
3GPP TR 29.998-04-4 V9.0.0 (2009-12)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access (OSA);
Application Programming Interface (API)

Mapping for Open Service Access;
Part 4: Call Control Service Mapping;

Subpart 4: Multiparty Call Control ISC
(Release 9)

GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

The present document has been developed within the 3
rd

 Generation Partnership Project (3GPP
 TM

) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP
 TM

 system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 2 Release 9

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

©2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 3 Release 9

Contents

Contents..3

Foreword ..6

Introduction ..6

1 Scope ..7

2 References ...7

3 Definitions and abbreviations..8
3.1 Definitions .. 8
3.2 Abbreviations ... 10

4 Mapping OSA Call and Call Leg to SIP...10
4.1 Introduction .. 10
4.2 SIP Call-id &dialog vs. OSA Call & Call Leg Session ID .. 10
4.2.1 OSA Call and SIP Dialogue Correlation Tab les.. 11

5 Multi Party Call Control Flows ...14
5.1 Call Manager Service Interface ... 14
5.1.1 CreateCall ... 14
5.1.2 CreateNot ification ... 14
5.1.3 changeNotification .. 15
5.1.4 destroyNotification ... 16
5.1.5 getNotification ... 17
5.1.6 setCallLoadControl ... 18
5.2 Call Manager Application Interface ... 19
5.2.1 managerInterrupted ... 19
5.2.2 managerResumed .. 20
5.2.3 reportNotification .. 20
5.2.4 callAborted ... 22
5.2.5 callOverloadEncountered... 22
5.2.6 callOverloadCeased .. 23
5.3 Multi-Party Call Service Interface .. 24
5.3.1 GetCallLegs.. 24
5.3.2 createCallLeg ... 24
5.3.3 createAndRouteCallLegReq.. 25
5.3.4 release.. 28
5.3.5 deassignCall ... 30
5.3.6 getInfoReq .. 31
5.3.7 superviseReq .. 32
5.3.8 setAdviceOfCharge ... 33
5.3.9 SetChargePlan.. 34
5.4 Multi-Party Call Application Interface .. 35
5.4.1 createAndRouteCallLegErr ... 35
5.4.2 callEnded .. 36
5.4.3 getInfoRes .. 36
5.4.4 getInfoErr ... 37
5.4.5 superviseErr.. 38
5.4.6 superviseRes... 39
5.5 CallLeg Service Interface ... 40
5.5.1 routeReq.. 40
5.5.1.1 Case 1 UA mode operation ... 40
5.5.1.2 Case 2 Proxy mode operation ... 41
5.5.2 eventReportReq ... 42
5.5.3 release.. 43
5.5.4 getInfoReq .. 46
5.5.5 getCall ... 47
5.5.6 continueProcessing ... 47

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 4 Release 9

5.5.7 attachMediaReq ... 48
5.5.8 detachMediaReq .. 50
5.5.9 deassign... 52
5.5.10 getCurrentDestinationAddress .. 52
5.6 CallLeg Application Interface ... 53
5.6.1 routeErr ... 53
5.6.2 eventReportRes.. 54
5.6.3 eventReportErr... 55
5.6.4 callLegEnded ... 56
5.6.5 getInfoRes .. 57
5.6.6 getInfoErr ... 58
5.6.7 superviseErr.. 59
5.6.8 superviseRes... 60
5.6.9 attachMediaErr .. 61
5.6.10 attachMediaRes ... 62
5.6.11 detachMediaErr ... 63
5.6.12 detachMediaRes .. 63

6 Detailed parameter mappings ..65
6.1 TpAdditionalCallEventCriteria ... 65
6.2 TpAddress... 66
6.3 TpAddressRange ... 67
6.4 TpCallAppInfo ... 68
6.5 TpCallError... 69
6.6 TpCallErrorType ... 69
6.7 TpCallEventInfo .. 70
6.8 TpCallEventRequest ... 70
6.9 TpCallEventType .. 71
6.10 TpCallIn foType ... 72
6.11 TpCallLegInfoType... 72
6.12 TpCallLegConnectionProperties... 73
6.13 TpCallMonitorMode ... 73
6.14 TpCallNotificationReportScope.. 73
6.15 TpCallNotifiationRequest .. 74
6.16 TpCallTreatmentType... 74
6.17 TpReleaseCause, mapping to SIP response .. 75
6.18 TpReleaseCause, mapping from SIP.. 76
6.19 TpAoCInfo.. 76
6.20 TpAoCOrder... 77

Annex A: Introduction to API Mapping for OSA MPCCS ..78

A.1 OSA Service Provision for MPCCS in IMS ...78

A.2 MPCCS ...79
A.2.1 Introduction .. 79
A.2.2 SIP Server Roles in OSA SCS .. 79
A.2.2.1 Introduction .. 79
A.2.2.2 OSA SCS acting as a SIP Proxy server ... 80
A.2.2.3 OSA SCS acting as Redirect server ... 81
A.2.2.4 OSA SCS acting as UA .. 82
A.2.2.5 OSA SCS acting as a B2BUA... 83
A.2.2.6 OSA SCS acting as a 3rd Party Controller ... 84
A.2.3 SIP Server Role Mode Transitions ... 85

Annex B: SDP in SIP at application controlled calls for OSA MPCCS API86

B.1 Introduction ...86

B.2 OSA SCS and Application based Call and Media Control ...86

B.3 Example OSA SCS Application initiated One-Party Call ..87

B.4 Example OSA SCS Application initiated Two-Party Call..88

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 5 Release 9

B.5 Example OSA SCS control of User initiated Two-Party Call...92

B.6 Example OSA SCS control of User initiated Two-Party Call with announcement94

B.7 Example OSA SCS Application initiated Multi-Party Call ..98

Annex C: OSA call forwarding presentation ..99

C.1 Introduction ...99

C.2 Call Forwarding presentation in OSA: mapping to SIP ...99

Annex D (informative): Description of Multiparty Call Control ISC Mapping for 3GPP2
cdma2000 networks .. 101

D.1 General Exceptions .. 101

D.2 Specific Exceptions .. 101

Annex E: Change history ... 102

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 6 Release 9

Foreword

This Technical Report has been produced by the 3
rd

 Generat ion Partnership Pro ject (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal

TSG approval. Should the TSG modify the contents of the present document, it will be re -released by the TSG with an

identifying change of release date and an increase in version number as fo llows:

Version x.y.z

where:

x the first digit :

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

updates, etc.

z the third digit is incremented when editorial on ly changes have been incorporated in the document.

Introduction

Structure of the OSA API Mapping (3GPP TR 29.998)

The present document is part 4, subpart 4, of a multi-part deliverable covering the Open Service Access (OSA);

Application Programming Interface (API) Mapping fo r OSA.

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 2 9.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family
29.198-01 Overview 29.998-01 Overview

29.198-02 Common Data Definitions 29.998-02 Not Applicable

29.198-03 Framework 29.998-03 Not Applicable

Call
Control

(CC) SCF

29.198-04-1
Common CC

data
definitions

29.198-
04-2

Generic
CC SCF

29.198-04-
3

Multi-Party
CC SCF

29.198-
04-4

Multi-
media
CC SCF

29.198-
04-5

Conf. CC
SCF

29.998-04-1 Generic Call Control – CAP mapping

29.998-04-2 Generic Call Control – INAP mapping

29.998-04-3 Generic Call Control – Megaco mapping

29.998-04-4 Multiparty Call Control – ISC mapping

29.198-05 User Interaction SCF 29.998-05-1 User Interaction – CAP mapping

29.998-05-2 User Interaction – INAP mapping

29.998-05-3 User Interaction – Megaco mapping

29.998-05-4 User Interaction – SMS mapping

29.198-06 Mobility SCF 29.998-06-1 User Status and User Location – MAP
mapping

29.998-06-2 User Status and User Location – SIP
mapping

29.198-07 Terminal Capabilities SCF 29.998-07 Not Applicable

29.198-08 Data Session Control SCF 29.998-08 Data Session Control – CAP mapping

29.198-09 Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 Account Management SCF 29.998-11 Not Applicable

29.198-12 Charging SCF 29.998-12 Not Applicable

29.198-13 Policy Management SCF 29.998-13 Not Applicable

29.198-14 Presence & Availability Management SCF 29.998-14 Not Applicable

29.198-15 Multi Media Messaging SCF 29.998-15 Not Applicable

29.198-16 Service Broker SCF 29.998-16 Not Applicable

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 7 Release 9

1 Scope

The present document investigates how the OSA Call Control Interface Class methods defined in [5] can be mapped

onto SIP methods.

The mapping of the OSA API to the SIP is considered informative, and not normat ive. An overview of the mapping TR

is contained in the introduction of the present document as well as in 3GPP TR 29.998-1 [10].

The OSA specifications define an architecture that enables application developers to make use of netwo rk functionality

through an open standardised interface, i.e . the OSA APIs. The API specificat ion is contained in the 3GPP TS 29.198

series of specifications. An overview of these is available in the introduction of the present document as well as in

3GPP TS 29.198-1 [1]. The concepts and the functional architecture for the Open Serv ice Access (OSA) are described

by 3GPP TS 23.198 [3]. The requirements for OSA are defined in 3GPP TS 22.127 [2].

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present

document.

 References are either specific (identified by date of publication, edit ion number, version number, etc.) o r

non-specific.

 For a specific reference, subsequent revisions do not apply.

 For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including

a GSM document), a non-specific reference implicit ly refers to the latest version of that document in the same

Release as the present document.

[1] 3GPP TS 29.198-1: "Open Service Access (OSA); Applicat ion Programming Interface (API);

Part 1: Overv iew".

[2] 3GPP TS 22.127: "Serv ice Requirement for the Open Service Access (OSA); Stage 1".

[3] 3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4] 3GPP TR 21.905: " Vocabulary for 3GPP specifications".

[5] 3GPP TS 29.198-4-1/5: "Open Serv ice Access (OSA); Application Programming Interface (API);

Part 4: Call control; Sub-part 1: Call Control Common Defin itions".

 Sub-part 2: Generic Call Control SCF".

 Sub-part 3: "Multi-Party Call Control SCF".

 Sub-part 4: "Multi-Media Call Control SCF".

 Sub-part 5: "Conference call control SCF".

 [6] 3GPP TS 23.218: "IP Multimedia (IM) session handling; IP Multimedia (IM) call model; Stage 2".

[7] 3GPP TS 22.101: "Serv ice aspects; Service principles".

[8] 3GPP TS 29.228 " IP Multimedia (IM) Subsystem Cx and Dx Interfaces; Signalling flows and

message contents".

[9] 3GPP TR 29.998-1: " Open Serv ice Access (OSA); Application Programming Interface (API)

Mapping for Open Serv ice Access; Part 1: General Issues on API Mapping".

[10] IETF RFC 2806: "URLs for Telephone Calls".

[11] 3GPP TS 23.228: "IP Multimedia Subsystem (IMS); Stage 2".

[12] 3GPP TS 24.229: "IP Multimedia Call Control Protocol based on SIP and SDP; Stage 3".

[13] 3GPP TS 24.228: "Signalling flows for the IP mult imedia call control based on SIP and SDP;

Stage 3".

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 8 Release 9

[14] RFC 3261: "SIP: Session Initiat ion Protocol".

[15] 3GPP TS 29.328: "IP Multimedia Subsystem (IMS) Sh Interface signalling flows and message

contents".

[16] RFC 3725: " Best Current Practices for Th ird Party Call Control (3pcc) in the Session Initiation

Protocol (SIP)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1], TS 23.228 [11] and

TS 24.228 [13] and the fo llowing apply:

Back-To-Back User Agent (B2BUA): logical entity that receives a request, and processes it as a UAS

In order to determine how the request should be answered, it acts as a UAC and generates requests. Unlike a proxy

server, it maintains dialog state, and must participate in all requests sent on the dialogs it has established. Since it is a

concatenation of a UAC and UAS, no explicit defin itions are needed for its behaviour.

call: in formal term that refers to a dialog between peers, generally set up for the purposes of a multimedia conversation

call leg: another name for a d ialogue in a SIP context

In an OSA context the communication path as seen from an application to an addressable entity/call party in the

network.

call stateful: proxy which retains state for a dialog from the init iating INVITE to the terminating BYE request

client: any network element that sends SIP requests, and receives SIP responses

Clients may or may not interact directly with a human user. User agent clients and proxies are clients.

dialog: peer-to-peer SIP relationship between a UAC and UAS that persists for some time

A dialog is established by SIP messages, such as a 2xx response to an INVITE request. A dialog is identified by a call

identifier, local address, and remote address.

downstream: d irection of message forwarding within a transaction which refers to the direction that requests flow from

the user agent client to user agent server

final res ponse: response that terminates a SIP transaction, as opposed to a provisional response that does not

All 2xx, 3xx, 4xx, 5xx and 6xx responses are final.

informational response: provisional response

initiator, calling party, caller: The party in itiat ing a session with an INVITE request. A caller retains this role from the

time it sends the INVITE until the termination of any dialogs established by the INVITE.

invitation: INVITE request.

invitee, invited user, called party, callee: party that receives an INVITE request for the purposes of establishing a new

session. A callee retains this role from the time it receives the INVITE until the termination of the dialog established by

that INVITE.

location server: See location service.

location service: service is used by a SIP redirect or proxy server to obtain information about a callee 's possible

location(s)

It is an abstract database, sometimes referred to as a location server. The contents of the database can be populated in

many ways, including being written by registrars.

method: primary function that a request is meant to invoke on a server

The method is carried in the request message itself. Example methods are INVITE and BYE.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 9 Release 9

outbound proxy: proxy that receives all requests from a client, even though it is not the server resolved by the Request-

URI

The outbound proxy sends these requests, after any local processing, to the address indicated in the Request -URI, or to

another outbound proxy.

parallel search: In a parallel search, a proxy issues several requests to possible user locations upon receiving an

incoming request. Rather than issuing one request and then waiting fo r the final response before issuing the next request

as in a sequential search , a parallel search issues requests without waiting for the result of previous requests.

provisional res ponse: response used by the server to indicate progress, but that does not terminate a SIP transaction

1xx responses are provisional, other responses are considered final.

proxy, proxy server: intermediary entity that acts as both a server and a client for the purpose of making requests on

behalf of other clients

A proxy server primarily p lays to role of routing, which means its job is to ensure that a request is passed on to another

entity that can further process the request. Proxies are also useful for enforcing policy and for firewall traversal. A

proxy interprets, and, if necessary, rewrites parts of a request message before forwarding it.

redirect server : server that accepts a SIP request, maps the address into zero or more new addresses and returns these

addresses to the client

Unlike a proxy server, it does not initiate its own SIP request. Unlike a user agent server, it does not accept calls.

registrar: server that accepts REGISTER requests, and places the information it receives in those requests into the

location service for the domain it handles

sequential search: in a sequential search, a proxy server attempts each contact address in sequence, proceeding to the

next one only after the previous has generated a non-2xx final response

server: network element that receives requests in order to service them, and sends back responses to those requests

Examples of servers are proxies, user agent servers, redirect servers, and registrars.

session: From the SDP specificat ion: "A mult imedia session is a set of mult imedia senders and receivers and the data

streams flowing from senders to receivers. A multimedia conference is an example of a multimedia session." (see

RFC 2327 [6]) (A session as defined for SDP can comprise one or more RTP sessions.) As defined, a callee can be

invited several times, by different calls, to the same session. If SDP is used, a session is defined by the concatenation of

the user name , session id , network type , address type and address elements in the origin field.

(SIP) transaction: transaction which occurs between a client and a server and comprises all messages from the first

request sent from the client to the server up to a final (non-1xx) response sent from the server to the client, and the ACK

for the response in the case the response was a 2xx

The ACK for a 2xx response is a separate transaction.

spiral: SIP request which is routed to a proxy, forwarded onwards, and arrives once again at that proxy, but this time,

differs in a way which will result in a different processing decision than the original request

Typically, this means that it has a Request-URI that differs from the previous arrival. A spiral is not an error condition,

unlike a loop.

stateless proxy: logical entity that does not maintain the client or server transaction state machines defined in this

specification when it p rocesses requests

A stateless proxy forwards every request it receives downstream and every response it receives upstream.

stateful proxy: logical entity that maintains the client and server transaction state machines defined by this

specification during the processing of a request

Also known as a transaction stateful proxy.. A stateful proxy is not the same as a call stateful proxy.

upstream: direction of message forward ing within a transaction which refers to the direction that responses flow from

the user agent server to user agent client

User Agent Client (UAC): A user agent client is a logical entity that creates a new request, and then uses the client

transaction state machinery to send it. The ro le of UAC lasts only for the duration of that transaction. In other words, if

a piece of software in itiates a request, it acts as a UAC for the duration of that transaction. If it receives a request late r

on, it takes on the role of a User Agent Server for the processing of that transaction.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 10 Release 9

User Agent Server (UAS): logical entity that generates a response to a SIP request

The response accepts, rejects or redirects the request. This role lasts only for the duration o f that transaction. In other

words, if a piece o f software responds to a request, it acts as a UAS for the duration of that transaction. If it generates a

request later on, it takes on the role of a User agent client for the processing of that transaction.

User Agent (UA): logical entity which can act as both a user agent client and user agent server for the duration of a

dialog

user: logical, identifiable entity which uses services

In a SIP context it encompasses a User Agent (UA).

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Mapping OSA Call and Call Leg to SIP

4.1 Introduction

In the MPCCS the CallSessionID designates the call as seen from the application, i.e . the ID used to identify a ca ll

session. The MPCC API uses this callSessionID to identify a call session.

In SIP, a SIP d ialogue (or call) is identified at each UA with a dialog ID, which consists of a Call-ID value, a local tag

and a remote tag. by a globally unique call-id. The call-id is created when a user agent sends an INVITE request tries to

initiate a dialog. For a UAC, the Call-ID value of the dialog ID is set to the Call-ID of the message, the remote tag is set

to the tag in the To field of the message, and the local tag is set to the tag in the From field of the message (these rules

apply to both requests and responses). For a UAS, the Call-ID value of the dialog ID is set to the Call-ID of the

message, the remote tag is set to the tag in the From field of the message, and the local tag is set to the tag in the To
field of the message. This INVITE request may generate multiple acceptances, each of which are part of the
same call.

However, the semantics of SIP Call-ID is somewhat different from t raditional telephony. It identifies an invitation of a

particular client. This means that a conference in SIP may raise several calls with different Call -IDs. In tradit ional

telephony and in MPCCS this would always be the same call.

In MPCCS a call leg designates the association between a call and an address as seen from the applicat ion and is

identified by a callLegSessionID, i.e. the ID used to identify a call leg session. It represents an addressable user in the

call. The MPCC API uses this callLegSessionID to identify a call leg sess ion.

In SIP, a dialogue is defined as the pair wise signalling relat ionship between two SIP user agents (see [13]). It is

identified by the Call_ID, the tags in theTo and From header Fields. The Call-ID identifies the call in the network. It

is a global unique identifier. The To header field contains the information regard ing the endpoint who will receive the

SIP request, e.g. INVITE or BYE message. The From header field represents the originator of the SIP request.

4.2 SIP Call-id &dialog vs. OSA Call & Call Leg Session ID

There is a correspondence between the concepts Call and Call Leg in OSA and call-ID and dialog in SIP. The

correlation applicable depends on the mode (e.g. Proxy , B2BUA, UA) in which the controller (e.g. OSA SCS) operates.

When the controller operates in UA mode there can be a simple 1:1 correlat ion between OSA callLeg and SIP call -ID,

in other cases (e.g. when operating in Proxy mode) a somewhat more complex correlation applies that demands

supplementary informat ion such as TO and From header fields in SIP to be correlated with the OSA leg identifiers

("callLeg sessionID).

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 11 Release 9

The Call-ID, the From and To header fields define an association between the call (Call-ID) and the address (To, From).

Thus we can map the call and call leg concepts in OSA to SIP. However, there is no easy mapping between SIP and

OSA MPCCS call and call leg concepts because of the definition of a SIP d ialog always include TWO user agents

(UAs). Therefore, the mapping depends on the SIP server ro le that OSA SCS p lays in a SIP session. For example, if SIP

server in OSA SCS acts as a proxy server then the 2-party call has only one dialog in SIP (between the 2 UAs), while

OSA MPCCS expects 2 legs (one from the calling party to OSA SCS and another from OSA SCS to the called party).

Where an application demands full leg control in SIP the SIP server in OSA SCS should always act as UA (UA or

B2BUA) or 3
rd

 party controller . Only the latter modes of operation in SCS realises a direct 1:1 correlation between SIP

dialog and OSA SCS MPCCS call leg.

4.2.1 OSA Call and SIP Dialogue Correlation Tables

Table 4-1: Parameter Correlation Proxy Mode, 2-party call

SIP Headers OSA API Leg CALL

SIP
Dialog
#1

call-ID(1) callSessionID(1),

MPCCS
Call Object

local tag in
From header(1)

 callLegSessionID(1),

MPCCS
Originating Call Leg (1)
object

remote tag in To
header(1)

callLegSessionID(2),

MPCCS
Terminating Call Leg (2)
object

Request-URI(1)
targetAddress(1)

NOTE 1: The SIP server in OSA SCS is here acting as a stateful Proxy server. However, forking is NOT supported
by current OSA API.

NOTE 2: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call -id in the
SIP INVITE request message. There should be no direct mapping as it would contradict SIP operation
principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the
creation of a unique callSeesionID for an OSA application is the task of the SCS.

NOTE 3: The Call-ID identifies the call in the network. It is a global unique identifier.
The Request-URI is a SIP URL that indicates the user or service to which the request is being addresses
and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE ini tial invitation from caller.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 12 Release 9

Table 4-2: Parameter Correlation B2BUA Mode, 2-party call

SIP Headers OSA API Leg CALL

SIP

Dialog
#1

call-ID(1) callSessionID(1),

MPCCS
Call Object

local tag in
From header(1)

 CallLegSessionID(1)

MPCCS
Originating Call Leg (1)
Object

remote tag in To
header(1)

Request-URI(1) targetAddress(1)

SIP
Dialog

#2

call-ID(2)

local tag in
From header(1)

remote tag in To
header(1)

 CallLegSessionID(2),
MPCCS
Terminating Call Leg (2)
object

 Request-URI(1) targetAddress(1/2)
- may be changed by
application.

NOTE 1: The B2BUA mode is comprised in the OSA SCS SIP server by two User Agents, acting as a User Agent
Originating and a User Agent Terminating. It is a difficult implementation in SIP to s hift from proxy mode
into B2BUA mode and it is not possible in SIP to shift from B2BUA mode to proxy mode. Therefore where
an application demands this mode of operation it has to be secured that it is established already at
invitation request (INVITE).
Notice: It is possible that only the call_ID(2) will be changed for the new SIP dialog #2 compared to SIP
dialog #1as the incoming INVITE is "proxied". If a call forwarding application is invoked the targetAddress
may be changed for routeing to the desired destination (Request URI).

NOTE 2: The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call -id in the
SIP INVITE request message. There should be no direct mapping as it would contradict SIP operation
principles, i.e. the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the
creation of a unique callSeesionID for an OSA application is the task of the SCS.

NOTE 3: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g.
INVITE or BYE message. The From header field represents the originator of the SIP request (e.g. the
controller OSA SCS for SIP dialog #2). The Request-URI is a SIP URL that indicates the user or service to
which the request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case an INVITE initial invitation.

Table 4-3: Parameter Correlation Originating UA Mode, 1-party call

SIP Headers OSA API Leg CALL

SIP

Dialog
#1

call-ID(1) callSessionID(1),

MPCCS
Call Object

local tag in
From header(1)

 value provided by
OSA SCS)

remote tag in To
header(1)

CallLegSessionID(1)

MPCCS
Terminating Call Leg (2) object

Request-URI(1)
targetAddress(1)

NOTE 1: The SIP server in OSA SCS is here acting as an User Agent Originating.
The MPCCS callSessionID is assigned by the SCS and represents a correlation to the SIP call -id applied
in the SIP dialogue. There should be no direct mapping as it would contradict SIP operation principles, i.e.
the generation of a SIP call-ID for a particular invitation is the task of the inviting UA and the creation of a
unique callSessionID for an OSA application is the task of the SCS.

NOTE 2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g.
INVITE or BYE message. The From header field represents the originator of the SIP request (e.g. the
controller OSA SCS). The Request-URI is a SIP URL that indicates the user or service to which the
request is being addresses and is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 13 Release 9

Table 4-4: Parameter Correlation Terminating UA / Redirection Mode, 1-party call

SIP Headers OSA API Leg CALL

SIP

Dialog
#1

call-ID(1) callSessionID(1),

MPCCS
Call Object

local tag in
From header(1)

 CallLegSessionID(1).
MPCCS
Originating Call Leg (1) object

remote tag in To
header(1)

 (value provided by
OSA SCS)

Request-URI(1) address(1)

NOTE 1: The SIP server in OSA SCS is acting as a User Agent Terminating.
The OSA MPCCS API allows the application to instruct the return of a final SIP response (2xx, 3xx, 4xx,
5xx, 6xx) to a received SIP request (INVITE) .Note1: The MPCCS callSessionID is assigned by the SCS
and represents a correlation to the SIP call-id applied in the SIP dialogue. There should be no direct
mapping as it would contradict SIP operation principles, i.e. the generation of a SIP call -ID for a particular
invitation is the task of the inviting UA and the creation of a unique callSeesionID for an OSA application is
the task of the SCS.

NOTE 2: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g.
INVITE or BYE message. The From header field represents the originator of the SIP request. The
Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and
is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation.

Table 4-5: Parameter Correlation 3
rd

 party controller Mode, 2-party call

SIP Headers OSA API Parameters Leg CALL

SIP
Dialog

#1

call-ID(1) - callSessionID(1)
See Note1.

MPCCS
Call Object

local tag in
From

header(1)

 (provided by
OSA SCS may be used)

Remote tag
in To

header(1)

callLegSessionID(1)

MPCCS
Terminating Call Leg (1)
object.

Request-
URI(1)

targetAddress(1)

SIP

Dialog
#2

call-ID(2) -

local tag in
From

header(1)

(value provided by
OSA SCS may be used)

To header(2) callLegSessionID(2),
MPCCS
Terminating Call Leg (2)
object

 Request-
URI(2)

 targetAddress (2)

NOTE 1: The 3.rd party controller mode is comprised in the OSA SCS SIP server by two or more User Agents , in
this example by two User Agents Originating.
Not possible in SIP to shift from proxy mode into 3

rd
 party controller mode. Therefore where an application

demands this mode of operation it has to be secured that it is established already at invitation request
(INVITE).

NOTE 2: Same callSessionID(1) used by the application in the creation of both the OSA Call Leg objects as both
legs are to be part of the same call.

NOTE 3: The Call-ID identifies the call in the network. It is a global unique identifier.
The To header field contains the information regarding the endpoint who will receive the SIP request, e.g.
INVITE or BYE message. The From header field represents the originator of the SIP request. The
Request-URI is a SIP URL that indicates the user or service to which the request is being addresses and
is used for routeing purpose.
The correlation shown corresponds to the case of an INVITE initial invitation.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 14 Release 9

5 Multi Party Call Control Flows

NOTE: The Call Flows in the fo llowing are to be regarded as example flows. They are merely intended t o

illustrate theSIP mapping from/to OSA APIs and do not necessary provide complete SIP call/session

flows. More detailed SIP call flows are defined in [13].

Additional information including the different SIP server modes of operation for OSA SCS in relation to

MPCCS mapping is found in Annex A "Introduction to API Mapping for OSA MPCCS".

5.1 Call Manager Service Interface

The call manager interface class provides the management functions to the multi-party call Service Capability Features.

The application programmer can use this interface to create call objects and to enable or disable call -related event

notifications.

5.1.1 CreateCall

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

This method is used to create a new Call object in the SCS.

Application

createCall

OSA SCS

SIP
server

SCF

Figure 5-1: Call flow for createCall()

Table 5-1: Normal operation

SIP Server Mode
for the OSA SCS:

UA mode

Pre-conditions: An agreement is established between the network operator and the service provider to
enable the application to create call object.

1 A new Multi-party Call object is created in the SCS and the application gets a reference to the call
object.

Table 5-2: Parameter Mapping

From: createCall To: SIP Remark

appCall (IpAppMultiPartyCallRef) N/A No mapping.

Returns:
TpMultiPartyCallIdentifier:
 - CallReference (IpMultiPartyCallRef)
 - CallSessionID (TpSessionID)

N/A Not mapped.
However, the call Session ID returned in this method will later
on be correlated to the applied SIP call-Id

5.1.2 CreateNotification

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest:

in TpCallNotificationRequest) : TpAssignmentID

This method is used to enable call notifications so that events can be sent to the application. The interface between DB

(HSS) and OSA SCS is Sh interface, for detail see 3GPP TS 29.328 [15].

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 15 Release 9

 DB

 (e.g HSS)
Application

createNotification SIP Server set to observe for

call events to be notified.

OSA SCS

SIP
server

SCF

Figure 5-2: Call flow for createNotification()

Table 5-3: Normal Operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3rd Party controller.

Note: The applicable mode will depend on the behaviour of the application invoked on the
call.

Pre-conditions: An agreement is established between the network operator and the service provider for the
event notification to be enabled

1 The application invokes the createNotification method
2 The SCS requests the controlled SIP server to observe for certain SIP call events to be notified to

the application.
Initial filtering information will be uploaded to the DB (Data Base e.g. HSS) and from here to
controlled entity (e.g. S-CSCF), e.g. when the user gets registered.

NOTE: The createNotification represents the first step an application has to do to get initial notifications of calls
happening in the network. When such an event happens, the application will be informed by reportNotification
However, createNotification() is not applicable if the call is set-up from the network by the application.

Table 5-4: Parameter Mapping

From: createNotification To: SIP Remark

appCallControlManager
(IpAppMultiPartyCallControlManagerRef)

N/A If set it specifies a reference to the application
interface, which is used for call-backs.

notificationRequest
(TpCallNotificationRequest) :

See table 6-15:
TpCallNotificationRequest
for the mapping from SIP.

Specifies the event specific criteria used by
the application to define the event required.
Not mapped to SIP.
However, the parameter has to be verified for
SIP validity of parameter values.

Returns:
TpAssignmemtID

N/A Returns assignmentID to application, which
specifies the ID assigned by the multi party
call control manager interface for this newly
enabled event notification.

NOTE: No direct mapping to SIP. However, the SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for
SIP events requested to be notified to the application if encountered and conditions (filter criteria) for reporting
are fulfilled.

5.1.3 changeNotification

changeNotification (assignmentID : in TpAssignmentID, noti ficationRequest : in TpCallNoti ficationRequest) :

void

This method is used by the application to change the call notificat ions previously set by createNotification .

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 16 Release 9

 DB

 (e.g. HSS)
Application

changeNotification

 NOTE: Controlled SIP Server

(e.g. S-CSCF) will be set to

observe for call events to be

notified for the application, when

user becomes registered.

OSA SCS

SIP
server

SCF

Figure 5-3: Call flow for changeNotification()

Table 5-5: Normal Operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3rd Party controller.

Note: The applicable mode will depend on the behaviour of the application on the call.

Pre-conditions: An agreement is established between the network operator and the service provider for the
event notification to be enabled. Notifications have been enabled by the application

1 The application invokes the changeNotification method

2 The SCS requests a change in the set of initial notifications, i.e. initial filtering information is
changed.

Note: Updated initial filtering information will be uploaded to the DB (Data Base e.g. HSS) and
from here to the controlled entity (e.g. S-CSCF), e.g. when the user gets registered.

Table 5-6: Parameter mapping

From: changeNotification To: SIP Remark

assignmentID (TpAssignmentID) N/A Specifies the ID assigned by the multi party call
control manager interface for the event notification.

notificationRequest
(TpCallNotificationRequest) :

See table 6-15:
TpCallNotificationRequest
for the mapping from SIP.

Not mapped directly to SIP. However, the parameter
has to be verified for SIP validity of parameter
values.

NOTE: No direct mapping to SIP. However, the SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for
SIP events requested to be notified to the application if encountered and conditions (filter criteria) for reporting
are fulfilled.

5.1.4 destroyNotification

destroyNotification (assignmentID : in TpAssignmentID) : void

This method is used by the application to disable call notifications.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 17 Release 9

 DB
 (e.g. HSS)

Application

destroyNotification

Note: Controlled SIP Serverwill be

set to stop the observation for call

events to be notified to the

application,for registrated user..

OSA SCS

SIP
server

SCF

Figure 5-4: Call flow for destroyNotification()

Table 5-7: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3rd Party controller.

Note: The applicable mode will depend on the behaviour of the application on the call.

Pre-conditions: An agreement is established between the network operator and the service provider for the
event notification to be disabled.

1 The application invokes the destroyNotification method

2 The SCS requests to de-activate the active call notification.

NOTE: Destroyed notifications (initial filtering) information will be uploaded to the DB (Data Base e.g. HSS) and from
here to the controlled entity (e.g. S-CSCF), if the user has been registered.

Table 5-8: Parameter Mapping

From: destroyNotification To: SIP Remark

assignmentID (TpAssignmentID) N/A Specifies the ID assigned by the multi party call control manager
interface for the event notification.

5.1.5 getNotification

getNotification () : TpNotificationRequestedSet

This method is used by the application to query the event criteria set previously using createNotification and possibly

changeNotification.

Application

getNotification

OSA SCS

SIP
server

SCF

Figure 5-5: Call flow for getNotification()

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 18 Release 9

Table 5-9: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3
rd

. Party controller

Note: The applicable mode will depend on the behaviour of the application on the call.

Pre-conditions: An agreement is established between the network operator and the service provider for the
event notification. Notifications have been enabled by the application.

1 The application invokes the getNotification method.
2 The OSA SCS returns the criteria as set for event notification.

Table 5-10: Parameter mapping

From: getNotification To: SIP Remark

Returns:
TpNotificationRequestedSet:
A set of TpNotificationRequested:

- No SIP mapping.

- AppCallNotificationRequest
(TpCallNotificationRequest)

N/A Returns information as previously set in createNotification and
changeNotification.

- AssignmentID (TpInt32) N/A

NOTE: The set of all previously requested notification events are returned. No mapping to SIP.
The method getNotification contains no parameter – only a return parameter exists.

5.1.6 setCallLoadControl

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in

TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

This method is used to impose or remove load control on calls made to a specific address wit hin the call control service.

Application

setCallLoadcontrol
Activate load

control

OSA SCS

SIP
server

SCF

Figure 5-6: Flow for setCallLoadControl()

Table 5-11: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3
rd

. Party controller.

Note: The applicable mode will depend on the behaviour of the application invoked on the
call.

Pre-conditions: An agreement is established between the network operator and the service provider for the
set call load control.

1 The application invokes the setCallLoadControl method to remove or set load control on calls
made to a specific address or address range.

2 The SCS requests the SIP server to activate or remove call load control

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 19 Release 9

Table 5-12: Parameter Mapping

From: setCallLoadControl To: SIP Remark

duration (TpDuration) N/A -
mechanism (TpCallLoadControlMechanism) N/A

Specifies the applied load control mechanism
and defines the call admission rate (e.g. allow
one call per interval).

treatment (TpCallTreatment)
TpCallTreatment sequence of:
 - TpCallTreatmentType,
 - TpReleaseCause

See Table 6-16
TpCallTreatment Type

and Table 6-18
TpReleaseCause
 for the mapping to SIP

Specifies how to treat (e.g. deny) new
invitations if overload prevails.

addressRange (TpAddressRange) See Table 6-3:
TpAddressRange for the
"mapping" from SIP.

Specifies the address or address range to
which overload control should be applied or
removed.
Not mapped directly but has to be verified for
application with SIP URL.

5.2 Call Manager Application Interface

5.2.1 managerInterrupted

managerInterrupted () : void

This method is used to indicate to the application that all event notifications and method invocations have been

temporarily interrupted, for example due to network resources unavailable.

Application

mangerInterrupted Fault

detected

OSA SCS

SIP
server

SCF

Figure 5-7: Call flow for managerInterrupted()

Table 5-13: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3rd Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the
call.

Pre-conditions: An agreement is established between the network operator and the service provider for the
call notification. Call notifications have been enabled using the createNotification method on
the Call Manager interface.

1 The SCS has detected, or has been informed of a fault which prevents further events from being
notified to the application.

2 The SCS invokes the managerInterrupted method.

Table 5-14: Parameter Mapping

From: managerInterrupted To: SIP Remark

- N/A No parameters in this method.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 20 Release 9

5.2.2 managerResumed

managerResumed () : void

This method is used to indicate to the application that all event notifications are possible and method invocations are

enabled after having previously been interrupted.

Application

managerResumed Fault

ceased

OSA SCS

SIP
server

SCF

Figure 5-8 Call Flow for managerResumed()

Table 5-15: Normal Operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3
rd

. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the
call.

Pre-conditions: An agreement is established between the network operator and the service provider for the
call notification. Call notifications have been interrupted and managerInterrupted method
has been invoked.

1 The SCS detects that call notifications are again possible.

2 The SCS invokes the managerResumed method.

Table 5-16: Parameter Mapping

From: managerInterrupted To: SIP Remark

- N/A No parameters in the method.

5.2.3 reportNotification

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in

TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :

TpAppMultiPartyCallBack

This method is used to notify the application of the arrival of a call-related event. It is sent in response to the
createNotification() method.

 User Application

2a. reportNotification

 1a. ISC: INVITE, CANCEL, Re-INVITE, BYE

PRACK, UPDATE

OSA SCS

SIP
server

SCF

Figure 5-9: Call flow for reportNotification, triggered by SIP requests

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 21 Release 9

Figure 5-10: Call flow for reportNotification, triggered by SIP Reponses

Table 5-17: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA,3rd Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the
call.

Pre-conditions: Call notifications have been enabled using the createNotification method on the Call
Manager interface.

1 A call arrives from a call party or terminates to a call party or a call party decides to issue a mid -call
event or terminate the involvement in an established call. This request is detected by the SIP server
and the criteria for an initial notification to be reported is checked.

2 When the criteria for an initial notification is met, the SCS identifies the application responsible for
handling the call and invokes the reportNotification method.

Table 5-18: Parameter Mapping

To: reportNotification From: SIP Remark
callReference (TpMultiPartiCallIdentifier)
TpMultiPartyCallIdentifier:
 - CallReference (IpMultiPartyCallRef)
 - CallSessionID (TpSessionID)

See "OSA Call and SIP
Dialogue Correlation
Tables"
Table 4-1 to 4-5.

The SCS will create a new call object and
associated call leg object and pass them to
the application.
A correlation between SIP call-ID and call
session ID is created.

callLegReferenceSet (TpCallIdentifierSet).
A set of TpCallIdentifier:

-

- CallLegreference (IpCallLegRef) N/A This element specifies the interface for the
Call Leg object.

 - CallLegSessionID (TpSessionID) See "OSA Call and SIP
Dialogue Correlation
Tables".
Table 4-1 to 4-5.

This element specifies the call leg session ID.
No direct mapping to SIP – but a correlation is
created.

notificationInfo (TpCallNotificationInfo): -

 -TpCallNotificationReportScope See Table 6-14 :
TpCallNotificationReport
Scope

 - CallAppInfo (TpCallAppInfoSet)

 Note: A set of TpCallAppInfo

See Table 6-4:
TpCallAppInfo

 - CallEventInfo (TpCallEventInfo) See Table 6-7:
TpCallEventInfo

assignmentID (TpAssignmentID) N/A
See note:

Specifies the assignment id which was
returned by the createNotification() method.
The application can use assignment id to
associate events with specific criteria and to
act accordingly.

NOTE: Indeed the assignmentiD does not involve SIP mapping, it could be stored in the OSA SCS. .

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 22 Release 9

5.2.4 callAborted

callAborted (callReference : in TpSessionID) : void

This method is used to indicate to the application that the call object has aborted or terminated abnormally. No further

communicat ion will be possible between the call and the applicat ion.

 User Application

callAborted

ISC: 481 Call Leg/transaction

Does Not Exist; 5xx Responses;

BYE to refuse an offer, CANCEL,

INVITE timeout

OSA SCS

SIP
server

SCF

Figure 5-11: Call flow for callAborted()

Table 5-19: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3
rd

. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the
call.

Pre-conditions: The SCS detect a failure in its communication with the SIP server

1 The SCS, invokes the callAborted method. Since the SIP server reflects the call running in the
network, the call could also have been aborted in the network.

Table 5-20: Parameter Mapping

From: callAborted To: SIP Remark

callReference (TpSessionID) See "OSA Call and SIP
Dialogue Correlation Tables"
Table 4-1 to 4-5.

Specifies the sessionID of the call that has aborted or
terminated abnormally.
No direct mapping to SIP – but a correlation is created.

5.2.5 callOverloadEncountered

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

This method is used to indicate that the network has detected overload and may have automatically imposed load

control on calls requested to a particular address range or calls made to a part icular destination within the call control

service.

Application

callOverLoadEncountered

OSA SCS

SCF SIP Server

Figure 5-12: Call flow for callOverLoadEncountered()

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 23 Release 9

Table 5-21: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3
rd

. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the
call.

Pre-conditions: Call overload control have been enabled using the setCallOverloadControl method on the
Call Manager interface.

1 The SCS detect a call overload situation in its communication with the SIP server of the OSA SCS.
2 The SCS, invokes the callOverLoadEncountered method. The call running in the network may

continue or not depending on the requested treatment at overload (defined by
setCallOverloadControl method received previously).

Table 5-22: Parameter Mapping

From: callOverloadEncountered To: SIP Remark

assignmentID (TpAssignmentID) N/A. Specifies the assignmentID corresponding to the associated
setCallLoadControl method. This implies the address or address range
within which the overload has been encountered (the SIP URL(s)).

5.2.6 callOverloadCeased

callOverloadCeased (assignmentID : in TpAssignmentID) : void

This method is used to indicate that the network has detected that the overload has ceased and has automatically

removed any load controls on calls requested to a particular address range or calls made to a part icular destination

within the call control service.

SIP Server SCF Application

callOverLoadCeased

OSA SCS

Figure 5-13: Call flow for callOverLoadCeased()

Table 5-23: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3
rd

. Party controller.

Note: The applicable mode will depend on the behaviour of the application invoked on the
call.

Pre-conditions: The network has detected overload and may have automatically imposed load control on
calls requested to a particular address or address range.

1 The SCS detect that an overload situation has ceased in its communication with the SIP server

2 The SCS, invokes the callOverLoadCeased method.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 24 Release 9

Table 5-24: Parameter Mapping

From: callOverloadEncountered To: SIP Remark

assignmentID (TpAssignmentID) N/A. Specifies the assignmentID corresponding to the associated
setCallLoadControl method. This implies the address or address range
within which cease of overload has been encountered (the SIP URL(s)).
No mapping to SIP – but an association is created, see mapping for
setCallOverloadControl.

5.3 Multi-Party Call Service Interface

The multi-party call interface class represents the interface to the mult i-party call Serv ice Capability Feature. It provides

a structure to allow simple and complex call behaviour.

5.3.1 GetCallLegs

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

This method is used to obtain references to the current Call Leg objects, associated to the Mult i-party call object.

 User Application

getCallLegs

OSA SCS

SIP
server

SCF

Figure 5-14: Call flow for getCallLegs()

Table 5-25: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, Redirect, UA, B2BUA, 3
rd

. Party controller

Note: The applicable mode will depend on the behaviour of the application invoked on the
call.

Pre-conditions: The application has a reference to a Multi-party Call object.

1 The application invokes the getCallLegs method
2 The SCS returns information about the involved call leg objects

Table 5-26: Parameter mapping

From: callOverloadEncountered To: SIP Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue
Correlation Tables"
Table 4-1 to 4-5.

Specifies the call session ID of the call.
No direct mapping to SIP – but a
correlation is created.

5.3.2 createCallLeg

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

This method is used to create a new CallLeg object in the SCS.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 25 Release 9

 User Application

createCallLeg

OSA SCS

SIP
server

SCF

Figure 5-15: Call flow for createCallLeg()

Table 5-27: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.
(Any, except Redirect).

Pre-conditions: The application has a reference to a Multi-party Call object.

1 The application invokes the createCallLeg method

2 The SCS creates the requested call leg object

Table 5-28: Parameter mapping

From: callOverloadEncountered To: SIP Remark
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue

Correlation Tables"
Table 4-1 to 4-5.

Specifies the call session ID of the call.
No direct mapping to SIP – but a correlation is
created.

appCallLeg (IpAppCallLegRef N/A Specifies the application interface for call-
backs from the call leg created

Returns:
TpCallLegIdentifier:
 - CallLegReference (IpCallLegRef)
 - CallLegSessionID (TpSessionID)

See "OSA Call and SIP Dialogue
Correlation Tables"
Table 4-1 to 4-5.

The SCS will create a new call leg object to
be associated with the existing call object and
pass it to the application.

NOTE: The correlation to SIP will be created when set-up of a connection associated with the created call leg occurs.

5.3.3 createAndRouteCallLegReq

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet,

targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in TpCallAppInfoSet,

appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

This method is an asynchronous method used to request the creation of a new Call Leg and the set -up of a connection to

the indicated address.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 26 Release 9

 3c. ISC: 183 Progress (SDP)

 3a. ISC: 100 Trying

 User Application

ISC: 200 OK

 2. ISC: INVITE

 (no SDP)

1. createAndRouteCallLegReq

ISC :PRACK (SDP)

OSA SCS

ISC: UPDATE

ISC: 180 Ringing

ISC: 200 OK

SIP
server

SCF

Figure 5-16: Call flow for createAndRouteCallLegReq(), OSA SCS acting as UA Client

 3c. ISC: PRACK

 3a. ISC: 183Progress

Application

 4. ISC: PRACK

 2. ISC: INVITE

1. createAndRouteCallLegReq

3. ISC : 183Progress

OSA SCS

ISC: 100 Trying

B A

 User

 ISC: INVITE

(SDP

SIP
server

SCF

Figure 5-17: Call flow for createAndRouteCallLegReq(), OSA SCS acting as Proxy server

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 27 Release 9

Table 5-29: Normal operation, case a: UA mode

SIP Server Mode
for the OSA SCS:

UA (or 3
rd

 party controller, B2BUA).

Pre-conditions: The application has a reference to a Multi-party Call object.

1 The application invokes the createAndRouteCallLegReq method. The SCS creates an call Leg
object and instructs the SIP server of the OSA SCS to generates a SIP INVITE message.

2 The SIP server acting in a UA mode sends the SIP INVITE to the corresponding party.
Note: It may happen that the destination address leads to the generation of more than one INVITE
being sent by the SIP server (Forking).

3 The SIP server acting as UA acknowledge the incoming SIP response message.

NOTE 1: The application has no control of the SIP server forking functionality.
Assuming the UA ("surrogate UAC") of the OSA SCS does not posses any media resource, the INVITE is sent
with "no SDP". This results in a SIP dialog with no media (e.g. no RTP stream) stream set-up, i.e. a plain
session control dialog created by the application.
The possible handling of media by "UA" within the OSA SCS for application initiated calls is outside the scope
of standardisation.

NOTE 2: See also Annex B for supplementary information and flow examples (B2- B5)
(CreateAndRouteCallLegReq may hereby be viewed as a concatenation the methods createCallLeg,
eventReportReq and routeReq).

Table 5-30: Parameter mapping, UA mode

From: createAndRouteCallLegReq To: SIP INVITE Remark

callSessionID (TpSessionID) See "OSA Call and SIP
Dialogue Correlation
Tables" for Originating UA
mode.
Table 4-2 to 4-5.

No direct mapping, merely a correlation is
created.

eventsRequested (TpCallEventRequestSet)

Note: A set of TpCallEventRequest

See Table 6-8:
TpCallEventRequest
for mapping to SIP.

Start observation in SIP server for occurrence
of requested events to be notified to the
application.

targetAddress (TpAddress) SIP URL in the TO header
and
Request-URI

See Table 6-2:
TpAddress
mapping to SIP.

originatingAddress (TpAddress) SIP URL in the From
header.

See Table 6-2:
TpAddress
mapping to SIP.

The originating address may e.g. be the
application server SIP address
(third party call set up) or the SCS server
when the the SCS is the endpoint (UAC)
which initiates the INVITE.
If originatingAddress not present a default
value could be provided by the OSA SCS.

appInfo (TpCallAppInfoSet)

Note: A set of TpCallAppInfo

See Table 6-4:
TpCallAppInfo
for mapping to SIP.

appLegtInterface (IpAppCallLegRef) N/A Defines a reference to data type IPCallLeg
Returns:
TpCallLegIdentifier:
 - CallLegReference (IpCallLegRef)
 - CallLegSessionID (TpSessionID)

See "OSA Call and SIP
Dialogue Correlation
Tables"
Table 4-2 to 4-5.

A correlation to SIP is created.
The SCS will create a new call leg object to
be associated with the existing call object and
pass it to the application.
Note: The correlation to SIP is created when
set-up of a connection associated with the
created call leg occurs..

NOTE: See also Annex B and Annex C .

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 28 Release 9

Table 5-31: Normal operation, case b: Proxy mode

SIP Server Mode
for the OSA SCS:

Proxy.

Pre-conditions: The application has a reference to a Multi-party Call object.

1 The application invokes the createAndRouteCallLegReq method. The SCS creates an call Leg
object, and forwards the received SIP INVITE message to the indicated target address.

2 The SIP server forwards the SIP INVITE to the corresponding party.
Note: It may happen that the destination address leads to the generation of more than one INVITE
being sent by the SIP server (Forking).

3 The SIP server forwards the incoming SIP response message to the SCS.

NOTE: The application has no control of the SIP server forking functionality.

Table 5-32: Parameter mapping, Proxy mode

From: createAndRouteCallLegReq To: SIP INVITE Remark

callSessionID (TpSessionID) See "OSA Call and SIP
Dialogue Correlation
Tables" for Proxy mode.
Table 4-1.

No direct mapping of CallSessionID onto SIP
Call-ID to ensure the SIP Call-ID uniqueness,
merely a correlation is needed. A SIP call ID
must be unique and not be reused for later
calls.
Acting as a UA (or B2BUA) a new call_ID is
created for the new originating SIP leg for
which a correlation with callSessionID is
created.

eventsRequested (TpCallEventRequestSet)

Note: A set of TpCallEventRequest

See Table 6-8:
TpCallEventRequest
for mapping to SIP

Start observation in SIP server of the OSA
SCS for occurrence of requested events to be
notified to the application.

targetAddress (TpAddress) SIP URL in the
Request URI header.
See Table 6-2:
TpAddress
mapping to SIP.

If present, the targetAddress is used for
routeing using Request-URI

originatingAddress (TpAddress) N/A FROM header containf the originator address
(caller) of the invitation.
This must not be changed.

appInfo (TpCallAppInfoSet)
Note: A set of TpCallAppInfo

See Table 6-4:
TpCallAppInfo
for mapping to SIP.

appLegtInterface (IpAppCallLegRef) N/A Defines a reference to data type IPCallLeg
Returns:
TpCallLegIdentifier:
 - CallLegReference (IpCallLegRef)
 - CallLegSessionID (TpSessionID)

See "OSA Call and SIP
Dialogue Correlation
Tables"
Table 4-1.

A correlation to SIP is created.
The SCS will create a new call leg object to
be associated with the existing call object and
pass it to the application.
Note: The correlation to SIP is created when
set-up of a connection associated with the
created call leg occurs..

NOTE: See also Annex B and Annex C.

5.3.4 release

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method used to request the release of the call and associated objects.

Remarks: If several legs are connected, this method will also release each of the call legs, i.e . the complete call is

released. The flow example below indicates the release of a single user (call party), it is however applicab le for the

release of any user, i.e . BYE is to be sent for each user (SIP dialog) that take part in the call.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 29 Release 9

: 3. ISC: 200 OK

 User(s) SIP
server

SCF Application

 2. ISC: (n x) BYE
1. release

OSA SCS

Figure 5-18: Call flow for release, acting as UA (incl. B2BUA, 3
rd

. Party Controller)

 3a. ISC 200 OK

Application

 2a. ISC: BYE

1. Release

3. ISC : 200 OK

OSA SCS

2. ISC: BYE

B A

 User
SIP
server

SCF

Figure 5-18a: Call flow for release, acting as proxy

Table 5-33: Normal operation, UA mode

SIP Server Mode
for the OSA SCS:

UA (or 3
rd

 party controller, B2BUA).

For call release from application, UA mode of operation is demanded.

Pre-conditions: Call is in progress.
The application has a reference to a Multi-party Call object.

1 The application invokes the release method. For all legs associated to the call, the SCS will act as
if a release() method was received for each present leg(s).

2 If the application has requested some reports at the end of the call (e.g., getInfoReq(),
superviseReq()) these reports will be sent to the application

3
NOTE 1: The SIP server of the SCS gateway is to be capable to issue the SIP BYE to release the call participant(s) on

request from the application - and therefore it demands to play the role of a UA.
NOTE 2: Release may be sent any time from the application e.g. resulting in creation of a SIP response (e.g. 4xx, 5xx) to

an incoming INVITE request or the termination of an establishment session (BYE) or the cancellation of a
pending request (CANCEL) after the application has issued an INVITE request.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 30 Release 9

Table 5-33a: Normal operation, proxy mode

SIP Server Mode
for the OSA SCS:

Proxy

Pre-conditions: Call is in progress.
The application has a reference to a Multi-party Call object.

1 The application invokes the release method. For all legs associated to the call, the SCS will act as
if a release() method was received for each present leg(s).

2 If the application has requested some reports at the end of the call (e.g., getInfoReq(),
superviseReq()) these reports will be sent to the application

3

NOTE 1: The SIP server of the SCS gateway is to be capable to issue the SIP BYEs to multiple call participants on
request from the application - and therefore it acts as a transparent B2BUA which remembers the sequence
number of the requests sent by the call participants.

NOTE 2: Release may be sent any time from the application e.g. resulting in creation of a SIP response (e.g. 4xx, 5xx)
to an incoming INVITE request or the termination of an establishment session (BYE) or the cancellation of a
pending request (CANCEL) after the application has issued an INVITE request.

Table 5-34: Parameter mapping

From: release To: SIP BYE, 4xx, 5xx,
Cancel (if any pending INVITE requests from

application)

Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables"
Table 4-2 to 4-5.

No direct mapping, merely a
correlation is created.

cause (TpReleaseCause) : See table 6-17: TpReleaseCause for mapping to SIP
response codes

See also note below

NOTE: The release() method may be sent any time from the application e.g. resulting in
a) creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request or
b) the termination of an established session (BYE) or
c) the cancellation of pending requests (CANCEL) when the application has issued an INVITE request.

5.3.5 deassignCall

deassignCall (callSessionID : in TpSessionID) : void

This method is used to request that the relationship between the application and the call and associated ob jects be de-

assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further

control of call processing. If a call is de-assigned that has event reports or call information reports requested, then these

reports will be d isabled and any related informat ion discarded.

 User Application

deassignCall

OSA SCS

SIP
server

SCF

Figure 5-19: Call flow for deassignCall()

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 31 Release 9

Table 5-35: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller, Redirect

Pre-conditions: A relationship between the application and the call including associated objects exists.

1 The application invokes the deassignCall method

2 The SCS terminates the relationship between the application and the call and its associated
objects and notifies the SIP server of the OSA SCS.

3 The SIP server of the OSA SCS is to continue call processing autonomously, i.e. without any
control from the application. Any possible interrupted call processing is to be resumed.

NOTE: If the application was the only one to control the session, the SIP server of the OSA SCS may remove itself
from the route-request.

Table 5-36: Parameter mapping

From: release To: SIP Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables "
Table 4-1 to 4-5.

No direct mapping, merely a
correlation is created.

5.3.6 getInfoReq

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

This method is an asynchronous method that requests informat ion associated with the call to be provided at the

appropriate time (for example, to calculate charging).

 User Application

getInfoReq

OSA SCS

SIP
server

SCF

Figure 5-20: Call flow for getInfoReq()

Table 5-37: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller
(Any, except Redirect mode)

Pre-conditions: A relationship between the application and the call including associated objects exists.
The getInfoReq method must be invoked before the call is routed to a target address.

1 The application invokes the getInfoReq method. The SCS monitors the call to be capable to
collect the requested information.

2 The OSA SCS will later on send the corresponding getInfoRes() or getInfoErr() based on the
messages received from the SIP server of the OSA SCS.

3

NOTE: The getInfoReq() method is not related to SIP signalling, it is sent by the application to request information
associated to the call.

Restriction: The getInfoReq method is only applicable on call level for a plain user initiated call between a caller and a
callee, where a report is demanded when the destination leg or party (callee) terminates or when the call ends.
(For application initiated calls and multiparty calls the method should instead be applied on a per destination
leg (per callee)).

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 32 Release 9

Table 5-38: Parameter mapping

From: getInfoReq To: SIP Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables"
Table 4-1 to 4-5.

No direct mapping, merely
a correlation is created.

callInfoRequested (TpCallInfoType) : See table 6-10: TpCallInfoType mapping to SIP
NOTE: There is no direct mapping to SIP. The getInfoReq() method results in supervision of the following SIP events

via the SIP server of the OSA SCS:
a) receipt of a SIP response ("answer" 200 OK/ACK) to an incoming INVITE request or
b) the termination of an establishment dialog session (BYE)

5.3.7 superviseReq

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in TpCallSuperviseTreatment) :

void

This method is called by the application to supervise a call.

The application can set a granted connection time for this call. If an applicat ion calls this method before it routes a call

the time measurement will start as soon as the call is confirmed (answered) by the called party.

 User Application

superviseReq

OSA SCS

SIP
server

SCF

Figure 5-21: Call flow for superviseReq()

Table 5-39: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller
(Any, except Redirect mode).
However, if treatment (TpCallSuperviseTreatment) implies call release, then a UA mode of
operation is demanded (UA, B2BUA, 3

rd
 party controller). For this treatment, if the SCS is

acting as a proxy, the only SIP message the SCS can generate after receiving
superviseRes() in the call leg is BYE.

Pre-conditions: A relationship between the application and the call including associated objects exists.
The superviseReq method must be invoked before the call is confirmed, i.e. before
answered.

1 The application invokes the superviseReq method. The SCS monitors the call to be capable to
collect the requested information.

2 The OSA SCS will later on send the corresponding superviseRes() or superviseErr() based on
the messages received from the SIP server of the OSA SCS.

NOTE: The SIP server of the OSA SCS should use the messages received by the SIP server during the call session in
order to sent the corresponding superviseRes() or superviseErr() method.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 33 Release 9

Table 5-40: Parameter mapping

From: getInfoReq To: SIP Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue
Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a correlation .

time (TpDuration) ACK (confirmation of "answer" SIP
200 OK)

No direct mapping , but specified call
supervision timer is to start upon the
confirmation of answer event.

treatment (TpCallSuperviseTreatment) : N/A

See Note:

No direct mapping.
Defines the treatment of the call by the
call control service when the call
supervision timer expires, e.g. release call
(BYE) and /or send warning tone to calling
party.

NOTE: There is no direct mapping to SIP. However, the expiry of the call supervistion timer during the active call
initiates the action as specified in TpCallSuperviseTreatment.

5.3.8 setAdviceOfCharge

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffS witch : in TpDuration) :

void

This method allows the application to determine the charging information that will be send to the end -users terminal.

 User Application

setAdviceOfCharge

OSA SCS

SIP
server

SCF

INVITE/200 OK/ACK

Media server: £1 per min, press

#1 to continue or hang up

INVITE

reportNotification

DTMF: #1
INVITE

Figure 5-22: Call flow for setAdviceOfCharge()

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 34 Release 9

Table 5-41: Normal operation

SIP Server Mode
for the OSA SCS:

UA mode

The generation of a SIP message on request from the application demands the SIP server of
the OSA to operate in a UA mode (e.g. UAC, B2BUA, 3

rd
 party controller).

The SCS's behaviour on receiving setAdviceOfCharge is not standardized, the diagram
above is just shown as an example on how this can be done.

Pre-conditions: A relationship between the application and the call including associated objects exists.
The setAdviseOfCharge method must be invoked before the call is confirmed, i.e. before
answered.

1 The application invokes the setAdviceOfCharge method. The SCS enables the call to be capable
to send the requested information to the end-user.

2

NOTE: How the SIP server of the OSA SCS sent the information to the calling party is not standardized in this release.

Table 5-42: Parameter mapping

From: setAdviceOfCharge To: SIP Remark
callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".

Table 4-2 to 4-5.
No direct mapping – a
correlation .

aOCInfo (TpAoCInfo):
 - ChargeOrder (TpAoCOrder)
 - Currency (TpString)

See Table 6-19
TpAoCInfo
mapping to SIP.

Currency unit according to
ISO-4217:1995 [8]

tariffSwitch (TpDuration) N/A

5.3.9 SetChargePlan

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

This is a method that allows the application to set an operator specific charge plan for the call enabling to include

charging informat ion in network generated CDR.

 User Application

setChargePlan SIP Server set to create CDR ??

OSA SCS

SIP
server

SCF

Figure 5-23: Call flow for setChargePlan()

Table 5-43: Normal operation

SIP Server Mode
for the OSA SCS:

Any mode.

For details on application server handling IMS charging, see 3GPP TS 23.218 [6].

Pre-conditions: A relationship between the application and the call including associated objects exists.
The setChargePlan method may have to be invoked before the call is confirmed, i.e. before
answered .

1 The application invokes the setChargePlan method. The SCS enables the call to be capable to be
charged according to defined plan .

2
NOTE: The SIP server of the OSA SCS should invoke the requested charge plan. Information relevant to application

and SCS not to SIP signalling.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 35 Release 9

Table 5-44: Parameter mapping

From: setChargePlan To: SIP Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a
correlation.

callChargePlan (TpCallChargePlan) N/A Information relevant to
application and SCS
not to signalling

5.4 Multi-Party Call Application Interface

5.4.1 createAndRouteCallLegErr

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,

errorIndication : in TpCallError) : void

This method is an asynchronous method which indicates that the request to route the call to the destination party was

unsuccessful – the call could not be routed to the destination party (for example, parameters were incorrect, invalid

address, the request was refused, etc).

 User SIP
server

SCF Application

createAndRouteCallLegErr

 ISC: 4xx, 5xx and 6xx responses (*)

ACK

OSA SCS

(*) For valid error see

table 6.6

TpCallErrorType

Figure 5-24: Call flow for createAndRouteCallLegErr()

Table 5-45: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller
(Any, except Redirect mode.)

Pre-conditions: Application has sent createAndRouteCallLegReq() , a request to route the call to the
destination party.

1 The request is refused e.g. the SIP server in the core network detects an error and notifies the SIP
server of the SCS.

2 The SCS invokes the createAndRouteCallLegErr method
NOTE: The SIP server of the OSA SCS should detect the denial.

Table 5-46: Parameter mapping

To: createAndRouteCallLegErr From: SIP Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping
– a correlation .

callLegReference (TpCallLegIdentifier) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

errorIndication (TpCallError) See table 6-5:
TpCallError
mapping from SIP

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 36 Release 9

5.4.2 callEnded

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

This method is invoked when the call has terminated in the network. Furthermore, the operation contains an indication

on the reason why the call has been ended. The method will always be invoked when the call is ended.

ISC: BYE etc.

 User SIP
server

SCF Application

 The SIP server of the SCS detects

that call has been released or the

call in terminated in the

network(e.g., last leg released or

disconnected)

 callEnded

OSA SCS

Figure 5-25: Call flow for callEnded()

Table 5-47: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller, Redirect.
(Any)

Pre-conditions: There is an application monitoring the call in some way.

1 The SCS detects that there is no leg connected to the call or the call has been released.
The SCS invokes the callEnded method.

NOTE: The callEnded() method is sent to the application when the last leg has released or the call itself was released

or no party has answered the call. This method does not require any SIP mapping. It reflects the call state in
the SCS.

Table 5-48: Parameter mapping

To: callEnded From: SIP: BYE, 3xx, 4xx, 5xx, 6xx Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables"
Table 4-1 to 4-5.

No direct mapping
– a correlation.

report (TpCallEndedReport) : -
 - CallLegSessionID

 (TpSessionID)
See "OSA Call and SIP Dialogue Correlation Tables"
Table 4-1 to 4-5.

 - Cause (TpReleaseCause) See table 6-18:
TpReleaseCause
for the mapping from SIP

5.4.3 getInfoRes

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

This is an asynchronous method that reports all the necessary information requested by the application, for example to

calculate charging.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 37 Release 9

 User Application

getInfoRes

OSA SCS

SIP
server

SCF

Figure 5-26: Call flow for getInfoRes()

Table 5-49: Normal operation

SIP Server Mode
for the OSA SCS:

(Proxy, UA, B2BUA or 3
rd

 party controller)
(Any, except Redirect mode)

Pre-conditions: Call is in progress. The application has requested information associated with a call via the
getInfoReq method

1 The OSA SCS detects that the call is terminated. The SCS invokes the getInfoRes() method

Table 5-50: Parameter mapping

To: getInfoRes From: SIP: BYE, 3xx, 4xx,
5xx, 6xx

Remark

callSessionID (TpSessionID) See "OSA Call and SIP
Dialogue Correlation Tables".
 Table 4-1 to 4-5.

No direct mapping – a correlation.

callInfoReport (TpCallInfoReport): -

 - CallInfoType (TpCallInfoType) See Table 6-10:
TpCallInfoType

Defines the type of call information requested
and reported

 - CallInitiationStartTime
 (TpDateAndTime)

N/A The time when the SIP server of the OSA
SCS sent the SIP INVITE message.

 - CallConnectedToResourceTime
 (TpDateAndTime)

N/A

 - CallConnectedToDestinationTime
 (TpTpDateAndTime)

N/A The moment the party received the ACK
message for the INVITE. This information
may be provided by the OSA SCS.

 - CallEndTime (TpDateAndTime) N/A Moment when SIP BYE message is sent to
participant or received from the participant..
This information may be provided by the OSA
SCS.

 - Cause (TpReleaseCause) See Table 6-18
TpReleasecause for the
mapping from SIP

5.4.4 getInfoErr

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method that reports that the original request was erroneous, or resulted in an error

condition.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 38 Release 9

 User Application

getInfoErr

OSA SCS

SIP
server

SCF

Figure 5-27: Call flow for getInfoErr()

Table 5-51: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.
(Any, except Redirect)

Pre-conditions: Call is in progress. The application has requested information associated with a call via the
getInfoReq method

1 The original request getInfoReq is erroneous or cannot be accepted due to e.g. call terminates
abnormally.

2 The SCS identifies the correct applications that requested the call information and invokes the
getInfoErr method.

Table 5-52: Parameter mapping

To: getInfoErr From: SIP 4xx Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a
correlation.

errorIndication (TpCallError) See Table 6-5:
TpCallError mapping table from SIP.

5.4.5 superviseErr

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This is an asynchronous method that reports a call supervision error to the application.

 User Application

superviseErr

OSA SCS

SIP
server

SCF

Figure 5-28: Call flow for superviseErr()

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 39 Release 9

Table 5-53: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller
(Any, except Redirect mode).

However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of
operation is demanded. For this treatment, if the SCS is acting as a proxy, the only SIP
message the SCS can generate after sending superviseErr() in the call leg is BYE.

Pre-conditions: Call is in progress. The application has requested information associated with a call via the
superviseReq method.

1 The SCS detects an error that can affect call supervision, e.g. call routing error.

2 The SCS identifies the correct applications that requested the call information and invokes the
superviseErr method.

Table 5-54: Parameter mapping

To: createAndRouteCallLegErr From: SIP 4xx Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a
correlation .

errorIndication (TpCallError) See Table 6-5:
TpCallError
mapping from SIP

5.4.6 superviseRes

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in TpDuration) :

void

This is an asynchronous method that reports a call supervision event to the application.

 User Application

superviseRes

OSA SCS

SIP
server

SCF

Figure 5-29: Call flow for superviseRes()

Table 5-55: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller
(Any, except Redirect mode).

However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of
operation is demanded. For this treatment, if the SCS is acting as a proxy, the only SIP
message the SCS can generate after sending superviseErr() in the call leg is BYE.

Pre-conditions: Call is in progress. The application has requested information associated with a call via the
superviseReq method. The specified call supervision timer expires.

1 The OSA SCS detects that the supervision time is expired and acts according to the requested
treatment (e.g. release call sending BYE) in superviseReq The OSA SCS identifies the correct
application and invokes the superviseRes method.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 40 Release 9

Table 5-56: Parameter mapping

To: superviseRes From: SIP Remark

callSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a
correlation .

report (TpCallSuperviseReport) N/A Defines the response(s) from
the call control service for
calls that have been
supervised, (e.g. timeout,
call-ended, tone-applied, UI-
finished).

usedTime (TpDuration) N/A No direct mapping to SIP:

5.5 CallLeg Service Interface

The call leg interface class represents the logical call leg associating a call with an address.

The leg represents the signalling relationship between the call and an address.

5.5.1 routeReq

routeReq (callLegSessionID : in TpSessionID, targetAddess : in TpAddress, originatingAddress : in TpAddress,

appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) : void

This method is an asynchronous method used to request routing of the call leg to the remote party indicated by the

target address.

1. routeReq

 User SIP
server

SCF Application

 2. ISC: INVITE

Figure 5-30: Call flow for routeReq(), UA mode

5.5.1.1 Case 1 UA mode operation

Table 5-57: Normal operation, UA operation mode

SIP Server Mode
for the OSA SCS:

UA mode

The generation of a SIP message (INVITE) on request from the application demands the SIP
server of the OSA to operate in a UA mode (e.g. UAC, B2BUA, 3

rd
 party controller).

Pre-conditions: A relationship between the application and the call including associated objects exists.
For the routeReq() method, the SCS does not create any new call or call leg objects since
the method is called on the existing Terminating Call Leg object

1 The application invokes the routeReq method. The SCS enables the call to be set-up by issuing
an invitation (INVITE) for the end-user to be called.

2

NOTE 1: The routeReq method is applicable only for the terminating leg in the MPCC call leg STD.
The SIP server of the OSA SCS should sent the INVITE for request thee routing to remote party.
Forking is not supported by the OSA API.
The call flow for this method is the equivalent to the createCallAndRouteReq() method.

NOTE 2: When operation in B2BUA mode the flow is similar to UA mode, but behaviour reflects a specialisation of a proxy
server comprising the split of the SIP dialogue between the end-users into two dialogues – one for each call
party
enabling the application to gain full session control.

NOTE 3: See also Annex B and the flow examples B2-B5.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 41 Release 9

Table 5-58: Parameter mapping, UA mode operation

From: routeReq To: SIP INVITE Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-2 to 4-5.

No direct mapping – a
correlation is created.

targetAddress (TpAddress) Request-URI

See Table 6-2:
TpAddress
mapping to SIP.

originatingAddress (TpAddress) FROM header:
SIP URL

See Table 6-2:
TpAddress
mapping to SIP.

appInfo (TpCallAppInfoSet) See Table 6-4:
TpCallAppInfo
mapping to SIP.

ConnectionProperties
(TpCallLegConnectionProperties):

See Table 6-12
TpCallLegConnectionProperties
mapping to SIP.

NOTE: See also Annex B and Annex C.

5.5.1.2 Case 2 Proxy mode operation

3. routeReq

SIP
server

SCF Application

2. eventReportRes

 4. ISC: INVITE

1. ISC :INVITE
A B

 User

Figure 5-31: Call flow for routeReq(), Proxy mode

Table 5-59: Normal operation, Proxy operation mode

SIP Server Mode
for the OSA SCS:

Proxy mode

The routeReq is used to forward a call (SIP message (INVITE)) on request from the
application: The SIP server of the OSA SCS operates in proxy mode.

Pre-conditions: A relationship between the application and the call including associated objects exists.
For the routeReq() method, the SCS does not create any new call or call leg objects since
the method is called on the terminating call leg object

1 The application invokes the routeReq method. The SCS enables the call to be set-up by proxying
the invitation (INVITE) for the end-user to be called.

NOTE: The routeReq method is applicable only for the terminating leg in the MPCC call leg STD.
The SIP server of the OSA SCS should forward sent the INVITE for request the routing to remote party.
Forking is not supported by the OSA API.
The call flow for this method is equivalent to createCallAndRouteReq() method.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 42 Release 9

Table 5-60: Parameter mapping, Proxy mode operation

From: routeReq To: SIP INVITE Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue
Correlation Tables".
Table 4-2.

No direct mapping – a correlation is created.

targetAddress (TpAddress) Request-URI Header or P-Called-
Party-ID [19]
See Table 6-2:
TpAddress
mapping to SIP.

When the SCS receives an INVITE (flow 1
in figure 5-31), if the P-Called-Party-ID
header is present, then uses this header to
identify the target address in the outgoing
INVITE (flow 4 in figure 5-31). If not, then
uses the Request-URI instead.

originatingAddress (TpAddress) N/A FROM header: not to be changed

appInfo (TpCallAppInfoSet) See Table 6-4:
TpCallAppInfo
mapping to SIP

ConnectionProperties
(TpCallLegConnectionProperties):

See Table 6-12:
TpCallLegConnectionProperties

NOTE: See also Annex B and Annex C.

5.5.2 eventReportReq

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

This method is an asynchronous method used to set, clear or change criteria for the events that the Call Leg object will

observe.

Application

eventReportReq

OSA SCS

SIP
server

SCF

Figure 5-32: Call flow for eventReportReq()

Table 5-61: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.
(Any mode, except Redirection.)

Pre-conditions: A relationship between the application and the call including associated leg objects exists.
The eventReportReq method must be invoked before call set-up (e.g. routeReq method) if to
monitor events reporting the results of the call set-up request (invitation).

1 The application invokes the eventReportReq method. The OSA SCS enables the call to be
monitored for subsequent events to be reported.

2 The SCS monitors the call and will later on send the corresponding eventReportRes() or
eventReportErr() based on the messages received for the controlling entity, i.e. the SIP server of
the OSA SCS.

NOTE: The eventReportReq method is applicable for any leg created leg being part of the MPCC call leg STD.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 43 Release 9

Table 5-62: Parameter mapping

From: eventReportReq From: SIP Remark

callLegSessionID See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

A correlation - no
direct mapping

eventsRequested (TpCallEventRequestSet) See Table 6-8:
TpCallEventRequest
mapping from SIP.

5.5.3 release

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method is used to request the release of a single call leg.

 3a. ISC 200 OK

Application

 2a. ISC: BYE

1. Release

3. ISC : 200 OK

OSA SCS

2. ISC: BYE

B A

 User
SIP
server

SCF

Figure 5-18a: Call flow for release, acting as proxy

 Note: The participant is already

 connected: SIP: 200 OK - ACK

messages have been exchanged

: 3. ISC: 200 OK

 User Application

 2a. ISC: BYE
1a. release

 ISC: ACK

ISC: 200 OK

OSA SCS

SCF SIP
server

Figure 5-33: Scenario a: Call flow for release(), participant connected, UA mode

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 44 Release 9

 Note: The participant is not yet

 connected: SIP: INVITE has been

sent, but 200 OK - ACK

messages have not been exchanged

: 3. SIP: 200 OK

 User Application

 2b. SIP: CANCEL
1b. release

 SIP: 1xx

SIP: INVITE

OSA SCS

SIP
server

SCF

Figure 5-34: Scenario b: Call Flow for release(),

pending call attempt toward participant, UA mode

 Note: The participant is not yet

 conneced.

 SIP: Invite has been sent

 A negative response is received.

: 3c. ISC: ACK

 User Application

 ISC: 1xx

4c. CallEnded()

 2c. ISC: 3xx, 4xx, 5xx, 6xx

ISC: INVITE

3c. eventReportRes()

OSA SCS

SIP
server

SCF

Figure 5-35: Scenario c: Call flow for release(),
call (invite) to participant not accepted

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 45 Release 9

 Note: The participant is not yet

 conneced.

 SIP: Invite has been received

 A negative final response

 is provided by the application

 (e.g.call barring).

:

 User Application

 ISC: INVITE

1. release

 2d. ISC: 3xx, 4xx, 5xx, 6xx

ISC: ACK

OSA SCS

SIP
server

SCF

Figure 5-36: Scenario d: Call flow for release(),

call (invite) from participant not accepted

Table 5-63: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy and UA mode

The generation of a SIP message (BYE) on request from the application to release
participants in the call demands the SIP server of the OSA to operate in a proxy or UA mode
(e.g. UAC, B2BUA, 3

rd
 party controller).

Pre-conditions: Call is in progress

1 The application or the SCS invokes the release method. The SCS generates the SIP message to
release the requested parties (call leg) from the call

2a Scenario 2a: SIP BYE is sent. The SIP server sends the BYE Message toward the participant
connected to the call.

2b Scenario 2b: SIP CANCEL is sent to terminate a pending leg. The SIP server sends the CANCEL
message toward the participants associated to the call but not connected yet.
Note: CANCEL secures in case of SIP forking that all with the OSA leg possible associated
pending SIP legs will be released. CANCEL cannot be sent when SCS is acting as a proxy.

2c Scenario 2c: The invitation to a participant is not accepted. The application sends a Release to
terminate its leg.
Note: It could also send a continueProcessing() or deassign() to terminate it logical call leg
object representing the connection (SIP leg) in the network. !!

2d

NOTE: For scenario 2c the application could instead of release() send a continueProcessing() or deassign() to
terminate it logical call leg object representing the connection (SIP leg) in the network. !!
When operating in B2BUA mode the decision whether a release from one participant will cause the release of
any other participant can be controlled by the application.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 46 Release 9

Table 5-64: Parameter mapping

From: release To: SIP BYE, 4xx, 5xx,
Cancel (if any pending INVITE requests

from application)

Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue
Correlation Tables".
Table 4-2 to 4-5.

A correlation - no direct mapping

cause (TpReleaseCause) See table 6-17: TpReleaseCause for
mapping to SIP

See table for TpReleaseCause for
mapping to SIP response codes

NOTE: The release() method may be sent any time from the application e.g. resulting in
a) the termination of an establishment session (BYE) or
b) the cancellation of a pending request (CANCEL) after the application has issued an INVITE request.
c) the termination of an unsuccesful call attempt (e.g. meeting busy, not reachable etc.) or
d) creation of a SIP response (e.g. 4xx, 5xx) to an incoming INVITE request.

5.5.4 getInfoReq

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

This method is an asynchronous method that requests informat ion associated with the call to be provided at the

appropriate time (for example, to calculate charging).

 User Application

getInfoReq

OSA SCS

SIP
server

SCF

Figure 5-37: Call flow for getInfoReq()

Table 5-65: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.
(Any, except Redirect mode.)

Pre-conditions: A relationship between the application and the call including associated call leg objects
exists.
The getInfoReq method must be invoked on a call leg before the call leg is routed to a target
address.

1 The application invokes the getInfoReq method. The SCS monitors the call leg to be capable to
collect the requested information.

2 The OSA SCS will later on send the corresponding getInfoRes() or getInfoErr() based on the
messages received from the SIP server of the OSA SCS.

3
NOTE 1: The getInfoReq() method is not related to SIP signalling, it is sent by the application to request information

associated to the call. Indeed the method does not involve SIP mapping.
NOTE 2: The OSA SCS should use the messages received by the SIP server during the call session in order to sent the

corresponding getInfoRes() or getInfoErr() method.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 47 Release 9

Table 5-66: Parameter mapping

From: getInfoReq To: SIP Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct
mapping – a
correlation.

callLegInfoRequested (TpCallLegInfoType) See table 6-11: TpCallLegInfoType
NOTE: There is no direct mapping to SIP. The getInfoReq() method results in supervision of the following SIP events:

a) receipt of a SIP response (200 OK/ACK) to an incoming INVITE request or
b) the termination of an establishment session (BYE).

5.5.5 getCall

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

This method used to retrieve the reference of the Call object associated with the Call leg object.

 User Application

getCall

OSA SCS

SIP
server

SCF

Figure 5-38: Call flow for getCall()

Table 5-67: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller, Redirect.
(Any)

Pre-conditions: A relationship between the application and the call including associated call leg object(s)
exists. The getCall method can be invoked on any existing call leg object.

1 The application invokes the getCall method. The SCS return the associated call object reference
to the application.

NOTE: The getCallLeg() method is not related to SIP signalling, it is sent by the application to request information
about the associated logical call object in the SCS. Indeed the method does not involve any SIP mapping.

Table 5-68: Parameter mapping

From: getInfoReq To: SIP Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping,
merely a correlation is
created.

Returns:
TpMultiPartyCallIdentifier
 - CallReference (IpMultiPartyCallRef)
 - CallSessionID (TpSessionID)

N/A

5.5.6 continueProcessing

continueProcessing (callLegSessionID : in TpSessionID) : void

This method used to continue processing of the call.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 48 Release 9

 User Application

continueProcessing
 SIP call processing resumed

 - processing of any interupted

 SIP message is resumed.

-

OSA SCS

SIP
server

SCF

Figure 5-39: Call flow for continueProcessing()

Table 5-69: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller
(Any, except Redirection.)

Pre-conditions: A relationship between the application and the call including associated call leg object(s)
exists. Call processing is suspended and the application is informed of call related events
in interrupt mode.

1 The application invokes the continueProcessing method requesting processing for the call leg
object to be resumed.

2 The SCS requests the SIP server of the OSA SCS to resume SIP processing, when the call is to
be resumed. That is the necessary response(s) from the application to resume call processing has
been determined.

NOTE: The continueProcessing method is addressed to a single leg object.
Resumption of SIP call processing occurs when all the MPCCS leg objects STDs are in processing state (not
suspended).
The continueProcessing method can be invoked on any existing call leg object to resume processing.

Table 5-70: Parameter mapping

From: continueProcessing To: SIP Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping, merely a
correlation is created.

5.5.7 attachMediaReq

attachMediaReq (callLegSessionID : in TpSessionID) : void

This asynchronous method used to request that the call leg be attached to its call object. This will allow transmission on

all associated bearer connections or media streams to and from other parties in the call. The call leg must be in the

connected state for this method to complete successfully. However, the request may be sent as soon as the call leg

object exists.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 49 Release 9

 Note: The applicationrequests e.g. in

 routeReq(connectionproperties)

 the media to be detached implying initial

invite with SDP but all the media are put on

hold, and user responds with its SDP in 200

OK. .

The media is enabled by using UPDATE

eventReportRes

 ISC: ACK

 User Application

 ISC: 200 OK (SDP user)

 attachMediaReq

 ISC: UPDATE

 (cancel media on hold)

ISC: INVITE (with SDP,

media put on hold)

 e.g. routeReq (detach media)

eventReportRes()

OSA SCS

SIP
server

SCF

 ISC: 200 OK (SDP user)

 Media Exchange

Communication Peer

Note: This can either be a

media resource server

assigned by the application or

other user terminals.

Figure 5-40: Scenario a: Call flow for attachMediaReq(), UA/B2BUA mode

 Note: The application may in

 deachMedia request the media to be

detached, i.e. to put the media for the

participant on hold (disconnected)

See detachMediaReq method

detackMediaRes
: 3c. ISC: ACK

 User Application

 ISC: 200 OK

4c. attachMediaReq
 2c. ISC: UPDATE (media is

active)

ISC: UPDATE (media on hold)

3c.detachMediaReq (detach media)

eventReportRes()

OSA SCS

SIP
server

SCF

Figure 5-41: Scenario b: Call flow for attachMediaReq(), UA/B2BUA mode

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 50 Release 9

Table 5-71: Normal operation

SIP Server Mode
for the OSA SCS:

UA, B2BUA, 3
rd

. party controller mode

The generation of a SIP message (UPDATE [12]) on request from the application to attach
media channels of a single user in the call demands the SIP server of the OSA SCS to
operate in a UA mode (e.g. UAC, B2BUA, 3

rd
 party controller).

Pre-conditions: Call is processing. A relationship between the application and the call including associated
call leg object(s) exists. The leg is in a connection state and has a media connection
established with the others legs in the call.
AttachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if
received before the SCS should buffer the request until it can be executed..

1 The application invokes the attachMediaReq method requesting the media stream(s) for the call
leg object to be attached, i.e. enabling media communication fie the call party. Application request
the media attachment for this leg.

2 The SCS requests the SIP server of the OSA SCS to attach the media when the call enables this..
The SCS generates a new SIP UPDATE message to be sent to the participant, i.e. in this case the
attachMediaReq() method is mapped onto the UPDATE message.

NOTE 1: The new UPDATE sent to the participant does not affect a SIP dialog, it is only updating the previous SIP
session since the SIP call-ID will be the same, only the SIP CSEQ will be higher to indicate that the media
description has changed.

NOTE 2: The attachMediaReq method can be invoked on any existing call leg object to request the media attachment. If
SIP processing is in the call set-up phase, the request is buffered until it can be executed, i.e. it is not executed
until the phase in call procession where it is applicable to connect media. Note: no error is reported in case
media is already attached.

NOTE 3: In SIP, the natural behaviour is to establish the media session once the signalling is established. In OSA a
party can be disconnected (detachMediaReq) and re-connected (attachMediaReq) to a call. A way to map this
functionality in SIP is to use the SDP on hold feature enabling putting the media streams on hold (detach
media) while the session is established or after the establishment. When the application will request to attach
the media, a new UPDATE will be sent to the participant with the media session description.

NOTE 4: See also Annex B and flow example B6.

Table 5-72: Parameter mapping

From: continueProcessing To: SIP Remark
callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".

Table 4-2 to 4-5.
No direct mapping – a
correlation.

5.5.8 detachMediaReq

detachMedia (callLegSessionID : in TpSessionID) : void

This asynchronous method is used to detach the call leg from its call, i.e., this will prevent transmission on any

associated bearer connections or media streams to and from other parties in the call. The call leg must be in the

connected state for this method to complete successfully.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 51 Release 9

 Note: The application may in

 deachMedia request the media to be

detached, i.e. to put the media for the

participant on hold (disconnected)

 User Application

ISC: UPDATE (media is on hold))

1.detachMediaReq

OSA SCS

SIP
server

SCF

Figure 5-42: Call flow for detachMediaReq(), UA/B2BUA mode

Table 5-73: Normal operation

SIP Server Mode
for the OSA SCS.

UA, B2BUA, 3
rd

. party controller mode

The generation of a SIP message (UPDATE) on request from the application to detach media
channels of a single user in the call demands the SIP server of the OSA SCS to operate in a
UA mode (e.g. UAC, B2BUA, 3

rd
 party controller).

Pre-conditions: Call is processing. A relationship between the application and the call including associated
call leg object(s) exists. The leg is in a connection state and has a media connection
established with the others legs in the call.
DetachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if
received before the SCS should buffer the request until it can be executed.

1 The application invokes the detachMediaReq method requesting the media stream(s) for the call
leg object to be de-attached, i.e. enabling to put the media communication on hold for the call
party. Application request the media de-attachment for this leg. The application prevents the
transmission of media connection to this leg by calling the detachMediaReq().

2 The SCS requests the SIP server of the OSA SCS to de-attach the media when the call enables
this..
The SCS generates a new SIP UPDATE message to be sent to the participant, i.e. in this case the
detachMediaReq() method is mapped onto a SIP UPDATE message with an SDP on hold.

NOTE 1: The new UPDATE sent to the participant does not affect a SIP dialog, it is only updating the previous SIP
session since the SIP call-ID will be the same, only the SIP CSEQ will be higher to indicate that the media
description has changed.
The detachMediaReq method can be invoked on any existing call leg object to request the media attachment.
If SIP processing is in the call set-up phase, the request is buffered until it can be executed, i.e. it is not
executed until the phase in call procession where it is applicable to connect media. Note: no error is reported in
case media is already detached.
In SIP, the natural behaviour is to establish the media session once the signalling is established. In OSA a
party can be disconnected (detachMedia) and re-connected (attachMedia) to a call.
A way to map this functionality in SIP is to use the SDP on hold feature enabling putting the media streams on
hold (detach media) while the session is established or after the establishment. When the application will
request to attach the media, a new UPDATE will be sent to the participant with the media session description.

NOTE 2: See also Annex B and flow example B6.

Table 5-74: Parameter mapping

From: continueProcessing To: SIP Remark
callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".

Table 4-2 to 4-5.
No direct mapping – a
correlation.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 52 Release 9

5.5.9 deassign

deassignCall (callLegSessionID : in TpSessionID) : void

This method is used to request that the relationship between the application and the call leg and associated objects be

de-assigned. It leaves the call in progress, however, it purges the specified call leg object so that the application has no

further control of call leg p rocessing. If a call leg is de-assigned that has event reports or call information reports

requested, then these reports will be d isabled and any related information d iscarded.

 User Application

deassign

OSA SCS

SIP
server

SCF

Figure 5-43: Call flow for deassign()

Table 5-75: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller, Redirect.
(Any)

Pre-conditions: A relationship between the application and the call leg including associated objects exists.

1 The application invokes the deassign method on a leg
2 The SCS terminates the relationship between the application and the call leg and its associated

objects and notifies the SIP server of the OSA SCS.

3 The SIP server of the OSA SCS is to continue call processing autonomously, i.e. without any
control from the application related to the call leg object. Any possible interrupted call processing
related to the leg that has been deassigned control is to be resumed.

NOTE: If the application was the only one to control the session, the SIP server of the OSA SCS may remove itself
from the route-request.

Table 5-76: Parameter mapping

From: continueProcessing To: SIP xx Remark
callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".

Table 4-1 to 4-5.
No direct mapping, merely
a correlation is created.

5.5.10 getCurrentDestinationAddress

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

This method is sent by the application to the leg to get the current address of the destination the leg has been directed to.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 53 Release 9

 Note: Returns the address of the

destination point towards which the

call leg has been routed.

User Application

1. getCurrentDestinationAddress

OSA SCS

SIP
server

SCF

Figure 5-44: Call flow for getCurrentDestinationAddress()

Table 5-77: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.
(Any, except Redirect)

Pre-conditions: A relationship between the application and the call including associated call leg object(s)
exists. The leg is in a connection and is a terminating leg in the MPCCS STD.

1 The application invokes the getCurrentDestinationAddress method requesting information for the
call leg object regarding the address of current destination point..

2 The SCS returns the address of the destination point towards which the call leg has been routed in
the method return parameter.

NOTE: The getCurrentDestinationAddress method can be invoked on any OSA MPCCS Terminating Call Leg
object.

Table 5-78: Parameter mapping

From: getLastRedirectedAddress To: SIP Remark
callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".

Table 4-1 to 4-5.
No direct mapping, merely
a correlation is created..

Returns:
TpAddress

See Table 6-2:
TpAddress
mapping to SIP.

Specifies the last address
where the call leg was
directed to.

5.6 CallLeg Application Interface

5.6.1 routeErr

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method which indicates that the request to route the call to the destination party wa s

unsuccessful – the call could not be routed to the destination party (for example, parameters were incorrect, invalid

address, the request was refused, etc).

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 54 Release 9

 User Application

routeErr

 ISC: 400, 404, 413, 414, 416, 484, 485

 (response to previous sent INVITE)

ACK

OSA SCS

SIP
server

SCF

Figure 5-45: Call flow for routeErr()

Table 5-79: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.
(Any , except Redirect mode.)

Pre-conditions: Application has sent routeReq() , a request to route the call to the destination party.
1 The request is refused e.g. the SIP server in the core network detects an error and notifies the SIP

server of the SCS.

2 The SCS invokes the routeErr method

NOTE: The SIP server of the OSA SCS could detect the denial.

Table 5-80: Parameter mapping

To: routeErr From: SIP Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a
correlation.

errorIndication (TpCallError) See Table 6-5:
TpCallError
for mapping from SIP.

5.6.2 eventReportRes

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

This asynchronous method is used to report that an event has occurred on the call leg that was requested to be reported

(for example , a mid-call event from the party; the party has requested to disconnect; etc.).

 User Application

2. eventReportRes
1. ISC: Any SIP message which

meets the filter criteria of the

application

OSA SCS

SIP
server

SCF

Figure 5-46: Call flow for eventReportRes()

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 55 Release 9

Table 5-81: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.

Pre-conditions: A relationship between the application and the call including associated call leg object(s)
exists. The application requested to be notified of the event with e.g. eventReportReq and
this specific event has occurred in the network.

1 The SIP server of the OSA SCS detects a SIP message (response or request) that corresponds to
a requested call event to be reported to the application.

2 The OSA SCS invokes the eventReportRes() method.

Table 5-82: Parameter mapping

To: eventReportRes From: SIP (any SIP message) Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a
correlation.

eventInfo (TpCallEventInfo) See Table 6-7:
TpCallEventInfo
mapping from SIP.

5.6.3 eventReportErr

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method used to indicate that the request to manage call leg event reports was

unsuccessful (for example, parameters were incorrect, the request was refused, etc).

 User Application

eventReportErr

OSA SCS

SIP
server

SCF

Figure 5-47: Call flow for eventReportErr()

Table 5-83: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.
(Any, except Redirect)

Pre-conditions: Call is in progress. The application has requested information associated with a call via the
eventReportReq method

1 The original request eventReportReq is erroneous - or cannot be accepted due to e.g. call
terminates abnormally.

2 The SCS identifies the correct applications that requested the event report information and invokes
the eventReportErr method.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 56 Release 9

Table 5-84: Parameter mapping

To: eventReportErr From: SIP 4xx Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a
correlation.

errorIndication (TpCallError) See Table 6-5:
TpCallError
for mapping
from SIP.

5.6.4 callLegEnded

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

This method is used to indicate to the application that the leg has terminated in the network. The application has

received all requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning fro m

this method. Furthermore, the operation contains an indication on the reason why the call leg has been ended. The

method will always be invoked when the call leg is ended.

ISC: BYE etc.

 User Application

 The SIP server of the OSA SCS

detects that call leg (OSA leg) has

been released

 callLegEnded

OSA SCS

SIP
server

SCF

Figure 5-48: Call flow for callLegEnded()

Table 5-85: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller, Redirect

Pre-conditions: There is an application monitoring the call in some way.

1 The SCS detects that the OSA call leg object connected to the call is destroyed, i.e. the call has
been released.
The SCS invokes the callLegEnded method.

NOTE: The callLegEnd() method is sent to the application when the party associated with the leg has released or the
call itself was released to connection to the party .

Table 5-86: Parameter mapping

To: callLegEnded From: SIP Remark

callLegSessionID
(TpSessionID)

See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping, merely a
correlation is created

cause (TpReleaseCause) See Table 6-18;
TpReleaseCause Mapping from SIP

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 57 Release 9

5.6.5 getInfoRes

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

This is an asynchronous method that is used to report all the necessary informat ion requested by the application, fo r

example to calculate charging.

 User Application

getInfoRes

OSA SCS

SIP
server

SCF

Figure 5-49: Call flow for getInfoRes()

Table 5-87: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller, Redirect
(Any)

Pre-conditions: Call is in progress. The application has requested call leg information with the getInfoReq method.

1 The SCS detects that the OSA call leg is terminated. The SCS invokes the getInfoRes() method.
The OSA SCS has via its SIP Server collected the requested call related information which is
reported to the application.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 58 Release 9

Table 5-88: Parameter mapping

To: getInfoRes From: SIP: Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP
Dialogue Correlation
Tables".
Table 4-1 to 4-5.

No direct mapping – a correlation.

callLegInfoReport (TpCallLegInfoReport): -

 -CallLegInfoType (TpCallLegInfoType) N/A Indicates the type of the call leg information
being reported.

 - CallLegStartTime (TpDateAndTime) Date header in INVITE The time and date when the call leg was
started (i.e. the leg was routed).When the
SCS received/ sent the SIP INVITE message
to initiate the call, if the Date header is not
present, the OSA SCS should make a time
stamp to be used as this parameter value.

- CallLegConnectedToResourceTime
 (TpDateAndTime)

N/A The date and time when the call leg was
connected to the resource. If no resource was
connected the time is set to an empty string.
Either this element is valid or the
CallConnectedToAddressTime is valid,
depending on whether the report is sent as a
result of user interaction.

- CallLegConnectedToAddressTime
 (TpDateAndTime)

ACK message for the
INVITE (answer
confirmed).

The date and time when the party received
the ACK message for the INVITE (answer
confirmed). This information may be provided
by the SIP server.
It tells when the call leg was connected to the
destination (i.e. when the destination
answered the call). If the destination did not
answer, the time is set to an empty string.

- CallLegEndTime
 (TpDateAndTime)

SIP BYE Date and time when the call leg was released
(e.g. SIP BYE message is sent to participant
or received from the participant).

- ConnectedAddress (TpAddress) FROM header URL (OSA
terminating call leg)
or
Request-URI (OSA
originating call leg)See
Table 6-2:
TpAddress
for mapping from SIP

The address of the party associated with the
leg. If during the call the connected address
was received from the party (SIP Contact
header ?) then this is returned, otherwise the
destination address (for legs connected to a
destination) or the originating address (for
legs connected to the origination) is returned

- CallLegReleaseCause (TpReleaseCause) See Table 6-18:
TpReleaseCause
for mapping from SIP

The cause of the termination. May be present
with P_CALL_LEG_INFO_RELEASE_CAUSE
was specified

- CallAppInfo (TpCallAppInfoSet)

See Table 6-4:
TpCallAppInfo
for mapping from SIP

Additional information for the leg. May be
present with P_CALL_LEG_INFO_APPINFO
was specified.

NOTE: A set of TpCallAppInfo.

5.6.6 getInfoErr

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This method is an asynchronous method that reports that the original request was erroneous, or resulted in an error

condition.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 59 Release 9

 User Application

getInfoErr

OSA SCS

SIP
server

SCF

Figure 5-50: Call flow for getInfoErr()

Table 5-89: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller, Redirect.

Pre-conditions: Call is in progress. The application has requested information associated with a call leg via
the getInfoReq method

1 The original request getInfoReq is erroneous or cannot be accepted due to e.g. call leg terminates
abnormally.

2 The SCS identifies the correct applications that requested the call leg information and invokes the
getInfoErr method.

Table 5-90: Parameter mapping

To: getInfoErr From: SIP Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a
correlation.

errorIndication (TpCallError): See Table 6-5:
TpCallError for mapping from SIP.

5.6.7 superviseErr

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This is an asynchronous method that reports a call leg supervision error to the application.

 User Application

superviseErr

OSA SCS

SIP
server

SCF

Figure 5-51: Call flow for superviseErr()

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 60 Release 9

Table 5-91: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.
(Any, except Redirect mode.)

However, if treatment (TpCallSuperviseTreatment) implies call release, then UA mode of
operation is demanded. For this treatment, if the SCS is acting as a proxy, the only SIP
message the SCS can generate after receiving superviseRes() in the call leg is BYE.

Pre-conditions: Call is in progress. The application has requested information associated with a call via the
superviseReq method.

1 The SCS detects an error that can affect call supervision, e.g. call routing error.

2 The SCS identifies the correct applications that requested the call information and invokes the
superviseErr method.

Table 5-92: Parameter mapping

To: superviseErr From: SIP 4xx Remark

callLegSessionID
(TpSessionID)

See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a
correlation.

errorIndication (TpCallError) See Table 6-5:
TpCallError
mapping from SIP

5.6.8 superviseRes

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in

TpDuration): void

This is an asynchronous method that reports a call leg supervision event to the application.

 User Application

superviseRes

OSA SCS

SIP
server

SCF

Figure 5-52: Call flow for superviseRes()

Table 5-93: Normal operation

SIP Server Mode
for the OSA SCS:

Proxy, UA, B2BUA or 3
rd

 party controller.
(Any, except Redirect mode.)

However, if treatment (TpCallSuperviseTreatment) implies call leg release, then UA mode of
operation is demanded. For this treatment, if the SCS is acting as a proxy, the only SIP
message the SCS can generate after receiving superviseRes() in the call leg is BYE.

Pre-conditions: Call is in progress. The application has requested information associated with a call leg via
the superviseReq method. The specified call leg supervision timer expires.

1 The SCS detects that the supervision time is expired and acts according to the requested
treatment (e.g. release call sending BYE) in superviseReq .
The SCS identifies the correct application and invokes the superviseRes method.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 61 Release 9

Table 5-94: Parameter mapping

To: superviseRes From: SIP 4xx Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue
Correlation Tables".
Table 4-1 to 4-5.

No direct mapping – a correlation.

report (TpCallSuperviseReport) N/A Defines the response(s) from the call control
service for calls that have been supervised, (e.g.
timeout, call-ended, tone-applied, UI-finished).

usedTime (TpDuration) BYE (release call)

No direct mapping to SIP:
TpCallSuperviseTreatment in superviseReq
defines the treatment of the call by the call
control service when the call supervision timer
expires. It may be a request to release

(P_CALL_SUPERVISE_RELEASE) the call and
/or a request to send a warning tone
(P_CALL_SUPERVISE_TONE_APPLIED) to the caller
and/or to notify the application
The OSA SCS to issue BYE in SIP.

NOTE: The OSA SCS to issue BYE in SIP when the call supervise treatment request is to release the call.

5.6.9 attachMediaErr

attachMediaErr (callLegSessionID : in TpSess ionID, errorIndication : in TpCallError) : void

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

 User Application

attachMediaErr

OSA SCS

SIP
server

SCF

Figure 5-53: Call flow for attachMediaErr()

Table 5-95: Normal operation

SIP Server Mode
for the OSA SCS:

UA, B2BUA or 3
rd

 party controller.

Pre-conditions: Call is in progress. The application has requested attach media associated with a call leg
via the attachMediaReq method.

1 The SCS detects an error that can affect the call, e.g. call routing error.

2 The SCS identifies the correct applications that requested the attach media and invokes the
attachMediaErr method.

NOTE: A standard User (SIP user agent) should be controllable in the mechanism described here.
The mechanism relies on the support of Re-invites by user agent servers.

Table 5-96: Parameter mapping

To: superviseErr From: SIP 4xx Remark

callLegSessionID
(TpSessionID)

See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-2 to 4-5.

No direct mapping – a
correlation.

errorIndication (TpCallError) See Table 6-5:
TpCallError
mapping from SIP

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 62 Release 9

5.6.10 attachMediaRes

attachMediaRes (callLegSessionID : in TpSessionID) : void

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer

connections to this leg are now available.

 Note: It is anticipated that

 the media for the user is

 not connected.

 User Application

4c. attachMediaReq

 2c. ISC: UPDATE (media is

set to active)

 ISC: 200 OK

OSA SCS

SIP
server

SCF

 3. attachMediaRes

Figure 5-54: Scenario a: Call flow for attachMediaRes(), UA/B2BUA mode

Table 5-97: Normal operation

SIP Server Mode
for the OSA SCS:

UA mode

The generation of a SIP message (UPDATE [12]) on request from the application to attach
media channels of a single user in the call demands the SIP server of the OSA SCS to
operate in a UA mode (e.g. UAC, B2BUA, 3

rd
 party controller).

Pre-conditions: A relationship between the application and the call including associated call leg object(s)
exists. The leg is in a connection state and the media communication is on-hold for the call
party in its communication with the other legs in the call.
AttachMedia has bee requested (not executed until the connected state is reached (200 OK
/ACK) , i.e. if received before the SCS should buffer the request until it can be executed).

1 The OSA SCS has requested the media stream(s) for the call leg object to be attached when the
call/session state enables this.
(The SCS generates a new SIP UPDATE message to be sent toward the user, i.e. in this case the
attachMediaReq() method is mapped onto a SIP UPDATE message with an SDP on hold.)

2 The OSA SCS confirms the attach media (200 OK /ACK) and notifies the application about the
successful attachment of the media stream(s) for the user with the attachMediaRes()

NOTE 1: The media connection is established when application receives the attachMediaRes() method.
A standard User (SIP user agent) should be controllable in the mechanism described here.
The mechanism relies on the support of UPDATE by user agent servers.

NOTE 2: See also Annex B and flow example B6.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 63 Release 9

Table 5-98: Parameter mapping

From: attachMediaRes To: SIP Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-2 to 4-5.

No direct mapping – a
correlation.

5.6.11 detachMediaErr

detachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

 User Application

detachMediaErr

OSA SCS

SIP
server

SCF

Figure 5-55 Call Flow for detachMediaErr()

Table 5-99: Normal operation

SIP Server Mode
for the OSA SCS:

UA, B2BUA or 3
rd

 party controller.

Pre-conditions: Call is in progress. The application has requested detach media associated with a call leg
via the detachMediaReq method.

1 The SCS detects an error that can affect the call, e.g. call routing error.

2 The SCS identifies the correct applications that requested the detach media and invokes the
detachMediaErr method.

NOTE: A standard User (SIP user agent) should be controllable in the mechanism described here.
The mechanism relies on the support of Re-invites by user agent servers.

Table 5-100: Parameter mapping

To: detachMediaErr From: SIP 4xx Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-2 to 4-5.

No direct mapping – a
correlation.

errorIndication (TpCallError) See Table 6-5:
TpCallError
mapping from SIP

5.6.12 detachMediaRes

detachMediaRes (callLegSessionID : in TpSessionID) : void

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer

connections to this leg are no longer available.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 64 Release 9

 Note: The application may in

 deachMedia request the media to be

detached, i.e. to put the media for the

participant on hold (disconnected)

 User Application

 ISC: 200 OK

2.detachMediaRes

ISC: UPDATE (media is set

to on hold)

1.detachMediaReq

OSA SCS

SIP
server

SCF

Figure 5-56: Call flow for detachMediaReq/Res(), UA/B2BUA mode

Table 5-101: Normal operation

SIP Server Mode
for the OSA SCS.

UA mode

The generation of a SIP message (UPDATE [12]) on request from the application to detach
media channels of a single user in the call demands the SIP server of the OSA SCS to
operate in a UA mode (e.g. UAC, B2BUA, 3

rd
 party controller).

Pre-conditions: A relationship between the application and the call including associated call leg object(s)
exists. The leg is in a connection state and has a media connection established with the
others legs in the call.
The application has requested to put the media communication on hold for the call party
(detach media), by e.g. invoking the detachMediaReq method.

DetachMedia is not executed until the connected state is reached (200 OK /ACK) , i.e. if
received before the OSA SCS should buffer the request until it can be executed.

1 The OSA SCS has requested the SIP server of the OSA SCS to de-attach the media when the
call/session state enables this.
(The SCS generates a new SIP UPDATE message to be sent toward the user, i.e. in this case the
detachMediaReq() method is mapped onto a SIP UPDATE message with an SDP on hold.)

2 The OSA SCS confirms the detach media (200 OK /ACK) and notifies the application about the
successful detach media with the detachMediaRes()

NOTE 1: The media on-hold (disconnection) is established when application receives the detachMediaRes() method.
A way to map this functionality in SIP is to use the SDP on hold feature enabling putting the media streams on
hold (detach media) while the session is established or after the establishment.
A standard User (SIP user agent) should be controllable in the mechanism described here.
The mechanism relies on the support of UPDATE by user agent servers.

NOTE 2: See also Annex B and flow example B6.

Table 5-102: Parameter mapping

From: continueProcessing To: SIP Remark

callLegSessionID (TpSessionID) See "OSA Call and SIP Dialogue Correlation Tables".
Table 4-2 to 4-5.

No direct mapping – a
correlation.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 65 Release 9

6 Detailed parameter mappings

This clause contains detailed parameter mappings for data types that are used in the parameter mapping tables in the

previous clauses.

6.1 TpAdditionalCallEventCriteria

Table 6-1:TpAddtionalCallEventCriteria Table mapping

TpAdditionalCallEventCriteria
(TpCallEventType)

From SIP
(observe for requested

additional info)

Remark

Undefined (NULL)

(P_CALL_EVENT_UNDEFINED)

N/A

Undefined (NULL)

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT

N/A

Undefined (NULL)

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHOR

ISED

N/A

MinAddresslength (TpINT32)

P_CALL_EVENT_ADDRESS_COLLECTED

N/A

Undefined (NULL)

P_CALL_EVENT_ADDRESS_ANALYSED

N/A

OriginatingServiceCode

(TpCallServiceCode)

P_CALL_EVENT_ORIGINATING_SERVICE_CODE

N/A

OriginatingReleaseCauseSet

(TpReleaseCauseSet)

P_CALL_EVENT_ORIGINATING_RELEASE

CANCEL or BYE

Undefined (NULL)

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT

N/A

Undefined (NULL)

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHOR

ISED

N/A

Undefined (NULL)

P_CALL_EVENT_ALERTING

N/A

Undefined (NULL)

P_CALL_EVENT_ANSWER

N/A

TerminatingReleaseCauseSet

(TpReleaseCauseSet)

P_CALL_EVENT_TERMINATING_RELEASE

CANCEL, BYE or 4xx, 5xx
and 6xx responses

Undefined (NULL)

P_CALL_EVENT_REDIRECTED

N/A

TerminatingServiceCode

(TpCallServiceCode)

P_CALL_EVENT_TERMINATING_SERVICE_CODE

N/A

QueueStatus (TpString)P_CALL_EVENT_QUEUED SIP 182reason phrase.
(See note 1)

Reason phrase is
mapped to
TpString

NOTE 1: The 182 informational response may be sent several times (e.g. indicating the poison of the calling
user in a queue. Furthermore, the message body in the SIP 182 informational response can also be
used to carry e.g. music on hold or other media.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 66 Release 9

6.2 TpAddress

Table 6-2: TpAddress Table mapping

From: TpAddressRange To: SIP Remark
Plan (TpAddressPlan) SIP Specifies the address plan in force.

Here only all the address schemes which are
allowed in SIP are applicable.

AddrString (TpString) Any URL schemes
allowed by RFC
3261

Contains a valid SIP address string.

A few examples of SIP URLs:
- A user of an online service:
 "sip:user@xxx.org"
 "sip:alice@10.1.1.1"
 - A PSTN phone number at a gateway service:
"sip:1212@gateway.com",
"sip: +1-212-555-1212:1234@gateway.com; user
=phone"
An example of tel URL:
tel: +1-212-555-1212
Notice: For SIP addresses, wildcards are allowed
between the 'sip:' and the '@' in the AddrString,
e.g.
"sip:*@sales.org" matches all SIP addresses at
sales.org:5060.

Name (TpString) N/A

Presentation

(TpAddressPresentation)
N/A

Defines whether an address can be presented to
an end user (presentation allowed or restriced or
address not available for presentation) .

Screening

(TpAddressScreening)
N/A

Defines whether an address can be presented to
an end user. E.g. "user provided address
verified and passed" or "Network provided
address"

SubAddressString (TpString) N/A
NOTE 1: The AddrString defines the actual address information and the structure of the string depends on the

Plan.
Further information can be found in the OSA API part covering common data definitions [1].

NOTE 2: It should be noted that two SIP addresses will be regarded as equivalent by a gateway if they
correspond to the same user at the same network address. The textual form of the two addresses

need not be the same. For example, sip:enquiries@yyy.org will be deemed to match

<sip:Enquiries@1.2.3.4:5060>Enquiries (if yyy.org resolves to 1.2.3.4).

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 67 Release 9

6.3 TpAddressRange

Table 6-3: TpAddressRange Table mapping

From: TpAddressRange To: SIP Remark
Plan (TpAddressPlan) SIP Specifies the address plan in force.

Here only SIP URL is applicable.

AddrString (TpString) Any URL schemes
allowed by RFC
3261

Contains a valid SIP address string.

A few examples of SIP URLs:
- A user of an online service:
 "sip:user@xxx.org"
 "sip:alice@10.1.1.1"
 - A PSTN phone number at a gateway service:
"sip:1212@gateway.com",
"sip: +1-212-555-1212:1234@gateway.com; user
=phone"

An example of tel URL:
tel: +1-212-555-1212

Notice: For SIP addresses, wildcards are allowed
between the 'sip:' and the '@' in the AddrString,
e.g.
"sip:*@sales.org" matches all SIP addresses at
sales.org:5060.

Name (TpString) N/A

SubAddressString (TpString) N/A
NOTE 1: The AddrString defines the actual address information and the structure of the string depends on the

Plan.
Further information can be found in the OSA API part covering common data definitions [1].

NOTE 2: It should be noted that two SIP addresses will be regarded as equivalent by a gateway if they
correspond to the same user at the same network address. The textual form of the two addresses

need not be the same. For example, sip:enquiries@yyy.org will be deemed to match

<sip:Enquiries@1.2.3.4:5060>Enquiries (if yyy.org resolves to 1.2.3.4).

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 68 Release 9

6.4 TpCallAppInfo

Table 6-4: TpCallAppInfo Table mapping

To: TpCallAppInfo From: SIP Remark
CallAppAlertingMechanism
(TpCallAlertingMechanism)

Alert-Info Indicates the alerting mechanism or pattern
to use.
When present in an INVITE request, the
Alert-Info header field specifies an
alternative ring tone to the UAS. When
present in a 180 (Ringing) response, the
Alert-Info header field specifies an
alternative ring back tone to the UAC.

CallAppNetworkAccessType
(TpCallNetworkAccessType)

N/A Indicates the network access type (e.g.
ISDN)
Not mapped. No valid value for SIP in this
parameter

CallAppTeleService
(TpCallTeleService)

SDP

Indicates the tele service (e.g. telephony).
Specifies the type of media indicated in the
incoming SDP e.g. data, audio, video,
messaging.

CallAppBearerService
(TpCallBearerService)

SDP Indicates the bearer services (e.g. 64kbit/s
unrestricted data), this information is carried
in SDP under each media type e.g. codec,
bandwidth, interleaving….

CallAppPartyCategory
(TpCallPartyCategory)

N/A The category of the calling party.
Not mapped.
Not defined in SIP

CallAppPresentationAddress
(TpAddress)

May be SIP From
header field ?
This may also be the
optional STRING
associated to the URI
(similar to the name you
can associate to an e-
mail address)

The address to be presented to other call
parties.
In case the SIP From header and SIP
Contact are different, The From header field
may be seen as presentation Address since
the UA will only use the contact or via
address to decide the routing destination.

CallAppGenericInfo
(TpString)

""N/A

Carries unspecified service-service
information
Service related information transferred over
ISC from SCS to S-CSCF is not allowed in
the current 3GPP release.

CallAppAdditionalAddress
(TpAddress)

N/A Indicates an additional address.
No mapping: Not fined in SIP

CallAppOriginalDestinationAddress
(TpAddress)

Request-URI or P-
Called-Party-ID

Contains the original address specified by
the originating user when launching the call.
When the SCS receives an INVITE, if the P-
Called-Party-ID header is present, then the
SCS uses this header to identify the target
address in the resulting outgoing INVITE. If
not, then the SCS uses the Request-URI
instead.

CallAppRedirectingAddress N/A

Contains the address of the user from which
the call is diverting.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 69 Release 9

6.5 TpCallError

Table 6-5: TpCallError Table mapping

To TpCallError From SIP Remarks
ErrorTime (TpDateAndTime) N/A Time should be provided locally by the OSA

SCS.

Note:
In order to have the accurate time, the
Timestamp header field may be added to the
SIP send by the participant or the SIP server.
However, it is not possible to rely on
timestamp to be received in message.

ErrorType (TpCallErrorType) See Table 6-6:
TpCallErrorType mapping table from
SIP

AdditionnalErrorInfo
(TpCallAdditionalErrorInfo)

N/A See also TpCallErrorType

6.6 TpCallErrorType

Table 6-6: TpCallErrorType Table mapping

To: TpCallErrorType From: SIP Remark
P_CALL_ERROR_UNDEFINED Undefined Undefined; the method failed or was

refused, but no specific reason can be

given.
P_CALL_ERROR_INVALID_STATE 481 Call/

Transaction Does Not

Exist

491 Request Pending

The call was not in a valid state for the
requested operation

P_CALL_ERROR_INVALID_ADDRESS 404 Not Found,

413 Request Entity

Too Large

414 Request URI Too

Long

416 Unsupported URI

Scheme

484 Address

Incomplete

485 Ambigous

488 Not Acceptable Here

604 Does Not Exist

Anywhere

The operation failed because an invalid
address was given

P_CALL_ERROR_RESOURCE_UNAVAILABLE 503 Service

Unavailable

606 Not Acceptable

There are not enough resources to
complete the request successfully

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 70 Release 9

6.7 TpCallEventInfo

Table 6-7: TpCallEventInfo Table mapping

To: TpCallEventInfo From: SIP Remark
CallEventType (TpCallEventType) See Table 6-9:

TpCallEventType
mapping from SIP.

AdditionalCallEventInfo

(TpCallAdditionalEventInfo)
See Table 6-9:
TpCallEventType mapping from SIP.

CallMonitorMode

(TpCallMonitorMode)
See Table 6-13:
TpCallMonitorMode mapping from SIP.

CallEventTime

(TpDateAndTime)
N/A Timestamp provided by OSA

SCS at event reporting.

6.8 TpCallEventRequest

Table 6-8: TpCallEventRequest Table mapping

To TpCallEventRequest From SIP Remark

CallEventType (TpCallEventType) See Table 6-9:
TpCallEventType
mapping from SIP

.

AdditionalCallEventCriteria
(TpAdditionalCallEventCriteria)

See Table 6-1:
TpAdditionalCallEventCriteria
mapping from SIP

CallMonitorMode (TpCallMonitorMode) See Table 6-13:
TpCallMonitorMode mapping from
SIP

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 71 Release 9

6.9 TpCallEventType

Table 6-9: TpCallEventType Table mapping

To TpCallEventType From SIP Remark
P_CALL_EVENT_UNDEFINED N/A No mapping from SIP.

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT INVITE Originating Call Leg event.
Not applicable to SIP; would
mean an empty To: header.

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED INVITE Originating Call Leg event.
P_CALL_EVENT_ADDRESS_COLLECTED INVITE Originating Call Leg event.

No direct mapping to any
SIP Method/Response.
Correspond to the point in
processing where INVITE is
received and no location
service lookup performed
yet, i.e. before destination
address determined.

P_CALL_EVENT_ADDRESS_ANALYSED INVITE Originating Call Leg event.
No direct mapping to any
SIP Method/Response.
Correspond to the point in
processing where INVITE is
received and destination
address is determined after
location service lookup has
been performed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE INVITE Originating Call Leg event.
RE-INVITE case - mapping
ffs.

P_CALL_EVENT_ORIGINATING_RELEASE BYE, CANCEL
See corresponding
Table for details

Originating Call Leg event.
Request for termination of
session from calling party.

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT INVITE Terminating Call Leg event.
Incoming INVITE received
at destination requesting the
termination of the session
(i.e. dialogue invitation
request) for callee.

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED INVITE Terminating Call Leg event.
Incoming INVITE received
at destination requesting the
establishment of the
terminating session for the
callee

P_CALL_EVENT_ALERTING SIP: 180 Ringing Terminating Call Leg event.
The user agent receiving
the INVITE is trying to alert
the callee. This response
may be used to initiate local
ring-back for the caller.
Note: Implies that the
corresponding INVITE
request passed through the
OSA SCS

P_CALL_EVENT_ANSWER 200 OK for INVITE Terminating or Originating
Call Leg event.
 A 200 OK for INVITE
means the call is answered
by called user.
Note: Implies that the
corresponding INVITE
request passed through the
OSA SCS.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 72 Release 9

P_CALL_EVENT_TERMINATING_RELEASE BYE,
4xx, 5xx, 6xx
See corresponding
Table for details

Terminating Call Leg event.
Request for termination of
session (i.e. release of
dialogue) from called
party/destination.

P_CALL_EVENT_REDIRECTED 3xx responses Terminating Call Leg event.
This status codes are used
to indicate that the call is
being redirected to a
different (set of)
destination(s).
The redirection address
contained in the
responseContact header in
the 3xx response is to be
reported in the
CALL_EVENT_REDIRECTED

event (ForwardAddress
field additional event info) to
the application.

P_CALL_EVENT_TERMINATING_SERVICE_CODE N/A Terminating Call Leg event.

P_CALL_EVENT_QUEUED SIP:182 Queued Terminating Call Leg event.

In case of ISC, implies that
the corresponding INVITE
request passed through the
OSA SCS.

6.10 TpCallInfoType

Table 6-10: TpCallInfoType Table mapping

From: TpCallInfoType From: SIP Remark
P_CALL_INFO_UNDEFINED N/A -Undefined

P_CALL_INFO_TIMES N/A - Relevant call time
P_CALL_INFO_RELEASE_CAUSE See Table 6-17, 6-18:

TpReleaseCause
for mapping from / to SIP

- Call release cause

P_CALL_INFO_INTERMEDIATE N/A - Send only intermediate reports.
When this is not specified the information report will
only be sent to the application when the call has
ended.
When intermediate reports are requested a report will
be sent between follow-on calls, i.e. when a party
leaves the call.

NOTE: Defines the type of call information requested and reported. The values may be combined (logical 'OR').

6.11 TpCallLegInfoType

Table 6-11: TpCallLegInfoType Table mapping

From: TpCallLegInfoType From: SIP Remark
P_CALL_LEG_INFO_UNDEFINED N/A Undefined
P_CALL_LEG_INFO_TIMES N/A Relevant call times
P_CALL_LEG_INFO_RELEASE_CAUSE See Table 6-17 Call leg release cause
P_CALL_LEG_INFO_ADDRESS See Table 6-2 Call leg connected address.
P_CALL_LEG_INFO_APPINFO N/A Call leg application related information

NOTE: Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR'
function.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 73 Release 9

6.12 TpCallLegConnectionProperties

Table 6-12: TpCallLegConnectiomProperties Table mapping

From:
TpCallLegConnectionProperties

To: SIP Remark

P_CALLLEG_ATTACH_IMPLICITLY N/A SIP 200 OK message directly sent.
It means that the callLeg should be implicitly attached to the call.
In this case, the mapping to SIP is done naturally since in SIP,
the natural behaviour is to start media session with others parties
in the call once the signalling is established (INVITE, 200 OK,
ACK)

P_CALLLEG_ATTACH_EXPLICITLY Putting media
stream in
SDP inactive.

It means that the callLeg should be explicitly attached to the call.
In this case, the mapping to SIP is done so as to start media
session with putting the media stream inactiveonce the dialog is
established (INVITE with SDP "on hold", 200 OK, ACK)
Attach method need to be called by the application to establish
the media connection. See description for attachMedia().

6.13 TpCallMonitorMode

Table 6-13: TpCallMonitorMode Table mapping

From TpCallMonitorMode To SIP Remarks
P_CALL_MONITOR_MODE_INTERRUPT N/A

Processing
interrupted

SIP Server set to observe for SIP event as requested
and if encountered interrupt SIP processing, notify the
application and await a request to resume processing.

P_CALL_MONITOR_MODE_NOTIFY N/A
Processing
Notify And
Continue

SIP server set to observe for SIP event as requested
and if encountered notify the application.; SIP
Processing continues.

P_CALL_MONITOR_MODE_DO_NOT_MONITOR N/A
Processing
transparent

SIP server set not to observe for SIP event –no
application interest.
It implies there is no initial filtering for the associated
indicated event

6.14 TpCallNotificationReportScope

Table 6-14: TpCallNoti ficationReportScope Table mapping

To: TpCallNotificationReportScope From SIP Remark

DestinationAddress (TpAddressRange)
If transaction issued from caller (e.g. INVITE)
OR
OriginatingAddress, if transaction from callee
(e.g. Re-INVITE, BYE)

SIP Request-URI header field
for originating case
or P-Called-Party-ID header for
terminating case

UEs can put anything into From and
To header which is untrustful, so
From and To header can not be
used to identify the originating
address or destination address.'

OriginatingAddress
(TpAddressRange)
If transaction from caller (e.g. INVITE)
OR
DestinationAddress , if transaction issued from
caller (e.g. Re-INVITE, BYE)

SIP From header field URL Depends on applied filtering criteria

NotificationCallType (TpNotificationCallType) N/A Indicates if the notification was
reported

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 74 Release 9

6.15 TpCallNotifiationRequest

Table 6-15: TpCallNoti ficationReque st Table mapping

From: TpCallLegInfoType To: SIP Remark
CallNotificationScope

(TpCallNotificationScope):

 DestinationAddress

(TpAddressRange)
URL schemes allowed in
RFC 3261
(see NOTE)

Parameter specific to filtering criteria (event
triggering) of destination address information.
Address plan that can only be accepted are
SIP URLs or tel URLs.

 OriginatingAddress

(TpAddressRange)
SIP URL
(see NOTE)

Parameter specific to filtering criteria (event
triggering) of originating address information
(like e.g. in From header Field in SIP
messaging). Address plan can be any, which is
allowed in RFC 3261.

CallEventsRequested (set):

(TpCallEventsRequest (set)

Note: A set of

TpCallEventRequest

See Table 6-8:
TpCallEventRequest
mapping from SIP

NOTE: The SIP server responsible for event filtering (e.g. S-CSCF) is to monitor for SIP events requested to be
notified if encountered to the application.

6.16 TpCallTreatmentType

Table 6-16: TpCallTreatmentType mapping

TpCallTreatmentType To SIP Remark
P_CALL_TREATMENT_DEFAULT undefined Depends on any applied default

P_CALL_TREATMENT_RELEASE SIP: 503 Service
Unavailable

Service Unavailable response sent to deny invite request for a
new session .Already established call sessions are not affected

P_CALL_TREATMENT_SIAR SIP: 503 Service
Unavailable
or
BYE

BYE only after user interaction if it implies and established
session (e.g. to MRF) Service Unavailable response sent to
deny invite request for a new session.

NOTE: Already established call sessions should not be affected by the overload call treatment.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 75 Release 9

6.17 TpReleaseCause, mapping to SIP response

Table 6-17: TpReleaseCause Table mapping to SIP

From: TpReleaseCause To: SIP Remark
P_UNDEFINED N/A

See Note 3

P_USER_NOT_ AVAILABLE 480 Temporarily
Unavailable

The callee is currently unavailable.
Normal call clearing, unspecified reason.

Note: No support for inclusion of additional
information in the Retry-After header.
This header in the response may indicate a
better time to call.

P_BUSY 486 Busy Here The callee is currently not willing or able to take
additional calls (user busy).

Note: No support for include additional
information in the Retry-After header.
This header in the response may indicate a
better time to call.

P_NO_ANSWER 603 Decline The callee explicitly does not wish to or cannot
participate in the call.
Note: No support for include additional
information in the Retry-After header.
This header in the response may indicate a
better time to call.

P_NOT_REACHABLE 480 Temporarily
Unavailable

The callee is currently unavailable.
The user is absent or not reachable e.g. MS
turned off or out of coverage area.

P_ROUTING_FAILURE 404 Not Found The user does not exist at the domain specified
in the Request-URI. This status is also returned
if the domain in the Request-URI does not
match any of the domains handled by the
recipient of the request.

P_PREMATURE_DISCONNECT N/A
See Note 3

P_DISCONNECTED N/A
See Note2.
See Note 3

Normal call clearing.

Recommended value when an established
session is to be released.

P_CALL_RESTRICTED 403 Forbidden

P_UNAVAILABLE_RESOURCE 503 Service Unavailable
P_GENERAL_FAILURE 500 Server Internal Error

P_TIMER_EXPIRY 408 Request Timeout
NOTE 1: SIP CANCEL will be sent if any pending invitations (INVITE) to be cancelled in response to the release()

method independent of TpReleaseCause value
NOTE 2: SIP BYE will be sent if an established session (SIP leg) is to be released in response to the release() method

independent of TpReleaseCause value. However, the recommended va lue is in this case
P_DISCONNECTED.

NOTE 3: Where no mapping is defined, a default mapping to 480 Temporarily Unavailable is recommended.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 76 Release 9

6.18 TpReleaseCause, mapping from SIP

Table 6-18: TpReleaseCause Table mapping

From: TpReleaseCause To: SIP Remark
P_UNDEFINED N/A No mapping

P_USER_NOT_AVAILBLE 404 Not Found
410 Gone
604 Does Not Exist
Anywhere

The callee is unavailable.
e.g. the address of callee might have been
changed.

P_BUSY 486 Busy Here
600 Busy EveryWhere

The callee is not able or not willing to accept
additional call

P_NO_ANSWER 603 Decline The callee explicitly does not wish to or cannot
participate in the call.

P_NOT_REACHABLE 480 Temporarily
Unavailable

User is not logged in or user's terminal is out of
radio coverage.

P_ROUTING_FAILURE 400 Bad Request,
420 Bad Extension,
482 Loop Detected,
483 Too Many Hops
484 Address Incomplete
485 Ambiguous,

P_PREMATURE_DISCONNECT SIP CANCEL
480 Temporarily
Unavailable

Pending invitation (INVITE) abandoned by
caller before answer (i.e. before the request
has been acknowledged (ACK)) or user's
terminal is out of radio coverage.

P_DISCONNECTED SIP BYE Normal call clearing
P_CALL_RESTRICTED 403 Forbidden

P_UNAVAILABLE_RESOURCE 503 Service Unavailable
P_GENERAL_FAILURE 500 Server Internal Error,

501 Not Implemented,
502 Bad Gateway,

505 Version Not

Supported

P_TIMER_EXPIRY 408 Request Timeout,
504 Gateway Timeout

6.19 TpAoCInfo

Table 6-19: TpAoCInfo Table mapping

From: TpAoCOrder To: SIP Remark

ChargeOrder (TpAoCOrder) See Table 6-20:
TpAocOrder

Currency (TpString) N/A Currency unit according to ISO-4217:1995

NOTE: Defines the Sequence of Data Elements that specify the Advice Of Charge information to be sent to
the terminal.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 77 Release 9

6.20 TpAoCOrder

Table 6-20: TpAoCOrder Table mapping

From: TpAoCOrder To: SIP Remark
TpAoCOrderCategory: -

P_CHARGE_ADVICE_INFO

(TpChargeAdviceInfo)
N/A

P_CHARGE_PER_TIME

(TpChargePerTime)

N/A

P_CHARGE_NETWORK

(TpString)

N/A

NOTE: In the current 3GPP release, how to transmit AoC information to UE using ISC is not addressed, it maybe
addressed in future release.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 78 Release 9

Annex A:
Introduction to API Mapping for OSA MPCCS

A.1 OSA Service Provision for MPCCS in IMS

The figure below depicts an overall view of how MPCC services can be provided.

S-CSCFS-CSCF

MRFMRF

OSA

Application

Server

OSA

Application

Server

Cx

SIP ISC

Mr

OSA

MPCCS

API

Sh

SIP

server
SCFUser

OSA SCS

HSS

Scope of

OSA – MPCCS

API mapping

Figure A-1: Functional architecture for support of MPCCS Service Provision

for IP Multimedia subsystem

The OSA Service Capability Server (OSA SCS) is the "controlling entity" and the Serving -Call Session Control

Function (S-CSCF) is the "controlled entity" .The MRF is the Media Resource Function. (M RF).

ISC: This reference point is the Internal Service Control Interface, used between the S- CSCF and the OSA SCS.

The ISC interface is based on Session Initiation Protocol (SIP), which is specified in 3GPP TS 24.229[12].

Cx: The Cx reference point supports information transfer between CSCF and HSS.

The protocol used between the S-CSCF and HSS (Cx Interface) is specified in 3GPP TS 29.228[8].

Sh: The Sh reference point supports informat ion transfer between OSA SCS and HSS.

The protocol used between the OSA SCS and HSS (Sh Interface) is defined in 3GPP TS 29.328 [15].

Mr: Th is reference point allows interaction between an S-CSCF and an MRF (i.e. the Media Resource Function

controller, MRFC). The protocol used for the Mr reference point is based on SIP, which is specified in 3GPP TS

24.229[12].

Filtering is done in the S-CSCF on SIP init ial request messages only. It can e.g. be based upon:

- Any initial known or unknown SIP method (e.g. REGISTER, INVITE, SUBSCRIBE, MESSAGE);

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 79 Release 9

- Direction of the request is with respect to the served user – either mobile originated (MO) or mobile terminated

(MT) to reg istered user; or mobile terminated to unregistered user;

- Session description information;

- The present/absent content of a particular SIP header.

Filter Criteria (FC) is the information the S-CSCF receives from the HSS that defines the criteria based on which the S-

CSCF shall send the SIP in itial request to the OSA SCS. Then the application can decide whet her to be in the path of all

the subsequent SIP messages of this dialog or not. For more detail on in itial filter criteria and triggering mechanis ms in

the S-CSCF, see 3GPP TS 23.218 [6].

Initial Filter Criteria (iFC) are filter criteria that are stored in the HSS as part of the user profile and are downloaded

together with addresses of the assigned application servers (e.g., OSA SCS addresses) via the Cx interface to the S-

CSCF upon user registration or upon a terminat ing init ial request for an unregistered user if unavailable. They represent

a provisioned subscription of a user to an application. Applicat ion server specific data is also exchanged between HSS

and the OSA SCS during registration via Sh interface.

After downloading the User Profile from the HSS, the S-CSCF accesses the filter criteria. Init ial Filter Criteria are valid

throughout the registration lifet ime of a user or until the User Profile is changed.

A.2 MPCCS

A.2.1 Introduction

The MPCCS allows an application to establish multi-party calls where several legs can simultaneously be connected.. In

fact, the MPCCS as defined, allows application to create a leg and to route it. In SIP, to establish a session it requires at

least two SIP endpoints (UAs).

MPCCS which beside 2-party call encompasses application init iated 1 party and mult i-party calls can be mapped to SIP

imply ing the OSA SCS behaves as a SIP application server on the ISC interface.

A.2.2 SIP Server Roles in OSA SCS

A.2.2.1 Introduction

The OSA SCS behaves as a SIP server toward the ISC interface.

The SIP applicat ion server hereby may act in different ro les or modes The role of UAC and UAS as well as proxy and

redirect servers are defined on a transaction-by-transaction basis.

For example, the user agent initiating a call acts as a UAC when sending the initial INVITE request and as a UAS when

receiving a BYE request from the callee.

Similarly, the same software can act as a proxy server for one request and as a redirect server for the next request.

However, besides these modes of operation for more advanced service application demands also the Back-to-Back User

Agent (B2BUA) and 3
rd

 Party controller modes have been defined.

The OSA SCS possible different modes of SIP server operation is described in the following.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 80 Release 9

A.2.2.2 OSA SCS acting as a SIP Proxy server

In this mode of operat ion the incoming SIP Request is proxied by the S-CSCF to the OSA SCS, which then acts as a

SIP proxy server proxying the Request back to the S-CSCF which then proxies it towards the destination.

 SCF

 SIP server: Proxy Mode

OSA-API

proxy proxy

S-CSCF

1. INVITE

2. INVITE

3. INVITE

4. INVITE

 5. 200 OK

 6. 200 OK

 7. 200 OK

 8. 200 OK

SIP dialog #1

SIP dialog#1

From: X
To: Y
Call-ID: Z

From: X
To: Y
Call-ID: Z

SIP
dialog

#1

SIP
dialog

#1

From: X
To: Y
Call-ID: Z

From: X
To: Y
Call-ID: Z

 Proxy Mode

Service logic

OSA-AS

OSA SCS

User
User

Figure A-2: Example OSA SCS Proxy Server Mode operation

- Scope:

Service applications that need to manipulate data conveyed in the SIP signalling between a UAC and a UAS, like

changing destination address (call forwarding services), but do not demand to intervene on the call as such.

During the proxy operation the OSA SCS may add, remove or modify the header contents contained in the SIP request

according to the Proxy rules specified in [14].

Applicable for 2-party calls. However, forking may occur resulting in more SIP d ialogues being established between the

Caller) UAC and 2 o r more callees (UASs).

- Constrains:

The control and visibility of fo rking in the application is not currently covered by the OSA API MPCCS.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 81 Release 9

A.2.2.3 OSA SCS acting as Redirect server

In this mode of operat ion the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then acts as a

Redirect Server as specified in [14].

 OSA SCS

Sip server: redirect mode

proxy
1. INVITE

2. INVITE

3. 3o1/
 302

5. INVITE from user to
 new destination

4. 301/302

Service logic

SIP

dialog
#1

SIP dialog #1

From: X
To: Y
Call-ID: Z From: X

To: Y
Call-ID: Z

 SCF

 OSA AS

 S-CSCF

 Redirect Mode:

OSA API

User

Figure A-3: Example OSA SCS Redirect Server Mode operation

- Scope:

Service applications that need to request a redirection of a call by the network to a new destination, e.g. due to number

changed (callee moved). Hereby the application is to provide the new contact address(es) and leave the call.

During the Redirect operation the OSA SCS may terminate the dialog by requesting a call redirection given a list of 1 or

more possible new addresses to contact contained in the redirection response request according to the Redirect rules

specified in [14].

- Constrains:

NOTE: The control and possibility of requesting a redirection (3xx response) is not currently supported by the

OSA MPCCS API.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 82 Release 9

A.2.2.4 OSA SCS acting as UA

 SIP User Agent Terminating (UAt)

In this mode of operat ion the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then acts

as a terminating UA (UAS) as specified in [14].

 SIP User Agent Originating (UAo)

In this mode of operat ion the OSA SCS acts as an originating UA (UAC) as specified in [14] and generates a SIP

Request which it sends to the S-CSCF which then proxies it towards the destination.

 OSA SCS

Sip server: redirect mode

proxy
1. INVITE

2. INVITE

3. 3o1/
 302

5. INVITE from user to
 new destination

4. 301/302

Service logic

SIP

dialog
#1

SIP dialog #1

From: X
To: Y
Call-ID: Z From: X

To: Y
Call-ID: Z

 SCF

 OSA AS

 S-CSCF

 Redirect Mode:

OSA API

User

Figure A-4: Example OSA SCS User Agent Server Mode operation

- Constrains:

NOTE: Any direct control of media resources by the OSA SCS when acting as UA is outside the scop e of this

specification.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 83 Release 9

A.2.2.5 OSA SCS acting as a B2BUA

In this case the controller, i.e. the OSA SCS, takes over the ownership of the call set -up by a different party by acting as

a Back-to-Back User Agent (B2BUA). The OSA SCS looks deceptively like a proxy , but it is not. The OSA SCS acts as

a UAS for the INVITE received from caller (UAC), and then as a UAC when it init iates a call to the callee (UAS).

In this case the incoming SIP Request is proxied by the S-CSCF to the OSA SCS which then generates a new SIP

Request for a different SIP d ialog which it sends to the S-CSCF which then proxies it towards the destination.

In this mode the OSA SCS behaves as a B2BUA for the mult iple SIP dialogs as specified in [14].

 OSA SCS

Sip server: redirect mode

proxy
1. INVITE

2. INVITE

3. 3o1/
 302

5. INVITE from user to
 new destination

4. 301/302

Service logic

SIP

dialog
#1

SIP dialog #1

From: X
To: Y
Call-ID: Z From: X

To: Y
Call-ID: Z

 SCF

 OSA AS

 S-CSCF

 Redirect Mode:

OSA API

User

Figure A-5: Example OSA SCS B2BUA Server Mode operation

- Usage:

Service applications that need advanced signalling control, i.e. the capability to intervene on a call.

Some examples may be applicat ions that needs to release a call (e.g. p repaid service) or a single us er, or add or replace

a user (follow-on call), or needs to generate messages during the call or act on mid-call events from a call party (e.g. re-

INVITE).

EXAMPLE: Pre-Paid card service runs out of money: the applicat ion may generate some message to the user

and/or release the user.

- Constrains:

The mode B2BUA is to be determined based on SIP requests messages. It is not allowed in this release that a proxy can

change to a B2BUA in the middle of a dialog, unless the purpose of doing this is to release a d ialog. Where it cannot be

known in advance if the application demands Proxy mode or B2BUA mode, the default should for the OSA SCS be to

act as a B2BUA.

NOTE: Notice that the end-to-end call (SIP dialogue) between caller and callee will become div ided t into a

multitude of different "end-to-end" calls (SIP dialogues) , where the B2BUA concept is applied.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 84 Release 9

A.2.2.6 OSA SCS acting as a 3rd Party Controller

In this mode the OSA SCS generates a new SIP Request for a different SIP d ialog and sends it to the S-CSCF which

then proxies it towards the destination. The OSA SCS may generate one or more different SIP dialogues in this way.

This may be combined with the OSA SCS behaviour as a B2BUA for the multiple SIP d ialogs as specified in RFC3261

[14], i.e. when more than 2 parties are involved in the call.

 OSA SCS

SIP UA-

Terminating
SIP UA-

Originating

Proxy

S-CSCF

2. BYE

Proxy

Service logic

1. BYE

3. 200 OK

4. 200 OK

SIP UA-
Originating

Proxy
10. INVITE

11. 200 OK

5. INVITE 9. INVITE

12. 200 OK

6. INVITE

7. 200 OK

8. 200 OK

SIP dialog #1

SIP dialog #3

SIP dialog #2

SIP
dialog

#2

SIP
dialog

#3

From: X
To: Y
Call-ID: Z

From: X
To: Y
Call-ID: Z

From: P
To: Q
Call-ID: R

From: P
To: B
Call-ID: W From: P

To: B
Call-ID: W

From: P
To: Q
Call-ID: R

 B2BUA
 end-to-end
session
 split into
 two SIP
 dialogues
- terminating and
 originating.

 UA client
- originating 3

rd
 party

SIP dialog

SIP
dialog

#1

SCF

 OSA AS

 3rd Party Controler Mode:
OSA API

User

User

User

Figure A-6: Example OSA SCS 3
rd

 Party Controller Server Mode operation

- Usage:

Application init iated one party , two-party and multi-party calls.

It may also be associated with B2BUA mode of operation, e.g. where the application demands to invite a 3
rd

 part into a

2-party.

- Constrains:

The control of media resources for application in itiated calls is outside the scope of this specification.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 85 Release 9

A.2.3 SIP Server Role Mode Transitions

Figure 5 provides an overview of the states and transitions of the FSM for Call Control Signalling Terminations. These

states and transitions are more precisely defined in the fo llowing clauses.

UA

3
rd

 PARTY
Controller

 B2BUA

E3

 E2

E4

E5

E7

E6
 E1

PROXY

E9

REDIRECT E8

Figure A-7: Operation Mode for the OSA SCS

The server mode diagram above for the OSA SCS shows the possible mode transitions. It contains the following

transitions (events):

E1 Incoming Invite received from the network (caller) or

request received from the application to in itiate a call "out of the blue". detected

E2 Application request to act as B2BUA on call received from the network

E3 Application request to act as Redirect server on call received from the network

E4 Application request to act as Proxy server on call received from the network

E5 Application request to act as single UA on call received from the network

E6 Application request to act as 3
rd

 Party controller on call received from the network

E7 Application request to act as B2BUA on call received from the network

E8 Application request to act as 3
rd

 Party controller on call init iated from applicat ion

E7 Application request to act as single UA.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 86 Release 9

Annex B:
SDP in SIP at application controlled calls for OSA MPCCS
API

B.1 Introduction

A mechanis m is needed that allows a controller like OSA SCS to create, modify, and terminate calls with other entities..

Third party call control refers to the ability of one entity, in this case the OSA SCS to create a call in which

communicat ions are actually between other parties. A SIP mechanis m for accomplishing third party call control that

does not require any extensions or changes to SIP is presented. It is merely an applicat ion of the tools enabled through

the SIP specification RFC 3261 [14]. It enables a controller like the OSA SCS to create calls/sessions with any entity

that contains a normal SIP User Agent. Annex B is based upon the principles described in "Third Party Call Control in

SIP" [16].

B.2 OSA SCS and Application based Call and Media
Control

Third party call control is a set of good design patterns for how to implement a service that needs to be in control of a

session. The B2BUA mechanism is just one pattern that the 3rd party call controller can use to get control of a session.

A B2BUA is a mechanism that allows a controller to take over the control of a session initiated by another party. Once

in control it can control the session by generating requests and responses on the different call-legs. OSA SCS can of

course also at all times initiate a session or a new transaction within a g iven SIP dialogue hereby acting as a User Agent

or 3
rd

 party call controller.

The basic principle behind the third party mechanis m applied for OSA MPCCS application init iated calls is simple.

The OSA SCS acting as a controller on request from the OSA applicat ion first calls one of the users, A, and presents the

INVITE without any media. When this call is complete, the OSA SCS has the SDP needed to communicate with user A.

The OSA SCS can then, if so requested by the OSA application, use SDP A to establish a ca ll to user B. When this call

is completed, the OSA SCS has the SDP needed to communicate with user B. This informat ion is then passed to user A.

The result is that there is on request from the application established an OSA call leg (SIP dialogue) between the OSA

SCS and user A, and a call leg (SIP dialogue) between the OSA SCS and user B, but media between user A and user B.

The aim here is to keep the OSA applicat ion based session control for MPCCS as simple as possible, but also generally

useable, and avoid SDP awareness in the OSA SCS acting as the controller..

In the following some example scenarios for illustrating a possible handling of SDP in SIP at OSA MPCCS application

controlled call sessions are given.

NOTE 1: A user may herein be presented by any entity that contains a normal SIP User Agent. For example a user

could be represented by an ordinary call party (e.g. SIP enabled phone/PC), a gateway or a network entity

like e.g. a Conference Server or MRF.

NOTE 2: Where an OSA applicat ion demands to control (e.g. restrict call to a given media type (e.g. voice),) which

media types should be allowed on a call, it can also use the Multimedia Call Control Service (MMCCS),

which enhances the MPCCS with mult imedia control capabilit ies (allows e.g. the applicat ion to bar

certain media type(s)).

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 87 Release 9

B.3 Example OSA SCS Application initiated One-Party
Call

An example of an application init iated One-Party Call could be a booked "wake -up call" or "reminder call", i.e. a call

that is to be set-up at a predefined time and date from the network initiated by an OSA application using the MPCCS.

The recommended flow is as follows: The application requests a call to be set -up to user A.

The OSA SCS sends an INVITE to the user A, without any SDP (it means that the OSA SCS does not need to assume

anything about the media of the devices). User A responds with its SDP a1, in a 200 OK, which is immediately ACK'ed

with an on-hold SDP generated by the OSA SCS.

A flow example for a One Party call set-up from application is illustrated in the figure below:

4a. routeReq (user A)

6b. SIP:ACK

(SDP held)

5a.SIP: 200 OK

(SDP a1)

OSA AS S-CSCF

4b. ISC: INVITE

(no SDP) 4c. SIP: INVITE (no SDP)

 User A User B OSA SCS
S

C

F

UAo1

SIP
UAo

 6c. eventReportRes (user A)

1. createCall

2. createCallLeg

3. eventReportReq

5b.. ISC: 200 OK

 (SDP a1)

6a. ISC: ACK

 (SDP held)

User Agent mode

Figure B-1 Example Initiating OSA SCS Flow for One Party call Set-up

A description for the flow is given below:

1: This message requests the OSA SCS to create a call object (an object implementing the Ip MultiPartyCall

interface). Assuming that the criteria for creating a call object implementing the IpMultiPartyCall interface (e.g.

load control values not exceeded) is met it is created.

2: This message instructs the OSA SCS to create a call leg (the object implementing the IpMultiPartyCall interface)

for user A.

3: This message requests the call leg for user A to inform the application when the call leg answers the call.

4a: The created OSA terminating call leg is requested to route the call/session to the specified destination for user A.

4b: The OSA SCS acting as a logical UAo1 generates an INVITE request message with no SDP on the ISC interface

to S-CSCF providing the destination address of user A.

The OSA SCS SIP server is in SIP UA Originating Endpoint mode.

4c: The S-CSCF proxies the INVITE request toward user A.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 88 Release 9

5a: User A answers the call and responds with its SDP (SIP 200 OK including SDP a1)

Note: It is here only shown that the call is answered by user A, e.g. user A accepting the incoming call and

sending a 180(Ringing) back to the UAo1 on OSA SCS is omitted for simplicity reasons !..

5b: The S-CSCF proxies the SIP 200 OK including SDP a1 to the orig inating UAo1 in the OSA SCS via the ISC

interface.

6a: The OSA SCS being the controller immediately generates an ACK with an on-hold SDP being send on the ISC

interface to the S-CSCF. It hereby takes SDP a1, and generates another SDP which has the same media

composition, but is on hold.

6b: The S-CSCF proxies the ACK with SDP on hold toward user A.

6c: The leg object (implementing user A's IpCallLeg interface) in OSA SCS passes the result of the call being

answered back to the application in OSA AS.

General Remarks:

The OSA SCS operation in User Agent mode provides a central point for signalling co ntrol, as the application hereby is

offered complete control over the call.

B.4 Example OSA SCS Application initiated Two-Party
Call

An example of an application init iated Two-Party Call could be a Click-to dial service, that allows a user to click on a

web page when wished to speak to a customer service representative. The web-server then via some "stimuli" causes the

OSA application to be invoked in order to establish a call between the user and a customer service representative. The

call being set-up can be between different entities like between two phones, a phone and an IP host, or two IP hosts.

The recommended flow is as follows: First a call object is created. Then user A's call leg is created before events are

requested on it for answer and then call set-up to user A is initiated as described in the application in itiated One-Party

call example. On answer from user A, the call is being set up to user B. On answer from Party B the media

communicat ion between user A and user B is established..

A flow example for a Two Party call set-up from the OSA application is illustrated in the figure below:

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 89 Release 9

4a. routeReq (user A)

6b. SIP:ACK

(SDP held)

13c. ISC: ACK

(SDP a2’)

9c.SIP: INVITE (no SDP)

5a..SIP: 200 OK

(SDP a1)

OSA AS S-CSCF

4b. ISC: INVITE(no SDP)
 4c. SIP: INVITE (no SDP)

 User A User B OSA SCS
S

C

F

UAo2

User Agent mode

controller mode

UAo1

SIP
UAo

SIP
UAo

11a. ISC: INVITE (SDP b1’)

 12a. SIP: 200 OK (SDP a2)

 13a. ISC: ACK

 6c. eventReportRes (user A)

1.createCall

2. createCallLeg

3. eventReportReq

 7. createCallLeg

 8. eventReportReq

 9a. routeReq (user B)

5b. ISC: 200 OK (SDP a1)

6a. ISC: ACK

 (SDP held)

9b. ISC: INVITE (no SDP)

10a. SIP: 200 OK

(SDP b1) 10b: ISC: 200 OK (SDP b1)

 13e. eventReportRes (user B)

11b. SIP: INVITE (SDP b1’)

12b. ISC: 200 OK (SDP a2)

13b. SIP: ACK

13d. SIP: ACK (SDP a2’)

14. RTP

 3rd party controller mode

Figure B-2. Example application Initiating OSA SCS Flow for Two Party call Set-up

A description for the flow is given below:

1: through 6. Call set-up to user A. The flow is exactly the same as described in the previous example for

Application init iated One-Party Call for user A.

7: This message instructs the OSA SCS (the object implementing the IpMultiPartyCall interface) to create a call leg

for user B.

8: This message requests the call leg for user B to inform the application when the call leg answers the call.

9a: The created OSA terminating call leg fo r user B is requested to route the call/session to the specified destination

for user B.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 90 Release 9

9b: The OSA SCS acting as a logical UAo2 generates an INVITE message with no SDP on the ISC interface to S -

CSCF provid ing the destination address of user B.

The OSA SCS SIP server is now in SIP 3
rd

 Party Controller mode (encompassing two UA Originating Endpoints,

one associated with the call leg for User A and another with the call leg for user B).

9c: The S-CSCF proxies the INVITE request toward user B.

10a: User B answers the call and responds with its SDP (SIP 200 OK including SDP b1)

NOTE: It is here fo r simplicity assumed that the call is answered directly by user B, i.e . user B accepting the

incoming call and sending a 180(Ringing) back to the UAo2 on OSA SCS is not shown.

10b : The S-CSCF proxies the SIP 200 OK including SDP b1 to the originating UAo2 in the OSA SCS via the ISC

interface.

11a: The OSA SCS being the controller uses the SDP b1 in the 200 OK to generate an INVITE (re -INVITE) to the

first user A. The re-INVITE is based on SDP b1, but may need to be reorganised to match up media lines with

those previously applied for "SDP on hold", therefore denoted as SDP b1' when SDP is here send on the ISC

interface to the S-CSCF for user A.

11b : The S-CSCF proxies the INVITE (re-INVITE with SDP b1') toward user A.

12a: User A responds in a 200 OK with its SDP (SIP 200 OK including SDP a2)

Note: SDP a2 may be different from SDP a1 reported initially from user A.

12b : The S-CSCF proxies the SIP 200 OK including SDP a2 to the orig inating UAo1 in the OSA SCS via the ISC

interface.

13a: The OSA SCS being the controller immediately generates an ACK for user A being send on the ISC interface

to the S-CSCF.

13b : The S-CSCF proxies the ACK toward user A.

13c: The SDP a2 received in 200 OK from user A is to be passed immediately to user B. It may also need

reorganizat ion to match up media lines, i.e. therefore here denoted a2'. The OSA SCS being the controller

generate an ACK with SDP a2' for user B being send on the ISC interface to the S-CSCF.

13d : The S-CSCF proxies the ACK with SDP a2' toward user B.

13e: The leg object (implementing user B's IpCallLeg interface) for user B in OSA SCS passes the result of the

call being answered back to the application.

14: The media communicat ion between user A and user B has been established based on exchanged SDP

informat ion.

General Remarks:

This first part of the flow is exactly as the one described previously for a One-Party Call.

The call flow is somewhat complicated as the OSA SCS acting as controller needs to perform some SDP manipulation

as the call is requested to be set-up to B. The OSA SCS needs to perform some SDP manipulations. Specifically, it must

take some SDP, and generate another SDPwhich has the same media composition, but is on hold. Secondly, it may need

to reorder an SDP x, so that its media lines match up with those in some other SDP y.

However, still the OSA SCS does not need to assume anything about the supported media of the terminals. There

should be no problem with timers as it must be expected that a re-INVITE will be answered quickly. As we make a re-

INVITE we cannot assume anything about the SDP that will be send back in the 200 OK, that is also why no SDP is

used in the init iating INVITE for user B.

Once the two party call has been established, the OSA SCS operation in 3
rd

 party controller mode is still a central point

for signalling control, it now has complete control over the call. It can e.g. on request from the applicat ion disconnect

one user, disconnect all users (i.e. the call), reconnect one user to another user (e.g. a follow -on call) or connect a user to

another user being e.g. a media server for an announcement or conference call.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 91 Release 9

NOTE: One issue worth mentioning is the case of a follow on call where the leg for the new callee is ringing

(180) or is rejected e.g. busy (e.g. 486 "Busy Here") and the application wants this information to be

conveyed to the caller. Since the OSA applicat ion init iated the call set -up this informat ion cannot be

propagated by the OSA SCS toward the caller. However, one way to in form the caller could be by

connection of the user (caller) to a media server for e.g. an announcement or tone sending.

Once the calls are established, both user A and user B believe they are in a single point -to-point call with some control

system (assuming the OSA SCS has identified itself as the controller in the From field of the INVITE). However, they

are exchanging media d irectly with each other, rather than with the controller, here the OSA SCS. The result is that the

OSA application has set up a call between user A and user B.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 92 Release 9

B.5 Example OSA SCS control of User initiated Two-
Party Call

An example of an application controlled user init iated Two-Party Call could be a Call Forward ing service. The call

being set-up can be between different entities like between two phones, a phone and an IP host, or two IP hosts.

An example flow for a user in itiated Two Party call set-up controlled from the OSA application is depicted in the figure

below:

4a. routeReq (user B)

5d. SIP: 200 OK

(SDP b1)

5a.SIP: 200 OK

(SDP b1)

OSA AS S-CSCF

4b. ISC: INVITE

(SDP a1) 4c. SIP: INVITE (SDP a1)

User A User B OSA SCS
S

C

F

UAo1

B2BUA mode

UAt1

SIP
UAt

SIP
UAo

 6c. ISC: ACK 6e. eventReportRes (user B)

1c. .reportNotification

2. createCallLeg

3. eventReportReq

5b. ISC: 200 OK (SDP b1)

5c. ISC: 200 OK

(SDP b1)

6b. ISC: ACK
6a. SIP: ACK

6d. SIP: ACK

7. RTP
 B2BUA mode

1a SIP: INVITE

(SDP a1) 1b ISC: INVITE

(SDP a1)

Figure B-3: Example user Initiating OSA SCS Flow for Two Party ca ll Set-up

A description for the flow is given below:

1a: The S-CSCF receives the incoming invitation (INVITE) from user A for a d ialog. As the init ial filtering

identifies the need to invoke an application, the S-CSCF proxies the INVITE to the OSA SCS v ia the ISC

interface.

1b: The OSA SCS receives the incoming INVITE v ia the ISC interface. As the application to be invoked demands

B2BUA mode of operat ion (i.e. to secure full call/session control), the OSA SCS is acting as a logical User

Agent (UAt1) for the incoming INVITE message received from the S-CSCF. The OSA SCS creates an OSA call

object (the object implementing the IpMultiPartyCall interface) and a leg object (implement ing user A's

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 93 Release 9

IpCallLeg interface). The leg object represents the OSA originating call leg fo r user A, i.e. the leg defined by the

OSA MPCCS API on which the dialog invitation is received (i.e . the in itial INVITE).

1c: The OSA SCS identifies the application responsible for handling the call .The application is invoked with this

message to the OSA AS. The created call object and call leg object are passed to the application.

2: This message instructs the OSA SCS (e.g. the object implementing the IpMultiPartyCall interface) to create a

call leg for user B.

3: This message requests the call leg for user B to inform the application when the call leg answers the call.

4a: The created terminating call leg fo r user B is requested to route the call/session to the specified destination for

user B.

4b: The OSA SCS acting as a logical User Agent (UAo1) proxies (after some modification) the received INVITE

message on the ISC interface to S-CSCF providing the destination address for user B.

The OSA SCS SIP server is now in Back -to-Back User Agent (B2BUA)mode (hereby encompassing a UA

Terminating Endpoint associated with the call leg (SIP dialog) for User A and another UA Originating Endpoint

associated with the call leg (SIP dialog) for user B).

4c: The S-CSCF proxies the INVITE request toward user B.

5a: User B answers the call and responds with its SDP (SIP 200 OK including SDP b1)

Note: It is here fo r simplicity assumed that the call is answered directly by user B, i.e . user B accepting the

incoming call and sending a 180(Ringing) back to the UAo1 in OSA SCS is not shown.

5b: The S-CSCF proxies the SIP 200 OK including SDP b1 to the originating UAo1 in the OSA SCS via the ISC

interface.

5c: The OSA SCS being the controller "proxies" via its terminating UAt1 the SIP 200 OK including SDP b1 on the

ISC interface to the S-CSCF.

5d: The S-CSCF proxies the 200 OK (with SDP b1) toward user A.

6a: User A responds with an ACK

6b: The S-CSCF proxies the ACK to the terminating UAt1 in the OSA SCS v ia the ISC interface.

6c: The OSA SCS "proxies" via its originating UAo1 the ACK on the ISC interface to the S-CSCF.

6d: The S-CSCF proxies the ACK toward user B.

6e: The leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS passes the result of the call

being answered back to the application.

7: The media communicat ion between user A and user B has been established based on exchanged SDP

informat ion.

General Remarks:

Once the two party call has been established, the OSA SCS as the controller is exactly in the same state as if it had

initiated the call on request from the OSA applicat ion as described in a prev ious flow example.

The OSA SCS operation in B2BUA (or 3
rd

 party controller) mode provides a central point fo r signalling control, as the

application hereby is offered complete control over the call. The application can e.g. d isconnect one user, disconnect all

users (i.e. the call), reconnect one user to another user (e.g. a fo llow-on call) or connect a user to a specialised user (e.g.

a user representing media server for an announcement or call conference).

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 94 Release 9

B.6 Example OSA SCS control of User initiated Two-
Party Call with announcement

The flow for a two –party call may also be extended so that an announcement could also be played e.g. to user A after

the call with user B has been established. The announcement can be accomplished by settin g up a SIP call session to a

user C (e.g. being an IP host representing a media server (MRF)).

While the announcement is being played, user B's media stream is put on hold. After the announcement has been played

(e.g. determined by a predefined timeout) the application may cancel the announcement and release user C (the media

server represented by the MRF) and re-establish the call between user A and user B including the media communication

(exchange of SDP information).

An example of an application controlled possible connection of a media server to a user on an already established Two-

Party Call is depicted in the flow below:

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 95 Release 9

 3a. ISC: ACK

1c.SIP: INVITE (SDP hold)

OSA AS S-CSCF User

A

User

B

 OSA SCS
S

C

F

UAo2

B

B2BUA mode OR

UAt/o1

A

SIP
UAt

SIP
UAo

 1b. ISC: INVITE (SDP hold)

 2a. SIP: 200 OK (SDP b2)

 1a. detachMediaReq (user B)

 5. createCallLeg (user C)

 2b: ISC: 200 OK (SDP b2)

 3c. detachMediaRes (user B)

8b. ISC: 200 OK (SDP c1)

. RTP
 3rd party controller mode

3b. SIP: ACK

media

server

User

C

UAo3

C

SIP
UAo

9b. SIP:INVITE (SDP c1’)
9a: ISC: INVITE (SDP c1’)

8a. SIP: 200 OK (SDP c1)

6. eventReportReq

 7a. routeReq (user C)

 4. on hold

10b. ISC: 200 OK (SDP a2)

11a. ISC: ACK

11e. eventReportRes
11c. ISC: ACK (SDP a2’)

11b. SIP: ACK

11d. SIP: ACK (SDP a2)’ 13a. release (user C)

13b. ISC: BYE
13c. SIP: BYE

16a. attachMediaReq
16b. ISC: INVITE (no SDP)

14a. SIP: 200 OK
14b. ISC: 200 OK

16c. SIP: INVITE (no SDP)

17a. SIP: 200 OK (SDP b2)

7b. SIP: INVITE (no SDP)
7c. SIP: INVITE (no SDP)

17b. ISC: 200 OK (SDP b2)

18a. ISC: INVITE (SDP b2’)
18b. SIP: INVITE (SDP b2’)

19a. SIP: 200 OK (SDP a3)
19b. ISC: 200 OK (SDP a 3)

20a. ISC: ACK

20b. SIP: ACK

20c. ISC: ACK (SDP a3’)

20d. ISC: (SDP a3’)

20e. attachMediaRes

 21. RTP

12. RTP

15

10a. SIP 200 OK (SDP a2)

Figure B-4. Example application Initiating call to media server on a Two Party call

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 96 Release 9

A description for the flow is given below:

1a: This message instructs the leg object (implement ing party B's IpCallLeg interface) for user B in OSA SCS to

detach the call leg from the call, i.e. p revent transmission for user B of any media streams to and from other

parties in the call.

1b: The OSA SCS acting as a logical User Agent (UAo2) generates an INVITE (re-INVITE) with "SDP on hold" for

user B. The re-INVITE is sent on the ISC interface to the S-CSCF.

1c: The S-CSCF proxies the INVITE (re-INVITE with SDP on hold) toward user B.

2a: User B responds in a 200 OK with its SDP (SDP b2).

NOTE: SDP b2 may be different from SDP b1 reported in itially from user B during call establishment.

2b: The S-CSCF proxies the SIP 200 OK (including SDP b2) to the originating UAo2 in the OSA SCS v ia the ISC

interface.

3a: The OSA SCS being the controller immediately generates from UAo2 an ACK for user B being send on the ISC

interface to the S-CSCF.

3b: The S-CSCF proxies the ACK toward user B.

3c: The leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS passes the result of the call

leg being detached back to the application.

4: The media communicat ion for user B is on hold.

5: This message instructs the OSA SCS (e.g. the object implementing the IpMultiPartyCall interface) to create a

call leg for user C.

6: This message requests the call leg for user C to inform the application when the call leg answers the call.

7a: The created OSA terminating call leg fo r user C is requested to route the call/session to the specified destination

for user C.

7b: The OSA SCS acting as a logical UAo3creates an INVITE message (with no SDP) on the ISC interface to S-

CSCF provid ing the destination address of user C.

The OSA SCS SIP server is now in SIP 3
rd

 Party Controller mode (encompassing three UAs).

7c: The S-CSCF proxies the INVITE request toward user C.

8a: User C answers the call and responds with its SDP (SIP 200 OK including SDP c1).

NOTE: It is here fo r simplicity assumed that the call is answered directly by user C, i.e . user C accepting the

incoming call and sending a 180(Ringing) back to the UAo3 in OSA SCS is not shown.

8b: The S-CSCF proxies the SIP 200 OK including SDP c1 to the orig inating UAo3 in the OSA SCS via the ISC

interface.

9a: The OSA SCS being the controller uses the SDP c1 in the 200 OK to generate an INVITE (re-INVITE) to user

A. The re-INVITE is based on SDP c1, but may need to be reorganised to match up media lines with those

previously applied, therefore denoted as SDP c1' when SDP is send on the ISC interface to the S-CSCF for user

A.

9b: The S-CSCF proxies the INVITE (re-INVITE with SDP c1') toward user A.

10a: User A responds in a 200 OK with its SDP (SIP 200 OK including SDP a2).

NOTE: SDP a2 may be d ifferent from SDP a1 reported init ially from user A during call establishment.

10b : The S-CSCF proxies the SIP 200 OK(including SDP a2) to the orig inating/terminating UAo1/UAt1 in the

OSA SCS via the ISC interface.

11a: The OSA SCS being the controller immediately generates an ACK for user A being send on the ISC interface

to the S-CSCF.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 97 Release 9

11b: The S-CSCF proxies the ACK toward user A.

11c: The SDP a2 received in 200 OK from user A is to be passed immediately to user C. It may also need

reorganizat ion to match up m lines, i.e . therefore here denoted a2'. The OSA SCS being the controller generate

an ACK with SDP a2' for user C being send on the ISC interface to the S -CSCF (response to 200 OK in 8b).

11d : The S-CSCF proxies the ACK with SDP a2' toward user C.

11e: The leg object (implementing party C's IpCallLeg interface) for user C in OSA SCS passes the result of the

call being answered back to the application.

12: The media communicat ion between user A and user C has been established based on exchanged SDP

informat ion.

13a: This message instructs the leg object (implement ing party C's IpCallLeg interface) for user C in OSA SCS to

release the call leg from the call.

13b : The OSA SCS acting as a logical UAo3 issues the BYE message on the ISC interface to S -CSCF for the

release of user C.

14a: User C responds in a 200 OK.

14b : The S-CSCF proxies the SIP 200 OK to the originating UAo3 in the OSA SCS v ia the ISC interface.

The UAo3 and the call leg object for C is terminated (destroyed).

15: The media communicat ion between user A and user C is terminated.

16a: This message instructs the leg object (implement ing party B's IpCallLeg interface) for user B in OSA SCS to

attach the call leg fo r user B to the call to enable any media streams to and from other parties in the call.

16b : The OSA SCS acting as a logical User Agent (UAo2) generates an INVITE (re-INVITE with no SDP) for

user B. The re-INVITE is sent on the ISC interface to the S-CSCF.

16c: The S-CSCF proxies the INVITE (re-INVITE with no SDP) toward user B.

17a: User B responds in a 200 OK with its SDP (SDP b2).

NOTE: SDP b2 may be different from SDP b1 reported in itially from user B during call establishment.

17b : The S-CSCF proxies the SIP 200 OK (including SDP b2) to the originating UAo2 in the OSA SCS v ia the

ISC interface.

18a: The OSA SCS being the controlle r uses the SDP b2 in the 200 OK from user B to generate an INVITE (re-

INVITE) from UAo1/UAt1 to user A. The re-INVITE is based on SDP b2, but may need to be reorganised to

match up media lines with those previously applied , therefore denoted as SDP b2' wh en SDP is send on the ISC

interface to the S-CSCF for user A.

18b : The S-CSCF proxies the re-INVITE toward user A.

19a: User A responds in a 200 OK with its SDP (SDP a3).

NOTE: SDP a3 may be different from SDP a1 reported initially from user A during call establishment.

19b : The S-CSCF proxies the SIP 200 OK (including SDP a3) to the UAo1/UAt1 in the OSA SCS via the ISC

interface.

20a: The OSA SCS being the controller immediately generates an ACK for user A being send on the ISC interface

to the S-CSCF.

20b : The S-CSCF proxies the ACK toward user A.

20c: The SDP a3 received in 200 OK from user A is to be passed immediately to user B. It may also need

reorganizat ion to match up m lines, i.e . therefore here denoted a3'. The OSA SCS being the controller genera te

an ACK with SDP a3' for user B being send from UAo2 on the ISC interface to the S-CSCF (response to 200

OK in 17b).

20d : The S-CSCF proxies the ACK with SDP a3' toward user B.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 98 Release 9

20e: The leg object (implementing party B's IpCallLeg interface) for user B in OSA SCS passes the result of the

call leg being attached back to the application.

21: The media communicat ion between user A and user B has been re-established based on exchanged SDP

informat ion.

General Remarks:

The flow 5- 12 fo r call set-up to C party is exactly the same as for the call set-up to B-party.

Flow 1-4 and 16-21: Different implementation options may apply for attach/detach media; in the flow example above it

is anticipated that the OSA SCS would not re-use (store) any SDP in formation previously received from the users, but

always fetch it when needed, i.e. for detachMediaReq / attachMediaReq always retrieve the actual SDP informat ion

from the user (with SDP in 200 OK in response to re-INVITE).

Another option could also be to preference re-INVITE with no SDP and so for attach media p rovide the SDP within the

ACK (instead of including the SDP in the re -INVITE itself as shown in the flow).

B.7 Example OSA SCS Application initiated Multi-Party
Call

The capability to control multiple call legs is supported by the MPCCS. The OSA SCS when acting as 3
rd

. party

controller can create and control multiple call-legs (i.e. more than two parties involved in a call).

The 2-party call may as a variat ion be extended to include 3 parties (or more). After a two party call is established, the

application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the

A-party by entering a service code (mid-call event) or some other stimuli.

Furthermore conference call may be established by connection each user to a "specialized" user, i.e. a conference device

represented by a MRF entity, but addressed like any other user via SIP. Hereby a conference call could be established as

a set of two party calls where each call is termination at the same "user", i.e. the user (MRF) constituting the conference

device in the network.

NOTE: Recommended call flows for such a 3-party call scenarios etc. should be provided in this section to

especially describe the handling of SDP in case of multiple parties in a call session. This is for further

study.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 99 Release 9

Annex C:
OSA call forwarding presentation

C.1 Introduction

The application can request a call forwarding causing a SIP session being forwarded to a new destination. The applied

methods for this (createAndRouteCallLegReq and routeReq) specifies that in case the application wants the call to be

presented in the network as a redirection (call forward ing) it should include the Orig inal Destination Address. The same

should apply for the presence of field REDIRECTING_ADDRESS in AppInfo.

The question raised is how to present this to callee and caller, i.e. make the call vis ible in the network as a redirected or

forwarded call.

When the application instructs a call red irection containing beside the targetAddress (SIP URL) parameter also the

Original Destination Address (field in TpCallAppInfo) and / or Redirect ing Address the call is to be presented in the

network as being a redirection, e.g. in case of any call forwarding service.

C.2 Call Forwarding presentation in OSA: mapping to SIP

The following mappings to SIP applies:

Toward callee:

Call redirection information is to be given to the callee (fo rwarded-to- party) so that this callee may respond to the

caller appropriately. In these situations, the party receiving a redirected call needs an answer to the questions:

Q1: From whom was the request diverted?

Q2: Why was the request diverted?

The SIP Diversion header is used to answer these questions for the party receiving the diverted call.

First the reply to Q1 is given:

Original Destination Address:

In response to createAndRouteCallLegReq and routeReq if the Original Destination Address is present there shall be

a map of the redirecting address to the Diversion header being added to the SIP INVITE.

As the INVITE request may contain information about the first and subsequent redirections

the Orig inal Destination Address, when present, should be used to set the bottom-most Diversion header to present the

original called address (if not already inserted here).

Redirecting address:

How to map the presence of field REDIRECTING_ADDRESS in appInfo in response to createAndRouteCallLegReq

and routeReq. This field contains the address of the user from which the call is redirected /diverted

Here the top-most Diversion header is to be used to set the Redirect ing address.

reply to Q2:

Information regard ing why the call request was diverted is given by filling in the "reason" tag into the Diversion header

(by the OSA SCS). Here a default value "unknown" is recommended as "diversion -reason".

NOTE 1: Currently there is no MPCCS API support allowing the application to indicate "diversion -reason". The

diversion-reason should be used to set the Redirecting Reason corresponding to the associated redirecting

addressinserted into the SIP Diversion header field.

NOTE 2: A Diversion header is added when features such as call forward ing change the Request-URI.

The proposal herein is in alignment with how red irection numbers are mapped between ISUP and SIP.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 100 Release 9

Toward caller:

To make the call visible as a forwarded call in the network the provisional response 181 "" CCaa llll IIss BBeeiinngg FFoorr wwaarrddeedd

"should be sent upstream by the SIP proxy (e.g. the OSA SCS gateway). Th is response is to indicate to the caller that

the call is being forwarded to a different (set of) destination(s).

targetAddress :

The targetAddress received in createAndRouteCallLegReq and routeReq s hould be included in the 181 provisional

response as to enable the presentation of the "forwarded to" address to the caller, i.e . the current destination address.

redirected address.

NOTE 3: If the call is a call redirection, i.e. the appInfo should include at least one of the fields:

ORIGINAL_DESTINATION_ADDRESS and/or REDIRECTING_ADDRESS as to identify the routing

request to be a request for a call redirection. In this case the OSA SCS should store the targetAddress as

to enable the application to use getCurrentDestinationAddress to read the address where the call was

directed to. This address is also to be sent upstream in a 181 provisional response to enable previous

invoked applications as well as the caller to be notified.

NOTE 4: A previous invoked application (further upstream) should then be notified of the call being forwarded if it

has subscribed to the event CALL_EVENT_REDIRECTED including the redirected address

(forwardAddress).

NOTE 5: The redirected address (i.e. the current address of the termination point) is to be stored in the OSA SCS so

that the application can request this informat ion anytime with the getCurrentDestinationAddress.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 101 Release 9

Annex D (informative):
Description of Multiparty Call Control ISC Mapping for
3GPP2 cdma2000 networks

This annex is intended to define the OSA API Stage 3 interface defin itions and it provides the complete OSA

specifications. It is an extension of OSA API specifications capabilit ies to enable operation in cdma2000 systems

environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in:

[1] 3GPP2 P.S0001-B: "Wireless IP Network Standard", Version 1.0, September 2000.

[2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems",

Version 2.0, May 14, 2002.

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain", December 2003.

These requirements are expressed as additions to and/or exclusions from the 3GPP specification.

The informat ion given here is to be used by developers in 3GPP2 cdma2000 network arch itecture to interpret the 3GPP

OSA specifications.

D.1 General Exceptions

 The term UMTS is not applicable fo r the cdma2000 family of standards. Nevertheless these terms are used

(3GPP TR 21.905) mostly in the broader sense of "3G Wireless System" . If not stated otherwise there are no

additions or exclusions required.

 CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

Clause 1: Scope

 There are no additions or exclusions.

Clause 2: References

 There are no additions or exclusions.

Clause 3: Definitions and abbreviations

 There are no additions or exclusions.

Clause 4: Mapping OSA Call and Call Leg to SIP

 There are no additions or exclusions.

Clause 5: Multi Party Call Control Flows

 There are no additions or exclusions.

Clause 6:Detailed parameter mappings

 There are no additions or exclusions.

Annex A: Introduction to API Mapping for OSA MPCCS

 There are no additions or exclusions.

Annex B: SDP in SIP at application controlled calls for OSA MPCCS API

 There are no additions or exclusions.

Annex C: OSA call forwarding presentation

 There are no additions or exclusions.

3GPP

3GPP TR 29.998-04-4 V9.0.0 (2009-12) 102 Release 9

Annex E:
Change history

Change history

Date TSG # TSG Doc. CR Rev Subject/Comment Old New

April 2002 -- -- -- -- Draft v100 submitted to TSG CN email list for Information -- 1.0.0

Jun 2002 CN_16 NP-020197 -- -- Draft v200 submitted to TSG CN#16 for Approval 2.0.0 5.0.0

Dec 2003 CN_22 NP-030553 001 -- Add OSA API support for 3GPP2 networks in ISC Mapping 5.0.0 6.0.0

Mar 2004 -- -- -- -- Updated references to IETF ([14], [16]) 6.0.0 6.0.1

Apr 2004 -- -- -- -- Updated reference [16]. Reason: RFC# allocated by IETF (Musa). 6.0.1 6.0.2

Jun 2004 -- -- -- -- Updated reference [16]. Reason: RFC agreed by IETF (John-Luc) 6.0.2 6.0.3

Dec 2004 CN_26 -- -- -- Updated Introduction (changed SPAN12 to TISPAN, added Part 15 to

OSA API family), converted in References TS 22.121 to 23.198 (the
new OSA Stage 2 TS), modif ied release 5 unsolved issue to a release
independent formulation.

6.0.3 6.0.4

Mar 2007 CT_35 -- -- -- Automatic upgrade to R7 (no CR needed) 6.0.0 7.0.0

Dec 2008 CT_42 -- -- -- Upgraded unchanged from Rel-7 7.0.0 8.0.0

2009-12 - - - - Update to Rel-9 version (MCC) 8.0.0 9.0.0

	Contents
	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Mapping OSA Call and Call Leg to SIP
	4.1 Introduction
	4.2 SIP Call-id &dialog vs. OSA Call & Call Leg Session ID
	4.2.1 OSA Call and SIP Dialogue Correlation Tables

	5 Multi Party Call Control Flows
	5.1 Call Manager Service Interface
	5.1.1 CreateCall
	5.1.2 CreateNotification
	5.1.3 changeNotification
	5.1.4 destroyNotification
	5.1.5 getNotification
	5.1.6 setCallLoadControl

	5.2 Call Manager Application Interface
	5.2.1 managerInterrupted
	5.2.2 managerResumed
	5.2.3 reportNotification
	5.2.4 callAborted
	5.2.5 callOverloadEncountered
	5.2.6 callOverloadCeased

	5.3 Multi-Party Call Service Interface
	5.3.1 GetCallLegs
	5.3.2 createCallLeg
	5.3.3 createAndRouteCallLegReq
	5.3.4 release
	5.3.5 deassignCall
	5.3.6 getInfoReq
	5.3.7 superviseReq
	5.3.8 setAdviceOfCharge
	5.3.9 SetChargePlan

	5.4 Multi-Party Call Application Interface
	5.4.1 createAndRouteCallLegErr
	5.4.2 callEnded
	5.4.3 getInfoRes
	5.4.4 getInfoErr
	5.4.5 superviseErr
	5.4.6 superviseRes

	5.5 CallLeg Service Interface
	5.5.1 routeReq
	5.5.1.1 Case 1 UA mode operation
	5.5.1.2 Case 2 Proxy mode operation

	5.5.2 eventReportReq
	5.5.3 release
	5.5.4 getInfoReq
	5.5.5 getCall
	5.5.6 continueProcessing
	5.5.7 attachMediaReq
	5.5.8 detachMediaReq
	5.5.9 deassign
	5.5.10 getCurrentDestinationAddress

	5.6 CallLeg Application Interface
	5.6.1 routeErr
	5.6.2 eventReportRes
	5.6.3 eventReportErr
	5.6.4 callLegEnded
	5.6.5 getInfoRes
	5.6.6 getInfoErr
	5.6.7 superviseErr
	5.6.8 superviseRes
	5.6.9 attachMediaErr
	5.6.10 attachMediaRes
	5.6.11 detachMediaErr
	5.6.12 detachMediaRes

	6 Detailed parameter mappings
	6.1 TpAdditionalCallEventCriteria
	6.2 TpAddress
	6.3 TpAddressRange
	6.4 TpCallAppInfo
	6.5 TpCallError
	6.6 TpCallErrorType
	6.7 TpCallEventInfo
	6.8 TpCallEventRequest
	6.9 TpCallEventType
	6.10 TpCallInfoType
	6.11 TpCallLegInfoType
	6.12 TpCallLegConnectionProperties
	6.13 TpCallMonitorMode
	6.14 TpCallNotificationReportScope
	6.15 TpCallNotifiationRequest
	6.16 TpCallTreatmentType
	6.17 TpReleaseCause, mapping to SIP response
	6.18 TpReleaseCause, mapping from SIP
	6.19 TpAoCInfo
	6.20 TpAoCOrder
	Annex A: Introduction to API Mapping for OSA MPCCS

	A.1 OSA Service Provision for MPCCS in IMS
	A.2 MPCCS
	A.2.1 Introduction
	A.2.2 SIP Server Roles in OSA SCS
	A.2.2.1 Introduction
	A.2.2.2 OSA SCS acting as a SIP Proxy server
	A.2.2.3 OSA SCS acting as Redirect server
	A.2.2.4 OSA SCS acting as UA
	A.2.2.5 OSA SCS acting as a B2BUA
	A.2.2.6 OSA SCS acting as a 3rd Party Controller

	A.2.3 SIP Server Role Mode Transitions
	Annex B: SDP in SIP at application controlled calls for OSA MPCCS API

	B.1 Introduction
	B.2 OSA SCS and Application based Call and Media Control
	B.3 Example OSA SCS Application initiated One-Party Call
	B.4 Example OSA SCS Application initiated Two-Party Call
	B.5 Example OSA SCS control of User initiated Two-Party Call
	B.6 Example OSA SCS control of User initiated Two-Party Call with announcement
	B.7 Example OSA SCS Application initiated Multi-Party Call
	Annex C: OSA call forwarding presentation

	C.1 Introduction
	C.2 Call Forwarding presentation in OSA: mapping to SIP
	Annex D (informative): Description of Multiparty Call Control ISC Mapping for 3GPP2 cdma2000 networks

	D.1 General Exceptions
	D.2 Specific Exceptions
	Annex E: Change history

