
3GPP TS 29.198-4 V4.11.0 (2004-12)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access (OSA);
Application Programming Interface (API);

Part 4: Call control Service Capability Feature (SCF)
(Release 4)

The present document has been developed within the 3
rd

 Generation Partnership Project (3GPP
 TM

) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP
 TM

 system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 2 Release 4

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2004, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 3 Release 4

Contents

Foreword ..7

Introduction ..7

1 Scope ..9

2 References ...9

3 Definitions and abbreviations..10
3.1 Definitions .. 10
3.2 Abbreviations ... 10

4 Call Control SCF ...10
4.1 Call Model Description .. 10
4.2 General requirements on support of methods ... 11

5 The Service Interface Specifications ..11
5.1 Interface Specification Format .. 11
5.1.1 Interface Class ... 11
5.1.2 Method descriptions.. 11
5.1.3 Parameter descriptions ... 12
5.1.4 State Model .. 12
5.2 Base Interface ... 12
5.2.1 Interface Class IpInterface ... 12
5.3 Service Interfaces .. 12
5.3.1 Overview .. 12
5.4 Generic Serv ice Interface ... 12
5.4.1 Interface Class IpService ... 12

6 Generic Call Control Service ..14
6.1 Sequence Diagrams ... 14
6.1.1 Additional Callbacks .. 14
6.1.2 Alarm Call .. 15
6.1.3 Application Init iated Call... 17
6.1.4 Call Barring 1... 19
6.1.5 Number Translation 1... 21
6.1.6 Number Translation 1 (with callbacks) ... 23
6.1.7 Number Translation 2... 25
6.1.8 Number Translation 3... 27
6.1.9 Number Translation 4... 29
6.1.10 Number Translation 5... 31
6.1.11 Prepaid .. 32
6.1.12 Pre-Paid with Advice of Charge (AoC) .. 34
6.2 Class Diagrams .. 37
6.3 Generic Call Control Service Interface Classes ... 38
6.3.1 Interface Class IpCallControlManager .. 39
6.3.2 Interface Class IpAppCallControlManager .. 43
6.3.3 Interface Class IpCall ... 45
6.3.4 Interface Class IpAppCall.. 50
6.4 Generic Call Control Service State Transition Diagrams ... 54
6.4.1 State Transition Diagrams for IpCallControlManager ... 54
6.4.1.1 Active State.. 55
6.4.1.2 Notification terminated State .. 55
6.4.2 State Transition Diagrams for IpCall... 55
6.4.2.1 Network Released State ... 56
6.4.2.2 Fin ished State .. 56
6.4.2.3 Application Released State.. 57
6.4.2.4 Active State.. 57
6.4.2.5 1 Party in Call State .. 57
6.4.2.6 2 Parties in Call State ... 57

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 4 Release 4

6.5 Generic Call Control Service Propert ies ... 58
6.5.1 List of Serv ice Properties ... 58
6.5.2 Service Property values for the CAMEL Serv ice Environment. .. 59
6.6 Generic Call Control Data Defin itions .. 60
6.6.1 Generic Call Control Event Notification Data Definitions .. 60
6.6.1.1 TpCallEventName .. 60
6.6.1.2 TpCallNotificationType... 61
6.6.1.3 TpCallEventCriteria ... 61
6.6.1.4 TpCallEventInfo.. 61
6.6.2 Generic Call Control Data Defin itions .. 61
6.6.2.1 IpCall... 61
6.6.2.2 IpCallRef .. 61
6.6.2.3 IpAppCall ... 62
6.6.2.4 IpAppCallRef .. 62
6.6.2.5 TpCallIdentifier... 62
6.6.2.6 IpAppCallControlManager.. 62
6.6.2.7 IpAppCallControlManagerRef ... 62
6.6.2.8 IpCallControlManager ... 62
6.6.2.9 IpCallControlManagerRef... 62
6.6.2.10 TpCallAppInfo .. 62
6.6.2.11 TpCallAppInfoType ... 63
6.6.2.12 TpCallAppInfoSet... 63
6.6.2.13 TpCallEndedReport .. 63
6.6.2.14 TpCallFau lt .. 63
6.6.2.15 TpCallIn foReport .. 64
6.6.2.16 TpCallReleaseCause... 64
6.6.2.17 TpCallReport ... 65
6.6.2.18 TpCallAdditionalReportInfo ... 65
6.6.2.19 TpCallReportRequest ... 65
6.6.2.20 TpCallAdditionalReportCriteria ... 66
6.6.2.21 TpCallReportRequestSet ... 66
6.6.2.22 TpCallReportType .. 66
6.6.2.23 TpCallTreatment ... 67
6.6.2.24 TpCallEventCriteriaResultSet .. 67
6.6.2.25 TpCallEventCriteriaResult .. 67

7 MultiParty Call Control Service ..67
7.1 Sequence Diagrams ... 67
7.1.1 Application init iated call setup ... 67
7.1.2 Call Barring 2... 69
7.1.3 Call forwarding on Busy Service ... 70
7.1.4 Call Information Collect Serv ice .. 72
7.1.5 Complex Card Serv ice ... 75
7.1.6 Hotline Serv ice .. 78
7.1.7 Use of the Redirected event... 81
7.2 Class Diagrams .. 82
7.3 MultiParty Call Control Service Interface Classes .. 83
7.3.1 Interface Class IpMultiPartyCallControlManager... 83
7.3.2 Interface Class IpAppMultiPartyCallControlManager ... 87
7.3.3 Interface Class IpMultiPartyCall .. 90
7.3.4 Interface Class IpAppMultiPartyCall .. 95
7.3.5 Interface Class IpCallLeg .. 97
7.3.6 Interface Class IpAppCallLeg ...103
7.4 MultiParty Call Control Service State Transition Diagrams ..108
7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager ..108
7.4.1.1 Active State..108
7.4.1.2 Interrupted State ..108
7.4.1.3 Overview of allowed methods ..108
7.4.2 State Transition Diagrams for IpMultiPartyCall..109
7.4.2.1 IDLE State..109
7.4.2.2 ACTIVE State ...110
7.4.2.3 RELEASED State ...110

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 5 Release 4

7.4.2.4 Overview of allowed methods ..110
7.4.3 State Transition Diagrams for IpCallLeg ..110
7.4.3.1 Originating Call Leg ...111
7.4.3.1.1 Initiat ing State ...112
7.4.3.1.2 Analysing State ...113
7.4.3.1.3 Active State..114
7.4.3.1.4 Releasing State ..116
7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD ...117
7.4.3.2 Terminating Call Leg ...118
7.4.3.2.1 Idle (terminating) State ..119
7.4.3.2.2 Active (terminating) State ...120
7.4.3.2.3 Releasing (terminating) State..122
7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD.................................124
7.5 Multi-Party Call Control Service Propert ies ...125
7.5.1 List of Serv ice Properties ...125
7.5.2 Service Property values for the CAMEL Serv ice Environment. ..125
7.6 Multi-Party Call Control Data Defin itions ..127
7.6.1 Event Notificat ion Data Defin itions ..127
7.6.2 Multi-Party Call Control Data Defin itions ...127
7.6.2.1 IpCallLeg ..127
7.6.2.2 IpCallLegRef ...127
7.6.2.3 IpAppCallLeg ..127
7.6.2.4 IpAppCallLegRef..127
7.6.2.5 IpMultiPartyCall ...127
7.6.2.6 IpMultiPartyCallRef ...127
7.6.2.7 IpAppMultiPartyCall..127
7.6.2.8 IpAppMultiPartyCallRef ...128
7.6.2.9 IpMultiPartyCallControlManager ..128
7.6.2.10 IpMultiPartyCallControlManagerRef ...128
7.6.2.11 IpAppMultiPartyCallControlManager ..128
7.6.2.12 IpAppMultiPartyCallControlManagerRef..128
7.6.2.13 TpAppCallLegRefSet ...128
7.6.2.14 TpMultiPartyCallIdentifier..128
7.6.2.15 TpAppMultiPartyCallBack ...128
7.6.2.16 TpAppMultiPartyCallBackRefType..129
7.6.2.17 TpAppCallLegCallBack ..129
7.6.2.18 TpMultiPartyCallIdentifierSet ..129
7.6.2.19 TpCallAppInfo ..129
7.6.2.20 TpCallAppInfoType ...130
7.6.2.21 TpCallAppInfoSet...130
7.6.2.22 TpCallEventRequest...130
7.6.2.23 TpCallEventRequestSet ...130
7.6.2.24 TpCallEventType..131
7.6.2.25 TpAdditionalCallEventCriteria ..133
7.6.2.26 TpCallEventInfo..133
7.6.2.27 TpCallAdditionalEventInfo...134
7.6.2.28 TpCallNotificationRequest..134
7.6.2.29 TpCallNotificationScope ...134
7.6.2.30 TpCallNotificationInfo ..135
7.6.2.31 TpCallNotificationReportScope ...135
7.6.2.32 TpNotificationRequested...135
7.6.2.33 TpNotificationRequestedSet ...135
7.6.2.34 TpReleaseCause ..135
7.6.2.35 TpReleaseCauseSet ..135
7.6.2.36 TpCallLegIdentifier ..136
7.6.2.37 TpCallLegIdentifierSet ..136
7.6.2.38 TpCallLegAttachMechanism..136
7.6.2.39 TpCallLegConnectionProperties ..136
7.6.2.40 TpCallLegInfoReport ...136
7.6.2.41 TpCallLegInfoType ..137
7.6.2.42 TpCallLegSuperviseTreatment...137

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 6 Release 4

8 Common Call Control Data Types... 137
8.1 TpCallAlertingMechanism ..137
8.2 TpCallBearerServ ice ...138
8.3 TpCallChargePlan ...138
8.4 TpCallPartyToChargeAdditionalInfo ..138
8.5 TpCallPartyToChargeType..139
8.6 TpCallChargeOrderCategory ..139
8.7 TpCallEndedReport...139
8.8 TpCallError...139
8.9 TpCallAdditionalErrorInfo ..140
8.10 TpCallErrorType ...140
8.11 TpCallIn foReport ..140
8.12 TpCallIn foType ...141
8.13 TpCallLoadControlMechanism...141
8.14 TpCallLoadControlIntervalRate ...141
8.15 TpCallLoadControlMechanismType ...141
8.16 TpCallMonitorMode ...142
8.17 TpCallNetworkAccessType...142
8.18 TpCallPartyCategory ..142
8.19 TpCallServiceCode ...143
8.20 TpCallServiceCodeSet..143
8.21 TpCallServiceCodeType ..143
8.22 TpCallSuperv iseReport ..143
8.23 TpCallSuperv iseTreatment ..144
8.24 TpCallTeleService ...144
8.25 TpCallTreatment..145
8.26 TpCallTreatmentType...145
8.27 TpCallAdditionalTreatmentInfo ...145
8.28 TpMediaType ...145

Annex A (normative): OMG IDL Description of Call Control SCF.. 146

Annex B (informative): Change history.. 147

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 7 Release 4

Foreword

This Technical Specification has been produced by the 3
rd

 Generat ion Partnership Pro ject (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal

TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an

identifying change of release date and an increase in version number as fo llows:

Version x.y.z

where:

x the first digit :

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

updates, etc.

z the third digit is incremented when editorial on ly changes have been incorporated in the document.

Introduction

The present document is part 4 of a multi-part TS covering the 3
rd

 Generation Partnership Project : Technical

Specification Group Core Network; Open Serv ice Access (OSA); Application Programming Interface (API), as

identified below. The API s pecification (3GPP TS 29.198) is structured in the following Parts:

Part 1: Overview

Part 2: Common Data Defin itions

Part 3: Framework

Part 4: Call Control SCF

Part 5: User Interaction SCF

Part 6: Mobility SCF

Part 7: Terminal Capabilit ies SCF

Part 8: Data Session Control SCF

Part 9: Generic Messaging SCF (not part of 3GPP Release 4)

Part 10: Connectivity Manager SCF (not part of 3GPP Release 4)

Part 11: Account Management SCF

Part 12: Charging SCF

The Mapping s pecification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.

A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.

Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family

29.198-1 Part 1: Overview 29.998-1 Part 1: Overview

29.198-2 Part 2: Common Data Definitions 29.998-2 Not Applicable

29.198-3 Part 3: Framework 29.998-3 Not Applicable

29.198-4 Part 4: Call Control SCF 29.998-4-1 Subpart 1: Generic Call Control – CAP mapping

29.998-4-2

29.198-5 Part 5: User Interaction SCF 29.998-5-1 Subpart 1: User Interaction – CAP mapping

29.998-5-2

29.998-5-3

29.998-5-4 Subpart 4: User Interaction – SMS mapping

29.198-6 Part 6: Mobility SCF 29.998-6 User Status and User Location – MAP mapping

29.198-7 Part 7: Terminal Capabilities SCF 29.998-7 Not Applicable

29.198-8 Part 8: Data Session Control SCF 29.998-8 Data Session Control – CAP mapping

29.198-9 Part 9: Generic Messaging SCF 29.998-9 Not Applicable

29.198-10 Part 10: Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 Part 11: Account Management SCF 29.998-11 Not Applicable

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 8 Release 4

29.198-12 Part 12: Charging SCF 29.998-12 Not Applicable

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 9 Release 4

1 Scope

The present document is Part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open

Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality

through an open standardised interface, i.e . the OSA APIs. The concepts and the functional architecture for the OSA are

contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects

of the Call Control SCF are defined here, these being:

 Sequence Diagrams

 Class Diagrams

 Interface specificat ion plus detailed method descriptions

 State Transition diagrams

 Data defin itions

 IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the

Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN W G5, ETSI TISPAN and The Parlay Group, in co -

operation with a number of JAIN™ Community member companies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present

document.

 References are either specific (identified by date of publication, edit ion number, version number, etc.) o r

non-specific.

 For a specific reference, subsequent revisions do not apply.

 For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including

a GSM document), a non-specific reference implicit ly refers to the latest version of that document in the same

Release as the present document.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:

Overview".

[2] 3GPP TS 22.127: "Serv ice Requirement for the Open Services Access (OSA); Stage 1".

[3] 3GPP TS 23.127: " Virtual Home Environment (VHE) / Open Serv ice Access (OSA)".

[4] 3GPP TS 22.002: "Circuit Bearer Services Supported by a PLMN".

[5] ISO 4217 (1995): " Codes for the representation of currencies and funds".

[6] 3GPP TS 24.002: " GSM-UMTS Public Land Mobile Network (PLMN) Access Reference

Configurat ion".

[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)".

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 10 Release 4

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Call Control SCF

Two flavours of Call Control (CC) APIs have been included in 3GPP Release 4. These are t he Generic Call Control

(GCC) and the Multi-Party Call Control (MPCC). The GCC is the same API as was already present in the Release 99

specification (TS 29.198 v3.3.0) and is in principle ab le to satisfy the requirements on CC APIs for Release 4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay CC Working group with collaboration from

JAIN has been focussed on the MPCC API. A number of improvements on CC functionality have been made and are

reflected in this API. For this it was necessary to break the inheritance that previously existed between GCC and

MPCC.

The joint CC group has furthermore decided that the MPCC is to be considered as the future base CC family and the

technical work will not be continued on GCC. Errors or technical flaws will of course be corrected.

The following clauses describe each aspect of the CC Serv ice Capability Feature (SCF).

The order is as follows:

 The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

 The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.

 The Interface specificat ion clause describes in detail each of the interfaces shown within the Class diagram part.

 The State Transition Diagrams (STD) show trans ition between states in the SCF. The states and transitions are

well-defined; either methods specified in the Interface specification or events occurring in the underlying

networks cause state transitions.

 The Data defin itions clause show a detailed expansion of each of the data types associated with the methods

within the classes. Note that some data types are used in other methods and classes and are therefore defined

within the Common Data types part of this specification (29.198-2).

4.1 Call Model Description

The adopted call model has the following objects.

 a call object. A call is a relat ion between a number of parties. The call object relates to the entire call v iew from

the application. E.g., the entire call will be released when a release is cal led on the call. Note that different

applications can have different views on the same physical call, e.g., one application for the originating side and

another application for the terminating side. The applications will not be aware of each other, all

'communication' between the applications will be by means of network signalling. The API currently does not

specify any feature interaction mechanisms.

 a call leg object. The leg object represents a logical association between a call and an address. The relat ionship

includes at least the signalling relat ion with the party. The relation with the address is only made when the leg is

routed. Before that the leg object is IDLE and not yet associated with the address.

 an address. The address logically represents a party in the call.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 11 Release 4

 a terminal. A terminal is the end-point of the signalling and/or media for a party. Th is object type is currently not

addressed.

The call object is used to establish a relation between a number of part ies by creating a leg fo r each part y within the call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the

traditional voice only networks) or a number (zero or more) of media channels (in multi-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer

channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same

call. I.e., only legs that are attached can 'speak' to each other. A leg can have a number o f states, depending on the

signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that

are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).

Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the

controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.

However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that

meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can

control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from

the application.

4.2 General requirements on support of methods

An implementation of this API which supports or implements a method described in the present document, shall

support or implement the functionality described for that method, for at least one valid set of values for the parameters

of that method.

Where a method is not supported by an implementation of a Serv ice interface, the exception

P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

Where a method is not supported by an implementation of an Applicat ion interface, a call to that method shall be

possible, and no exception shall be returned.

5 The Service Interface Specifications

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specificat ion. The Unified

Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is

described below.

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters

and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with

name Ip<name> . The callback interfaces to the applications are denoted by classes with name IpApp<name>. For

the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name

IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>

5.1.2 Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API.

Asynchronous methods are identified by a 'Req ' suffix for a method request, and, if applicab le, are served by

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 12 Release 4

asynchronous methods identified by either a 'Res' o r 'Err ' suffix for method results and errors, respectively. To handle

responses and reports, the application or service developer must implement the relevant IpApp<name> or

IpSvc<name> interfaces to provide the callback mechanis m.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have

a value when the method is called. Those described as 'out' are those that contain the return result of the method when

the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that imple ment the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not

provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilit ies of the underlying network - such as call control, user

interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that

must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

5.4 Generic Service Interface

5.4.1 Interface Class IpService

Inherits from: Ip Interface

All service interfaces inherit from the fo llowing interface.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 13 Release 4

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

Method

setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the

application. It is not allowed to invoke this method on an interface that uses SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method

setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions

associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an

interface that does not use SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 14 Release 4

6 Generic Call Control Service

The Generic Call Control API of 3GPP Rel.4 relies on the CAMEL Serv ice Environment (CSE) and thus some

restrictions exist to the use of the interface. The most significant one is that there is no support for createCall method.

The detailed description of the supported methods and further restrictions is given in the chapter 6.5.

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of

events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is

used instead.

first instance : (Logical

View::IpAppLogic)

second instance :

(Logic...

 : IpAppCallControlManager : IpAppCallControlManager : IpCallControlManager

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to

handle callbacks for this first instance of the logic.

2: The enableCallNotification is associated with an applicationID. The call control manager uses the applicationID to

decide whether this is the same applicat ion.

3: The second instance of the application is started on node 2. The applicat ion creates a new

IpAppCallControlManager to handle callbacks for this second instance of the logic.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 15 Release 4

4: The same enableCallNot ification request is sent as for the first instance of the log ic. Because both requests are

associated with the same applicat ion, the second request is not rejected, but the specified callback object is stored as an

additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different

policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin

scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable th is is communicated with an exception to the

call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

6.1.2 Alarm Call

The following sequence diagram shows a "reminder message", in the form of an alarm, being delivered to a customer as

a result of a trigger from an application. Typically, the application would be set to trigger at a certain t ime, however, the

application could also trigger on events.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 16 Release 4

 :

IpCallControlManager

 : IpAppCall : IpCall : IpUICall :

IpAppUIManager

 :

IpAppUICall

 : (Logical

View::IpAppLogic)

1: new()

2: createCall()

3: new()

4: routeReq()

5: routeRes()

9: sendInf oReq()

6: 'f orward ev ent'

7: createUICall()

8: new()

10: sendInf oRes()

11: 'f orward ev ent'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object

implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not

exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to

receive the "reminder message".

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 17 Release 4

11: The event is forwarded to the application logic.

12: The application releases the UICall ob ject, since no further announcements are required. Alternatively, the

application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have

been implicit ly released after the announcement was played.

13: The application releases the call and all associated parties.

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. Th is sequence could

be done after a customer has accessed a Web page and selected a name on the page of a person or o rganisation to talk

to.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 18 Release 4

 :
IpCallControlManager

 : IpAppCall : IpCall : (Logical
View::IpAppLo...

5: routeRes()

1: new()

2: createCall()

3: new()

4: routeReq()

7: routeReq()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 19 Release 4

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object

implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not

exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request

response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or

failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is

automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the applicat ion is no longer interested in controlling the call, the application deassigns the call. The call will

continue in the network, but there will be no further communication between the call object and the a pplication.

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, init iated as a result of a prearranged event being received

by the call control service. Before the call is routed to the destination number, the calling party is as ked for a PIN code.

The code is accepted and the call is routed to the original called party.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 20 Release 4

 : (Logical

View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCall : IpUICall :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall() 7: new()

11: release()

15: callEnded()16: "forward event"

17: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a call barring service, it is likely that all new call events destined for a particular address or address range prompted for

a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a

message (not shown) is directed to the object implement ing the IpCallControlManager. Assuming that the criteria for

creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not

shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager using th e return parameter of the

callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the

UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 21 Release 4

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. Th is notificat ion will always

be received when the call is terminated by the network in a normal way, the application does not have to request this

event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number t ranslation service, in itiated as a result of a prearranged event

being received by the call control service.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 22 Release 4

 :

IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical

View::IpAppLo...

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled. When

a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object

implementing the IpCallControlManager. Assuming that the criteria for creating an object implement ing the IpCall

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and

associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 23 Release 4

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager using the return parameter of message

3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue

in the network, but there will be no further communication between the call object and the app lication.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number t ranslation service, in itiated as a result of a prearranged event

being received by the call control service.

For illustration, in this sequence the callback references are set explicit ly. Th is is optional. All the callbacks references

can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the

sequences use that mechanism.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 24 Release 4

 :

IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical

View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'translate number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

3: enableCallNotification()

12: deassignCall()

7: setCallbackWithSessionID()

2: setCallback()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The

CallControlManager reports the callEventNotify to referenced object only for enableCallNotificat ions that do not have a

explicit IpAppCallControlManager reference specified in the enableCallNotification.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 25 Release 4

3: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled. When

a new call, that matches the event criteria set in message 3, arrives a message (not shown) is directed to the object

implementing the IpCallControlManager. Assuming that the criteria for creating an object implement ing the IpCall

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and

associated call leg object.

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall fo r this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue

in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, in itiated as a result of a prearranged event being

received by the call control service. If the translated number being routed to does not answer or is busy then the call is

automatically released.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 26 Release 4

 : (Logical

View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

6: 'translate number'

9: 'forward event'

8: routeRes()

7: routeReq()

10: release()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled. When

a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager using the return parameter of the

callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback

in this message, indicating the unavailability of the called party.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 27 Release 4

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, in itiated as a result of a prearranged event being

received by the call control service. If the translated number being routed to does not answer or is busy then the call is

automatically routed to a voice mailbox.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 28 Release 4

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical

View::IpAppLogic)

8: routeRes()

6: 'translate number'

7: routeReq()

9: 'forward event'

10: 'translate number'

11: routeReq()

12: routeRes()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

14: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled. When

a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 29 Release 4

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager using the return parameter of the

callEventNotify.

6: This message invokes the number trans lation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,

indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number

belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue

in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, in itiated as a result of a prearranged event being

received by the call control service. Before the call is routed to the translated number, the application requests for all

call related informat ion to be delivered back to the application on completion of the call.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 30 Release 4

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical

View::IpAppLogic)

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()
14: 'forward event'

10: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deassignCall()

11: callEnded()
12: "forward event"

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled. When

a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 31 Release 4

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object imple menting the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager using the return parameter of the

callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implement ing the IpCall interface to return all call related information once the

call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object

implementing the IpCall. Th is causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object

implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: After the last informat ion is received, the application deassigns the call. This will free the resources related to this

call in the gateway.

6.1.10 Number Translation 5

The following sequence diagram shows a simple number t ranslation service which contains a status check function,

initiated as a result of a p rearranged event being received. In the following sequence, when the application receives an

incoming call, it checks the status of the user, and returns a busy code to the calling party.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 32 Release 4

 : IpAppCall : IpAppCallControlManager : IpCallIpAppLogic : IpCallControlManager

1: new()

2: enableCallNotification()

3: callEventNotify()

4: 'forward event'

5: new()

6: 'check status'

7: appropriate release cause

1: This message is used by the application to create an object implement ing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain addres s range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object

implementing the IpCallControlManager. Assuming that the criteria for creating an object implement ing the Ip Call

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and

associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManage r interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager using the return parameter of message

3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicat ing that the user is

busy.

6.1.11 Prepaid

This sequence shows a Pre-paid applicat ion.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain

timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the

following sequence the end-user will receive an announcement before his final t imeslice.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 33 Release 4

Prepaid : (Logical

View::IpAppLogic)

 : IpAppCallControlManager : IpCallControlManager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

7: routeReq()

8: superviseCallRes()
9: "forward event"

10: superviseCallReq()

11: superviseCallRes()
12: "forward event"

13: superviseCallReq()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: sendInfoRes()
19: "forward event"

21: superviseCallReq()

22: superviseCallRes()
23: "forward event:

24: release()

16: createUICall()

20: release()

5: new()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 34 Release 4

that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: The incoming call t riggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period

indicated in the message. This period is related to the credits left on the account of the pre -paid subscriber.

7: Before continuation of the call, PPA sends all charging informat ion, a possible tariff switch time and the call

duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call fo r another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call fo r another call duration. When the timer exp ires it

will indicate that the user is almost out of credit.

14: When the user is almost out of credit the application is informed.

15: The message is forwarded to the application.

16: The application decides to play an announcement to the parties in this call. A new UICall object is created and

associated with the call.

17: An announcement is played informing the user about the near-exp irat ion of his credit limit.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall ob ject.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no

userInteractionFaultDetected is sent to the application.

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid applicat ion that uses the Advice of Charge feature.

The application will send the charging informat ion before the actual call setup and when during the call the charging

changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an

application in the end-user terminal to display the charges for the call, depending on the informat ion received from the

application.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 35 Release 4

Prepaid : (Logical

View::IpAppLogic)

 : IpAppCallControlManager : IpCallControlManager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: superviseCallReq()

27: release()

21: sendInfoReq()

18: new()

22: sendInfoRes()

23: "forward event"

9: superviseCallRes()
10: "forward event"

12: superviseCallRes()
13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()
17: "forward event"

25: superviseCallRes()

26: "forward event:

6: setAdviceOfCharge()

19: createUICall() 20: new()

28: userInteractionFaultDetected()

5: new()

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 36 Release 4

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,

that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: The incoming call t riggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA

contains ALL the tariff in formation and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch t ime (e.g.,

18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period

indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call fo r another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again,

at the tariff switch time, the network will send AoC informat ion to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call fo r another call duration. When the timer exp ires it

will indicate that the user is almost out of credit.

16: When the user is almost out of credit the application is informed.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created

20: The Gateway creates a new UI call object that will handle p laying of the announcement.

21: With this message the announcement is played to the parties in the call.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 37 Release 4

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The

UICall object is terminated in the gateway and no further communication is possible between the UICall and the

application.

6.2 Class Diagrams

This class diagram shows the interfaces of the generic call control service package.

Figure: Service Interfaces

The generic call control service consists of two packages, one for the interfaces on the application side and one for

interfaces on the service side.

The class diagrams in the fo llowing figures show the interfaces that make up the generic call control application

package and the generic call control service package. Communicat ion between these packages is indicated with the

<<uses>> associations; e.g., the IpCallControlManager interface uses the IpAppCallControlManager , by means of

calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relat ions to the

interfaces of the generic call control service package.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 38 Release 4

Figure: Application Interfaces

6.3 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third

party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network

(IN) services in the case of a switched telephony network, or equiva lent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU -T

recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation

Protocol, or any other call control technology.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 39 Release 4

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call

control does not give exp licit access to the legs and the media channels. This is provided by the Multi-Party Call

Control Service. Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given

time. Active is defined here as 'being routed' or connected.

The GCCS is represented by the IpCallControlManager and IpCall interfaces that interface to services provided by the

network. Some methods are asynchronous, in that they do not lock a thread into wait ing whilst a transaction performs.

In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle

responses and reports, the developer must implement IpAppCallControlManager and IpAppCall to provide the callback

mechanis m.

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface fo r the Generic Call Control Service. The generic call control manager

interface provides the management functions to the generic call control service. The application programmer can use

this interface to provide overload control functionality, create call objects and to enable or disable call -related event

notifications.

 This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the

createCall() method shall be implemented, or the enableCallNotificat ion() and disableCallNot ification() methods shall

be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMec hanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method

createCall()

This method is used to create a new call object.

Call back reference:

An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control

will not be able to report a callAborted() to the applicat ion. The applicat ion shall invoke setCallback() prior to

createCall if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 40 Release 4

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method

enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an

application has to do to get initial notification of calls happening in the network. When such an event happens, the

application will be informed by callEventNotify(). In case the application is interested in other events during the cont ext

of a particular call session it has to use the routeReq() method on the call object. The applicat ion will get access to the

call object when it receives the callEventNotify(). (Note that the enableCallNotificat ion() is not applicable if the call is

setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when

certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g . the

application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some applicat ion already requested notificat ions with criteria that overlap the specified criteria, the request is refused

with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges

overlap and the same number p lan is used and the same CallNotificationType is used.

If a notificat ion is requested by an application with the monitor mode set to notify, t hen there is no need to check the

rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be

passed over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be reg istered either in a) enableCallNotification() or b) exp licitly with a separate

setCallback() method depending on how the application provides its callback reference.

Case a:

From an efficiency point of view the enableCallNotification() with exp licit immediate registration (no "Null" value) of

call back reference may be the preferred method.

Case b:

The enableCallNotficat ion() with no call back reference ("Null" value) is used where (e.g. due to distributed application

logic) the call back reference is provided previously in a setCallback(). If no callback reference has been provided

previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised. In case the

enableCallNotification() contains no callback, at the moment the application needs to be informed the gateway will use

as callback the callback that has been registered by setCallback(). See example in clause 6.1.6.

Set additional callback reference:

If the same applicat ion requests two notifications with exact ly the same criteria but different callback references, the

second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The

gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

See examples in clause 6.1.1.

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly -enabled

event notification.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 41 Release 4

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e . not NULL) it specifies a reference to the application interface, which is used for callbacks. If

set to NULL, the applicat ion interface defau lts to the interface specified previously via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these

criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",

"busy". Individual addresses or address ranges may be specified fo r destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,

P_INVALID_EVENT_TYPE

Method

disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous

enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the

exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment

ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method

setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control

service. The address matching mechanis m is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be

used to correlate the callOverloadEncountered and callOverloadCeased methods with the req uest.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e ., until d isabled by the application)

A duration of -2 indicates the network default durat ion.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 42 Release 4

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,

such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control

duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method

changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotificat ion. Any stored

criteria associated with the specified assignmentID will be rep laced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have

been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that

meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,

P_INVALID_EVENT_TYPE

Method

getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or

changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. On ly

events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 43 Release 4

Returns

TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

6.3.2 Interface Class IpAppCallControlManager

Inherits from: Ip Interface

The generic call control manager applicat ion interface provides the application call control management functions to the

generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, event Info : in TpCallEvent Info, assignmentID : in

TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method

callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No

further communication will be possible between the call and applicat ion.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method

callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has

control of the call. If the APL does nothing with the call (including its associated legs) within a specified t ime period

(the duration of which forms a part of the service level agreement), then the call in the network shall be released and

callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Set of the callback reference:

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 44 Release 4

A reference to the application interface has to be passed back to the call interface to which the notification relates.

However, the setting of a call back reference is only applicable if the notificat ion is in INTERRUPT mode.

When callEventNotify() is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the

application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been

passed to the gateway, either through an exp licit setCallbackW ithSessionID() invocation on the supplied IpCall, or via

the return of the callEventNotify () method.

The call back reference can be reg istered either in a) callEventNotify () or b) exp licitly with a

setCallbackW ithSessionID() method e.g. depending on how the application provides its call reference.

Case a:

From an efficiency point of view the callEventNotify () with explicit pass of registration may be the preferred method.

Case b:

The callEventNotify() with no call back reference ("Null" value) is used where (e.g. due to distributed application logic)

the callback reference is provided previously in a setCallbackWithSessionID(). If no callback reference has been

provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further

application invocations related to the call shall be permitted. In cas e the callEventNotify() contains no callback, at the

moment the applicat ion needs to be informed the gateway will use as callback the callback that has been registered

previously by setCallbackWithSessionID(). See example in clause 6.1.6.

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new

call. If the applicat ion has previously explicit ly passed a reference to the IpAppCall interface using a

setCallbackW ithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided

during the setCallbackWithSessionID().

This parameter will be null if the notification is in NOTIFY mode and in case b.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notificat ion is in NOTIFY mode, this

parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS

entity invoking callEventNotify may populate this parameter as it chooses.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use

assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

Method

callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due

to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 45 Release 4

Method

callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Method

callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load contro l on calls

requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. Th is implies the address range for

within which the overload has been encountered.

Method

callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any

load controls on calls requested to a particular address range or calls made to a particular destination within the call

control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. Th is implies the address ra nge for

within which the overload has been ceased

6.3.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request informat ion from the call, control the

charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs

directly and it does not allow control over the media. The first capability is provided by the mult i-party call and the

latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'fo llow-on'

calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating

party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

 This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement, the routeReq (),

release() and deassignCall() methods shall be implemented.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 46 Release 4

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress

: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppIn foSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

<<new>> continueProcessing (callSessionID : in TpSessionID) : void

Method

routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure ' events at

invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to

P_ADDRESS_PLAN_NOT_PRESENT), the in formation provided in corresponding addresses from the ro ute is used,

otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this

method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

This operation continues processing of the call implicitly.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly

created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request

and the result.

This parameter is only relevant when mult iple routeReq() calls are executed in parallel, e.g., in the multi -party call

control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two t imes.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 47 Release 4

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service

identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS,

P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,

P_INVALID_EVENT_TYPE

Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the

network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these

reports will still be sent to the application.

This operation continues processing of the call implicitly.

The application should always either release or deassign the call when it is fin ished with the call, unless a

callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 48 Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de -assigned. It

leaves the call in progress, however, it purges the specified call object so that the application has no further control of

call processing. If a call is de-assigned that has event reports, call informat ion reports or call Leg in formation reports

requested, then these reports will be d isabled and any related information d iscarded.

This operation continues processing of the call implicitly.

The application should always either release or deassign the call when it is fin ished with the call, unless

callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

getCallInfoReq()

This asynchronous method requests informat ion associated with the call to be provided at the appro priate time (for

example, to calculate charg ing). Th is method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after

the call is ended if informat ion is required to be sent to the application at the end of the call. In case the orig inating party

is still available the applicat ion can still in itiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

setCallChargePlan()

Set an operator specific charge plan for the call.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 49 Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiv ing this

informat ion.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further dig its and return them to the application.

Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or

dialled only a few d igits. The applicat ion then gets a new call event which contains no digits or only the few dialled

digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of dig its to collect.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 50 Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If

an application calls this function before it calls a routeReq() or a user interaction function the time measurement will

start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time exp ired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

<<new>> continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing

was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE

will be raised.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.3.4 Interface Class IpAppCall

Inherits from: Ip Interface

The generic call application interface is implemented by the client application dev eloper and is used to handle call

request responses and state reports.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 51 Release 4

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in

TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in

TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpS essionID, report : in TpCallEndedReport) : void

Method

routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the

response of the destination party (for example, the call was ans wered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a

specified time period (the duration of which forms a part of the service level agreement), then the call in the network

shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer exp iry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and

time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can

be used to correlate the response with the request.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 52 Release 4

Method

routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call

could not be routed to the destination party (for example, the network was unable to route the call, the parameters were

incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can

be used to correlate the error with the request.

Method

getCallInfoRes()

This asynchronous method reports time information of the finished call o r call attempt as well as release cause

depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charg ing

purposes. The call in formation will possibly be sent after routeRes in all cases where the call or a leg of the call has

been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method

getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 53 Release 4

Method

superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these

kind of events.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision respons e.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method

superviseCallErr()

This asynchronous method reports a call supervision error to the applicat ion.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have

been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be

forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 54 Release 4

Method

getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled d igits if the string length is greater than zero.

Method

getMoreDialledDigitsErr()

This asynchronous method reports an error in co llect ing digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still

receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object

after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 55 Release 4

Active

Creation of

Cal lControlManager

by Service Instance

Lifecycle Manager

Notification terminated

"new"

enableCallNoti fication

disableCallNotification

"a cal l object has terminated abnormally" ^IpAppCallControlManager.callAborted

"arrival of call related event"[noti fication active for this call event] /

create a Call object ^IpAppCallControlManager.cal lEventNoti fy

disableCallNotification

"a cal l object has terminated abnormally"

^IpAppCallControlManager.cal lAborted

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^IpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

 IpAppCallControlManager.cal lNotificationInterrupted

createCall / create a Call obj...

Figure : Application view on the Call Control Manager

6.4.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state

allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control

Manager will create a Call object and inform the applicat ion by invoking the operation callEventNotify() on the

IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related

events by calling disableCallNotification().

6.4.1.2 Notification terminated State

When the Call Control Manager is in the Not ification terminated state, events requested with enableCallNotification()

will not be forwarded to the application. There can be multip le reasons for this: for instance it might be that the

application receives more notificat ions from the network than defined in the Service Level Agreement. Another

example is that the Service has detected it receives no notificat ions from the network due to e.g . a link failure. In this

state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 56 Release 4

Network Released

Finished

Application

Released

release
deassignCall

timeout ĉallFaultDetected("timeout on release")

In state Finished, a timer should prev ent the

object f rom occupuing resources.

Upon expiry of this timer, callFaultDetected()

shall be inv oked as this is an abnormal

termination.

Activ e

2 Parties in

Call

1 Party in

Call

2 Parties in

Call

1 Party in

Call

superv iseCallReq

setAdv iceOf Charge

deassignCall

release

"call ends : calling party disconnects" ĉallEnded

"call ends: calling party abandoned" ĉallEnded
"call ends : called party disconnects"[monitor f or this ev ent] ĉallEnded, routeRes(party disconnect)

"call ends: calling party disconnects"[no monitor f or this ev ent] ĉallEnded

"requested inf ormation ready "

ĝetCallInf oRes, superv iseCallRes
[no reports requested with

getCallInf oReq AND

superv iseCallReq]

"f ault in retriev al of inf ormation" ĝetCallInf oErr,

superv iseCallErr

deassignCall

[no reports requested with getCallInf oReq AND

superv iseCallReq]

"requested inf ormation ready " ĝetCallInf oRes,

superv iseCallRes

release

"f ault in retriev al of inf ormation" ĝetCallInf oErr,

superv iseCallErr

"call superv ision ev ent" ŝuperv iseCallRes

"network ev ent receiv ed f or which was monitored[routeRes]

getCallInf oReq

"answer"

"connection to called party

unsuccessf ul"[monitor mode = interrupt]

r̂outeRes

"routing aborted or inv alid address" r̂outeErr

"disconnect f rom called party "[monitor mode =

interrupt] r̂outeRes, getCallInf oRes,

superv iseCallRes

routeReq

IpAppCallControlManager.callEv entNotif y setCallChargePlan

"f ault detected"[f ault cannot be communicated with network ev ent] ĉallFaultDetected

Figure : Application view on the IpCall object for 3GPP

6.4.2.1 Network Released State

In this state the call has ended and the Gateway co llects the possible call in formation requested with getCallIn foReq()

and / or superviseCallReq(). The informat ion will be returned to the application by invoking the me thods

getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are

used. In case the application has not requested additional call related informat ion immediately a transition is made to

state Finished.

6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only

release the call object. Calling the deassignCall() operat ion has the same effect. Note that the application has to release

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 57 Release 4

the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is

also responsible for destroying it when the object is no longer needed.

6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call

informat ion requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested

additional call related informat ion the Call object is destroyed immediately.

6.4.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application

can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge

informat ion by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the

P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application

invokes continueProcessing(), routeReq(), release() or deassignCall() method.

6.4.2.5 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called

party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling

setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The

setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of

routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway

informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the

calling party abandons the call after the applicat ion has invoked routeReq() but before the call has actually been

established, the gateway informs the application by invoking callEnded().

When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be

established because the application supplied an invalid address or the connection to the called party was unsuccessful

while the applicat ion was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.6 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the

application is informed with routeRes with indication that the called party has disconnected and all requested reports are

sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network

Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the

callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 58 Release 4

6.5 Generic Call Control Service Properties

6.5.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by

which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plans (defined in TpAddressPlan.) e.g.

{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP}). Note that more than one
address plan may be supported.

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a reference to a Call
object can be used in the IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a call .

Value = FALSE: User Interaction can be performed in case there is only one party in the

call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type
TpMediaType : P_AUDIO, P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCS itself. The following table lists prope rties that are

used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilit ies of the

SCS.

Property Type Description
P_TRIGGERING_ADDRESSES

(Deprecated)

ADDRESSRANGE_SET Indicates for which numbers the notification may be set. For

terminating notifications it applies to the terminating number, for
originating notifications it applies only to the originating number.

P_NOTIFICATION_ADDRESS_RANGES XML_ADDRESS_RANGE_SET Indicates for which numbers notifications may be set. More than
one range may be present. For terminating notifications they
apply to the terminating number, for originating notifications

they apply only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating

and/or terminating triggers in the ECN. Set is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in
interrupt and/or notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or
fill for legs in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan
indicator. Allowed values:

{P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be
indicated with integers) to a logical network chargeplan indicator.
When the chargeplan supports indicates P_CHARGE_PLAN

then only chargeplans in this mapping are allowed.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 59 Release 4

6.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API rely ing on the CSE of CAMEL phase 3 shall have the Service

Properties outlined above set to the indicated values :

P_OPERATION_SET = {

“IpCallControlManager.enableCallNotification”,

“IpCallControlManager.disableCallNotification”,

“IpCallControlManager.changeCallNotification”,

“IpCallControlManager.getCriteria”,

“IpCallControlManager.setCallLoadControl”,

“IpCall.routeReq”,

“IpCall.release”,

“IpCall.deassignCall”,

“IpCall.getCallInfoReq”,

“IpCall.setCallChargePlan”,

“IpCall.setAdviceOfCharge”,

“IpCall.superviseCallReq”

}

P_TRIGGERING_EVENT_TYPES = {

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT,

P_EVENT_GCCS_CALLED_PARTY_BUSY,

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE,

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY,

P_EVENT_GCCS_ROUTE_SELECT_FAILURE

}

P_DYNAMIC_EVENT_TYPES = {

P_CALL_REPORT_ANSWER,

P_CALL_REPORT_BUSY,

P_CALL_REPORT_NO_ANSWER,

P_CALL_REPORT_DISCONNECT,

P_CALL_REPORT_ROUTING_FAILURE,

P_CALL_REPORT_NOT_REACHABLE

}

P_ADDRESS_PLAN = {

P_ADDRESS_PLAN_E164

}

P_UI_CALL_BASED = {

TRUE

}

P_UI_AT_ALL_STAGES = {

FALSE

}

P_MEDIA_TYPE = {

P_AUDIO

}

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 60 Release 4

6.6 Generic Call Control Data Definitions

This clause provides the GCC data definitions necessary to support the API specification.

The general format of a Data Definit ion specification is described below.

 Data Type

This shows the name of the data type.

 Description

This describes the data type.

 Tabular Specification

This specifies the data types and values of the data type.

 Example

If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definit ions clause of

the present document (clause 8) or in the common data definit ions which may be found in 3GPP TS 29.198-2.

6.6.1 Generic Call Control Event Notification Data Definitions

6.6.1.1 TpCallEventName

Defines the names of event being notified. The fo llowing events are supported. The values may be combined by a

logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the

call process are found in the TpCallReportType data-type.

Name Value Description

P_EVENT_NAME_UNDEFINED 0 Undefined

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event

This can be used for hot-line features. In case this event is set
in the TpCallEventCriteria, only the originating address(es)
may be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected

The network has collected the information from the A-party,

but not yet analysed the information. The number can still be
incomplete. Applications might set notifications for this event
when part of the number analysis needs to be done in the
application (see also the getMoreDialledDigitsReq method on
the call class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed

The dialled number is a valid and complete number in the
network.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable (e.g. the called party has
a mobile telephone that is currently switched off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 61 Release 4

6.6.1.2 TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description

P_ORIGINATING 0 Indicates that the notification is related to the originating user in the call.

P_TERMINATING 1 Indicates that the notification is related to the terminating user in the call.

6.6.1.3 TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notificat ions against the

criteria.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or a address range for which the notification is
requested.

CallEventName TpCallEventName Name of the event(s)

CallNotificationType TpCallNotificationType Indicates whether it is related to the originating or the terminating user in the
call.

MonitorMode TpCallMonitorMode Defines the mode that the call is in following the notification.

Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a
legal value here.

6.6.1.4 TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event

notification.

Sequence Element Name Sequence Element Type

DestinationAddress TpAddress

OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress

RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet

CallEventName TpCallEventName

CallNotificationType TpCallNotificationType

MonitorMode TpCallMonitorMode

6.6.2 Generic Call Control Data Definitions

6.6.2.1 IpCall

Defines the address of an IpCall Interface.

6.6.2.2 IpCallRef

Defines a Reference to type IpCall.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 62 Release 4

6.6.2.3 IpAppCall

Defines the address of an IpAppCall Interface.

6.6.2.4 IpAppCallRef

Defines a Reference to type IpAppCall

6.6.2.5 TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call ob ject

Sequence Element
Name

Sequence Element
Type

Sequence Element Description

CallReference IpCallRef This element specifies the interface reference for the call object.

CallSessionID TpSessionID This element specifies the call session ID of the call.

6.6.2.6 IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

6.6.2.7 IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

6.6.2.8 IpCallControlManager

Defines the address of an IpCallControlManager Interface.

6.6.2.9 IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.

6.6.2.10 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call informat ion.

 Tag Element Type

 TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element Name

P_CALL_APP_ALERTING_MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 63 Release 4

6.6.2.11 TpCallAppInfoType

Defines the type of call applicat ion-related specific informat ion.

Name Value Description

P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

6.6.2.12 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

6.6.2.13 TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element
Name

Sequence Element
Type

Description

CallLegSessionID TpSessionID The leg that initiated the release of the call.

If the call release was not initiated by the leg, then this value is set to –1.

Cause TpCallReleaseCause The cause of the call ending.

6.6.2.14 TpCallFault

Defines the cause of the call fault detected.

Name Value Description

P_CALL_FAULT_UNDEFINED 0 Undefined

P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has

been sent to the application, but the application
did not explicitly release or deassign the call

object, within a specified time.

The timer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not

instruct the gateway how to handle the call
within a specified time, after the gateway

reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 64 Release 4

6.6.2.15 TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Informat ion that was not

requested is invalid.

Sequence Element
Name

Sequence Element
Type

Description

CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or follow-on call, was
started as a result of a routeReq.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was connected to the
resource.

This data element is only valid when information on user
interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was connected to the
destination (i.e. when the destination answered the call).

If the destination did not answer, the time is set to an
empty string.

This data element is invalid when information on user

interaction is reported.

CallEndTime TpDateAndTime The date and time when the call or follow-on call or user
interaction was terminated.

Cause TpCallReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated

address. This means that either the destination related information is present or the resource related informat ion, but not

both.

6.6.2.16 TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element
Name

Sequence Element
Type

Value TpInt32
Location TpInt32

NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by
Application

Cause Value from
Network

P_CALL_REPORT_BUSY 17 17

P_CALL_REPORT_NO_ANSWER 19 18,19,21

P_CALL_REPORT_DISCONNECT 16 16

P_CALL_REPORT_REDIRECTED 23 23

P_CALL_REPORT_SERVICE_CODE 31 NA

P_CALL_REPORT_NOT_REACHABLE 20 20

P_CALL_REPORT_ROUTING_FAILURE 3 Any other value

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 65 Release 4

6.6.2.17 TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element
Type

MonitorMode TpCallMonitorMode

CallEventTime TpDateAndTime

CallReportType TpCallReportType

AdditionalReportInfo TpCallAdditionalReportInfo

6.6.2.18 TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types

of reports.

 Tag Element Type
 TpCallReportType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY TpCallReleaseCause Busy

P_CALL_REPORT_NO_ANSWER NULL Undefined

P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect

P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure

P_CALL_REPORT_QUEUED TpString QueueStatus

P_CALL_REPORT_NOT_REACHABLE TpCallReleaseCause NotReachable

6.6.2.19 TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallReportType TpCallReportType

AdditionalReportCriteria TpCallAdditionalReportCriteria

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 66 Release 4

6.6.2.20 TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

 Tag Element Type

 TpCallReportType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY NULL Undefined

P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration

P_CALL_REPORT_DISCONNECT NULL Undefined

P_CALL_REPORT_REDIRECTED NULL Undefined

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE NULL Undefined

P_CALL_REPORT_QUEUED NULL Undefined

P_CALL_REPORT_NOT_REACHABLE NULL Undefined

6.6.2.21 TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

6.6.2.22 TpCallReportType

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFINED 0 Undefined.

P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that progress has been made in
routing the call to the requested call party. This message may be sent more than once, or
may not be sent at all by the gateway with respect to routing a given call leg to a given

address.

P_CALL_REPORT_ALERTING 2 Call is alerting at the call party.

P_CALL_REPORT_ANSWER 3 Call answered at address.

P_CALL_REPORT_BUSY 4 Called address refused call due to busy.

P_CALL_REPORT_NO_ANSWER 5 No answer at called address.

P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has
ended. When the call is ended, the callEnded method is called. This event can occur both
when the called party hangs up, or when the application explicitly releases the leg using

IpCallLeg.release() This cannot occur when the app explicitly releases the call leg and the
call.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network that the call has been

redirected to a new address.

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received.

P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more than once during the routing
of a call.

P_CALL_REPORT_NOT_REACHABLE 11 The called address is not reachable; e.g., the phone has been switched off or the phone is
outside the coverage area of the network.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 67 Release 4

6.6.2.23 TpCallTreatment

Defines the Sequence of Data Elements that specify the treatment for calls that will be handled only by the

network (for example, call which are not admitted by the call load control mechanis m).

Sequence Element
Name

Sequence Element
Type

CallTreatmentType TpCallTreatmentType

ReleaseCause TpCallReleaseCause

AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

6.6.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

6.6.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated

assignmentID.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallEventCriteria TpCallEventCriteria The event criteria that were specified by the application.

AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

7 MultiParty Call Control Service

The Multi-Party Call Control API of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted

that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.

Furthermore application in itiated calls are not supported in CAMEL phase 3. The detailed description of the supported

methods is given in the chapter 7.5.

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is

created first. Then party A's call leg is created before events are requested on it for answer and then routed to the call.

On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the

announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer

from Party B the announcement is cancelled and party B is routed to the call.

The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the

application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the

A-party by entering a service code (mid-call event).

The procedure for call setup to party C is exactly the same as for the set up of the connection to party B (sequence 13 to

17 in the sequence diagram).

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 68 Release 4

PartyB :

IpCallLeg

 :

IpMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

PartyA :

IpCallLeg

 : (Logical

View::IpAppLogic)

4: setCallback()

1: new()

2: createCall()

3: new()

7: ev entReportReq()

 :

IpAppUICall

 : IpUICall

11: sendInf oReq()

15: ev entReportReq()

18: abortActionReq()

5: createCallLeg()

6: new()

13: createCallLeg()

14: new()

AppPartyA :

(IpAppMultiPartyCallLeg)

AppPartyB :

(IpAppMultiPartyCallLeg)

9: ev entReportRes ()

17: ev entReportRes ()

8: routeReq()

16: routeReq()

12: sendInf oRes()

 :

IpUIManager

10: createUICall()

19: deassignCall()

1: This message is used to create an object implementing the IpAppMultiPartyCall interface.

2: This message requests the object implementing the IpMultiPartyCallControlManager interface to create an object

implementing the IpMultiPartyCall interface.

3: Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control

values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object

implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the

IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the

createCall.

5: This message instructs the object implementing the IpMult iPartyCall interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object implementing the IpCallLeg interface is met, message 6 is used to

create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.

8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call

being answered back to its callback object. This message is then forwarded via another message (not shown) to the

object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.

11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded

via another message (not shown) to the object implementing the IpAppLogic interface.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 69 Release 4

13: This message instructs the object implementing the IpMult iPartyCall interface to create a call leg for customer B.

14: Assuming that the criteria for creating a second object implementing the IpCallLeg interface is met, it is created.

15: This message requests the call leg for customer B to inform the applicat ion when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call

being answered back to its callback object. This message is then forwarded via another message (not shown) to the

object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party

A.

19: The application deassigns the call. This will also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, init iated as a result of a prearranged event being received

by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.

The code is rejected and the call is cleared.

 : (Logical

View::IpAppL...

 :

IpAppMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

 : IpUICall :

IpUIManager

 : IpMultiPartyCallControlManager :

IpAppUICall

8: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oReq()

12: sendInf oRes()

15: release()

1: new()

3: reportNotif ication()

4: 'f orward ev ent'

5: new()

10: 'f orward ev ent'

13: 'f orward ev ent'

2: createNotif ication()

7: createUICall()

14: release()

6: getCallLegs()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager

interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diag ram depicts

a call barring service, it is likely that all new call events destined for a particular address or address range prompted for

a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a messag e

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 70 Release 4

(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for

creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other

messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the

IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The

reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return

parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7: This message is used to create a UICall object that is associated with the incoming leg o f the call.

8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the

call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.

13: This message is used to forward the previous message to the IpAppLogic.

14: No more UI is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forward ing on busy.

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets

up a connection towards a C party. The C party can for instance be a voicemail system.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 71 Release 4

App CCM :

IpAppMultiPartyCallControlManager

AppLogic App Leg C :

IpAppCallLeg

App Leg A :

IpAppCallLeg

App Call :

IpAppMultiPartyCall

CCM :

IpMultiPartyCallControlManager

Call :

IpMultiPartyCall

Leg A :

IpCallLeg

Leg B :

IpCallLeg

SCSLeg C :

IpCallLeg

1: "new"

12: "forward event"

15: "new"

14: "new"

13: "new"

2: createNotification()

5: "check if application interested"

11: reportNotification()

6: "new"

16: createCallLeg()

7: "new"

8: "state transition to Active"

23: continueProcessing()

24: "inform Call object"

3: "arm trigger"

4: "trigger event: Busy"

25: "continue call processing"

9: "new"

10: "state transition to Releasing"

17: "new"

18: "state transition to Idle"

19: eventReportReq()

20: routeReq()

21: "state transition to Active"

22: "inform Call object"

26: "C-party answer"

27: eventReportRes()

28: "forward event"

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager

interface.

2: This message is sent by the application to enable notificat ions on new call events.

3:

4: When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object implementing

the IpMultiPartyCallControlManager. Assuming that the criteria for creat ing an object implementing the

IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

5:

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Initiating.

9:

10:

11: This message is used to pass the new call event to the object implementing the

IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

12: This message is used to forward the message to the IpAppLogic.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 72 Release 4

13: This message is used by the application to create an object implementing the IpAppMultiPartyCall inte rface. The

reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return

parameter of the reportNotificat ion.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

15: A new AppCallLeg C is created to receive callbacks for another leg.

16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the

network.

17:

18:

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.

20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by sett ing up the field

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo in the request to route the call leg to the

remote party C.

21:

22:

23: The application requests to resume call processing for the terminating call leg to party B to terminate t he leg.

Alternative the application could request to deassign the leg to party B for example if it is not interested in possible

requested call leg information (getInfoRes, superviseRes).

 When the terminating call leg is destroyed, the AppLeg B is notified and the event is forwarded to the application logic

(not shown).

24:

25: The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated p arty B.

26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's IpCallLeg interface passes the result of the call

being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

7.1.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to

collect call information at the end of the call for e.g. charging and/or statistic information collection purposes. The

service may apply to ord inary two-party calls, but could also include a number translation of the dialled number and

special charging (e.g. a premium rate service) .

Additional call leg related informat ion is requested with the getInfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and

additional call leg related information is requested with the getInfoReq and superviseReq methods in order to illustrate

the information that can be collected and sent to the application at the end of the call.

Furthermore is shows the order in which in formation is sent to the application: network release event followed by

possible requested call leg in formation, then the destroy of the call leg object (callLegEnded) and finally the destroy of

the call object (callEnded).

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 73 Release 4

AppLogic App Leg B :

IpAppCallLeg

App Leg A :

IpAppCallLeg

App Call :

IpAppMultiPartyCall

App CCM :

IpAppMultiPartyCallControlManager

CCM :

IpMultiPartyCallControlManager

Call :

IpMultiPartyCall

Leg A :

IpCallLeg

Leg B :

IpCallLeg

SCS

1: "new"

2: createNotification()
3: "arm trigger"

4: "trigger event: Analysed Information"

5: "check if application interested"

6: "new"
7: "new"

8: "state transition to Active"

9: reportNotification()

10: "forward event"

11: "new"

12: "new"

13: "new"

14: createCallLeg()

15: "new"

16: "state transition to Idle"

17: eventReportReq()

18: superviseReq()

19: getInfoReq()

20: setChargePlan()

21: routeReq()

22: "state transition to Active"

23: "inform Call object"

24: eventReportReq()

25: getInfoReq()

26: continueProcessing()

27: "inform Call object"

28: "continue call processing"

29: "B party answer"

30: eventReportRes()
31: "forward event"

32: "Disconnect from A-party"

33: "state transition to Releasing"

34: eventReportRes()

35: "forward event"

36: getInfoRes()

37: "forward event"

38: callLegEnded()

39: "forward event"
40: "inform Call object"

41: "Disconnect from B-party"

42: "state transition to Releasing"

43: eventReportRes()

45: getInfoRes()

47: superviseRes()

49: callLegEnded()

44: "forward event"

46: "forward event"

48: "forward event"

50: "forward event"

51: "inform Call object"

52: callEnded()

53: "forward event"

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager

interface.

2: This message is sent by the application to enable notificat ions on new call events.

3:

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 74 Release 4

4: When a new call, that matches the event criteria, arrives a message ("analysed informat ion") is directed to the object

implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the

IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

5:

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Active.

9: This message is used to pass the new call event to the object implementing the

IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The

reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return

parameter of the reportNotificat ion.

12: A new AppCallLeg is created to receive callbacks for the Leg correspond ing to party A.

13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the

network.

15: A new CallLeg corresponding to party B is created.

16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the call and when the leg

to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party b for example to calcu late charging.

20: The application requests a specific charge plan to be set for the call leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22: The Call Leg instance transits to state Active.

23:

24: The application requests to be notified (monitor mode "Notify") when the leg to A -party is released.

25: The application requests information associated with the call leg to party A for example to calculate charg ing.

26: The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party B.

27:

28:

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of t he call

being answered back to its callback object (monitor mode "NOTIFY").

31: This answer message is then forwarded.

32: When the A-party releases the call, the orig inating call leg is notified (monitor mode "NOTIFY") and makes a

transition to "releasing state".

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 75 Release 4

33:

34: The application IpAppLeg A is notified, as the release event has been requested to be reported in Notify mode.

35: The event is forwarded to the application logic

36: The call leg information is reported.

37: The event is forwarded to the application logic

38: The origination call leg is destroyed, the AppLeg A is notified.

39: The event is forwarded to the application logic

40:

41: When the B-party releases the call or the call is released as a result of the release request from party A, i.e. a

"originating release" indication, the terminating call leg is notified and makes a transition to "releasing state".

42:

43: If a network release event is received being a "terminating release" indication from called party B, the application

IpAppLeg B is notified, as the release event from party B has been requested to be reported in NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being a "originating release"

indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The call leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg in formation is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLeg B is notified.

50: The event is forwarded to the application logic.

51:

52: Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is

notified that the call is ended .

53: The event is forwarded to the application logic.

7.1.5 Complex Card Service

The following sequence diagram shows an advanced card service, in itiated as a result of a prearranged event being

received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID

and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is

then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to

the application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5'

which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination

party, to which it is then routed.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 76 Release 4

 : (Logical

View::IpAppLogic)

 :

IpAppMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

 : IpUICallPartyB' :

IpCallLeg

AppParty B' :

IpAppCallLeg

AppPartyB :

IpAppCallLeg

 :

IpUIManager

AppPartyA :

IpAppCallLeg

PartyB :

IpCallLeg

 :

IpMultiPartyCallControlManager

PartyA :

IpCallLeg

 :

IpAppUICall

27: createAndRouteCall()

8: sendInf oAndCollectReq()

10: sendInf oAndCollectReq()

9: sendInf oAndCollectRes()

11: sendInf oAndCollectRes()

13: ev entReportReq()

1: new()

3: reportNotif ication()

4: 'f orward ev ent'

5: new()

23: release()

21: ev entReportRes()

24: sendInf oAndCollectReq()

25: sendInf oAndCollectRes()

12: setCallbackWithSessionID()

2: createNotif ication()

7: createUICall()

6: getCallLegsf ()

15: createCallLeg()

17: routeReq()

16: ev entReportReq()

14: new()

20: attachMediaReq()

18: ev entReportRes()
19: "f orward ev ent"

22: "f orward ev ent"

30: ev entReportRes()
31: "f orward ev ent"

32: callEnded()
33: "f orward ev ent"

34: userInteractionFaultDetected()
35: "f orward ev ent"

36: deassignCall()

26: new ()

28: new ()

29: ev entReportRes()

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager

interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a call barring service, it is likely that all new call events destined for a particular address or address range result in th e

caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event

criteria set in message 2, arrives a message (not shown) is directed to the object implementing the

IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and

associated call leg object.

3: This message is used to pass the new call event to the object implementing the

IpAppMultiPartyCallControlManager interface.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 77 Release 4

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall inte rface. The

reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return

parameter of message 3.

6: This message returns the call legs currently in the call. In princip le a reference to the call leg of the calling party is

already obtained by the application when it was notified of the new call event.

7: This message is used to associate a user interaction object with the calling party.

8: The init ial card service dialogue is invoked using this mes sage.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this

message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final d ialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via

another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.

13: The trigger fo r fo llow-on calls is set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg

object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the

legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the id le state and not yet routed in the

network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As a result the network will t ry to reach the associated party.

18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicit ly are by default in state detached. This means that the media is not

connected to the other parties in the call. In order to allow inband communicat ion between the new party and the other

parties in the call the media have to be exp licitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object

implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22: The event is forwarded to the application.

23: This message releases the called party.

24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via

another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.

27: The call is then forward routed to the new destination party.

28: As a result a new Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via

another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

31: The event is forwarded to the application logic.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 78 Release 4

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this

message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the applicat ion receives

this message to indicate that the UI resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre -arranged party B

defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling

party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-

defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination

party.

The call release is monitored to enable the sending of informat ion to the application at call release, e.g. for charg ing

purposes.

Note that this service could be extended as follows:

Somet ime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now

prompted to enter the address of a new destination party, to which it is then routed .

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 79 Release 4

AppLogic App Leg B :

IpAppCallLeg

App Leg A :

IpAppCallLeg

App Call :

IpAppMultiPartyCall

App CCM :

IpAppMultiPartyCallControlManager

CCM :

IpMultiPartyCallControlManager

Call :

IpMultiPartyCall

Leg A :

IpCallLeg

Leg B :

IpCallLeg

SCS

13: "new"

32: "forward event"

30: "forward event"

12: "new"

37: "forward event"

11: "new"

40: "forward event"

1: "new"

10: "forward event"

2: createNotification()

5: "check if application interested"

9: reportNotification()

6: "new"

14: createCallLeg()

39: callEnded()

7: "new"

8: "state transition to Initiating"

21: eventReportReq()

22: continueProcessing()

23: "inform Call object"

35: "state transition to Releasing"

36: callLegEnded()

38: "inform Call object"

15: "new"

16: "state transition to Idle"

17: eventReportReq()

18: routeReq()

19: "state transition to Active"

20: "inform Call object"

28: "state transition to Releasing"

29: eventReportRes()

31: callLegEnded()

33: "inform Call object"

3: "arm trigger"

4: "trigger event: Originating Call Attempt Authorised"

24: "continue call processing"

34: "Disconnect from A-party"

27: "Disconnect from B-party"

25: event "address_analysed"

26: "state transition to Active"

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager

interface.

2: This message is sent by the application to enable notificat ions on new call events.

3:

4: When a new call, that matches the event criteria, arrives a message ("analysed informat ion") is directed to the object

implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the

IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

5:

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 80 Release 4

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Initiating.

9: This message is used to pass the new call event to the object implementing the

IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The

reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return

parameter of the reportNotificat ion.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle st ate and not yet routed in the

network.

15: A new CallLeg corresponding to party B is created.

16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application

("hot-line number").

19: The Call Leg instance transits to state Active.

20:

21: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

22: The application requests to resume call processing for the originating call leg.

 As a result call processing is resumed in the network that will try to reach the associated party as specified by the

application (E.164 number provided by application).

23:

24:

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and

the originating call leg STD makes a transition to "active" state. The application is not notified as it has not requested

this event to be reported.

26:

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a

transition to "Releasing state".

28:

29: The application is notified, as the release event has been requested to be reported in Notify mode.

30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLeg B is notified.

32: This answer message is then forwarded.

33:

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 81 Release 4

34: When the call release ("terminating release" indication) is propagated in the network toward the party A, the

originating call leg is notified and makes a transition to "releasing state". This release event (being propagat ed from

party B) is not reported to the application.

35:

36: When the originating call leg is destroyed, the AppLeg A is notified.

37: The event is forwarded to the application logic

38:

39: When all legs have been destroyed, the IpAppMultiPartyCall is notified that the call is ended.

40: The event is forwarded to the application logic.

7.1.7 Use of the Redirected event

 : IpAppCallLeg : IpCallLegAppLogic

1: eventReportReq(...

2: routeReq()

3: eventReportRes(...

4: eventReportRes(...

The Call and the Leg

have already been

created.

1: The application has already created the call and a call leg. It places an event report request for the ANSWER and

REDIRECTED events in NOTIFY mode.

2: The application routes the call leg.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 82 Release 4

3: The call is red irected within the network and the application is in formed. The new destination address is passed

within the event. The event is not disarmed, so subsequent redirections will also be reported. Also, the same call leg is

used so the application does not have to create a new one.

4: The call is answered at its new destination.

7.2 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for

interfaces on the service side.

The class diagrams in the fo llowing figures show the interfaces that make up the mult i party call control applicat ion

package and the multi party call control service package. This class diagram shows the interfaces of the mult i-party call

control application package and their relat ions to the interfaces of the multi -party call control service package.

Figure: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 83 Release 4

Figure: Service Interfaces

7.3 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg

management. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be

connected simultaneously to the same call.

The Multi-party Call Control Serv ice is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,

IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they

do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more

calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement

IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface fo r the Multi-party Call Control Service. The multi-party call control

manager interface provides the management functions to the multi -party call control service. The application

programmer can use this interface to provide overload control functionality, create call objects and to enable or disable

call-related event notifications. The action table associated with the STD shows in what state the

IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the

IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

 This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the

createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be

implemented.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 84 Release 4

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
: in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method

createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been

passed to the IpMultiPartyCallControlManager, otherwise the call control will not be able to report a callAborted() to

the application. The application shall invoke setCallback() prior to createCall() if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method

createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an

application has to do to get initial notifications of calls happening in the network. When such an event happens, the

application will be informed by reportNotification(). In case the application is interested in other events during the

context of a part icular call session it has to use the createAndRouteCallLegReq() method on the call object or the

eventReportReq() method on the call leg object. The application will get access to the call object when it receives the

reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate the ir interest to be notified when certain

call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application

can indicate it wishes to be informed when a call is made to any number starting with 800.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 85 Release 4

If some applicat ion already requested notificat ions with criteria that overlap the specified criteria, the request is refused

with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and

the same number p lan is used.

If a notificat ion is requested by an application with monitor mode set to notify, then there is no need to check the rest of

the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passe d

over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be reg istered either in a) createNotification() o r b) explicitly with a setCallback() method

e.g. depending on how the application provides its callback reference.

Case a:

From an efficiency point of view the createNotification() with explicit reg istration may be the preferred method.

Case b:

The createNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application

logic) the call back reference is provided previously in a setCallback(). If no callback reference has been provided

previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised. In cas e the

createNotification() contains no callback, at the moment the application needs to be informed the gateway will use as

callback the callback that has been registered by setCallback().

Set additional Call back:

If the same applicat ion requests two notifications with exact ly the same criteria but different callback references, the

second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The

gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly -enabled event

notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e . not NULL) it specifies a reference to the application interface, which is used for callbacks. If

set to NULL, the applicat ion interface defau lts to the interface specified previously via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these

criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",

"busy". Individual addresses or address ranges may be specified fo r destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,

P_INVALID_EVENT_TYPE

Method

destroyNotification()

This method is used by the application to disable call notifications.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 86 Release 4

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotificat ion()

was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception

P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment ID both of

them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

Method

changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored

criteria associated with the specified assignmentID will be rep laced with the s pecified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have

been registered under this assignment ID both of them will be changed .

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that

meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,

P_INVALID_EVENT_TYPE

Method

getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 87 Release 4

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

Method

setCallLoadControl()

This method imposes or removes load control on calls made to a particu lar address range within the call control service.

The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be

used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e ., until d isabled by the application)

A duration of -2 indicates the network default durat ion.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,

such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control

duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: Ip Interface

The Multi-Party call control manager applicat ion interface provides the application call control management function s

to the Multi-Party call control service.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 88 Release 4

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in

TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method

reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has

control of the call. If the APL does nothing with the call (including its associated legs) within a specified t ime period

(the duration of which forms a part of the service level agreement), then the call in the network shall be released and

callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Set of the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.

However, the setting of a call back reference is only applicable if the notificat ion is in INTERRUPT mode.

When reportNotification() is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the

application writer should ensure that no continue processing e.g. createAndRouteCallLegReq() is performed until the

callback interface for the new call and/or new call leg has been passed to the gateway, either through an explicit

setCallbackW ithSessionID() invocation, or via the return of the reportNotification() method.

The call back reference can be reg istered either in a) reportNotification() o r b) explicitly with a

setCallbackW ithSessionID() method depending on how the application provides its callback reference.

Case a:

From an efficiency point of view the reportNotification() with explicit pass of registratio n may be the preferred method.

Case b:

The reportNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application

logic) the call back reference is provided previously in a setCallbackWithSessionID(). If no callback reference has been

provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further

application invocations related to the call shall be permitted. In case reportNotification() contains no callback, at the

moment the applicat ion needs to be informed the gateway will use as callback the callback that has been registered

previously by setCallbackWithSessionID().

Returns appCallBack: Specifies references to the application interface which implements the callback interface fo r the

new call and/or new call leg. If the application has previously explicitly passed a reference to the callback interface

using a setCallbackWithSessionID() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or

if supplied must be the same as that provided during the setCallbackWithSessionID().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode and in case b.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 89 Release 4

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in

NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the

implementation of the SCS entity invoking reportNotificat ion may populate this parameter as it chooses.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call

leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the

notificationInfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client

implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this

parameter as it chooses.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the orig inating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment

id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiPartyCallBack

Method

callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further

communicat ion will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method

managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily

interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method

managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 90 Release 4

Parameters
No Parameters were identified for this method

Method

callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls

requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. Th is implies the addressrange for

within which the overload has been encountered.

Method

callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any

load controls on calls requested to a particular address range or calls made to a particular destination within the call

control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. Th is implies the addressrange for

within which the overload has been ceased

7.3.3 Interface Class IpMultiPartyCall

Inherits from: IpService

The Multi-Party Call provides the possibility to control the call routing, to request informat ion from the call, control the

charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs

explicit ly. An application may create more then one call leg.

 This interface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods,

and either the createCallLeg() or the createAndRouteCallLegReq(), shall be implemented as a minimum requirement.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 91 Release 4

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegIdentifierSet

createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegIdentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appInfo : in

TpCallAppInfoSet, appLegInterface : in IpAppCallLegRef) : TpCallLegIdentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :

void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

Method

getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the

order of creat ion.

Returns callLegList: Specifies the call legs associated with the call. The set contains both the sessionIDs and the

interface references.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Returns

TpCallLegIdentifierSet

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg : Specifies the interface and sessionID of the call leg created.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 92 Release 4

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

appCallLeg : in IpAppCallLegRef

Specifies the application interface for callbacks from the call leg created.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

Method

createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination

party is established successfully the CallLeg is attached to the call, i.e . no exp licit attachMediaReq() operation is

needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide

through the appLegInterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to

P_ADDRESS_PLAN_NOT_PRESENT), the in formation provided in corresponding addresses from the route is used,

otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a

value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppIn fo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this

method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegReference: Specifies the reference to the CallLeg interface that was created.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these

criteria are reported. Examples of events are "address analysed", "answer" and "release".

targetAddress : in TpAddress

Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service

identities and interaction indicators).

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 93 Release 4

appLegInterface : in IpAppCallLegRef

Specifies a reference to the application interface that implements the callback interface for the new call leg. Requested

events will be reported by the eventReportRes() operation on this interface.

Returns

TpCallLegIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE,

P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE,

P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the

network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports

will still be sent to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method

deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It

leaves the call in progress, however, it purges the specified call object so that the application has no further control of

call processing. If a call is de-assigned that has call informat ion reports, call leg event reports or call Leg informat ion

reports requested, then these reports will be disabled and any related informat ion discarded.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

getInfoReq()

This asynchronous method requests informat ion associated with the call to be provided at the appropriate time (for

example, to calculate charg ing). Th is method must be invoked before the call is routed to a target address.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 94 Release 4

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after

the call is ended if informat ion is required to be sent to the application at the end of the call. In case the orig inating party

is still available the applicat ion can still in itiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

setChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiv ing this

informat ion.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second s et of AoC parameters becomes valid.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 95 Release 4

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,

P_INVALID_AMOUNT

Method

superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for th is call. If

an application calls this operation before it routes a call or a user interaction operation the time measurement will start

as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time exp ired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: Ip Interface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call

request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegIdentifier,
errorIndication : in TpCallError) : void

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 96 Release 4

Method

getInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause

depending on which information has been requested by getInfoReq. This information may be used e.g. for charging

purposes. The call in formation will possibly be sent after reporting of all cases where the call o r a leg of the call has

been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method

getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these

kind of events.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 97 Release 4

Method

superviseErr()

This asynchronous method reports a call supervision error to the applicat ion.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for

it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

Method

createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the

call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the

parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and

correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and

not by this operation.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callLegReference : in TpCallLegIdentifier

Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 98 Release 4

7.3.5 Interface Class IpCallLeg

Inherits from: IpService

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states

and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an

address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg

specific event request and can obtain call leg specific report and events.

 This interface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(),

release(), continueProcessing() and deassign() methods shall be implemented as a minimum requirement.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, appInfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :

void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : void

release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

getInfoReq (callLegSessionID : in TpSessionID, callLegInfoRequested : in TpCallLegInfoType) : void

getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallIdentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : void

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSuperviseTreatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method

routeReq()

This asynchronous method requests routing of the call leg to the remote party ind icated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached

to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to

P_ADDRESS_PLAN_NOT_PRESENT), the in formation provided in the corresponding addresses from the route is

used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a

value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues process ing of the call leg.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 99 Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service

identities and interaction indicators).

connectionProperties : in TpCallLegConnectionProperties

Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE,

P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

Method

eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to

observe.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these

criteria are reported. Examples of events are "address analysed", "answer" and "release".

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_EVENT_TYPE,

P_INVALID_CRITERIA

Method

release()

This method requests the release of the call leg. If successful, the associated address (party) will be released from the

call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the

network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 100 Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method

getInfoReq()

This asynchronous method requests informat ion associated with the call leg to be provided at t he appropriate time (fo r

example, to calculate charg ing). Note that in the call leg informat ion must be accessible before the objects of concern

are deleted.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested : in TpCallLegInfoType

Specifies the call leg informat ion that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 101 Release 4

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer

connections or media streams to and from other parties in the call. The call leg must be in the connected st ate for this

method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to attach to the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method

detachMediaReq()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer

connections or media streams to and from other parties in the call. The call leg must be in the connected state for this

method to complete successfully.

Parameters

callLegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach from the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method

getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.

Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg , exception P_INVALID_STATE will be thrown.

Parameters

callLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 102 Release 4

Returns

TpAddress

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

continueProcessing()

This operation continues processing of the call leg. Applications can invoke th is operation after call leg processing was

interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method

setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiv ing this

informat ion.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 103 Release 4

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_CURRENCY,

P_INVALID_AMOUNT

Method

superviseReq()

The application calls this method to supervise a call leg. The applicat ion can set a granted connection time for this call.

If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will

start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallLegSuperviseTreatment

Specifies how the network should react after the granted connection time exp ired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method

deassign()

This method requests that the relationship between the application and the call leg and associated objects be de -

assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no

further control of call leg p rocessing. If a call leg is de-assigned that has event reports or call leg informat ion reports

requested, then these reports will be d isabled and any related information d iscarded.

The application should not release or deassign the call leg when received a callLegEnded() or callEnded(). This

operation continues processing of the call leg.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

7.3.6 Interface Class IpAppCallLeg

Inherits from: Ip Interface

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 104 Release 4

The application call leg interface is implemented by the client application developer and is used to hand le responses and

errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventInfo : in TpCallEventInfo) : void

eventReportErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

getInfoRes (callLegSessionID : in TpSessionID, callLegInfoReport : in TpCallLegInfoReport) : void

getInfoErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

Method

eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call

event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so -

called d isarming ru les are captured in the data definition of the event type.

If this method is invoked for a report with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the

application has control of the call leg. If the application does nothing with the cal l leg within a specified time period

(the duration which forms a part of the service level agreement), then the connection in the network shall be released

and callLegEnded() shall be invoked, giv ing a release cause of P_TIMER_EXPIRY.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 105 Release 4

Method

eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason

(for example, the parameters were incorrect, the request was refused, etc.).

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

attachMediaRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer

connections to this leg is now availab le.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the informat ion relates.

Method

attachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

detachMediaRes()

This asynchronous method reports the detachment of a call leg from a call has succeeded. The media channels or bearer

connections to this leg is no longer available.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the informat ion relates.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 106 Release 4

Method

detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

getInfoRes()

This asynchronous method reports all the necessary informat ion requested by the application, fo r example to calculate

charging.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the informat ion relates.

callLegInfoReport : in TpCallLegInfoReport

Specifies the call leg informat ion requested.

Method

getInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

routeErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the

call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the

parameters were incorrect, the request was refused, etc.).

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 107 Release 4

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in

these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration

Specifies the used time for the call leg supervision (in milliseconds).

Method

superviseErr()

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method

callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all

requested results (e.g., getInfoRes) related to the call leg. The call leg will be destroyed after returning from this

method.

Parameters

callLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 108 Release 4

cause : in TpReleaseCause

Specifies the reason the connection is terminated.

7.4 MultiParty Call Control Service State Transition Diagrams

7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager

ActiveInterrupted

'new'

 ^managerResumed

IpAccess.terminateServiceAgreement

 ^managerInterrupted

IpAccess.terminateServiceAgreement

Figure : Application view and the Multi-Party Call Control Manager

7.4.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to

indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object

with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no

longer interested in certain call related events by calling destroyNotification().

7.4.1.2 Interrupted State

When the Manager is in the Interrupted state it is temporarily unavailab le for use. Events requested cannot be

forwarded to the application and methods in the API cannot successfully be executed. A number of reasons can cause

this: for instance the application receives more notifications from the network than defined in the Service Agreement.

Another example is that the Service has detected it receives no notificat ions from the network due to e.g. a link failu re.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 109 Release 4

7.4.1.3 Overview of allowed methods

Call Control Manager State Methods applicable

Active createCall,
createNotification,
destroyNotification,
changeNotification,
getNotification,
setCallLoadControl

Interrupted getNotification

7.4.2 State Transition Diagrams for IpMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a

notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The

activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The act ion upon expiry of this

activity timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the

case when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the

IpAppMultiPartyCallControlManager as this is an abnormal termination.

IDLE

ACTIVE

RELEASED

IpMultiPartyCallManager.createCall

[incoming call]

^IpAppMultiPartyCallControlManager.reportNotification

release

'last leg released'

 ^callEnded

deassignCall

A timer mechanisem prevents that the object

keeps occupying resources. In case the timer

expires, callEnded() is invoked on the

IpAppMultiPartyCall with a release cause of

P_TIMER_EXPIRY. In the case when no

IpAppMultiPartyCall is available on which to invoke

callEnded(), callAborted() shall be invoked on the

IpAppMultiPartyCallControlManager as this is an

abnormal termination.

createCallLeg

createAndRouteCallLeg

deassign

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 110 Release 4

Figure : Application view on the MultiParty Call object

7.4.2.1 IDLE State

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related informat ion reports, call supervision, set the charge plan and set Advice

Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active

state.

7.4.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The applicat ion is allowed to create

additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information

reports, set the charge plan and set Advice Of Charge indicators in this state prior to call establishment.

7.4.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the

requested call informat ion will be co llected and returned through getInfoRes() and / or superviseRes(). As soon as all

informat ion is returned, the application will be informed that the call has ended and Call object transition to the end

state.

7.4.2.4 Overview of allowed methods

Methods applicable Call Control Call
State

Call Control
Manager State

getCallLegs,

Idle, Active, Released -

createCallLeg,
createAndRouteCallL
egReq,
setAdviceOfCharge,
superviseReq,

Idle, Active Active

release Active Active

deassignCall Idle, Acti ve -
setChargePlan,
getInfoReq

Idle, Active Active

7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is div ided in two State Transition Diagrams, one for the originating call leg

and one for the terminating call leg.

Call Leg State Model General Object ives:

1) Events in backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2) Events in forwards direction (downstream), coming from originating leg, are not visible in terminating leg

model.

3) States are as seen from the application: if there is no change in the method an application is permitted to apply

on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer o r alerting events on

terminating leg do not change state. NOTE 2

4) The application is to send a request to continue processing (using an appropriate method like

continueProcessing) for each leg and event reported in monitor mode ‘interrupt’.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 111 Release 4

5) In case on a leg more than one network event (for exa mple mid-call event ‘service_code’) is to be reported to the

application at quasi the same time, then the events are to be reported one by one to the application in the order

received from the network. When for a leg an event is reported in interrupt mode, a next pending event is not to

be reported to the application until a request to resume call processing for the current reported event has been

received on the leg.

NOTE1: Call processing is suspended if for a leg a network event is met, which was requested to be monitored in

the P_CALL_MONITOR_MODE_INTERRUPT.

NOTE2: Even though there in the Originating Call Leg STD is no change in the methods the application is

permitted to apply to the IpCallLeg object for the states Analysing and Active, separate stat es are

maintained. The states may therefore from an application viewpoint appear as just one state that may be

have substates like Analysing and Active. The digit co llection task in state Analysing state may be viewed

as a specialised task that may not at all be applicable in some networks and therefore here described as

being a state on its own.

7.4.3.1 Originating Call Leg

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 112 Release 4

Initiating

Analysing

Active

Releasing

do/ send reports if requested, or error reports if required

Originating Call Leg.

Transitions/events not shown:

All states:

continueProcessing, getLastRedirectedAddress, getCall: no state change

All states except Releasing:

eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq,

setChargePlan

All States

detachMedia

'Address_Collected'

 IpAppMultiPartyCallControlManager.

reportNotification(originating service code)

'release'

attachMedia

attachMedia

detachMedia

'originating call attempt authorized'

detachMedia

IpAppMultiPartyCallControlManager.

reportNotification(originatingCallAttempt)

IpAppMultiPartyCallControlManager.

reportNotification(originatingCallAttemptAuthorized)

IpAppMultiPartyCallControlManager.

reportNotification(address_collected)

'Address Collected'

attachMedia

'originating service_code'

'Address Analysed'

IpAppMultiPartyCallControlManager.

reportNotification(address_analysed)

'network release'

'network release'

IpAppMultiPartyCallControlManager.

reportNotification(originating

release)

'networkRelease'

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

Figure : Originating Leg

7.4.3.1.1 Initiating State

Entry events:

- Sending of a reportNotificat ion() method by the IpMultiPartyCallControlManager for an

“Originating_Call_Attempt” initial notificat ion criterion.

- Sending of a reportNotificat ion() method by the IpMultiPartyCallControlManager for an

“Originating_Call_Attempt_Authorised” initial notificat ion criterion.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 113 Release 4

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)

party with the given properties, e.g. based on the originating party’s identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the

monitor mode be reported to the application.

oCA oCAA AC

See Note1

oREL See

Note2

Initiating

State

Note 1: Event oCA only applicable as an initial notification .
Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
oCA: originating Call Attempt; oCAA originating Call Attempt Authorized; AC: Address Collected, oREL originating

RELease.

Figure : Application view on event reporting order in Initiating State

In this state the following functions are applicable:

- The detection of a “Originating_Call_Attempt” initial notificat ion criterion.

- The detection of an “Originating_Call_Attempt_Authorised” initial notificat ion criterion as a result that the call

attempt authorisation is successful.

- The report of the “Originating_Call_Attempt_Authorised” event indication whereby the following functions are

performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is reported and call leg processing is

suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then the event is notified and call leg processing

continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_CALL_ATTEMPT_AUTHORISED then no monitoring is performed.

- The receipt of destination address information, i.e. in itial informat ion package/dialling string as received from

calling party.

- Resumption of suspended call leg p rocessing occurs on receipt of a continueProcessing () method.

Exit events:

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 114 Release 4

- Availability of destination address information, i.e . the in itial informat ion package/dialling string received from

the calling party.

- Application activity timer exp iry indicat ing that no requests from the application have been received during a

certain period.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a “originating release” indication as a result of a premature d isconnect from the calling party.

7.4.3.1.2 Analysing State

Entry events:

- Availability of an “Address_Collected” event indication as a result of the receipt of the (complete) initial

informat ion package/dialling string from the calling party.

- Sending of a reportNotificat ion() method by the IpMultiPartyCallControlManager for an “Address_Co llected”

initial notificat ion criterion.

Functions:

In this state the destination address provided by the calling party is collected and analysed.

The received information (d ialled address string from the calling party) is being collected and examined in accordance

to the dialling plan in o rder to determine end of address information (d igit) collection. Additional address digits can be

collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call

leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number o f more address digits and report them to the

application (within eventReportRes method)) is handled within th is state. The collection of more d igits as requested and

the reporting of received dig its to the application (when the digit collect criteria is met) is done in this state. This action

is recursive, e.g. the application could ask for 3 digits to be collected and when report request can be done repeatedly,

e.g. the application may for example request first for 3 dig its to be collected and when reported request further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the

monitor mode be reported to the application.

oCAA AC AA

oREL
Note1 Analysing

State

Note 1: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
oCAA: originating Call Attempt Authorized; AC: Address Collected; AA: Address Analysed; oREL: originating

RELease.

Figure : Application view on event reporting order in Analysing State

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 115 Release 4

In this state the following functions are applicable:

- The detection of a “Address_Collected“ in itial notification criterion.

- On receipt of the “Address_Collected” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_ADDRESS_COLLECTED then the event is reported and call leg processing is

suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_ADDRESS_COLLECTED then no monitoring is performed.

- Receipt of a eventReportReq() method defining the criteria for the events the call leg object is to observe.

- Resumption of suspended call leg p rocessing occurs on receipt of a continueProcessing() or a routeReq()

method.

Exit events:

- Detection of an “Address_Analysed” indication as a result of the availab ility of the routing address and nature

of address.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a “originating release” indication as a result of a premature d isconnect from the calling party.

7.4.3.1.3 Active State

Entry events:

- Receipt of an “Address_Analysed” indication as a result of the availability of the routing address and nature of

address.

- Sending of a reportNotificat ion() method by the IpMultiPartyCallControlManager for an “Address_Analysed

initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the

monitor mode be reported to the application.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 116 Release 4

Active

State

AA

oSC

 oREL

See Note1
See

Note2

AC

Note 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

Note 2: The release event (oREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
AC: Address Collected; AA: Address Analysed; oSC: originating Service Code; oREL: originating RELease.

Figure : Application view on event reporting order Active State

In this state the following functions are applicable:

- The detection of a Address_Analysed initial indicat ion criterion.

- On receipt of the “Address_Analysed” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_ADDRESS_ANALYSED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues .

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_ADDRESS_ANALYSED then no monitoring is performed.

- Resumption of suspended call leg p rocessing occurs on receipt of a continueProcessing() method.

- In this state the routing information is interpreted, the authority of the calling party to establish this connection is

verified and the call leg connection is set up to the remote party.

- In this state a connection to the call party is established.

- Detection of a “terminating release” indication (not visible to the applicat ion) from remote party caused by a

network release event propagated from a terminating party, possibly resulting in an “originating release”

indication and causing the originating call leg STD to transit to Releasing state:

- Detection of a disconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method.

- On receipt of the “originating_service code” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing is

suspended.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 117 Release 4

 ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing

continues..

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

- Resumption of suspended call leg p rocessing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of an “orig inating release” indicat ion as a result of a disconnect from the calling p arty and a

“terminating release” indication as a result of a d isconnect from called party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

7.4.3.1.4 Releasing State

Entry events:

- Detection of an “Originating_Release” indication as a result of the network release in itiated by calling party or

called party.

- Reception of the release() method from the application.

- A transition due to fault detection to this state is made when the Call leg object is in a state and no reques ts from

the application have been received during a certain time period (timer exp iry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports

are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:

i) the network release event handling is performed.

ii) the possible call leg informat ion requested with getInfoReq() and/ or superviseReq() is collected and send to

the application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

In this state the following functions are applicable:

- The detection of a “originating_release” init ial indication criterion..

- On receipt of the “originating_release” indication the following functions are performed:

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_RELEASE then no monitoring is performed.

- Resumption of suspended call leg p rocessing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to

the application with respectively the getInfoRes() and/or superviseRes() methods.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 118 Release 4

- The callLegEnded() method is sent to the application after all informat ion has been sent. In case that the

application has not requested additional call leg related informat ion the call leg object is destroyed immediately

and additionally the application will also be informed that the connection has ended

- In case of abnormal termination due to a fault and the application requested for call leg related informat ion

previously, the application will be informed that this information is not availab le and additionally the

application is informed that the call leg object is destroyed (callLegEnded).

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the application

to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related in formation the call leg object is

destroyed immediately and additionally the application is informed that the call leg connection has ended, by

sending the callLegEnded() method.

- After the sending of the last call leg informat ion to the application the Call Leg object is destroyed and

additionally the applicat ion is informed that the call leg connection has ended, by sending the callLegEnded()

method.

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 119 Release 4

State Methods allowed

Initiating
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall ,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing
attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall ,
continueProcessing,
release (call leg),
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall ,
continueProcessing,
release
deassign

7.4.3.2 Terminating Call Leg

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 120 Release 4

Idle

(terminating)

Active

(terminating)

Releasing (terminating)

do/ send reports if requested, or error reports if required...

All States

(terminating)

Terminating Call Leg.

'terminating call attempt authorized',

'alerting', 'answer', 'terminating service

code', 'redirected', 'queued'

detachMedia

Transitions/events not shown:

All states:

continueProcessing, getLastRedirectedAddress, getCall, sending getInfoRes,

superviseRes: no state change,

All states except Releasing:

eventReportReq, setAdviceOfCharge, getInfoReq, superviseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event

associated with the Terminating Call Leg STD, then the Originating Call Leg STD is

created and is initialized to be in the Active state.

attachMedia

routeReq

'network release'

release

'timer expiry'

deasign

 ÎpAppCallLeg.callLegEnded

IpMultiPartyCall.createCallLeg

IpAppMultiPartyCallControlManager.

reportNotification(terminating

release)

IpAppMultiPartyCallControlManager.r

eportNotification("terminating call

attempt", "terminating call attempt

authorised", "alerting", "answer",

"terminating service code",

"redirected", "queued")

IpMultiPartyCall.createAndRouteCallLegReq

Figure : Terminating Leg

7.4.3.2.1 Idle (terminating) State

Entry events:

- Receipt of a createCallLeg() method to start an application in itiated call leg connection.

Functions:

In this state the call leg object is created and the interface connection is idled.

The application activity timer is being provided.

In this state the following functions are applicable:

- Invoking routeReq will result in a request to actually route the call leg object.

- Resumption of call leg processing occurs on receipt of a routeReq() method.

Exit events:

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 121 Release 4

- Receipt of a routeReq() method from the application.

- Application activity timer exp iry indicat ing that no requests from the application have been received during a

certain period to continue processing.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a network release event being an “originating release” indication as a result of a premature disconnect

from the calling party.

7.4.3.2.2 Active (terminating) State

Entry events:

- Receipt of an routeReq will result in actually routing the call leg object.

- Receipt of a createAndRouteCallLegReq() method to start an application init iated call leg connection.

- Sending of a reportNotificat ion() method by the IpMultiPartyCallControlManag er for the following trigger

criteria: “Terminating_Call_Attempt”, “Terminating_Call_Attempt_Authorised”, “Alerting”, “Answer”,

“Terminating service code”, “Redirected” and “Queued”.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified

for the call leg connection. In this state a connection to the call party is established whereby events from the network

may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer

(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the

monitor mode be reported to the application.

tCAA

RD

tCA

tSC

AL ANS

Note2

 Q

tREL

Note3

Note 1

Active

State

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 122 Release 4

Note 1: Event tCA applicable as initial notification
Note 2: Only the detected service code or the range to which the service code belongs is disarmed as the service

code is reported to the application
Note 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:
tCA: Terminating Call Attempt; tCAA: terminating Call Attempt Authorized; AL: Alerting; ANS: Answer; tREL:

terminating RELease; Q: Queued; RD: ReDirected; tSC: terminating Service Code.

Figure : Application view on event reporting order in Active State

In this state the following functions are applicable:

- The detection and report of the “Terminating_Call_Attempt_Authorised” event indication whereby the following

functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is reported and call

leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED then the event is notified and call

leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_CALL_TERMINATING_ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection of an “Queued” indicat ion as a result of the terminating call being queued.

- On receipt of the “Queued” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_QUEUED then no monitoring is performed.

- On receipt of the “Alerting” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_ALERTING then no monitoring is performed.

- Detection of an “Answer” indicat ion as a result of the remote party being connected (answered).

- On receipt of the “Answer” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_ANSWER then no monitoring is performed.

- The detection of a “service_code” trigger criterion suspends call leg processing.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 123 Release 4

- On receipt of the “service code” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg processing is

suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_TERMINATING_SERVICE_CODE then this is not a valid event (that event is not

notified) and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_TERMINATING_SERVICE_CODE then no monitoring is performed.

- On receipt of the “redirected” indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_REDIRECTED then no monitoring is performed.

- Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of a network release event being an “terminating release” indication as a result of the following

events:

i) Unable to select a route or indicat ion from the remote party of the call leg connection cannot be presented

(this is the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.

business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

- Detection of a network release event being an “originating release” indication as a result of the fo llowing events:

vi) Detection of a premature d isconnect from the calling party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

- Detection of a network release event being an “originating release” indication as a result of a disconnect from

the calling party or a “terminating release” indication as a result of a d isconnect from the called party.

7.4.3.2.3 Releasing (terminating) State

Entry events:

- Detection of a network release event being an “originating release” indication as a result of the network release

initiated by calling party or a “terminating release” indication as a result of the network release in itiated by

called party..

- Sending of the release() method by the application.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 124 Release 4

- A transition due to fault detection to this state is made when the Call leg object awaits a request from the

application and this is not received within a certain t ime period.

- Detection of a network event being a “terminating release” indication as a result of the following eve nts:

i) Unable to select a route or indicat ion from the remote party of the call leg connection cannot be presented

(this is the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.

business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received from the remote call leg connection portion.

v) Detection that the remote party was not reachable.

- Detection of a network release event being an “originating release” indication as a result of the fo llowing events:

vi) Detection of a premature d isconnect from the calling party.

Functions:

In this state the connection to the call party is released as requested by the network or by the application

and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:

i) the release event handling is performed.

ii) the possible call leg informat ion requested with getInfoReq() and/ or superviseReq() is collected and send to the

application.

iii) the callLegEnded() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to

be released or deassigned or a fault (e.g. timer expiry, no response from application) has been detected, then i) is not

applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested

reports.

In this state the following functions are applicable:

- The detection of a “Terminating Release” trigger criterion.

- On receipt of the network release event being a “Terminating Release” indication the fo llowing functions are

performed:

- The network release event handling is performed as follows:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_TERMINATING_RELEASE then the event is reported and call leg processing is

suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event

P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing

continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event

P_CALL_EVENT_TERMINATING_RELEASE then no monitoring is performed.

- Resumption of suspended call leg p rocessing occurs on receipt of a continueProcessing () method.

- The possible call leg information requested with the getInfoReq() and/or superviseReq() is collected and sent to

the application with respectively the getInfoRes() and/or superviseRes() methods.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 125 Release 4

- The callLegEnded() method is sent to the application after all informat ion has been sent. In case that the

application has not requested additional call leg related informat ion the call leg object is destroyed immediately

and additionally the application will also be informed that the connection has ended

- In case of abnormal termination due to a fault and the application requested for call leg related informat ion

previously, the application will be informed that this information is not availab le and additionally the

application is informed that the call leg object is destroyed (callLegEnded).

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request from the

application to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related in formation the call leg object is

destroyed immediately and additionally the application is informed that the call leg connection has ended, by

sending the callLegEnded() method.

- After the sending of the last call leg informat ion to the application the Call Leg object is destroyed and

additionally the applicat ion is informed that the call leg connection has ended, by sending the callLegEnded()

method.

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

State Methods allowed
Idle routeReq,

getCall ,
getCurrentDestinationAddress ,
release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Active attachMediaReq
detachMediaReq
getCall ,
getCurrentDestinationAddress ,
continueProcessing,
release,
deassign
eventReportReq,
getInfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing getCall ,
getCurrentDestinationAddress ,
continueProcessing,
release,
deassign

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 126 Release 4

7.5 Multi-Party Call Control Service Properties

7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the

GCC, from which the MPCC is an extension.

Property Type Description
P_MAX_CALLLEGS_PER_CALL INTEGER_SET Indicates how many parties can be in one call.

P_UI_CALLLEG_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on leg level and a
reference to a CallLeg object can be used in the
IpUIManager.createUICall() operation.

Value = FALSE : No user interaction on leg level is supported.

P_ROUTING_WITH_CALLLEG_OPERATIONS BOOLEAN_SET Value = TRUE : the atomic operations for routing a CallLeg are supported
{IpMultiPartyCall.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLeg.routeReq(), IpCallLeg.attachMediaReq()}
Value = FALSE : the convenience function has to be used for routing a

CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET Value = TRUE : the CallLeg shall be explicitly attached to a Call.
Value = FALSE : the CallLeg is automatically attached to a Call, no
IpCallLeg.attachMediaReq() is needed when a party answers.

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 3 shall have the Service

Properties outlined above set to the indicated values :

P_OPERATION_SET = {
“IpMultiPartyCallControlManager.createNotification”,
“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,
“IpMultiPartyCallControlManager.getNotification”,
“IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCallLegs”,
“IpMultiPartyCall.createCallLeg”,
“IpMultiPartyCall.createAndRouteCallLegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,
“IpMultiPartyCall.setAdviceOfCharge”,
“IpMultiPartyCall.superviseReq”,
“IpCallLeg.routeReq”,
“IpCallLeg.eventReportReq”,
“IpCallLeg.release”,
“IpCallLeg.getInfoReq”,
“IpCallLeg.getCall”,
“IpCallLeg.continueProcessing”
}

P_TRIGGERING_EVENT_TYPES = {
P_CALL_EVENT_ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,

P_CALL_EVENT_ORIGINATING_RELEASE,

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED,

P_CALL_EVENT_TERMINATING_RELEASE

}

Note: P_CALL_EVENT_ORIGINATING_RELEASE only for the routing failure case, TpReleaseCause =

P_ROUTING_FAILURE

P_DYNAMIC_EVENT_TYPES = {
P_CALL_EVENT_ANSWER,

P_CALL_EVENT_ORIGINATING_RELEASE,

P_CALL_EVENT_TERMINATING_RELEASE

}

P_ADDRESS_PLAN = {

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 127 Release 4

P_ADDRESS_PLAN_E164

}

P_UI_CALL_BASED = {
TRUE

}

P_UI_AT_ALL_STAGES = {
FALSE

}

P_MEDIA_TYPE = {
P_AUDIO

}

P_MAX_CALLLEGS_PER_CALL = {
0,

2

}

P_UI_CALLLEG_BASED = {
FALSE
}

P_MEDIA_ATTACH_EXPLICIT = {
FALSE

}

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 128 Release 4

7.6 Multi-Party Call Control Data Definitions

This clause provides the MPCC data defin itions necessary to support the API specification.

The general format of a data definit ion specification is described below.

 Data Type

This shows the name of the data type.

 Description

This describes the data type.

 Tabular Specification

This specifies the data types and values of the data type.

 Example

If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definit ions clause of

the present document (clause 8) or in the common data definit ions which may be found in 3GPP TS 29.198-2.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.

7.6.2 Multi-Party Call Control Data Definitions

7.6.2.1 IpCallLeg

Defines the address of an IpCallLeg Interface.

7.6.2.2 IpCallLegRef

Defines a Reference to type IpCallLeg.

7.6.2.3 IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

7.6.2.4 IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

7.6.2.5 IpMultiPartyCall

Defines the address of an IpMultiPartyCall Interface.

7.6.2.6 IpMultiPartyCallRef

Defines a Reference to type IpMultiPartyCall.

7.6.2.7 IpAppMultiPartyCall

Defines the address of an IpAppMultiPartyCall Interface.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 129 Release 4

7.6.2.8 IpAppMultiPartyCallRef

Defines a Reference to type IpAppMultiPartyCall.

7.6.2.9 IpMultiPartyCallControlManager

Defines the address of an IpMultiPartyCallControlManager Interface.

7.6.2.10 IpMultiPartyCallControlManagerRef

Defines a Reference to type IpMultiPartyCallControlManager.

7.6.2.11 IpAppMultiPartyCallControlManager

Defines the address of an IpAppMultiPartyCallControlManager Interface.

7.6.2.12 IpAppMultiPartyCallControlManagerRef

Defines a Reference to type IpAppMultiPartyCallControlManager..

7.6.2.13 TpAppCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppCallLegRef.

7.6.2.14 TpMultiPartyCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallReference IpMultiPartyCallRef This element specifies the interface reference for the Multi-party call object.

CallSessionID TpSessionID This element specifies the call session ID.

7.6.2.15 TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

 Tag Element Type

 TpAppMultiPartyCallBackRefType

Tag Element Value Choice Element Type Choice Element Name

P_APP_CALLBACK_UNDEFINED NULL Undefined

P_APP_MULTIPARTY_CALL_CALLBACK IpAppMultiPartyCallRef AppMultiPartyCall

P_APP_CALL_LEG_CALLBACK IpAppCallLegRef AppCallLeg

P_APP_CALL_AND_CALL_LEG_CALLBACK TpAppCallLegCallBack AppMultiPartyCallAndCallLeg

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 130 Release 4

7.6.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description

P_APP_CALLBACK_UNDEFINED 0 Application Call back interface undefined

P_APP_MULTIPARTY_CALL_CALLBACK 1 Application Multi-Party Call interface
referenced

P_APP_CALL_LEG_CALLBACK 2 Application CallLeg interface referenced

P_APP_CALL_AND_CALL_LEG_CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

7.6.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type

AppMultiPartyCall IpAppMultiPartyCallRef

AppCallLegSet TpAppCallLegRefSet Specifies the set of all call leg call back

references. First in the set is the reference
to the call back of the originating callLeg.

In case there is a call back to a destination
call leg this will be second in the set.

7.6.2.18 TpMultiPartyCallIdentifierSet

Defines a Numbered Set of Data Elements of TpMultiPartyCallIdentifier.

7.6.2.19 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call informat ion.

 Tag Element Type

 TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_APP_ALERTING_MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS TpAddress CallAppOriginalDestinationAddress

P_CALL_APP_REDIRECTING_ADDRESS TpAddress CallAppRedirectingAddress

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 131 Release 4

7.6.2.20 TpCallAppInfoType

Defines the type of call applicat ion-related specific informat ion.

Name Value Description
P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS 9 Contains the original address specified by the originating user when

launching the call.

P_CALL_APP_REDIRECTING_ADDRESS 10 Contains the address of the user from which the call is diverting.

7.6.2.21 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

7.6.2.22 TpCallEventRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type

CallEventType TpCallEventType

AdditionalCallEventCriteria TpAdditionalCallEventCriteria

CallMonitorMode TpCallMonitorMode

7.6.2.23 TpCallEventRequestSet

Defines a Numbered Set of Data Elements of TpCallEventRequest.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 132 Release 4

7.6.2.24 TpCallEventType

Defines a specific call event report type.

Name Value Description
P_CALL_EVENT_UNDEFINED 0 Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED 2 An originating call attempt is authorised

P_CALL_EVENT_ADDRESS_COLLECTED 3 The destination address has been collected.

P_CALL_EVENT_ADDRESS_ANALYSED 4 The destination address has been analysed.

P_CALL_EVENT_ORIGINATING_SERVICE_CODE 5 Mid-call originating service code received.

P_CALL_EVENT_ORIGINATING_RELEASE 6 A originating call/call leg is released

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT 7 A terminating call attempt takes place

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED 8 A terminating call is authorized

P_CALL_EVENT_ALERTING 9 Call is alerting at the call party.

P_CALL_EVENT_ANSWER 10 Call answered at address.

P_CALL_EVENT_TERMINATING_RELEASE 11 A terminating call leg has been released or the call could not
be routed.

P_CALL_EVENT_REDIRECTED 12 Call redirected to new address: an indication from the network

that the call has been redirected to a new address (no events
disarmed as a result of this).

P_CALL_EVENT_TERMINATING_SERVICE_CODE 13 Mid call terminating service code received.

P_CALL_EVENT_QUEUED 14 The Call Event has been queued. (no events are disarmed as a

result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg;

 When the monitor mode is set to P_CALL_MONITOR_MODE_DO_NOT_MONITOR all events armed for that

eventtype are disarmed. The additionalEventCriteria are not taken into account.

 When requesting two events for the same event type with different criteria and/or different monitor mode the last

used criteria and monitor mode apply.

 Events that are not applicable to a leg are refused with except ion P_INVALID_EVENT_TYPE. The same

exception is used when criteria are used that are not applicable to the leg,

E.g., requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with

exception P_INVALID_CRITERIA.

When P_CALL_EVENT_ORIGINATING_RELEASE is requested with P_BUSY in the criteria the request is

refused with the same exception.

When receiving events:

 If an armed event is met, then it is disarmed, unless exp licit stated that it will not to be disarmed.

 If an event is met that causes the release of the related leg, then all events related to that leg are disarmed .

 When an event is met on a call leg irrespective of the event monitor mode, then only events belonging to that call

leg may become disarmed (see table below) .

 If a call is released, then all events related to that call are d isarmed.

NOTE 1: Event disarmed means monitor mode is set to DO_NOT_MONITOR. and

event armed means monitor mode is set to INTERRUPT or NOTIFY..

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 133 Release 4

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table

shows which events are disarmed (are not monitored anymore) on that call leg and should be re -armed by

eventReportReq() in case the application is still interested in these events.

Event Occurred Events Disarmed
P_CALL_EVENT_UNDEFINED Not Applicable

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT Not applicable, can only be armed as trigger

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED

P_CALL_EVENT_ADDRESS_COLLECTED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED P_CALL_EVENT_ADDRESS_COLLECTED

P_CALL_EVENT_ADDRESS_ANALYSED

P_CALL_EVENT_ALERTING P_CALL_EVENT_ALERTING

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_CALL_EVENT_ANSWER P_CALL_EVENT_ALERTING

P_CALL_EVENT_ANSWER

P_CALL_EVENT_TERMINATING_RELEASE with criteria:

P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P_CALL_EVENT_ORIGINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_TERMINATING_RELEASE All pending network events for the call leg are disarmed

P_CALL_EVENT_ORIGINATING_SERVICE_CODE P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) see NOTE 2

P_CALL_EVENT_TERMINATING_SERVICE_CODE P_CALL_EVENT_TERMINATING_SERVICE_CODE *) see NOTE 2

NOTE 2: Only the detected service code or the range to which the service code belongs is disarmed.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 134 Release 4

7.6.2.25 TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

 Tag Element Type

 TpCallEventType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHO

RISED

NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpInt32 MinAddressLength

P_CALL_EVENT_ADDRESS_ANALYSED NULL Undefined

P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCodeSet OriginatingServiceCode

P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCauseSet OriginatingReleaseCauseSet

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHO

RISED

NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined

P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCauseSet TerminatingReleaseCauseSet

P_CALL_EVENT_REDIRECTED NULL Undefined

P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCodeSet TerminatingServiceCode

P_CALL_EVENT_QUEUED NULL Undefined

7.6.2.26 TpCallEventInfo

Defines the Sequence of Data Elements that specify the event report specific informat ion.

Sequence Element
Name

Sequence Element
Type

CallEventType TpCallEventType

AdditionalCallEventInfo TpCallAdditionalEventInfo

CallMonitorMode TpCallMonitorMode

CallEventTime TpDateAndTime

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 135 Release 4

7.6.2.27 TpCallAdditionalEventInfo

Defines the Tagged Choice of Data Elements that specify additional call event information fo r certain types

of events.

 Tag Element Type
 TpCallEventType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_EVENT_UNDEFINED NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_ORIGINATING_CALL_ATTEMPT_AUTHORISED NULL Undefined

P_CALL_EVENT_ADDRESS_COLLECTED TpAddress CollectedAddress

P_CALL_EVENT_ADDRESS_ANALYSED TpAddress CalledAddress

P_CALL_EVENT_ORIGINATING_SERVICE_CODE TpCallServiceCode OriginatingServiceCode

P_CALL_EVENT_ORIGINATING_RELEASE TpReleaseCause OriginatingReleaseCause

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT NULL Undefined

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED NULL Undefined

P_CALL_EVENT_ALERTING NULL Undefined

P_CALL_EVENT_ANSWER NULL Undefined

P_CALL_EVENT_TERMINATING_RELEASE TpReleaseCause TerminatingReleaseCause

P_CALL_EVENT_REDIRECTED TpAddress ForwardAddress

P_CALL_EVENT_TERMINATING_SERVICE_CODE TpCallServiceCode TerminatingServiceCode

P_CALL_EVENT_QUEUED NULL Undefined

7.6.2.28 TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification

Sequence Element Name Sequence Element Type Description
CallNotificationScope TpCallNotificationScope Defines the scope of the notification request.

CallEventsRequested TpCallEventRequestSet Defines the events which are requested

7.6.2.29 TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notificat ions against the

criteria.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or address range for which the notification is

requested.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 136 Release 4

7.6.2.30 TpCallNotificationInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call

notification report.

Sequence Element
Name

Sequence Element
Type

Description

CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the notification report.

CallAppInfo TpCallAppInfoSet Contains additional call info.

CallEventInfo TpCallEventInfo Contains the event which is reported.

7.6.2.31 TpCallNotificationReportScope

Defines the Sequence of Data Elements that specify the scope for which a notificat ion report was sent.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddress Contains the destination address of the call.

OriginatingAddress TpAddress Contains the origination address of the call

7.6.2.32 TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element
Name

Sequence Element
Type

AppCallNotificationRequest TpCallNotificationRequest

AssignmentID TpInt32

7.6.2.33 TpNotificationRequestedSet

Defines a numbered Set of Data Elements of TpNotificationRequested.

7.6.2.34 TpReleaseCause

Defines the reason for which a call is released.

Name Value Description
P_UNDEFINED 0 The reason of release is not known, because no info was received from the network.

P_USER_NOT_AVAILABLE 1 The user is not available in the network. This means that the number is not allocated or that the user is
not registered.

P_BUSY 2 The user is busy.

P_NO_ANSWER 3 No answer was received

P_NOT_REACHABLE 4 The user terminal is not reachable

P_ROUTING_FAILURE 5 A routing failure occurred. For example an invalid address was received

P_PREMATURE_DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P_DISCONNECTED 7 A disconnect was received.

P_CALL_RESTRICTED 8 The call was subject of restrictions

P_UNAVAILABLE_RESOURCE 9 The request could not be carried out as no resources were available.

P_GENERAL_FAILURE 10 A general network failure occurred.

P_TIMER_EXPIRY 11 The call / call leg was released because an activity timer expired.

7.6.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of TpReleaseCause.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 137 Release 4

7.6.2.36 TpCallLegIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallLegReference IpCallLegRef This element specifies the interface reference for the callLeg object.

CallLegSessionID TpSessionID This element specifies the callLeg session ID.

7.6.2.37 TpCallLegIdentifierSet

Defines a Numbered Set of Data Elements of TpCallLegIdentifier.

7.6.2.38 TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name Value Description
P_CALLLEG_ATTACH_IMPLICITLY 0 CallLeg should be attached implicitly to the call.

P_CALLLEG_ATTACH_EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachMediaReq() operation. This

allows e.g. the application to do first user interaction to the party before he/she is placed in the
call.

7.6.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

AttachMechanism TpCallLegAttachMechanism Defines how a CallLeg should be attached to the call.

7.6.2.40 TpCallLegInfoReport

Defines the Sequence of Data Elements that specify the call leg informat ion requested.

Sequence Element
Name

Sequence Element
Type

Description

CallLegInfoType TpCallLegInfoType The type of call leg information.

CallLegStartTime TpDateAndTime The time and date when the call leg was started (i.e. the leg was routed).

CallLegConnectedToResourceTime TpDateAndTime The date and time when the call leg was connected to the resource. If no

resource was connected the time is set to an empty string.
Either this element is valid or the CallConnectedToAddressTime is valid,

depending on whether the report is sent as a result of user interaction.

CallLegConnectedToAddressTime TpDateAndTime The date and time when the call leg was connected to the destination (i.e.

when the destination answered the call). If the destination did not
answer, the time is set to an empty string.

Either this element is valid or the CallConnectedToResourceTime is
valid, depending on whether the report is sent as a result of user

interaction.

CallLegEndTime TpDateAndTime The date and time when the call leg was released.

ConnectedAddress TpAddress The address of the party associated with the leg. If during the call the
connected address was received from the party then this is returned,

otherwise the destination address (for legs connected to a destination) or
the originating address (for legs connected to the origination) is returned.

CallLegReleaseCause TpReleaseCause The cause of the termination. May be present with

P_CALL_LEG_INFO_RELEASE_CAUSE was specified.

CallAppInfo TpCallAppInfoSet Additional information for the leg. May be present with
P_CALL_LEG_INFO_APPINFO was specified.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 138 Release 4

7.6.2.41 TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL_LEG_INFO_UNDEFINED 00h Undefined

P_CALL_LEG_INFO_TIMES 01h Relevant call t imes

P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause

P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address

P_CALL_LEG_INFO_APPINFO 08h Call leg application related information

7.6.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer exp ires. The values

may be combined by a logical 'OR' function.

Name Value Description

P_CALL_LEG_SUPERVISE_RELEASE 01h Release the call leg when the call leg supervision t imer expires

P_CALL_LEG_SUPERVISE_RESPOND 02h Notify the application when the call leg supervision timer expires

P_CALL_LEG_SUPERVISE_APPLY_TONE 04h Send a warning tone on the call leg when the call leg supervision timer

expires. If call leg release is requested, then the call leg will be
released following the tone after an administered time period

8 Common Call Control Data Types

The following data types referenced in this clause are defined in 3GPP TS 29.198-5:

TpUIInfo

All other data types referenced but not defined in this clause are common data definit ions which may be found in

3GPP TS 29.198-2.

8.1 TpCallAlertingMechanism

This data type is identical to a TpInt32, and defines the mechanis m that will be used to alert a call party. The values

of this data type are operator specific.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 139 Release 4

8.2 TpCallBearerService

This data type defines the type of call applicat ion-related specific informat ion (Q.931: Information Transfer Capability,

and 3G TS 22.002)

Name Value Description

P_CALL_BEARER_SERVICE_UNKNOWN 0 Bearer capability information unknown at this time

P_CALL_BEARER_SERVICE_SPEECH 1 Speech

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED 2 Unrestricted digital information

P_CALL_BEARER_SERVICE_DIGITALRESTRICTED 3 Restricted digital information

P_CALL_BEARER_SERVICE_AUDIO 4 3,1 kHz audio

P_CALL_BEARER_SERVICE_DIGITALUNRESTRICTED

TONES

5 Unrestricted digital information with tones/announcements

P_CALL_BEARER_SERVICE_VIDEO 6 Video

8.3 TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

Sequence Element Name Sequence Element Type Description

ChargeOrderType TpCallChargeOrderCategory Charge order

TransparentCharge TpOctetSet Operator specific charge plan specification,

e.g. charging table name / charging table entry.
The associated charge plan data will be send

transparently to the charging records.

Only applicable when transparent charging is
selected.

ChargePlan TpInt32 Pre-defined charge plan. Example of the

charge plan set from which the application can
choose could be : (0 = normal user, 1 = silver

card user, 2 = gold card user).

Only applicable when predefined charge plan
is selected.

AdditionalInfo TpOctetSet Descriptive string which is sent to the billing

system without prior evaluation. Could be
included in the ticket.

PartyToCharge TpCallPartyToChargeType Identifies the entity or party to be charged for
the call or call leg.

PartyToChargeAdditionalInfo TpCallPartyToChargeAdditionalInfo Contains additional information regarding the
charged party.

8.4 TpCallPartyToChargeAdditionalInfo

Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

 Tag Element Type

 TpCallPartyToChargeType

Tag Element Value Choice Element
Type

Choice Element Name

P_CALL_PARTY_ORIGINATING NULL Undefined

P_CALL_PARTY_DESTINATION NULL Undefined

P_CALL_PARTY_SPECIAL TpAddress CallPartySpecial

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 140 Release 4

8.5 TpCallPartyToChargeType

Defines the type of call party to charge

Name Value Description

P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call. For application initiated calls this
indicates the first party of the call

P_CALL_PARTY_DESTINATION 1 Called party

P_CALL_PARTY_SPECIAL 2 An address identifying e.g. a third party, a service provider

8.6 TpCallChargeOrderCategory

Defines the type of charging to be applied

Name Value Description

P_CALL_CHARGE_TRANSPARENT 0 Operator specific charge plan specification, e.g. charging table name /

charging table entry. The associated charge plan data will be send
transparently to the charging records

P_CALL_CHARGE_PREDEFINED_SET 1 Pre-defined charge plan. Example of the charge plan set from which the

application can choose could be : (0 = normal user, 1 = silver card user, 2 =
gold card user).

8.7 TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element Name Sequence Element Type Description

CallLegSessionID TpSessionID The leg that initiated the release of the call.

If the call release was not initiated by the leg,
then this value is set to –1.

Cause TpReleaseCause The cause of the call ending.

8.8 TpCallError

Defines the Sequence of Data Elements that specify the additional information relating to a call error.

Sequence Element Name Sequence Element Type

ErrorTime TpDateAndTime

ErrorType TpCallErrorType

AdditionalErrorInfo TpCallAdditionalErrorInfo

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 141 Release 4

8.9 TpCallAdditionalErrorInfo

Defines the Tagged Choice of Data Elements that specify additional call error and call error specific

informat ion. This is also used to specify call leg errors and information erro rs.

 Tag Element Type

 TpCallErrorType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_ERROR_UNDEFINED NULL Undefined

P_CALL_ERROR_INVALID_ADDRESS TpAddressError CallErrorInvalidAddress

P_CALL_ERROR_INVALID_STATE NULL Undefined

P_CALL_ERROR_RESOURCE_UNAVAILABLE NULL Undefined

8.10 TpCallErrorType

Defines a specific call error.

Name Value Description

P_CALL_ERROR_UNDEFINED 0 Undefined; the method failed or was refused,
but no specific reason can be given.

P_CALL_ERROR_INVALID_ADDRESS 1 The operation failed because an invalid address
was given

P_CALL_ERROR_INVALID_STATE 2 The call was not in a valid state for the
requested operation

P_CALL_ERROR_RESOURCE_UNAVAILABLE 3 There are not enough resources to complete the
request successfully

8.11 TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Informat ion that was not

requested is invalid.

Sequence Element Name Sequence Element Type Description

CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or
follow-on call, was started.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was
connected to the resource.

This data element is only valid when
information on user interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was

connected to the destination (i.e., when the
destination answered the call). If the

destination did not answer, the time is set
to an empty string.

This data element is invalid when

information on user interaction is reported
with an intermediate report.

CallEndTime TpDateAndTime The date and time when the call or follow-
on call or user interaction was terminated.

Cause TpReleaseCause The cause of the termination.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 142 Release 4

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated

address. This means that either the destination related information is present or the resource related informat ion, but not

both.

8.12 TpCallInfoType

Defines the type of call informat ion requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description

P_CALL_INFO_UNDEFINED 00h Undefined

P_CALL_INFO_TIMES 01h Relevant call t imes

P_CALL_INFO_RELEASE_CAUSE 02h Call release cause

8.13 TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanism and associated parameters.

 Tag Element Type

 TpCallLoadControlMechanismType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_LOAD_CONTROL_PER_INTERVAL TpCallLoadControlIntervalRate CallLoadControlPerInterval

8.14 TpCallLoadControlIntervalRate

Defines the call admission rate of the call load control mechanis m used. This data type indicates the interval (in

milliseconds) between calls that are admitted.

Name Value Description

P_CALL_LOAD_CONTROL_ADMIT_NO_CALLS 0 Infinite interval

(do not admit any calls)

 1 -
60000

Duration in milliseconds

8.15 TpCallLoadControlMechanismType

Defines the type of call load control mechanism to use.

Name Value Description

P_CALL_LOAD_CONTROL_PER_INTERVAL 0 admit one call per interval

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 143 Release 4

8.16 TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in fo llowing a detected event.

Name Value Description

P_CALL_MONITOR_MODE_INTERRUPT 0 The call event is intercepted by the call control

service and call processing is interrupted. The
application is notified of the event and call

processing resumes following an appropriate
API call or network event (such as a call

release)

P_CALL_MONITOR_MODE_NOTIFY 1 The call event is detected by the call control

service but not intercepted. The application is
notified of the event and call processing
continues

P_CALL_MONITOR_MODE_DO_NOT_MONITOR 2 Do not monitor for the event

8.17 TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3G TS 24.002) This informat ion is network operator

specific and may not always be availab le because there is no standard protocol to retrieve the informat ion.

Name Value Description

P_CALL_NETWORK_ACCESS_TYPE_UNKNOWN 0 Network type information unknown at this time

P_CALL_NETWORK_ACCESS_TYPE_POT 1 POTS

P_CALL_NETWORK_ACCESS_TYPE_ISDN 2 ISDN

P_CALL_NETWORK_ACCESS_TYPE_DIALUPINTERNET 3 Dial-up Internet

P_CALL_NETWORK_ACCESS_TYPE_XDSL 4 xDSL

P_CALL_NETWORK_ACCESS_TYPE_WIRELESS 5 Wireless

8.18 TpCallPartyCategory

This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

Name Value Description

P_CALL_PARTY_CATEGORY_UNKNOWN 0 calling party's category unknown at this time

P_CALL_PARTY_CATEGORY_OPERATOR_F 1 operator, language French

P_CALL_PARTY_CATEGORY_OPERATOR_E 2 operator, language English

P_CALL_PARTY_CATEGORY_OPERATOR_G 3 operator, language German

P_CALL_PARTY_CATEGORY_OPERATOR_R 4 operator, language Russian

P_CALL_PARTY_CATEGORY_OPERATOR_S 5 operator, language Spanish

P_CALL_PARTY_CATEGORY_ORDINARY_SUB 6 ordinary calling subscriber

P_CALL_PARTY_CATEGORY_PRIORITY_SUB 7 calling subscriber with priority

P_CALL_PARTY_CATEGORY_DATA_CALL 8 data call (voice band data)

P_CALL_PARTY_CATEGORY_TEST_CALL 9 test call

P_CALL_PARTY_CATEGORY_PAYPHONE 10 payphone

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 144 Release 4

8.19 TpCallServiceCode

Defines the Sequence of Data Elements that specify the service code and type of service code received during

a call. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type

CallServiceCodeType TpCallServiceCodeType

ServiceCodeValue TpString

8.20 TpCallServiceCodeSet

Defines a Numbered Set of Data Elements of TpCallServiceCode.

8.21 TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description

P_CALL_SERVICE_CODE_UNDEFINED 0 The type of service code is unknown. The corresponding string is
operator specific.

P_CALL_SERVICE_CODE_DIGITS 1 The user entered a digit sequence during the call. The corresponding
string is an ASCII representation of the received digits.

P_CALL_SERVICE_CODE_FACILITY 2 A facility information element is received. The corresponding string
contains the facility information element as defined in ITU Q.932

P_CALL_SERVICE_CODE_U2U 3 A user-to-user message was received. The associated string contains
the content of the user-to-user information element.

P_CALL_SERVICE_CODE_HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.

The corresponding string is an ASCII representation of the entered
digits.

P_CALL_SERVICE_CODE_RECALL 5 The user pressed the register recall button, optionally followed by

some digits. The corresponding string is an ASCII representation of
the entered digits.

8.22 TpCallSuperviseReport

Defines the responses from the call control service for ca lls that are supervised. The values may be combined by a

logical 'OR' function.

Name Value Description

P_CALL_SUPERVISE_TIMEOUT 01h The call supervision timer has expired

P_CALL_SUPERVISE_CALL_ENDED 02h The call has ended, either due to timer expiry

or call party release. In case the called party
disconnects but a follow-on call can still be

made also this indication is used.

P_CALL_SUPERVISE_TONE_APPLIED 04h A warning tone has been applied. This is only

sent in combination with
P_CALL_SUPERVISE_TIMEOUT

P_CALL_SUPERVISE_UI_FINISHED 08h The user interaction has finished.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 145 Release 4

8.23 TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer exp ires. The values may be

combined by a logical 'OR' function.

Name Value Description

P_CALL_SUPERVISE_RELEASE 01h Release the call when the call supervision
timer expires

P_CALL_SUPERVISE_RESPOND 02h Notify the application when the call
supervision timer expires

P_CALL_SUPERVISE_APPLY_TONE 04h Send a warning tone to the originating party

when the call supervision timer expires. If call
release is requested, then the call will be

released following the tone after an
administered time period

8.24 TpCallTeleService

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High

Layer Compatib ility Information, and 3G TS 22.003)

Name Value Description

P_CALL_TELE_SERVICE_UNKNOWN 0 Teleservice information unknown at this time

P_CALL_TELE_SERVICE_TELEPHONY 1 Telephony

P_CALL_TELE_SERVICE_FAX_2_3 2 Facsimile Group 2/3

P_CALL_TELE_SERVICE_FAX_4_I 3 Facsimile Group 4, Class I

P_CALL_TELE_SERVICE_FAX_4_II_III 4 Facsimile Group 4, Classes II and III

P_CALL_TELE_SERVICE_VIDEOTEX_SYN 5 Syntax based Videotex

P_CALL_TELE_SERVICE_VIDEOTEX_INT 6 International Videotex interworking via gateways or interworking
units

P_CALL_TELE_SERVICE_TELEX 7 Telex service

P_CALL_TELE_SERVICE_MHS 8 Message Handling Systems

P_CALL_TELE_SERVICE_OSI 9 OSI application

P_CALL_TELE_SERVICE_FTAM 10 FTAM application

P_CALL_TELE_SERVICE_VIDEO 11 Videotelephony

P_CALL_TELE_SERVICE_VIDEO_CONF 12 Videoconferencing

P_CALL_TELE_SERVICE_AUDIOGRAPH_CONF 13 Audiographic conferencing

P_CALL_TELE_SERVICE_MULTIMEDIA 14 Multimedia services

P_CALL_TELE_SERVICE_CS_INI_H221 15 Capability set of initial channel of H.221

P_CALL_TELE_SERVICE_CS_SUB_H221 16 Capability set of subsequent channel of H.221

P_CALL_TELE_SERVICE_CS_INI_CALL 17 Capability set of initial channel associated with an active 3,1 kHz
audio or speech call.

P_CALL_TELE_SERVICE_DATATRAFFIC 18 Data traffic.

P_CALL_TELE_SERVICE_EMERGENCY_CALLS 19 Emergency Calls

P_CALL_TELE_SERVICE_SMS_MT_PP 20 Short message MT/PP

P_CALL_TELE_SERVICE_SMS_MO_PP 21 Short message MO/PP

P_CALL_TELE_SERVICE_CELL_BROADCAST 22 Cell Broadcast Service

P_CALL_TELE_SERVICE_ALT_SPEECH_FAX_3 23 Alternate speech and facsimile group 3

P_CALL_TELE_SERVICE_AUTOMATIC_FAX_3 24 Automatic Facsimile group 3

P_CALL_TELE_SERVICE_VOICE_GROUP_CALL 25 Voice Group Call Service

P_CALL_TELE_SERVICE_VOICE_BROADCAST 26 Voice Broadcast Service

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 146 Release 4

8.25 TpCallTreatment

Defines the Sequence of Data Elements that specify the treatment for calls that will be handled only by the

network (for example, call which are not admitted by the call load control mechanis m).

Sequence Element Name Sequence Element Type

CallTreatmentType TpCallTreatmentType

ReleaseCause TpReleaseCause

AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

8.26 TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.

Name Value Description

P_CALL_TREATMENT_DEFAULT 0 Default treatment

P_CALL_TREATMENT_RELEASE 1 Release the call

P_CALL_TREATMENT_SIAR 2 Send information to the user, and release the
call (Send Info & Release)

8.27 TpCallAdditionalTreatmentInfo

Defines the Tagged Choice of Data Elements that specify the information to be sent to a call party.

 Tag Element Type

 TpCallTreatmentType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_TREATMENT_DEFAULT NULL Undefined

P_CALL_TREATMENT_RELEASE NULL Undefined

P_CALL_TREATMENT_SIAR TpUIInfo InformationToSend

8.28 TpMediaType

Defines the media type of a media stream. The values may be combined by a logical 'OR' function.

Name Value Description

P_AUDIO 1 Audio stream

P_VIDEO 2 Video stream

P_DATA 4 Data stream (e.g., T.120)

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 147 Release 4

Annex A (normative):
OMG IDL Description of Call Control SCF

The OMG IDL representation of this interface specification is contained in text files (contained in archive

2919804V4b0IDL.ZIP) which accompany the present document.

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 148 Release 4

Annex B (informative):
Change history

Change history

Date TSG # TSG Doc. CR Rev Subject/Comment Old New

Mar 2001 CN_11 NP-010134 047 - CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0

June 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0

Sep 2001 CN_13 NP-010467 001 -- Changing references to JAIN 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 002 -- Correction of text descriptions for methods enableCallNotif ication and

createNotif ication

4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 003 -- Specify the behaviour when a call leg times out 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 004 -- Removal of Faulty state in MPCCS Call State Transition Diagram and

method callFaultDetected in MPCCS in OSA R4

4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 005 -- Missing TpCallAppInfoSet description in OSA R4 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 006 -- Redirecting a call leg vs. creating a call leg clarif ication in OSA R4 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 007 -- Introduction of MPCC Originating and Terminating Call Leg STDs for

IpCallLeg

4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 008 -- Corrections to SetChargePlan() Addition of PartyToCharge parmeter 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 009 -- Corrections to SetChargePlan() 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 010 -- Remove distinction between final- and intermediate-report 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 011 -- Inclusion of TpMediaType 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 012 -- Corrections to GCC STD 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 013 -- Introduction of sequence diagrams for MPCC services 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 014 -- The use of the REDIRECT event needs to be illustrated 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 015 -- Corrections to SetCallChargePlan() 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 016 -- Add one additional error indication 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 017 -- Corrections to Call Control – GCCS Exception handling 4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 018 -- Corrections to Call Control – Errors in Exceptions 4.0.0 4.1.0

Dec 2001 CN_14 NP-010597 019 -- Replace Out Parameters with Return Types 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 020 -- Removal of time based charging property 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 021 -- Make attachMedia() and detachMedia() asynchronous 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 022 -- Correction of treatment datatype in superviseReq on call leg 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 023 -- Corrections to Call Control Data Types 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 024 -- Correction to Call Control (CC) 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 025 -- Amend the Generic Call Control introductory part 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 026 -- Correction in TpCallEventType 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 027 -- Addition of missing description of RouteErr() 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 028 -- Misleading description of createAndRouteCallLegErr() 4.1.0 4.2.0

Dec 2001 CN_14 NP-010597 029 -- Correction to values of TpCallNotif icationType,

TpCallLoadControlMechanismType

4.1.0 4.2.0

Dec 2001 CN_14 NP-010695 030 -- Correction of method getLastRedirectionAddress 4.1.0 4.2.0

Mar 2002 CN_15 NP-020106 031 -- Add P_INVALID_INTERFACE_TY PE exception to
IpService.setCallback() and IpService.setCallbackWithSessionID()

4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 032 -- Correction of Event Subscription/Notif ication Data Type 4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 033 -- Correction of parameter name in IpCallLeg.routeReq() and in
IpCallLeg.setAdviceOfCharge()

4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 034 -- Clarif ication of ambiguous Event handling rules 4.2.0 4.3.0

Jun 2002 CN_16 NP-020180 035 -- Correction to TpCallChargePlan 4.3.0 4.4.0

Jun 2002 CN_16 NP-020180 036 -- Correction to CAMEL Service Property values 4.3.0 4.4.0

Sep 2002 CN_17 NP-020424 057 -- Correction on use of NULL in Call Control API 4.4.0 4.5.0

Mar 2003 CN_19 NP-030020 058 -- Correction of status of methods to interfaces in clause 6.3 4.5.0 4.6.0

Mar 2003 CN_19 NP-030020 059 -- Correction to TpReleaseCauseSet in Multi Party Call Control 4.5.0 4.6.0

Mar 2003 CN_19 NP-030020 060 -- Correction to Sequence Diagrams to remove incorrect Framework
references

4.5.0 4.6.0

Mar 2003 CN_19 NP-030020 061 -- Correction to User Interaction Prepaid Sequence Diagrams 4.5.0 4.6.0

Mar 2003 CN_19 NP-030020 062 -- Correction to remove unused TpCallChargeOrder 4.5.0 4.6.0

Mar 2003 CN_19 NP-030020 063 -- Correction to TpCallEventCriteriaResult in Generic Call Control 4.5.0 4.6.0

Mar 2003 CN_19 NP-030020 064 -- Correction of status of methods to interfaces in clause 7.3 4.5.0 4.6.0

Jun 2003 CN_20 NP-030238 065 -- Correction of the description for callEventNotify & reportNotif ication 4.6.0 4.7.0

Dec 2003 CN_22 NP-030544 066 -- Correction of description in superviseRes and superviseCallRes 4.7.0 4.8.0

Jun 2004 CN_24 NP-040255 067 -- Correction of continueProcessing method for Generic Call Control

Service (GCCS)

4.8.0 4.9.0

Jun 2004 CN_24 NP-040256 068 -- Correct the P_TRIGGERING_ADDRESSES service property 4.8.0 4.9.0

Jun 2004 CN_24 NP-040257 069 -- Correction of callbacks sequence and timing conditions in GCCS and
MPCCS

4.8.0 4.9.0

Sep 2004 CN_25 NP-040352 070 -- Correct State Transition Diagram for IpCall 4.9.0 4.10.0

Dec 2004 CN_25 NP-040483 071 -- Correct Behaviour of CallBack sequence and timing 4.10.0 4.11.0

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12) 149 Release 4

	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Call Control SCF
	4.1 Call Model Description
	4.2 General requirements on support of methods

	5 The Service Interface Specifications
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Generic Call Control Service
	6.1 Sequence Diagrams
	6.1.1 Additional Callbacks
	6.1.2 Alarm Call
	6.1.3 Application Initiated Call
	6.1.4 Call Barring 1
	6.1.5 Number Translation 1
	6.1.6 Number Translation 1 (with callbacks)
	6.1.7 Number Translation 2
	6.1.8 Number Translation 3
	6.1.9 Number Translation 4
	6.1.10 Number Translation 5
	6.1.11 Prepaid
	6.1.12 Pre-Paid with Advice of Charge (AoC)

	6.2 Class Diagrams
	6.3 Generic Call Control Service Interface Classes
	6.3.1 Interface Class IpCallControlManager
	6.3.2 Interface Class IpAppCallControlManager
	6.3.3 Interface Class IpCall
	6.3.4 Interface Class IpAppCall

	6.4 Generic Call Control Service State Transition Diagrams
	6.4.1 State Transition Diagrams for IpCallControlManager
	6.4.1.1 Active State
	6.4.1.2 Notification terminated State

	6.4.2 State Transition Diagrams for IpCall
	6.4.2.1 Network Released State
	6.4.2.2 Finished State
	6.4.2.3 Application Released State
	6.4.2.4 Active State
	6.4.2.5 1 Party in Call State
	6.4.2.6 2 Parties in Call State

	6.5 Generic Call Control Service Properties
	6.5.1 List of Service Properties
	6.5.2 Service Property values for the CAMEL Service Environment.

	6.6 Generic Call Control Data Definitions

	This shows the name of the data type.
	6.6.1 Generic Call Control Event Notification Data Definitions
	6.6.1.1 TpCallEventName
	6.6.1.2 TpCallNotificationType
	6.6.1.3 TpCallEventCriteria
	6.6.1.4 TpCallEventInfo

	6.6.2 Generic Call Control Data Definitions
	6.6.2.1 IpCall
	6.6.2.2 IpCallRef
	6.6.2.3 IpAppCall
	6.6.2.4 IpAppCallRef
	6.6.2.5 TpCallIdentifier
	6.6.2.6 IpAppCallControlManager
	6.6.2.7 IpAppCallControlManagerRef
	6.6.2.8 IpCallControlManager
	6.6.2.9 IpCallControlManagerRef
	6.6.2.10 TpCallAppInfo
	6.6.2.11 TpCallAppInfoType
	6.6.2.12 TpCallAppInfoSet
	6.6.2.13 TpCallEndedReport
	6.6.2.14 TpCallFault
	6.6.2.15 TpCallInfoReport
	6.6.2.16 TpCallReleaseCause
	6.6.2.17 TpCallReport
	6.6.2.18 TpCallAdditionalReportInfo
	6.6.2.19 TpCallReportRequest
	6.6.2.20 TpCallAdditionalReportCriteria
	6.6.2.21 TpCallReportRequestSet
	6.6.2.22 TpCallReportType
	6.6.2.23 TpCallTreatment
	6.6.2.24 TpCallEventCriteriaResultSet
	6.6.2.25 TpCallEventCriteriaResult

	7 MultiParty Call Control Service
	7.1 Sequence Diagrams
	7.1.1 Application initiated call setup
	7.1.2 Call Barring 2
	7.1.3 Call forwarding on Busy Service
	7.1.4 Call Information Collect Service
	7.1.5 Complex Card Service
	7.1.6 Hotline Service
	7.1.7 Use of the Redirected event

	7.2 Class Diagrams
	7.3 MultiParty Call Control Service Interface Classes
	7.3.1 Interface Class IpMultiPartyCallControlManager
	7.3.2 Interface Class IpAppMultiPartyCallControlManager
	7.3.3 Interface Class IpMultiPartyCall
	7.3.4 Interface Class IpAppMultiPartyCall
	7.3.5 Interface Class IpCallLeg
	7.3.6 Interface Class IpAppCallLeg

	7.4 MultiParty Call Control Service State Transition Diagrams
	7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.4.1.1 Active State
	7.4.1.2 Interrupted State
	7.4.1.3 Overview of allowed methods

	7.4.2 State Transition Diagrams for IpMultiPartyCall
	7.4.2.1 IDLE State
	7.4.2.2 ACTIVE State
	7.4.2.3 RELEASED State
	7.4.2.4 Overview of allowed methods

	7.4.3 State Transition Diagrams for IpCallLeg
	7.4.3.1 Originating Call Leg
	7.4.3.1.1 Initiating State
	7.4.3.1.2 Analysing State
	7.4.3.1.3 Active State
	7.4.3.1.4 Releasing State
	7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.4.3.2 Terminating Call Leg
	7.4.3.2.1 Idle (terminating) State
	7.4.3.2.2 Active (terminating) State
	7.4.3.2.3 Releasing (terminating) State
	7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	7.5 Multi-Party Call Control Service Properties
	7.5.1 List of Service Properties
	7.5.2 Service Property values for the CAMEL Service Environment.

	7.6 Multi-Party Call Control Data Definitions

	This shows the name of the data type.
	7.6.1 Event Notification Data Definitions
	7.6.2 Multi-Party Call Control Data Definitions
	7.6.2.1 IpCallLeg
	7.6.2.2 IpCallLegRef
	7.6.2.3 IpAppCallLeg
	7.6.2.4 IpAppCallLegRef
	7.6.2.5 IpMultiPartyCall
	7.6.2.6 IpMultiPartyCallRef
	7.6.2.7 IpAppMultiPartyCall
	7.6.2.8 IpAppMultiPartyCallRef
	7.6.2.9 IpMultiPartyCallControlManager
	7.6.2.10 IpMultiPartyCallControlManagerRef
	7.6.2.11 IpAppMultiPartyCallControlManager
	7.6.2.12 IpAppMultiPartyCallControlManagerRef
	7.6.2.13 TpAppCallLegRefSet
	7.6.2.14 TpMultiPartyCallIdentifier
	7.6.2.15 TpAppMultiPartyCallBack
	7.6.2.16 TpAppMultiPartyCallBackRefType
	7.6.2.17 TpAppCallLegCallBack
	7.6.2.18 TpMultiPartyCallIdentifierSet
	7.6.2.19 TpCallAppInfo
	7.6.2.20 TpCallAppInfoType
	7.6.2.21 TpCallAppInfoSet
	7.6.2.22 TpCallEventRequest
	7.6.2.23 TpCallEventRequestSet
	7.6.2.24 TpCallEventType
	7.6.2.25 TpAdditionalCallEventCriteria
	7.6.2.26 TpCallEventInfo
	7.6.2.27 TpCallAdditionalEventInfo
	7.6.2.28 TpCallNotificationRequest
	7.6.2.29 TpCallNotificationScope
	7.6.2.30 TpCallNotificationInfo
	7.6.2.31 TpCallNotificationReportScope
	7.6.2.32 TpNotificationRequested
	7.6.2.33 TpNotificationRequestedSet
	7.6.2.34 TpReleaseCause
	7.6.2.35 TpReleaseCauseSet
	7.6.2.36 TpCallLegIdentifier
	7.6.2.37 TpCallLegIdentifierSet
	7.6.2.38 TpCallLegAttachMechanism
	7.6.2.39 TpCallLegConnectionProperties
	7.6.2.40 TpCallLegInfoReport
	7.6.2.41 TpCallLegInfoType
	7.6.2.42 TpCallLegSuperviseTreatment

	8 Common Call Control Data Types
	8.1 TpCallAlertingMechanism
	8.2 TpCallBearerService
	8.3 TpCallChargePlan
	8.4 TpCallPartyToChargeAdditionalInfo
	8.5 TpCallPartyToChargeType
	8.6 TpCallChargeOrderCategory
	8.7 TpCallEndedReport
	8.8 TpCallError
	8.9 TpCallAdditionalErrorInfo
	8.10 TpCallErrorType
	8.11 TpCallInfoReport
	8.12 TpCallInfoType
	8.13 TpCallLoadControlMechanism
	8.14 TpCallLoadControlIntervalRate
	8.15 TpCallLoadControlMechanismType
	8.16 TpCallMonitorMode
	8.17 TpCallNetworkAccessType
	8.18 TpCallPartyCategory
	8.19 TpCallServiceCode
	8.20 TpCallServiceCodeSet
	8.21 TpCallServiceCodeType
	8.22 TpCallSuperviseReport
	8.23 TpCallSuperviseTreatment
	8.24 TpCallTeleService
	8.25 TpCallTreatment
	8.26 TpCallTreatmentType
	8.27 TpCallAdditionalTreatmentInfo
	8.28 TpMediaType
	Annex A (normative): OMG IDL Description of Call Control SCF
	Annex B (informative): Change history

