by

pressing a confirmat ion-button (any button resulting in a Terminal Response with a general result range '00 0F') or

cancels by pressing a cancellation-button (any other general result value). If the user confirms, he shall be as ked to enter

his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The termination states shall be mapped to output variables according to:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 109

State Plug-in Status Code Functional Output Description

FINISHED "PS: OK" SignedContent data Indicates success.
CANCEL "PS: User cancel" “error:userCancel” The user aborted the operation.

NO KEY "PS: No such key" “error:noCert” The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code

table in subclause 8.8.

D.1.1.1 User Identification

The "User identification" procedure is rather complex since it involves many states as well as alternative execution

paths. The remainder of this subclause illustrates, using a combination of flow diagrams and sequence diagrams, the

general characteristics of the user identificat ion process.

START

PIN
blocked?

Verify
PIN

Verify
PUK

Enter
new PIN

PIN VERIFIED PIN TERMINATED

PIN BLOCKED

NO

YES

PIN
terminated?

PIN TERMINATED

YES

NO

PIN
terminated

Figure D.2: User Identification Overview

If the execution stops in a "PIN TERMINATED" or "PIN BLOCKED" state, this shall lead to Error Code "Execution

Error" and plug-in terminat ion.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 110

Exit plug-in:

"PS: User cancel"

USER PLUG-IN OPERATING

SYSTEM

GET INPUT

"Enter PIN:" (PT 1)

PIN
VERIFY PIN

Wrong PIN DISPLAY TEXT

 "Wrong PIN. Attempts left: 2" (PT 2)

Ack..

PIN blocked DISPLAY TEXT

"PIN blocked" (PT 3)
Exit plug-in:

"Execution Error"

PIN OK

USAT

INTERPRETER

Cancel

Exit plug-in:
"PS: User cancel"

Cancel

Figure D.3: Verify PIN

"Verify PIN" procedure is implemented according to the figure D.3.

The maximum and min imum length restrictions on the PIN value shall be included into the GET INPUT command and

b3 of the command qualifier of the GET INPUT command shall be set to 1 (i.e. user input shall not be revealed in any

way) in order to hide the PIN code entered by the user on the display of the UE.

If the PIN is entered incorrect ly, the "Wrong PIN" (Prompt text nr 2) text shall be displayed concatenated with the

number of attempts left. E.g. if the "Wrong PIN" message is "Wrong PIN. Attempts left: "and there are two attempts left

before blocking, the message displayed on the screen shall be "Wrong PIN. Attempts left: 2".

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 111

Exit plug-in:

"PS: User cancel"

USER PLUG-IN OPERATING

SYSTEM

GET INPUT

"Enter PUK:" (PT 4)

PUK
VERIFY PUK

Wrong PUK DISPLAY TEXT

"Wrong PUK. Attempts left: 2" (PT 5)

Ack..

PIN terminated DISPLAY TEXT

"PIN terminated" (PT 6)
Exit plug-in:

"Execution Error"

PUK OK

USAT

INTERPRETER

Cancel

Exit plug-in:

"PS: User cancel"

Cancel

Figure D.4: Verify PUK

"Verify PUK" procedure is implemented according to the figure D.4.

The maximum and min imum length restrictions on the PUK value shall be included into the GET INPUT command and

b3 of the command qualifier of the GET INPUT command shall be set to 1 (i.e. user input shall not be revealed in any

way) in order to hide the PUK code entered by the user on the display of the UE.

If the PUK is entered incorrectly, the "Wrong PUK" (prompt text no 5) message shall be d isplayed concatenated with

the number of attempts left. E.g. if the "Wrong PUK" message is "Wrong PUK. Attempts left: " and there are two

attempts left before blocking, the message displayed on the screen shall be "Wrong PUK. Attempts left: 2".

PUK functionality is an optional feature of the present specification.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 112

Exit plug-in:

"PS: User cancel"

USER PLUG-IN OPERATING

SYSTEM

GET INPUT

"Enter new PIN:" (PT 7)

New PIN

MODIFY PIN

USAT

INTERPRETER

Cancel

Exit plug-in:

"PS: User cancel"

GET INPUT

"Confirm new PIN:" (PT 8)

New PIN again

Cancel

DISPLAY TEXT

"No match. Try again" (PT 9)

Exit plug-in:

"PS: User cancel"

Cancel

Ack..

PIN MODIFIED

Figure D.5: Enter New PIN

"Enter New PIN" procedure is implemented according to the figure D.5.

The user is requested to enter the new PIN twice. If the two PIN entries does not match, the procedure shall restart. The

use may abort the procedure (and the plug-in) at any time by pressing a cancellation-button (a button with a Terminal

Response not in the general result range '00 0F'. If the user enters two identical PIN values, the plug-in shall modify the

corresponding PIN value to the value entered.

Following prompt texts are used in the "User Identification" procedure:

Prompt
Text #

Prompt Text example Command type Associated procedure

1 "Enter PIN:" GET INPUT (digits only, hidden, max. and
min. length set accordingly)

Verify PIN

2 "Wrong PIN. Attempts left: 2" DISPLAY TEXT (high priority, wait for user
to clear message)

Verify PIN

3 "PIN blocked" DISPLAY TEXT (high priority, wait for user
to clear message)

Verity PIN

4 "Enter PUK:" GET INPUT (digits only, hidden, max. and
min. length set accordingly)

Verify PUK

5 "Wrong PUK. Attempts left:
2"

DISPLAY TEXT (high priority, wait for user
to clear message)

Verify PUK

6 "PIN terminated" DISPLAY TEXT (high priority, wait for user
to clear message)

Verify PUK

7 "Enter new PIN:" GET INPUT (digits only, hidden, max. and
min. length set accordingly)

Enter new PIN

8 "Confirm new PIN:" GET INPUT (digits only, hidden, max. and
min. length set accordingly)

Enter new PIN

9 "No match. Try again." DISPLAY TEXT (high priority, wait for user
to clear message)

Enter new PIN

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 113

D.1.2 Signature Calculation

The output from the P7 plug-in is a SignedContent data structure as specified in [13]. The (o rdered) steps to produce

this data structure are as follows:

1. Template expansion

2. Signing

3. Output formatting

Each step is described thoroughly in the following sections.

D.1.2.1 Template Expansion

The template expansion constructs the signer's authenticated attributes. These are:

Attribute OID Binary OID

contentType pkcs-9 3 '2A 86 48 86 F7 0D 01 09 03'

messageDigest pkcs-9 4 '2A 86 48 86 F7 0D 01 09 04'

signerNonce pkcs-9 25 3 '2A 86 48 86 F7 0D 01 09 19 03'

See [11] for fu rther information regard ing these attributes.

First, construct the following 91-byte buffer ('xx' indicates an undefined value):

31 59

 30 18

 06 09 2A 86 48 86 F7 0D 01 09 03 -– contentType

 31 0B

 06 09 2A 86 48 86 F7 0D 01 07 01 -- data

 30 18

 06 0A 2A 86 48 86 F7 0D 01 09 19 03 –- signerNonce

 31 0A

 04 08 xx xx xx xx xx xx xx xx –- random nonce

 30 23

 06 09 2A 86 48 86 F7 0D 01 09 04 -– messageDigest

 31 16

 04 14 xx xx xx xx xx xx xx xx xx -- SHA-1 digest

 xx xx xx xx xx xx xx xx xx xx xx

The authenticated attributes are included in ascending order compared as byte strings.

Now perform the following steps.

1. Generate R, an 8 byte nonce, and replace B47 to B54 of the buffer with R. Recommended standards for

implementing pseudorandom bit generators are ANSI X9.19 or FIPS 186.

NOTE: The nonce should be a pseudorandom number generated securely in the USIM and of good quality.

2. Generate

 MD = SHA-1(TTBS).

Replace B72 to B91 of the buffer with MD.

The expanded buffer constitutes the input to the signature generation operation.

D.1.2.2 Signature Generation Operation

Generate the signature

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 114

 S = RSASSA-PKCS1-v1_5-SIGN(K, M)

where K is the selected private key and M is the output from the previous step.

The hash function required in EMSA-PKCS1-v1_5-ENCODE shall be SHA-1. See [9] for further details.

D.1.2.3 Output data formatting

The SignedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers the

required steps.

B := ‘01’
B := B || ‘01’
B := B || k || S
siLen := 0
IF key hash flag is set
 siLen := siLen + 21
END
IF ICCID flag is set
 siLen := siLen + 11
END
IF key index flag is set
 siLen := siLen + 2
END
IF certificate flag is set
 z := 0
 FOR all certificate URLs
 urlLen = ||URL||
 z := z + urlLen + 2
 END
 siLen := siLen + z
END
B := B || siLen
IF ICCID flag is set
 B := B || ‘80’ || ICCID
END
IF key index flag is set
 B := B || ‘81’ || AKI
END
IF key hash flag is set
 B := B || ‘01’ || KH
END
IF certificate flag is set
 FOR all certificate URLs
 urlLen = ||URL||
 B := B || ‘05’ || urlLen || URL
 END
END
B := B || ‘01’
IF character encoding scheme is UCS2
 B := B || ‘03E8’
ELSE
 B := B || ‘07D0’
END
IF content flag is set
 ttbsLen = ||TTBS||
 B := B || ‘01’ || ttbsLen || TTBS
ELSE
 B := B || ‘00’
END
IF message digest flag is set
 B := B || ‘1E’ || ‘80’ || MD
ELSE
 B := B || ‘09’
END
B := B || ‘02’ || R

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 115

After the last step, the variable B contains the Functional Output.

k , siLen and ttbsLen shall all be encoded in two bytes, big endian.

NOTE: Using ICCID as a SignerInfo has no equivalent in [13].

NOTE: The value '07 D0' (2000 decimal) is used due to fact that IANA [15] has not assigned a character set

number for the GSM default character set.

D.2 FP

D.2.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the FP execution.

START

FINISHED

Request
authorisation

Get
Response

Key
pressed?

Select
key

User
identification

Generate
signature

CANCEL NO KEY

OK

CANCEL

Figure D.6: FP Flow Diagram

The plug-in starts by displaying the authorisation request to the user and the await user confirmation.

The authorisation request itself consists of the authorisation prompt concatenated with the authorisation value, which is

an excerpt of the data-to-be-signed (DTBS). The authorisation value shall be displayed using a two-digit hexadecimal

representation for every byte. The digits of the hexadecimal alphabet shall be "0123456789ABCDEF", i.e. lower -case

letters are not allowed. If DTBS is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 116

the most significant byte. To improve readability, the hexadecimal d igits shall be grouped 4-and-4, with space between

the groups. Splitting a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorisation value with in formation received via some other channel, the user confirms

by pressing a confirmation-button (any button resulting in a Terminal Response with general result range '00 0F') or

cancels by pressing a cancellation-button (any other general result value). If the user confirms, he shall be asked to enter

his PIN and after that, if the PIN was valid, the plug-in calculates the signature.

The "User identification" procedure is identical to the procedure described in subclause D.1.1.1.

The termination states shall be mapped to output variables according to:

State Plug-in Status Code Functional Output Description
FINISHED "PS: OK" WrappedContent data Indicates success.

CANCEL "PS: User cancel" “error:userCancel” The user aborted the operation.
NO KEY "PS: No such key" “error:noCert” The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code

table in subclause 8.8.

D.2.2 Signature Calculation

The output from the FP plug-in is a WrappedContent data structure as specified in subclause D.2.3. The (ordered) steps

to produce this data structure are as follows:

1. Signing

2. Output formatting

Each step is described thoroughly in the following subclauses.

D.2.2.1 Signature Generation Operation

Generate the signature

 S = RSASSA-PKCS1-v1_5-SIGN(K, DTBS)

where K is the selected private key and DTBS is supplied as an input parameter.

In EMSA-PKCS1-v1_5-ENCODE , only steps from (including) step 3 shall be executed. The following equality (using

PKCS#1 terminology) apply fo r the computation of the remaining steps:

 T = DTBS and ||T|| = ||DTBS||

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 117

D.2.2.2 Output data formatting

The WrappedContent data-structure may be encoded in a one-pass encoding operation. The pseudo-code below covers

the required steps.

B := ‘02’
B := B || k || S
siLen := 0
IF key hash flag is set
 siLen := siLen + 21
END
IF ICCID flag is set
 siLen := siLen + 11
END
IF key index flag is set
 siLen := siLen + 2
END
IF certificate flag is set
 z := 0
 FOR all certificate URLs
 urlLen = ||URL||
 z := z + urlLen + 2
 END
 siLen := siLen + z
END
B := B || siLen
IF ICCID flag is set
 B := B || ‘80’ || ICCID
END
IF key index flag is set
 B := B || ‘81’ || AKI
END
IF key hash flag is set
 B := B || ‘01’ || KH
END
IF certificate flag is set
 FOR all certificate URLs
 urlLen = ||URL||
 B := B || ‘05’ || urlLen || URL
 END
END

k and siLen shall be encoded in two bytes, big endian.

After the last step, the variable B contains the Functional Output.

D.2.3 Format of WrappedContent

For completeness, the formal definition of WrappedContent is included below (it is described using the same

presentation language as used in [13]).

struct {

 opaque signature<0.. 2^16-1>;

} Signature;

enum {

 sha_key_hash(1),

 certificate_url(5),

 iccid (128),

 aki (129),

 (255)

} SignerInfoType;

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 118

Item Description

sha_key_hash The SHA-1 hash of the public key, encoded as specified in [14].

certificate_url A URL where the certificate is located.

iccid The (raw) ICCID.

aki The Index of the used private key.

struct {

 SignerInfoType signer_info_type;

 switch (signer_info_type) {

 case sha_key_hash: opaque hash[20];

 case certificate_url: opaque url<0..255>;

 case iccid: opaque iccid[10];

 case aki: uint8;

 };

} SignerInfo;

struct {

 uint8 version;

 Signature signature;

 SignerInfo signer_infos<0..2^16-1>;

} WrappedContent;

Item Description

version Version of the WrappedContent structure. The current version is 2.

signature Signature

signer_infos Information about the signer. This may contain zero items (in case the signer is
implicit). Also, there may be multiple items of SignerInfo present (public key hash and
a certificate).

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 119

D.3 AD

D.3.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the AD execution.

START

FINISHED

Request
authorization

Get
Response

Key
pressed?

Select
key

User
identification

Decrypt

CANCEL NO KEY

OK

CANCEL

Figure D.7: AD Flow Diagram

The plug-in starts by displaying the authorisation request to the user and the await user confirmation.

The authorisation request itself consists of the authorisation prompt concatenated with the authorisation value, which

is an excerpt of the ciphertext (C). The authorisation value shall be displayed using a two -digit hexadecimal

representation for every byte. The digits of the hexadecimal alphabet shall be "0123456789ABCDEF", i.e. lower-case

letters are not allowed. If C is longer than 16 bytes, only the 16 least significant bytes shall be shown, starting with the

most significant byte. To improve readability, the hexadecimal digits shall be grouped 4-and-4, with space between the

groups. Splitt ing a group over two consecutive lines should be avoided if possible.

After explicitly validating the authorisation value with in formation received via some other channel, the user confirms

by pressing a confirmation-button (any button resulting in a Terminal Response with a general result range '00 0F') or

cancels by pressing a cancellation-button (any other general result value). If the user confirms, he shall be asked to enter

his PIN and after that, if the PIN was valid, the plug-in decrypts the data.

The "User identification" procedure is identical to the procedure described in subclause D.1.1.1.

The termination states shall be mapped to output variables according to:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 120

State Plug-in Status Code Functional Output Description

FINISHED "PS: OK" decrypted data Indicates success.
CANCEL "PS: User cancel" “error:userCancel” The user aborted the operation.

NO KEY "PS: No such key" “error:noCert” The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code

table in subclause 8.8.

D.3.2 Decryption calculation

The decrypted ciphertext (i.e. plaintext), is generated by computing the following steps.

1. Convert the ciphertext C to an integer ciphertext representative c:

 c = OS2IP(C)

2. Calculate the integer message representative m:

 m = RSADP (K, c)

where K is the selected private key.

3. Convert the message representative m to an encoded message M of length k bytes:

 M = I2OSP (m, k)

M represents the decrypted ciphertext, and hence the Functional Output.

D.4 Non-functional Requirements

D.4.1 Customisation Requirements

1. All customisation requirements with regard to PINs and PUKs listed in E.3.1 apply equally here.

2. It shall be possible to enable or disable the "Authorisation request" and the subsequent user confirmation by

performing an administrative task at personalisation time.

3. The authorisation prompt shall be configurable through an administrative task at personalisa tion time. UCS2

and GSM default alphabets shall be supported.

4. It should be possible to configure the number of digits displayed in the authorisation value through an

administrative task at personalisation time. The number of digits displayed shall be 4, 8, 12 or 16, with 16 as

the default.

5. The list of URL(s) linked to a private key shall be updatable through an administrative task at personalisation

time.

6. The list of trusted key hashes linked to a private key shall be updatable through an administrative tas k at

personalisation time.

D.4.2 Architectural Requirements

1. All architectural requirements with regard to PINs and PUKs listed in E.3.2 apply equally here.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 121

Annex E (normative):
PIN Management Plug-ins Implementation Specification

This annex provides a detailed description of the PIN management plug-ins defined in subclause 9.1.4.

E.1 CP

E.1.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the CP execution.

START

FINISHED

Select
target PIN

User
identification

Enter new
PIN

CANCEL

NO KEY

Figure E.1: CP Flow Diagram

The plug-in execution starts with locating the PIN to be changed based on the key identifier input parameter.

After locating the target PIN, the user is requested to enter the PIN (if the PIN is not blocked) and thereafter prompted

twice for a new PIN as described in subclause D.1.1.1.

If the user is subjected to a PUK verification due to blocked PIN, the "Enter new PIN" procedure shall only be executed

once.

The termination states shall be mapped to output variables according to:

State Plug-in Status Code Functional Output Description
FINISHED "PS: OK" - Indicates success.

CANCEL "PS: User cancel" “error:userCancel” The user aborted the operation.
NO KEY "PS: No such key" “error:noKey” Can not locate target PIN.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code

table in subclause 8.8.

Sub procedures "User identificat ion" and "Enter new PIN" are all described in detail in subclause D.1.1.1.

The maximum and min imum length restrictions on the PIN value shall be checked before PIN modificat ion. If violated,

the plug-in shall set the Error Code to "Execution Error" and terminate.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 122

E.2 RP

E.2.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the RP execution.

START

FINISHED

Select
key

Decrypt and
verify

Reset PIN
value

NO KEY

Figure E.2: RP Flow Diagram

The termination states shall be mapped to output variables according to:

State Plug-in Status Code Functional Output Description

FINISHED "PS: OK" - Indicates success.
NO KEY "PS: No such key" “error:noKey” Can not locate target PIN.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code

table in subclause 8.8.

Changing the PIN value is simply copying the new PIN value to the appropriate location, possibly stripping of the

padding bytes and/or converting the PIN value to an internal fo rmat. The "remaining attempts" counter shall always be

reset to its maximum value at the same t ime.

The maximum and min imum length restrictions on the PIN value shall be checked. If vio lated, the plug -in shall set the

Error Code to "Execution Error" and terminate.

E.2.2 Decryption and Verification

This procedure includes decryption of the encrypted PIN data, as well as verification of it's authenticity.

To decrypt and verify the encrypted PIN data, select the correct algorithm based on the algorithm identifier and

thereafter decrypt and verify according to the selected algorithm.

An implementation shall support at least one algorithm.

Algorithms employing SHA-1 are preferred prior to algorithms employing ISO/IEC 9797.

E.2.2.1 3DES EDE CBC with two keys + SHA-1 MDC

The decrypted PIN data shall be formatted according to the table below:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 123

Bytes Description M/O Length
1 – 8 Nonce. 8 bytes of random data. M 8

9 – 16 PIN value. Each digit in the PIN shall be encoded with its
corresponding GSM default alphabet value. All unused
digits at the end shall be encoded as ‘FF’.

M 8

17 – 24 PIN checksum. Truncated SHA-1 MDC. M 8

To decrypt and verify the PIN data, do the following :

1. Calculate the decrypted PIN data

 DP = TDEA_DECR(EP)

using the following cipher parameterisation:

Keys K1, K2
Cipher mode Outer CBC using two keys in EDE operation.
IV ’00 … 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen

IV).

a) Calculate

 MD = SHA1(unencrypted parameters || DP<1..16>) .

The unencrypted parameters ("Key identifier type", "Key identifier" and "Options") shall be included in the

checksum calcu lation to avoid certain rep lay attacks.

b) Calculate the PIN checksum

 PC = MD<1..8>

c) Compare PC with DP<17..24>. If identical, proceed to the next step. Otherwise, set Error Code to "Execution

Error" and terminate.

d) Success. The new PIN is DP<9..16>.

E.2.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC

The decrypted PIN data shall be formatted according to the table below:

Bytes Description M/O Length
1 – 8 Nonce. 8 bytes of random data. M 8

9 – 16 PIN value. Each digit in the PIN shall be encoded with its
corresponding GSM default alphabet value. All unused
digits at the end shall be encoded as ‘FF’.

M 8

17 – 24 PIN checksum . ISO/IEC 9797 MAC. M 8

To decrypt and verify the PIN data, do the following :

1. Calculate the decrypted PIN data

 DP = TDEA_DECR(EP)

using the following cipher parameterisation:

Keys K1, K2
Cipher mode Outer CBC using two keys in EDE operation.
IV ’00 … 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen

IV).

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 124

2. Calculate

 PM = ISO_IEC_9797_PAD2(unencrypted parameters || DP<1..16>).

The unencrypted parameters ('Key identif ier type', 'Key identifier' and 'Options') shall be included in the checksum

calculation to avoid certain replay attacks.

3. Calculate

 PC = ISO_IEC_9797_ALG3(PM) .

Using terminology from [10], keys K and K’ shall be derived by complementing alternate sub-strings of four bits of

K1 and K2 respectively, commencing with the four most significant bits.

8 bytes of output from the MAC calculation shall be used (i.e. m=64 using ISO/IEC 9797 terminology).

4. Compare PC with DP<17..24>. If identical, proceed to the next step. Otherwise, set the Error Code to 'Execution

Error' and terminate.

5. Success. The new PIN is DP<9..16>.

E.2.2.3 3DES EDE CBC with three keys + SHA-1 MDC

This algorithm is identical to the algorithm described in E.6.2.1, except that the 3DES cip her shall be parameterized

with three DES keys.

E.2.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC

This algorithm is identical to the algorithm described in E.6.2.2, except that the 3DES cipher shall be parameterized

with three DES keys. For the MAC calcu lation, only K1 and K2 shall be used.

E.3 Non-functional Requirements

E.3.1 Customisation Requirements

1. Maximum number of attempts before blocking/termination for PINs and PUKs shall be configurable through

an administrative task at personalisation time .

2. PIN and PUK values shall be configurable through administrative tasks at personalisation time.

3. All prompts displayed to the user during PIN/PUK verification shall be configurable through an administrative

task at personalisation time. UCS2 and GSM default alphabets shall be supported.

4. All prompts displayed to the user during the PIN change procedure shall be configurable through an

administrative task at personalisation time. UCS2 and GSM default alphabets shall be supported.:

5. The possibility to use the "Reset PIN" plug-in to reset a PIN shall be configurable on a per PIN basis, using an

administrative task at personalisation time. I.e. some PINs may not be allowed to be reset via the "Reset PIN"

plug-in, while others are.

6. Minimum and maximum PIN lengths shall be configurable using an admin istrative task at personalisation

time. The same boundaries shall be shared by all PINs.

E.3.2 Architectural Requirements

1. It shall be possible to associate every key (private or secret) with a unique PIN. It shall also be possible for

keys to share PINs, if so desired. The associations between keys and PINs shall be configurable through an

administrative task at personalisation time. A key that is not linked to a PIN shall not be subjected to PIN

verification before it is accessed.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 125

2. Is shall be possible to associated a unique "Enter PIN" prompt (i.e. the first prompt displayed in the PIN

verification procedure) to every PIN, and thereby to every key. This is to ensure that the user is given the

possibility to recognize a key before using it. A ll other prompts may be shared between PINs.

3. It shall be possible to associate every PIN with a unique PUK.

4. PIN lengths between 4 and 8 dig its shall be supported.

5. Successfully entering a PIN shall only g rant access to the underlying key (private or secret) for the remaining

duration of the plug-in execution. I.e. the next time the plug-in is executed, a new PIN verification is required.

6. A "terminated" PIN, i.e . a PIN who's PUK has be unsuccessfully exercised for the maximum allowed number

of times, shall not be usable, changeable or reset-able by any means. In other words, it shall be unconditionally

unrecoverable.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 126

Annex F (normative):
Triple DES Plug-ins Implementation Specification

This annex provides a detailed description of the tr iple DES plug-ins outlined in subclause 9.1.3 of this document.

F.1 DE

F.1.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DE execution.

START

FINISHED

Select
key

User
identification

Encrypt

CANCEL

NO KEY

Figure F.1: DE Flow Diagram

The termination states shall be mapped to output variables according to:

State Plug-in Status Code Functional Output Description
FINISHED "PS: OK" encrypted data Indicates success.

CANCEL "PS: User cancel" “error:userCancel” The user aborted the operation.
NO KEY "PS: No such key" “error:noKey” The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code

table in subclause 8.8.

The "User identification" procedure is identical to the procedure described in subclause D.1.1.1.

F.1.2 Encrypt Procedure

To encrypt the plaintext, do the fo llowing:

1. Calculate the padded message

 PM = PKCS5_PAD(Plaintext) .

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 127

2. Calculate the encrypted message

 EM = TDEA_ENCR(PM)

using the following cipher parameterisation:

Keys K1, K2 and possibly K3 as indicated by ‘Cipher spec’.
Cipher mode ECB or CBC as indicated by "Cipher spec".
IV Indicated by "IV flag".

3. EM is the Functional Output.

F.2 DD

F.2.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DD execution.

START

FINISHED

Select
key

User
identification

Decrypt

CANCEL

NO KEY

Figure F.2: DD Flow Diagram

The termination states shall be mapped to output variables according to:

State Plug-in Status Code Functional Output Description
FINISHED ‘PS: OK’ decrypted data Indicates success.

CANCEL ‘PS: User cancel’ “error:userCancel” The user aborted the operation.
NO KEY ‘PS: No such key’ “error:noKey” The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in th e error code

table in subclause 8.8.

The "User identification" procedure is identical to the procedure described in subclause D.1.1.1.

F.2.2 Decrypt Procedure

To decrypt the ciphertext, do the following:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 128

1. Calculate the padded plaintext message

 DM = TDEA_DECR(Ciphertext)

using the following cipher parameterisation:

Keys K1, K2 and possibly K3 as indicated by "Cipher spec".
Cipher mode ECB or CBC as indicated by "Cipher spec".
IV Indicated by "IV flag".

2. Calculate the plaintext message

 M = PKCS5_UNPAD(DM) .

3. M is the Functional Output..

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 129

F.3 DS

F.3.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DS execution.

START

FINISHED

Display
TTBS

Get
Response

Key
pressed?

Select
key

User
identification

Generate
signature

CANCEL

NO KEY

OK

CANCEL

Need
PIN?

YES

NO

Figure F.3: DS Flow Diagram

As the figure illustrates, the plug-in shall check if the selected key has an associated PIN, and in this case display the

text-to-be-signed to the user using the indicated character encoding scheme, and await user confirmat ion. The user

confirms by pressing a confirmation-button (any button resulting in a Terminal Response with a general result range '00

0F') or cancels by pressing a cancellation-button (any other general result value).

The termination states shall be mapped to output variables according to:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 130

State Plug-in Status Code Functional Output Description

FINISHED "PS: OK" signed data Indicates success.
CANCEL "PS: User cancel" “error:userCancel” The user aborted the operation.

NO KEY "PS: No such key" “error:noKey” The requested key was not available.

In case of a serious error not listed above, an imple mentation may use any of the Error Codes listed in the error code

table in subclause 8.8.

The "User identification" procedure is identical to the procedure described in subclause D.1.1.1.

F.3.2 MAC Calculation Procedure

To calculate the MAC, do the following:

1. Calculate the padded message

 PM = ISO_IEC_9797_PAD2(TTBS)

2. Calculate the MAC

 MAC = ISO_IEC_9797_ALG3(PM)

using the following cipher parameterisation:

Keys K1, K2
Truncation As indicated by "Truncation flag".

3. MAC is the Functional Output.

F.4 DU

F.4.1 Plug-in Execution

The flow diagram below illustrates briefly the different steps of the DU execution.

 START

FINISHED

Select
keys

Decrypt and
verify

Install new
key

NO KEY

Figure F.4: DU Flow Diagram

The termination states shall be mapped to output variables according to:

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 131

State Plug-in Status Code Functional Output Description

FINISHED "PS: OK" - Indicates success.
NO KEY "PS: No such key" “error:noKey” The requested key was not available.

In case of a serious error not listed above, an implementation may use any of the Error Codes listed in the error code

table in subclause 8.8.

Installing the new key means simply copying the key material to the location referenced by key index input parameter .

F.4.2 Decryption and Verification Procedure

This procedure includes decryption of the encrypted key data, as well as verificat ion of its authenticity.

To decrypt and verify the key data, select the correct algorithm based on the algorithm identifier field and thereafter

proceed according to the selected algorithm.

An implementation shall support at least one algorithm.

Algorithms employing SHA-1 are preferred prior to algorithms employing ISO/IEC 9797.

F.4.2.1 3DES EDE CBC with two keys + SHA-1 MDC

The decrypted key data shall be formatted according to the table below.

Bytes Description M/O Length
1 – 8 Random nonce. M 8

9 – P Key material M 16 or 24

Q – R Key checksum. M 8

The values P,Q and R are calcu lated from wrapped key length according to the following table:

Wrapped
key length

P Q R

16 24 25 32

24 32 33 40

To decrypt and verify the key data, do the following:

2. Select the key pointed to by the key index input parameter. Th is is the destination key ,KD.

a) Based on the key index parameter, locate the unwrap key, KU.

b) Calculate the decrypted key data

 DK = TDEA_DECR(Encrypted key data)

using the following cipher parameterisation:

Keys K1 and K2 of KU.
Cipher mode Outer CBC in EDE operation.
IV ’00 … 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen

IV).

a) Calculate the message digest

 MD = SHA1(unencrypted parameters || DK<1..P>)

The unencrypted parameters ('Index of secret key' and 'Options') shall be included in the checksum calculation

to avoid certain replay attacks.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 132

b) Calculate the key checksum

 KC = MD<1..8>

c) Compare KC with DK<Q..R> . If identical, proceed to the next step. Otherwise, the plug-in shall set the Error

Code to 'Execution Error' and terminate.

d) Success.

F.4.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC

The format of the decrypted key data is the same as in the previous subclause (F.4. 2.1).

To decrypt and verify the key data, do the following:

3. Select the key pointed to by the key index input parameter. This is the destination key, KD.

a) Based on the key index parameter, locate the unwrap key, KU.

b) Calculate the decrypted key data

 DK = TDEA_DECR(Encrypted key data)

using the following cipher parameterisation:

Keys K1 and K2 of KU.
Cipher mode Outer CBC in EDE operation.
IV ’00 … 00’ (this is not a weakness since the nonce effectively becomes a randomly chosen

IV).

a) Calculate the padded message

 PM = ISO_IEC_9797_PAD2(unencrypted parameters || DK<1..P>)

The unencrypted parameters ('Index of secret key' and 'Options') shall be included in the checksum calculation

to avoid certain replay attacks.

b) Calculate the key checksum

 KC = ISO_IEC_9797_ALG3(PM)

Using terminology from [10], keys K and K’ shall be derived by complementing alternate sub-strings of four bits

of K1 and K2 respectively, commencing with the four most significant bits.

8 bytes of output from the MAC calculation shall be used (i.e. m=64 using ISO/IEC 9797 terminology).

c) Compare KC with DK<Q..R> . If identical, proceed to the next step. Otherwise, the plug-in shall set the Error

Code to "Execution Error" and terminate.

d) Success.

F.4.2.3 3DES EDE CBC with three keys + SHA-1 MDC

This algorithm is identical to the algorithm described in F.4.2.1, except that the 3DES cipher shall be parameterized

with three DES keys.

F.4.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC

This algorithm is identical to the algorithm described in F.4.2.2, except that the 3DES cipher shall be parameterized

with three DES keys. For the MAC calcu lation, only K1 and K2 shall be used.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 133

F.5 Non-functional Requirements

F.5.1 Customisation Requirements

1. All customisation requirements with regard to PINs and PUKs listed in E.3.1 apply equally here.

2. OTA modifiab ility of a key using the DU plug-in shall be configurable through an administrative task at

personalisation time.

F.5.2 Architectural Requirements

1. All architectural requirements with regard to PINs and PUKs listed in E.3.2 apply equally here.

3GPP

Release 8 3GPP TS 31.113 V8.0.0 (2009-02) 134

Annex G (informative):
Change History

Change history

Date TSG # TSG Doc. CR Rev Cat Subject/Comment Old New
2001-09 TP-13 TP-010208 Approved at TSG-T #13 2.0.0 5.0.0

2001-12 TP-14 TP-010245 001 F Addition of SendAdditionalInformation attribute 5.0.0 5.1.0

 002 F Collection of clarif ications
 003 C Changes to USAT Interpreter system information

partition table

 004 B comparison with a variable value

2002-03 TP-15 TP-020066 005 B Functional Additions to WML Annex 5.1.0 5.2.0

 006 F Miscellaneous corrections and clarif ications on the
specif ication.

 007 F Clarif ication on behaviour on Single Actions for Terminal
Response Handler

 008 B Addition of security plug-ins

2002-06 TP-16 TP-020115 009 F Miscellaneous corrections and clarif ications on the
specif ication

5.2.0 6.0.0

 010 F Clarif ication of history management

 011 F Removal of ciphering of the One Time Password

 012 F Error on access to permanent variable

 013 F Clarif ication of the Terminal Response Handler
Mechanism

 017 F Clarif ication of the Assign and Branch command

 014 B Terminal Response Handler Modif ier "remove" attribute
enhancements

 015 B Addition of error handling

 016 B Addition of functionality for security plug-ins

2002-09 TP-17 TP-020213 019 A Reference to non existing local pages 6.0.0 6.1.0

 021 A Clarif ication of Execute USAT Command

 023 A Handling of operational pull messages and post mode

 024 B Terminal Response Handler Modif ier exception
mechanism enhancement.

2003-03 TP-19 TP-030022 026 F Several Corrections 6.1.0 6.2.0

2004-12 TP-26 TP-040259 028 A Correction of reference to SCP specif ication 6.2.0 6.3.0

2007-06 CT#36 - - - - Update to Rel-7 version (MCC) 6.3.0 7.0.0

2008-12 CT#42 - - - - Update to Rel-8 + addition of LTE logo 7.0.0 8.0.0

	Foreword
	1 Scope
	2 References
	3 Definitions, abbreviations and symbols
	3.1 Definitions
	3.2 Abbreviations
	3.3 Symbols

	4 Model of computation
	4.1 Navigation
	4.2 Communication with the external system entity
	4.2.1 Incoming pages from the external system entity
	4.2.2 Outgoing data to the external system entity
	4.2.3 Wait State

	4.3 Terminal response handler mechanism
	4.3.1 Operation of the Terminal Response Handler
	4.3.1.1 Definitions
	4.3.1.2 Operation

	4.3.2 Default Terminal Response Handler configuration

	4.4 Activation
	4.5 Page format overview
	4.6 History list

	5 TLV Format
	5.1 Coding of the tag byte
	5.2 Attributes in TLVs
	5.3 Coding of attribute bytes

	6 Variables
	6.1 Usage areas
	6.1.1 Environment variable usage area
	6.1.1.1 USAT Interpreter system information partition
	6.1.1.1.1 Write access to the partition
	6.1.1.1.2 Read access of the partition

	6.1.1.2 USIM issuer information partition
	6.1.1.2.1 Write access to the partition
	6.1.1.2.2 Read access of the partition

	6.1.1.3 End user information partition
	6.1.1.3.1 Write access to the partition
	6.1.1.3.2 Read access of the partition

	6.1.2 Permanent variable area
	6.1.2.1 Write access to the permanent variable area
	6.1.2.2 Read access of the permanent variable area

	6.1.3 Temporary variable area
	6.1.3.1 Write access to the temporary variable area
	6.1.3.2 Read access of the temporary variable area
	6.1.3.3 Lifetime of temporary variables

	6.1.4 Page string element
	6.1.4.1 Write access to page string elements
	6.1.4.2 Read access of page string elements

	6.2 Variable values
	6.3 Variable substitution

	7 Used USAT Interpreter data structures
	7.1 Page
	7.1.1 Attributes
	7.1.2 Page Identification
	7.1.3 Page Unlock Code
	7.1.4 One Time Password
	7.1.5 Keep Alive List
	7.1.6 Service ID
	7.1.7 String Pool
	7.1.8 Terminal response handler modifier
	7.1.8.1 Attribute
	7.1.8.2 General result range
	7.1.8.3 Text for user notification
	7.1.8.4 Action
	7.1.8.4.1 Attributes
	7.1.8.4.2 Action ID
	7.1.8.4.3 Action to be performed
	7.1.8.4.4 Action description

	7.2 Navigation Unit
	7.2.1 Attributes
	7.2.2 Anchor
	7.2.3 Terminal response handler modifier
	7.2.4 USAT Interpreter Byte Codes

	7.3 Anchor Reference
	7.4 Variable Identifier List
	7.5 Inline Value
	7.6 Inline Value 2
	7.7 Input List
	7.8 Ordered TLV List
	7.9 Page Reference
	7.9.1 Anchor Reference
	7.9.2 Variable Identifier List
	7.9.3 Submit Configuration
	7.9.3.1 Attributes
	7.9.3.2 Submit Data
	7.9.3.3 Text to be displayed during the active wait state
	7.9.3.4 Gateway Address

	7.10 Submit
	7.10.1 Submit Data
	7.10.2 Page Identification

	8 USAT Interpreter byte codes
	8.1 Set Variable
	8.2 Assign and Branch
	8.2.1 Destination Variable Identifier
	8.2.2 Inline TLV containing Select Item Title
	8.2.3 Ordered TLV List TLV

	8.3 Extract
	8.4 Go Back
	8.5 Branch On Variable Value
	8.5.1 Variable ID
	8.5.2 Ordered TLV List
	8.5.3 Page Reference

	8.6 Exit
	8.7 Execute USAT Command
	8.7.1 Attributes
	8.7.2 Simple TLV
	8.7.3 Simple TLV Indicator
	8.7.4 Sequence of Simple TLVs and Simple TLV Indicators
	8.7.5 Result of an Execute USAT Command
	8.7.5.1 Optimisation not Required
	8.7.5.2 Optimisation Required

	8.8 Execute Native Command
	8.8.1 Attributes
	8.8.2 Result of a Native Function Call

	8.9 Get Length
	8.10 Get TLV Value
	8.11 Display Text
	8.12 Get Input

	9 Native Commands
	9.1 Security Plug-ins
	9.1.1 Common Topics
	9.1.1.1 Security Policy
	9.1.1.2 Classification of PINs
	9.1.1.3 Key Diversification
	9.1.1.4 Output Parameters

	9.1.2 PKI Plug-ins
	9.1.2.1 P7 - PKCS#7 Signature Plug-In
	9.1.2.1.1 Description
	9.1.2.1.2 NCI
	9.1.2.1.3 Arguments
	9.1.2.1.4 Output Parameters
	9.1.2.1.5 Execution
	9.1.2.1.6 Errors

	9.1.2.2 FP – Fingerprint Plug-In
	9.1.2.2.1 Description
	9.1.2.2.2 NCI
	9.1.2.2.3 Arguments
	9.1.2.2.4 Output Parameters
	9.1.2.2.5 Execution
	9.1.2.2.6 Errors

	9.1.2.3 AD – Asymmetric Decryption Plug-In
	9.1.2.3.1 Description
	9.1.2.3.2 NCI
	9.1.2.3.3 Arguments
	9.1.2.3.4 Output Parameters
	9.1.2.3.5 Execution

	9.1.2.3.6 Errors

	9.1.3 Triple DES Plug-ins
	9.1.3.1 DE – Triple DES Encryption Plug-In
	9.1.3.1.1 Description
	9.1.3.1.2 NCI
	9.1.3.1.3 Arguments
	9.1.3.1.4 Output Parameters
	9.1.3.1.5 Execution
	9.1.3.1.6 Errors

	9.1.3.2 DD – Triple DES Decryption Plug-In
	9.1.3.2.1 Description
	9.1.3.2.2 NCI
	9.1.3.2.3 Arguments
	9.1.3.2.4 Output Parameters
	9.1.3.2.5 Execution
	9.1.3.2.6 Errors

	9.1.3.3 DS – Triple DES Sign Plug-In
	9.1.3.3.1 Description
	9.1.3.3.2 NCI
	9.1.3.3.3 Arguments
	9.1.3.3.4 Output Parameters
	9.1.3.3.5 Execution
	9.1.3.3.6 Errors

	9.1.3.4 DU – Triple DES Unwrap Plug-In
	9.1.3.4.1 Description
	9.1.3.4.2 NCI
	9.1.3.4.3 Arguments
	9.1.3.4.4 Output Parameters
	9.1.3.4.5 Execution
	9.1.3.4.6 Errors

	9.1.4 PIN Management Plug-ins
	9.1.4.1 CP – Change PIN Plug-In
	9.1.4.1.1 Description
	9.1.4.1.2 NCI
	9.1.4.1.3 Arguments
	9.1.4.1.4 Output Parameters
	9.1.4.1.5 Execution
	9.1.4.1.6 Errors

	9.1.4.2 RP – Reset PIN Plug-In
	9.1.4.2.1 Description
	9.1.4.2.2 NCI
	9.1.4.2.3 Arguments
	9.1.4.2.4 Output Parameters
	9.1.4.2.5 Execution
	9.1.4.2.6 Errors

	10 End to End Security
	10.1 Encrypt
	10.2 Decrypt

	11 Modes of operation
	11.1 Pull
	11.2 Push / Cell Broadcast

	12 Error handling and coding
	12.1 Setting of the environment variable "error code"
	12.2 User notification of the execution
	12.3 Error coding

	13 Tag Values
	Annex A (informative): Terminal Response Handler Flow Charts
	Annex B (informative): Example of Accessing USAT Interpreter Functionality in Wireless Mark-up Language

	B.1 Introduction
	B.1.1 Purpose
	B.1.2 Terminology
	B.1.3 Definitions and abbreviations

	B.2 Namespace
	B.2.1 The USAT Interpreter EF Class
	B.2.2 Examples

	B.3 WML
	B.3.1 WML Syntax
	B.3.1.1 The WML page
	B.3.1.2 Entities
	B.3.1.3 Elements
	B.3.1.4 Attributes
	B.3.1.5 Variables

	B.3.2 Extended functionality interface

	B.4 Implicit calls using WML syntax
	B.4.1 Prologue
	B.4.2 Character encoding
	B.4.3 Elements
	B.4.3.1 wml element
	B.4.3.2 card element
	B.4.3.3 p element
	B.4.3.4 br element
	B.4.3.5 input element
	B.4.3.6 select Element
	B.4.3.7 option element
	B.4.3.8 go element
	B.4.3.9 setvar element
	B.4.3.10 noop element
	B.4.3.11 do element
	B.4.3.12 refresh Element

	B.5 Explicit calls using WML syntax
	B.5.1 Services for USAT Commands
	B.5.1.1 Launch Browser
	B.5.1.2 Play tone
	B.5.1.3 Provide Local Information
	B.5.1.4 Refresh
	B.5.1.5 Run AT Command
	B.5.1.6 Send USSD
	B.5.1.7 Send SM
	B.5.1.8 Set up call
	B.5.1.9 Set Idle Mode Text

	B.5.2 Services for Interpreter Commands
	B.5.2.1 Get Interpreter Version Information
	B.5.2.2 Get Interpreter Buffer Size
	B.5.2.3 Get Native Command List
	B.5.2.4 Get Terminal Profile
	B.5.2.5 Get Error Code for Last Byte Code Command
	B.5.2.6 Get Maximum Size for Temporary Storage of Page
	B.5.2.7 Get USAT Interpreter Issuer URL
	B.5.2.8 Get USAT Interpreter Issuer URL Hash
	B.5.2.9 Get User Name
	B.5.2.10 Get User Email

	B.5.3 Services for Calling Client Plug-Ins

	B.6 Access to Special Features
	B.6.1 Variable Management
	B.6.1.1 Keep Alive and Protect Variables

	B.6.2 Terminal Response Handler Modifier
	B.6.2.1 Replace
	B.6.2.2 Add
	B.6.2.3 Restore
	B.6.2.4 Remove

	B.7 References
	Annex C (informative): Terminal Response Handler Modifier examples

	C.1 Replace Operation
	C.2 Add/Append Operation
	C.3 Remove Operation
	C.4 Restore Operation
	C.5 Special case: Empty text for user notification
	C.6 Special case: No text for user notification
	C.7 Special case: Modify a single exception case
	Annex D (normative): PKI Plug-ins Implementation Specification

	D.1 P7
	D.1.1 Plug-in Execution
	D.1.1.1 User Identification

	D.1.2 Signature Calculation
	D.1.2.1 Template Expansion
	D.1.2.2 Signature Generation Operation
	D.1.2.3 Output data formatting

	D.2 FP
	D.2.1 Plug-in Execution
	D.2.2 Signature Calculation
	D.2.2.1 Signature Generation Operation
	D.2.2.2 Output data formatting

	D.2.3 Format of WrappedContent

	D.3 AD
	D.3.1 Plug-in Execution
	D.3.2 Decryption calculation

	D.4 Non-functional Requirements
	D.4.1 Customisation Requirements
	D.4.2 Architectural Requirements
	Annex E (normative): PIN Management Plug-ins Implementation Specification

	E.1 CP
	E.1.1 Plug-in Execution

	E.2 RP
	E.2.1 Plug-in Execution
	E.2.2 Decryption and Verification
	E.2.2.1 3DES EDE CBC with two keys + SHA-1 MDC
	E.2.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC
	E.2.2.3 3DES EDE CBC with three keys + SHA-1 MDC
	E.2.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC

	E.3 Non-functional Requirements
	E.3.1 Customisation Requirements
	E.3.2 Architectural Requirements
	Annex F (normative): Triple DES Plug-ins Implementation Specification

	F.1 DE
	F.1.1 Plug-in Execution
	F.1.2 Encrypt Procedure

	F.2 DD
	F.2.1 Plug-in Execution
	F.2.2 Decrypt Procedure

	F.3 DS
	F.3.1 Plug-in Execution
	F.3.2 MAC Calculation Procedure

	F.4 DU
	F.4.1 Plug-in Execution
	F.4.2 Decryption and Verification Procedure
	F.4.2.1 3DES EDE CBC with two keys + SHA-1 MDC
	F.4.2.2 3DES EDE CBC with two keys + ISO/IEC 9797 MAC
	F.4.2.3 3DES EDE CBC with three keys + SHA-1 MDC
	F.4.2.4 3DES EDE CBC with three keys + ISO/IEC 9797 MAC

	F.5 Non-functional Requirements
	F.5.1 Customisation Requirements
	F.5.2 Architectural Requirements
	Annex G (informative): Change History

