3GPP TS 29198-4 V4.11.0 (2004-12)

Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Access (OSA);

Application Programming Interface (API);

Part 4. Call control Service Capability Feature (SCF)
(Release 4)

™

The present document has been developed within the 3™ Generation Partnership Project (3GPP '™) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification isprovided for future development work within 3GPP only. The Organizational Partners accept no liability for any use ofthis Specification.

Specifications and reports for implementation of the 3GPP ™ system should be obtained viathe 3GPP Organizational Partners' Publications Offices.

Release 4 2 3GPP TS 29.198-4 V4.11.0 (2004-12)

Keywords
UMTS, API, OSA

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 492 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2004, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.

3GPP

Release 4 3 3GPP TS 29.198-4 V4.11.0 (2004-12)

Contents

0 (N0 (o TR 7
gL (oo [UTo3 1 (0] o TR 7
1 RSToT o]0 O U PUP TR 9
2 Y (=] (10 =T TR 9
3 Definitions and abbDreVIATIONSuvueiii e e et e et e e e e e e s e e s bbb e e e eeaaare 10
3.1 D12 LT TSR 10
3.2 PN o] 01 (VAT (0] 10
4 LOr:Y| 00T 11 (0] IS O =TT
4.1 Call MOAEIDESCIIPLION ...eveeveeeteiettee ettt bbb
4.2 General requirements on support of methods

5 The Service Interface SPECIFICALIONSvviiiiiiiie it 11
5.1 Interface SPECITICAtION FOIMALcccvieerieieie et s ettt s s s sesebs s 11
511 INTEITACE CIASS .vvieieiietie ettt sttt sttt st st ebese st et e se st st et e se et e bese et st et easse b et e se st etebe e etebe e sssbesenssestesenatas
5.1.2 Y= oo 0 TS o o TR
5.1.3 Parameter descriptions

5.1.4 0= 1 L1, oo [TR
5.2 LS RY TN LA <] = <R S
521 Interface Class Ipinterface

5.3 Te YA TOL I LN (=T £=TeT<T T
5.3.1 (O Y] VAT AT
5.4 Generic Service Interface

5.4.1 Interface Class IpService

6 Generic Call Control Service

6.1 SEOUENCE DIAGTAIIScevieeteeeieeer ettt sese et s st
6.1.1 Additional Callbacks

6.1.2 Alarm Call......coevrecereeerees

6.1.3 Application Initiated Call

6.1.4 Call Barring L.......cccoooeniennne

6.1.5 Number Translation 1

6.1.6 Number Translation 1 (with callbacks)cccccnuuenes

6.1.7 Number Translation 2

6.1.8 Number Translation 3

6.1.9 Number Translation 4

6.1.10 Number Translation 5

6.1.11 Prepaidccuevcceeecce s

6.1.12 Pre-Paid with Advice of Charge (A0C)ccccceevvereenan.

6.2 Class Diagramscccceviireeniniseressee s esssssesesesssnnes

6.3 Generic Call Control Service Interface CIasses

6.3.1 Interface Class IpCallControlManager........ccooveeerenne.

6.3.2 Interface Class IpAppCallControlManager

6.3.3 Interface Class IpCallcccccooeveverrnnneee.

6.3.4 Interface Class IpAppCall

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

6.4.1.1 ACEIVE SEALE......coceieciiecee e
6.4.1.2 Notification terminated State..............

6.4.2 State Transition Diagrams for IpCall

6.4.2.1 Network Released State........c.cccooeue....

6.4.2.2 Finished State.......c.coooeovvneeeinnercenn

6.4.2.3 Application Released State..................

6.4.2.4 ACHIVE State.....covoveeeereeerreeeeenae

6.4.2.5 1Party in Call State........coooevienicnecreeeeeiens

6.4.2.6 2 PANLIES 1N CAISTALE ...ttt b ettt es et

3GPP

Release 4 4 3GPP TS 29.198-4 V4.11.0 (2004-12)
6.5 Generic Call Control Service Properties

6.5.1 List Of SENVICE PrOPErtiesS.....coceviirceeiiircerissesee st eeeses

6.5.2 Service Property values for the CAMEL Service Environment.

6.6 Generic Call Control Data Definitionsccoovveeevieeeinrnesn s

6.6.1 Generic Call Control Event Notification Data Definitions

6.6.1.1 TPCAIEVENTNAIME ..o

6.6.1.2 TpCalINOtIficatioNTYPE ..o

6.6.1.3 TpCallEventCriteria

6.6.1.4 TPCallEVentInfo ..o

6.6.2 Generic Call Control Data Definitions

6.6.2.1 1010 |

6.6.2.2 IpCallRef ...

6.6.2.3 IPAPPCEL......coieees

6.6.2.4 IPAPPCalIRET ...

6.6.2.5 TpCallldentifier.......ccocoivnrnncnccninn.

6.6.2.6 IpAppCallControlManager..................

6.6.2.7 IpAppCallControlManagerRef...........

6.6.2.8 IpCallControlManagerccccecuevene.

6.6.2.9 IpCallControlManagerRef...................

6.6.2.10 TpCallAppINfo ..o,

6.6.2.11 TpCallAPPINTOTYPE .cocvcecce s

6.6.2.12 TpCallAPPINTOSEL.....ccvceeecce e

6.6.2.13 TpCallENdedRePOIt......c.cvvcveecce e

6.6.2.14 TpCallFault.....................

6.6.2.15 TpCallinfoReport

6.6.2.16 TPCallRe1easECaAUSE.........coeereeereere e

6.6.2.17 TPCalIREPOI ..

6.6.2.18 TpCallAdditionalReportinfo

6.6.2.19 TpCallRepOtREQUEST.......ceeeeereceere s

6.6.2.20 TpCallAdditionalReportCriteria

6.6.2.21 TpCallReportRequestSet........ccccuuee.

6.6.2.22 TpCallReportType

6.6.2.23 TPCallTreatmMent ..o

6.6.2.24 TpCallEventCriteriaResultSet

6.6.2.25 TPCAIIEVENTCHEEITARESUI ..ot
7 MultiParty Call CONrOl SEIVICEc.vviiiiiie it
7.1 SEOUENCE DIAGTAITScuviieteeeireee it es st ses et
7.11 APPHCAtion INITIATE CAITSEIUD ..ot
7.1.2 CAII BAITING 2.ttt bbb
7.1.3 Call forwarding on Busy Service

7.14 Call Information Collect Service

7.1.5 COMPIEX CANA SEIVICE ...ttt bbb
7.1.6 Hotline Serviceccovvvvnceerrreeeen,

7.1.7 Use of the Redirected event

7.2 ClaSS DIHAGIAIMIS ...evuviereeer e seee e ree e ses e ses bbb s s bbb bbb
7.3 MultiParty Call Control Service Interface Classes

7.3.1 Interface Class IpMultiParty CallControlManagEr.........cccviiceieirecee st 83
7.3.2 Interface Class IpAppMultiParty CallCONTIOIMANAGETocieruriririeeiririreieieieereeisiee e 87
7.3.3 Interface Class IpMultiPartyCall

7.3.4 Interface Class IDAPPMUIIPAILYCAllcocoviiieiricces ettt 95
7.3.5 INtErface Class IPCAIILEQY ...ccviceeccce sttt st s et s st et
7.3.6 Interface Class IpAppCallLeg

7.4 MultiParty Call Control Service State TranSition DIagramsScccccccvreeesnieeisnnseeess s sssees 108
7.4.1 State Transition Diagrams for IpMultiPartyCallControlManagercccveevnieenvseessssse s 108
7.4.1.1 Active State

7.4.1.2 =T 0T 0 0=To] - (TR
7.4.1.3 Overview OFf AlIOWE MEENOUS ...
7.4.2 State Transition Diagrams for IpMultiPartyCall

7.4.2.1 LD S v PO
7.4.2.2 ALCTIVE SEALE ...ttt bbbt
7.4.2.3 RELEASED SEALE......ciiciieiriieieieeseseissseessse sttt sssss st sssss s sssssssssssssssssssessssessssessssessssessesassesassesessssessnsenns

3GPP

Release 4

7.4.2.4
7.4.3
7.4.3.1
74311
7.4.3.1.2
7.4.3.1.3
7.4.3.1.4
7.4.3.1.5
7.4.3.2
7.4.3.2.1
7.4.3.2.2
7.4.3.2.3
7.4.3.2.4
7.5

7.5.1
7.5.2
7.6
7.6.1
7.6.2
7.6.2.1
7.6.2.2
7.6.2.3
7.6.2.4
7.6.2.5
7.6.2.6
7.6.2.7
7.6.2.8
7.6.2.9
7.6.2.10
7.6.2.11
7.6.2.12
7.6.2.13
7.6.2.14
7.6.2.15
7.6.2.16
7.6.2.17
7.6.2.18
7.6.2.19
7.6.2.20
7.6.2.21
7.6.2.22
7.6.2.23
7.6.2.24
7.6.2.25
7.6.2.26
7.6.2.27
7.6.2.28
7.6.2.29
7.6.2.30
7.6.2.31
7.6.2.32
7.6.2.33
7.6.2.34
7.6.2.35
7.6.2.36
7.6.2.37
7.6.2.38
7.6.2.39
7.6.2.40
7.6.2.41
7.6.2.42

Multi-Party Call Control Service Properties

5 3GPP TS 29.198-4 V4.11.0 (2004-12)

Overview OFf AlIOWE MEENOUS ...
State Transition Diagrams for IpCallLeg
Originating Call Legcccvvvvrvvrriicreresseessneens
INItIAtiNG StAte ..c..ceeviccr e
ANalysSing Stateccoovvveeriecerreeereseeee e
ACHIVE SEALE.....coivecee s
REIBASING SEALE ..o e
Overview of allowed methods, Originating Call Leg STD
Terminating Call LEg ..o
Idle (terminating) State
Active (terminating) State
Releasing (terminating) State
Overview of allowed methods and trigger events, Terminating Call Leg STD

LiSt OF SENVICE PrOPErties......ccocveneeeeeeririeieiresereeee et
Service Property values for the CAMEL Service Environment.

Multi-Party Call Control Data Definitions...........cccccoeceuene.

Event Notification Data Definitionscccocovevniunenes

Multi-Party Call Control Data Definitions
IPCAlILEg ..o
IpCallLegRef ..o
IpAppCalllLeg
IpAppCallLegRef...........
IpMultiPartyCall
IpMultiPartyCallRef
IpAppMultiPartyCall
IpAppMultiPartyCallRef
IpMultiPartyCallControlManager
IpMultiPartyCallControlManagerRefcccoevnue.
IpAppMultiPartyCallControlManagerc.c.......
IpAppMultiPartyCallControlManagerRef...............
TPApPPCallLegRefSet ...
TpMultiParty Callldentifier
TpAppMultiPartyCallBack
TpAppMultiPartyCallBackRefTYPE. ...
TpAppCallLeg CallBackcoceveenervncrriiricrnenens
TpMultiParty Callldentifier Set
TpCallApPINTO ..o
TpCallAPPINTOTYPE ..o
TPCallAPPINTOSEL.....ccvocecce e
TPCallEVENtREQUEST.......cocecveecce e
TpCallEventRequESTSEL......cccovceevicerce e
TpCallEventType....cocvviveereerecieinnen,
TpAdditionalCallEventCriteria
TpCallEventInfo.......cccoovvvcevecrcinnann,
TpCallAdditionalEventinfo.................
TpCallNotificationRequest..................
TpCallNotificationScope.....c...ccevunne.
TpCallNotificationInfoccccceuevnee.
TpCallNotificationReportScope..........
TpNotificationRequested.....................
TpNotificationRequestedSet...............
TpReleaseCause..............
TpReleaseCauseSet
TpCallLegldentifiercocvevenesneccerens
TpCallLegldentifierSetccoovvuene.
TpCallLegAttachMechanism..............
TpCallLeg ConnectionProperties
TpCallLegInfoREPOIt ...
TpCallLegINfoTYPe ..o
TpCallLegSuperviseTreatment

3GPP

Release 4 6 3GPP TS 29.198-4 V4.11.0 (2004-12)

8 Common Call CoNrol Data TYPES. .. .cieeeei ittt e e e e e e e e e e e e e e s st r e e e e e e s ansneaeees 137
8.1 TpCallAlertingMechanism

8.2 TpCallBearerService..................

8.3 B 01O 1 L@t (o T=T = TP

8.4 TpCallParty TOCharge AdditioNalINTOcccoiiicicce s 138
8.5 TpCallPartyToChargeType

8.6 QLI 01O (@ g T (o T=T@ T (o 1= @ YT o TR 139
8.7 QLI 01O 1 Lo T=Ta =T o o OO RTTRR 139
8.8 TpCallError

8.9 TPCAHAAAIIONAIEITOTINTO ..ottt en 140
8.10 TpCallErrorType

8.11 TpCallinfoReport

8.12 TP CAIINTOTYPE o bbb bbb
8.13 TPCallLoadCoNIOIMECNANISIM.....c..cuiiiieiiieiieei e
8.14 TpCallLoadControlintervalRate

8.15 TpCallLoadControlMECNANISMTYPEc.cvieiiriiire i 141
8.16 TPCAIIMONIEOTMIOTE ...t bbbttt
8.17 TpCallNetworkAccess Type

8.18 TPCAIIPAITY CALEYOIY ...ttt ettt ettt ettt es et as bbb bbb e st bbb £ bbb bbb £ bbb e e b et e s se bbb s s
8.19 TPCAIISEIVICECOUE ...ttt eb et e bbb £ b E £ bbbt e bbb ne bbb
8.20 TpCallService CodeSet

8.21 QLI L0 UL ST Y AToT=Y e Lo L= 1Y oL TP
8.22 TPCAIISUPEIVISEREPOM ...ttt bbb bbbt ss s bbb bbb et et b s s st et s et et s
8.23 TpCallSuperviseTreatment

8.24 TP CAIITEIESEIVICE ...ttt ettt bbb s e bbb e st bRt b bbb b s e b et s s bbb s s
8.25 LI 01O LI =T L4271 PR

8.26 TpCallTreatmentType
8.27 TpCallAdditionalT reatmentinfo

8.28 QLI 013 =T T W1 L PP TT
Annex A (normative): OMG IDL Description of Call Control SCF............ccoccveiiiiieeiiiiieees 146
Anrex B (informative): Change NISTONY.......ooiiiiiiii e 147

3GPP

Release 4

3GPP TS 29.198-4 V4.11.0 (2004-12)

Foreword

This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an

identifying change of release date and an increase in version number as follows:

Version Xx.y.z

where:
X the first digit:

1 presented to TSG for information;

2 presented to TSG for approval,

3 orgreater indicates TSGapproved document under change control.

updates, etc.

the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 4 of a multi-part TS covering the 3" Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The APIspecification (3GPP TS 29.198) is structured in the following Parts:

Part 1: Overview

Part 2: Common Data Definitions

Part 3: Framework

Part 4: Call Control SCF

Part 5: User Interaction SCF

Part 6: Mobility SCF

Part 7: Terminal Capabilities SCF

Part 8: Data Session Control SCF

Part 9: Generic Messaging SCF (not part of 3GPP Release 4)
Part 10: Connectivity Manager SCF (not part of 3GPP Release 4)
Part 11: Account Management SCF

Part 12: Charging SCF

The Mapping s pecification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OS A API specifications 29.198-family OS A APl Mapping - 29.998-family

29.198-1 Part 1: Overview 29.998-1 Part 1. Overview

29.198-2 Part 2: Common Data Definitions 29.998-2 Not Applicable

29.198-3 Part 3: Framework 29.998-3 Not Applicable

29.198-4 Part 4: Call Control SCF 29.998-4-1 Subpart 1: Generic Call Control — CAP mapping
29.998-4-2

29.198-5 Part 5: User Interaction SCF 29.998-5-1 Subpart 1: User Interaction — CAP mapping
29.998-5-2
29.998-5-3
29.998-5-4 Subpart 4: User Interaction — SM S mapping

29.198-6 Part 6: M obility SCF 29.998-6 User Status and User Location — M AP mapping

29.198-7 Part 7: Terminal Capabilities SCF 29.998-7 Not Applicable

29.198-8 Part 8: Data Session Control SCF 29.998-8 Data Session Control — CAP mapping

29.198-9 Part 9: Generic Messaging SCF 29.998-9 Not Applicable

29.198-10 Part 10: Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 Part 11: Account Management SCF 29.998-11 Not Applicable

3GPP

Release 4 8 3GPP TS 29.198-4 V4.11.0 (2004-12)

[29.198-12 | Part 12: Charging SCF [29.998-12 | Not Applicable

3GPP

Release 4 9 3GPP TS 29.198-4 V4.11.0 (2004-12)

1 Scope

The present document is Part 4 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are
contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Call Control Service Capability Feature (SCF) aspects of the interface. All aspects
of the Call Control SCF are defined here, these being:

e Sequence Diagrams

e Class Diagrams

o Interface specification plus detailed method descriptions
e State Transition diagrams

e Data definitions

o IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN W G5, ETSI TISPAN and The Parlay Group, in co -
operation with a number of JAIN™ Community member companies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

o References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

e Foraspecific reference, subsequent revisions do not apply.

o Foranon-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA); Stage 1".

[3] 3GPP TS 23.127: " Virtual Home Environment (VHE) / Open Service Access (OSA)".

[4] 3GPP TS 22.002: "Circuit Bearer Services Supported by a PLMN".

[5] ISO 4217 (1995): " Codes for the representation of currencies and funds".

[6] 3GPP TS 24.002: " GSM-UMTS Public Land Mobile Network (PLMN) Access Reference

Configuration™.

[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)".

3GPP

Release 4 10 3GPP TS 29.198-4 V4.11.0 (2004-12)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1[1] apply.

4 Call Control SCF

Two flavours of Call Control (CC) APIs have been included in 3GPP Release 4. These are the Generic Call Control
(GCC) and the Multi-Party Call Control (MPCC). The GCC is the same APl as was already present in the Release 99
specification (TS 29.198v3.3.0) and is in principle able to satisfy the requirements on CC APIs for Release 4.

However, the joint work between 3GPP CN5, ETSI SPAN12 and the Parlay CC Working group with collaboration from
JAIN has been focussed on the MPCC API. A number of improvements on CC functionality have been made and are
reflected in this API. For this it was necessary to break the inheritance that previously existed between GCC and

MPCC.

The joint CC group has furthermore decided that the MPCC is to be considered as the future base CC family and the
technical work will not be continued on GCC. Errors or technical flaws will of course be corrected.

The following clauses describe each aspect of the CC Service Capability Feature (SCF).
The order is as follows:
e The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.
e The Class relationships clause shows how each of the interfaces applicable to the SCF, relate to one another.
e The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

e The State Transition Diagrams (STD) show transition between states in the SCF. The states and transitions are
well-defined; either methods specified in the Interface specification or events occurring in the underlying
networks cause state transitions.

e The Data definitions clause show a detailed expansion of each of the data types associated with the methods
within the classes. Note that some data types are used in other methods and classes and are therefore defined
within the Common Data types part of this specification (29.198-2).

4.1 Call Model Description

The adopted call model has the following objects.

o acallobject. A call is a relation between a number of parties. The call object relates to the entire call view from
the application. E.g., the entire call will be released when a release is cal led on the call. Note that different
applications can have different views on the same physical call, e.g., one application for the originating side and
another application for the terminating side. The applications will not be aware of each other, all
‘communication’ between the applications will be by means of network signalling. The AP currently does not
specify any feature interaction mechanisms.

o acall leg object. The leg object represents a logical association between a call and an address. The relat ionship
includes at least the signalling relation with the party. The relation with the address is only made when the leg is
routed. Before that the leg object is IDLE and not yet associated with the address.

e anaddress. The address logically represents a party in the call.

3GPP

Release 4 11 3GPP TS 29.198-4 V4.11.0 (2004-12)

o aterminal. A terminal is the end-point of the signalling and/or media for a party. This object type is currently not
addressed.

The call object is used to establish a relation between a number of parties by creating a leg for each party within the call.

Associated with the signalling relationship represented by the call leg, there may also be a bearer connection (e.g., in the
traditional voice only networks) or a number (zero or more) of media channels (in mu lti-media networks).

A leg can be attached to the call or detached from the call. When the leg is attached, this means that media or bearer
channels related to the legs are connected to the media or bearer channels of the other legs that are attached to the same
call. I.e., only legs that are attached can 'speak’ to each other. A leg can have a number of states, depending on the
signalling received from or sent to the party associated with the leg. Usually there is a limit to the number of legs that
are in being routed (i.e., the connection is being established) or connected to the call (i.e., the connection is established).
Also, there usually is a limit to the number of legs that can be simultaneously attached to the same call.

Some networks distinguish between controlling and passive legs. By definition the call will be released when the
controlling leg is released. All other legs are called passive legs. There can be at most one controlling leg per call.
However, there is currently no way the application can influence whether a Leg is controlling or not.

There are two ways for an application to get the control of a call. The application can request to be notified of calls that
meet certain criteria. When a call occurs in the network that meets these criteria, the application is notified and can
control the call. Some legs will already be associated with the call in this case. Another way is to create a new call from
the application.

4.2 General requirements on support of methods

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method.

Where a method is not supported by an implementation of a Service interface, the exception
P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

Where a method is notsupported by an implementation of an Application interface, a call to that method shall be
possible, and no exception shall be returned.

5 The Service Interface Specifications

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that forma part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with
name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For
the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name
IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name >

5.1.2 Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API.
Asynchronous methods are identified by a 'Req' suffix fora method request, and, if applicable, are served by

3GPP

Release 4 12 3GPP TS 29.198-4 V4.11.0 (2004-12)

asynchronous methods identified by eithera 'Res'or 'Err'suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant IpApp<name> or
IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have
a value when the method is called. Those described as 'out’ are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that imple ment the described interface.

5.2 Base Interface

5.2.1 Interface Class Iplnterface

All application, framework and service interfaces inherit fromthe following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

53.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity manage ment.

The interfaces that are imp lemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be imp lemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

54 Generic Service Interface

54.1 Interface Class IpService

Inherits from: Ip Interface

All service interfaces inherit fromthe following interface.

3GPP

Release 4 13 3GPP TS 29.198-4 V4.11.0 (2004-12)

<<Interface>>

IpService

setCallback (applInterface : in IpinterfaceRef) : void

setCallbackWithSessionID (appinterface : in IpinterfaceRef, sessionID : in TpSessionID) : woid

Method
setCallback ()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs.

Parameters
appInterface : in IpInterfaceRef
Specifies a reference to the application interface, which is used for callbacks.

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

Method
setCallbackWithSessionID ()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs.

Parameters

appInterface : in IpInterfaceRef
Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID
Specifies the session for which the service can invoke the application's callback interface.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P_INVALID INTERFACE TYPE

3GPP

Release 4 14 3GPP TS 29.198-4 V4.11.0 (2004-12)

6 Generic Call Control Service

The Generic Call Control APl of 3GPP Rel.4 relies on the CAMEL Service Environment (CSE) and thus some
restrictions exist to the use of the interface. The most significant one is that there is no support for createCall method.
The detailed description of the supported methods and further restrictions is given in the chapter 6.5.

6.1 Sequence Diagrams

6.1.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is

used instead.

first instance : (Logical : IpAppCallControlManager second ingtance : : IpAppCallControlManager : IpCallControlManager
View::IpAppLogic) (Logic...
1: new()

2: enableCallNotification()

3: new()

I

4: enableCallNotification()

5: callEventNotify()

6: forward event'

7: "call Notify result: failure"

8: callEventNotify()

9: "forward event"

F
|

I: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to
handle callbacks for this first instance of the logic.

2: The enableCallNotification is associated with an applicationID. The call control manager uses the applicationID to
decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

3GPP

Release 4 15 3GPP TS 29.198-4 V4.11.0 (2004-12)

4: The same enableCallNotification request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin
scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

6.1.2 Alarm Call

The following sequence diagram shows a "reminder message”, in the formof an alarm, being delivered to a customer as
aresult of a trigger froman application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

3GPP

Release 4 16 3GPP TS 29.198-4 V4.11.0 (2004-12)

: (Logical - IpAppCall e e . IpCall e IpUICall
View::IpAppl ogic) IpAppUICall | | IpCallControlManager IpAppUIManager
1: new()
T 2: createCall()
3: new()
4: routeReq()
1 5: routeRes()
6: ‘forward event'
[]
7: greateUlICall()
H 8: new()
9: sendInfoReq()
10: sendInfoRes()
11: ‘forward event' F

12: release()

1

w

:irelease()

1: This message is used to create an object imp lementing the IpAppCall interface.

2: This message requests the object imp lementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the Ip Call interface (e.g. load control values not
exceeded) is met it is created.

4: This message instructs the object implementing the Ip Call interface to route the call to the customer destined to
receive the "reminder message".

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the Ip AppLogic.

7: The application requests a new UICall object that is associated with the call object.

8: Assuming all criteria are met, a new UlCall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarmto the customer's call.

10: When the announcement ends this is reported to the call back interface.

3GPP

Release 4 17 3GPP TS 29.198-4 V4.11.0 (2004-12)

11: The event is forwarded to the application logic.

12: The application releases the UICall object, since no further announcements are required. Alternatively, the
application could have indicated P FINAL REQUEST in the sendInfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

6.1.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk

to.

3GPP

Release 4 18 3GPP TS 29.198-4 V4.11.0 (2004-12)

: (Logical . IpAppCall o . IpCall
View::IpApplLo... IpCallControlManager
1:new()

2: createCall()

3:new()

—
L]

4:routeReq()

5:routeRes()

6: 'forward event' (

] L

7:routeReq()

8: routeRes()

9: forward event' {

] L

10: deassignCall()

3GPP

Release 4 19 3GPP TS 29.198-4 V4.11.0 (2004-12)

1: This message is used to create an object imp lementing the IpAppCall interface.

2: This message requests the object imp lementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load control values not
exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.
6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is as ked fora PIN code.
The code is accepted and the call is routed to the original called party.

3GPP

Release 4 20 3GPP TS 29.198-4 V4.11.0 (2004-12)

: (Logical : IpAppCallControlManager : IpAppCall = = < IpCall = : IpUICall
View::IpAppLogic) IpAppUICall IpCallControlManage IpUIManager
I
1:new()

1]

2: enableCallNotification()

| 3: callEventNotify()

‘ 4: ‘forward event'

5:new()

| 6: createUICall() 7:new()

8: sendinfoAndCollectReq()

——{}

9: sendInfoAndCollectRes()
10: forward event' o

11:release()

12:routeReq() L
13: routeRes() L;
|
| L
|
I
|

14: ‘forward event'

16: "forward event" 15: callEnded()

!

17: deassignCall()

—

I: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a
message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for
creating an object imp lementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.
4: This message is used to forward the previous message to the I[pAppLogic.

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using th e return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UlCall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

3GPP

Release 4 21 3GPP TS 29.198-4 V4.11.0 (2004-12)

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the [pAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control service.

3GPP

Release 4 22 3GPP TS 29.198-4 V4.11.0 (2004-12)

. (Logical . IpAppCallControlManager . IpAppCall o . IpCall
View::IpAppLo... IpCallControlManager
1: new()

2: enableCallNotification

~

3: callEventNotify()

4: ‘forward event'

w 5: new()

6: 'translate number'

{Z

7: routeReq()

8: routeRes()

9: ‘forward event' (H

10: deassignCall() |

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria set in message 2, arrives a message (notshown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

3GPP

Release 4 23 3GPP TS 29.198-4 V4.11.0 (2004-12)

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using the return parameter of message
3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.
8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the app lication.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control service.

For illustration, in this sequence the callback references are set explicitly. This is optional. All the callbacks references
can also be passed in other methods. Froman efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

3GPP

Release 4 24 3GPP TS 29.198-4 V4.11.0 (2004-12)

: (Logical . IpAppCallControlManager . IpAppCall o . IpCall
View::IpAppLogic) IpCallControlManager
1: new()

2: setCallback()

3: enableCallNotification

~

4: callEventNotify()

5: ‘forward event' (

6: new()

i]

7: setCallbackWithSessionID()

T 8: 'translate number'

p—

9: routeReq()

10: routeRes()

11: ‘forward event' (

12: deassignGall()

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enable CallNotifications that do not have a
explicit IpAppCallControlManager reference specified in the enable CallNotification.

3GPP

Release 4 25 3GPP TS 29.198-4 V4.11.0 (2004-12)

3: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria set in message 3, arrives a message (notshown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

4: This message is used to pass the new call event to the object implementing the IpAppCallControIManager interface.
5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object imp lementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control service. If the translated number being routed to does not answer or is busy then the call is
automatically released.

3GPP

Release 4 26 3GPP TS 29.198-4 V4.11.0 (2004-12)

: (Logical . IpAppCallControlManager . IpAppCall . IpCallControlManager . IpCall
View::IpAppLogic)
‘ 1: new()

1 2: enableCallNotification()

[]

3: callEventNotify()

4: 'forward event'

5: new()

6: translate number

—

7: routeReq()

T 8: routeRes()
9: ‘forward event'

L}
1

10: release(

~

Y

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria, arrives a message (not shown) is directed to the object imp lementing the
IpCallControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.
4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip Call ControIManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.
7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object imp lementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

3GPP

Release 4 27 3GPP TS 29.198-4 V4.11.0 (2004-12)

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control service. If the translated number being routed to does not answer or is busy then the call is

automatically routed to a voice mailbox.

3GPP

Release 4 28 3GPP TS 29.198-4 V4.11.0 (2004-12)
: (Logical : IpAppCallControlManager : IpAppCall : IpCallControlManager :IpCall
View::IpAppLogic)
1:new()
[]
2: enableCallNotification()
[]
3: callEventNotify()
4:‘forward event'
5:lnew()
[]
6 ‘translate number' g
=
7:routeReq()
[]
8: routeRes()
9: forward event' (J
10: ‘translate number'
1
11:routeReq()
[]
12:routeRes()
13: forward event' (| [
L) 14: deassignCall() %

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria, arrives a message (not shown) is directed to the object imp lementing the
IpCallControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP

Release 4 29 3GPP TS 29.198-4 V4.11.0 (2004-12)

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.
7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object imp lementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the [pAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailboxsystem.

11: This message routes the call towards the voice mailbox.
12: This message passes the result of the call being answered to its callback object.
13: This message is used to forward the previous message to the [pAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control service. Before the call is routed to the translated number, the application requests for all
call related information to be delivered back to the application on completion of the call.

3GPP

Release 4 30 3GPP TS 29.198-4 V4.11.0 (2004-12)

:(Logical : IpAppCallControlManager : IpAppCall : IpCallControlManager :IpCall
View::l Logic
1: new()
=~
(]
2: enableCallNotification()
i 3: callEventNotify()
4: 'forward event'
5:Inew()
[]
| 6:'translate number' T
P—
i 7: getCallinfoReq()
8:routeReq() D
9: routeRes()
10: 'forward event'
i J
11: callEnded()
12: "forward event" M
I H
13: getCallinfoRes()
14: 'forward event' (J
15: deassignCall()

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
a new call, that matches the event criteria, arrives a message (not shown) is directed to the object imp lementing the
IpCallControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP

Release 4 31 3GPP TS 29.198-4 V4.11.0 (2004-12)

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object imp le menting the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7. The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: The returned translated number is used to route the call towards the destination.
9: This message passes the result of the call being answered to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the [pAppLogic

15: After the last information is received, the application deassigns the call. This will free the resources related to this
call in the gateway.

6.1.10 Number Translation 5

The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as a result of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

3GPP

Release 4 32 3GPP TS 29.198-4 V4.11.0 (2004-12)

IpAppLogic . IpA| lIControlManager . IpA| Il . IpCallControlManager . IpCal

1: new()

]

2: enableCallNotification()

gy

3: callEventNotify()

4: 'forward event'

|
5: ne\ALc

I

6: 'theck status'

P —

\ 7: appropriate release cause

—

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain addres s range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the Ip Call
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.
4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using the return parameter of message

3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is
busy.

6.1.11 Prepaid

This sequence shows a Pre-paid application.
The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain

timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

3GPP

Release 4 33 3GPP TS 29.198-4 V4.11.0 (2004-12)

Prepaid : (Logical H _ IpAppCall H _ IpAppCallControlManager HJ&AD.MQ&LL‘ ‘ “IpCall ‘ - IpCaliControlManager| | lpUiManager ~IpUlCall ‘
| 1inew() | |
\Q 2: enableCallNotification() !
\ I
| |
7 1 1
i 4 "forward event’ i 3: callEventNotify() |
5: new()
i
i
!
| 6: superviseCallReq()
(]
7:routeReq()
(]
8: superviseCallRes()
9: "forward event"H t
) |
10: superviseCallReq() \ﬁ}
] e \
11: IIR |
[12: “forward event’ sypenviseCallRes() H
| J
|
| |
3 13: superviseCallReq() 3
g
14: supenviseCallRes() |
| 15: "forward event| J
!
| 16: createUICall()
i
m 17:sendInfoReq(|)
U 18: sendIpfoRes() u
‘ 19: "forward event" r
20: release()
21:supeniseCallReq()
: i] i
| [23: "forward event 22: supenviseCallRes() |
i | H T
} 24:release() ! ‘ 1
i i
|] |
1 1 1 1
i i i i
1 1 1 1
i i i i

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,

3GPP

Release 4 34 3GPP TS 29.198-4 V4.11.0 (2004-12)

that matches the event criteria, arrives a message (not shown) is directed to the object imp lementing the
IpCallControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).
4: The message is forwarded to the application.
5: A new object on the application side for the Generic Call object is created

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.
9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.
12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

14: When the user is almost out of credit the application is informed.
15: The message is forwarded to the application.

16: The application decides to play an announcement to the parties in this call. A new UICall object is created and
associated with the call.

17: An announcement is played informing the user about the near-expiration of his credit limit.

18: When the announcement is comp leted the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.
22: The supervision period ends

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

6.1.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received fromthe
application.

3GPP

Release 4 35 3GPP TS 29.198-4 V4.11.0 (2004-12)

Prepaid : (Logical _ IpAppCallControlManager _ IpAppCall || ~lpAppuUliCall | [IpCallControlManager] - IpCall - IpUIManager| : IpUlCall
View::IpAppLogic) ‘ H H ‘ ‘ “ ‘ ‘ ‘ ‘ ‘

1: new()

2: enableCallNotification()
(]

\ 4:"forward event’ | 3: callEventNotify()

[j 5: new()

U i]

} 6: setAdviceOfCharge(|)

7: superviseCallReq(|)

8 routeReq()

9: supeniseCallRes()

10: "forward event"

—
—

11: supenviseCallReq() 1

i
i
‘ 13- “forward event" | 12: supeniseCallRes()
L 14: setAdviceOfCharge()
| | 15: supenviseCallReq() |
| 16: superviseCallRes()
17: “forward event" r
18: new()
] 19; createUICall()] 20: new()
21:sendInfoReq(|) w
T 22:sendinfoRes() ‘
23: "forward event" (

24:superviseCallReq()

25: superviseCallRes()

26: "forward event: (

27:release()

D 28: userlnteractionFéultDetected()

3GPP

Release 4 36 3GPP TS 29.198-4 V4.11.0 (2004-12)

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object implementing the
IpCallControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).
4: The message is forwarded to the application.
5: A new object on the application side for the Call object is created

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA
contains ALL the tariff in formation and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g.,
18:00 hours) switches to tariff 2. The application is not informed about this (but the end-useris!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.
10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.
13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again,
at the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

16: When the user is almost out of credit the application is informed.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created
20: The Gateway creates a new Ul call object that will handle playing of the announcement.
21: With this message the announcement is played to the parties in the call.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.
25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

3GPP

Release 4 37 3GPP TS 29.198-4 V4.11.0 (2004-12)

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UlCall object is terminated in the gateway and no further communication is possible between the UlCall and the
application.

6.2 Class Diagrams

This class diagram shows the interfaces of the generic call control service package.

<<Interface>>
IpService

setCallback()
setCallbackWithSessionlDy)

5

<<Interface>>
IpCall

(from gccs)

<<Interface>>
IpCallControlManager

(from gccs)

®routeReq()
1 0.n| ¥release()
®createCall() -

____________ & :
%enableCallNotification() s oesemely

o
“disableCallNotification() é:t@:::gﬂﬁej&ano
%setCallLoadControl() g

P ®setAdviceOfCharge()
SchangeCallNotification(%getMoreDialledDigitsReq()
®getCriteria()

®supeniseCallReq()
%<<new>> continueProcessing()

Figure: Service Interfaces

The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>>associations; e.g., the IpCallControlManager interface uses the IpAppCallControlManager , by means of
calling callback methods.

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

3GPP

Release 4 38 3GPP TS 29.198-4 V4.11.0 (2004-12)

<<Interface>>
Ipinterface

:

<<Interface>>
IpAppCall
<<Interface>> (from gces)
IpAppCallControlManager
w9 %¥routeRes()
®routeErr()
®callAborted() JWW””E--; ®getCallinfoRes ()
%callEventNotify () ®getCallinfoErr()
%callNotificationInterrupted() ®superviseCallRes()
%callNotificationContinued() ®superviseCallE ()
%callOverloadEncountered() %callFaultDetected()
%callOverloadCeased() ®getMoreDialledDigitsRes ()
A ®getMoreDialledDigitsE rr()
| “callEnded()
4|<<uses>> A
| <<uses>>
| \
| \
| \
| \
| |
<<Interface>> <<Interface>>
IpCallControlManager 1 0..n> IpCall
(from gccs) (from gccs)
Figure: Application Interfaces
6.3 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated fromthe network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equiva lent for packet based networks.

It is the intention of the GCCS that it could be readily specialised into call control specifications, forexample, ITU-T

recommendations H.323, ISUP, Q.931 and Q.2931, ATM Forum specification UNI3.1 and the IETF Session Initiation
Protocol, or any other call control technology.

3GPP

Release 4 39 3GPP TS 29.198-4 V4.11.0 (2004-12)

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call
Control Service. Furthermore, the generic call is restricted to two party calls, i.e., only two legs are active at any given
time. Active is defined here as 'being routed' or connected.

The GCCS is represented by the IpCallControlManager and IpCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallControlManager and IpAppCall to provide the callback
mechanis m.

6.3.1 Interface Class IpCallControlManager
Inherits from: Ip Service

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call -related event
notifications.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the enableCallNotification() and disableCallNotification() methods shall
be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallldentifier

enableCallNotification (app CallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disable CallNoatification (assignmentID : in TpAssignmentID) : woid

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMec hanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method
createCall ()

This method is used to create a new call object.
Call back reference:

An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control
will not be able to report a callAborted() to the application. The application shall invoke setCallback() prior to
createCall if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

3GPP

Release 4 40 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters

appCall : in IpAppCallRef
Specifies the application interface for callbacks from the call created.

Returns
TpCallIdentifier

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

Method
enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be registered either in a) enable CallNotification() or b) explicitly with a separate
setCallback() method depending on how the application provides its callback reference.

Case a:

Froman efficiency point of view the enable CallNotification() with explicit immediate registration (no "Null" value) of
call back reference may be the preferred method.

Case b:

The enableCallNotfication() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back reference is provided previously in a setCallback(). If no callback reference has been provided
previously to the service, the exception, P_ NO_CALLBACK_ADDRESS_SET shall be raised. In case the
enableCallNotification() contains no callback, at the moment the application needs to be informed the gateway will use
as callback the callback that has been registered by setCallback(). See example in clause 6.1.6.

Set additional callback reference:

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
See examples in clause 6.1.1.

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly -enabled
event notification.

3GPP

Release 4 41 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defau lts to the interface specified previously via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these

criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",

"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssignmentID

Raises

TpCommonExceptions, P_INVALID CRITERIA, P_INVALID INTERFACE TYPE,
P_INVALID EVENT TYPE

Method
disableCallNotification()

This method is used by the application to disable call notifications.

Parameters
assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment 1Ds, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment

ID both of them will be disabled.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

Method
setCallloadControl ()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for Tp CallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the req uest.

Parameters
duration : in TpDuration

Specifies the duration for which the load control should be set.
A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)

A duration of -2 indicates the network default duration.

3GPP

Release 4 42 3GPP TS 29.198-4 V4.11.0 (2004-12)

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanismto use (for example, ad mit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns
TpAssignmentID

Raises
TpCommonExceptions, P_INVALID ADDRESS, P _UNSUPPORTED ADDRESS PLAN

Method
changeCallNotification|()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentlID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT ID, P_INVALID CRITERIA,
P_INVALID EVENT TYPE

Method
getCriteria()

This method is used by the application to query the event criteria set with enable CallNotification or
changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. On ly
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

3GPP

Release 4 43 3GPP TS 29.198-4 V4.11.0 (2004-12)

Returns
TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

6.3.2 Interface Class IpAppCallControlManager

Inherits from: Ip Interface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallldentifier, eventinfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : woid
callNotificationContinued () : void
callOverloadEncountered (assignmentID : in TpAssignmentID) : woid

callOverloadCeased (assignmentlID : in TpAssignmentID) : woid

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID
Specifies the sessionID of call that has aborted or terminated abnormally.

Method
callEventNotify ()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Set of the callback reference:

3GPP

Release 4 44 3GPP TS 29.198-4 V4.11.0 (2004-12)

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode.

When callEventNotify() is invoked with a monitor mode of P_CALL MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been
passed to the gateway, either through an explicit setCallbackW ithSessionID() invocation on the supplied Ip Call, or via
the return of the callEventNotify () method.

The call back reference can be registered either in a) callEventNotify () or b) explicitly with a
setCallbackW ithSessionID() method e.g. depending on how the application provides its call reference.

Case a:
Froman efficiency point of view the callEventNotify () with explicit pass of registration may be the preferred method.
Case b:

The callEventNotify() with no call back reference ("Null" value) is used where (e.g. due to distributed application logic)
the callback reference is provided previously in a setCallbackWithSessionID(). If no callback reference has been
provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further
application invocations related to the call shall be permitted. In case the callEventNotify() contains no callback, at the
mo ment the application needs to be informed the gateway will use as callback the callback that has been registered
previously by setCallbackWithSessionID(). See example in clause 6.1.6.

Returns appCall: Specifies a reference to the application interface which imp lements the callback interface for the new
call. If the application has previously explicitly passed a reference to the IpAppCall interface using a

setCallbackW ithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionID().

This parameter will be null if the notification is in NOTIFY mode and in case b.

Parameters
callReference : in TpCallldentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this
parameter shall be ignored by the application client imp lementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

eventInfo : in TpCallEventInfo
Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns
IpAppCallRef

Method
callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

3GPP

Release 4 45 3GPP TS 29.198-4 V4.11.0 (2004-12)

Method
callNotificationContinued ()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered ()

This method indicates that the network has detected overload and may have automatically imposed load contro | on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoad Control. This implies the address range for
within which the overload has been encountered.

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentlD corresponding to the associated setCallLoad Control. This implies the address range for
within which the overload has been ceased

6.3.3 Interface Class IpCall

Inherits from: Ip Service

The generic Call provides the possibility to control the call routing, to request information fromthe call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement, the routeReq (),
release() and deassignCall() methods shall be imp lemented.

3GPP

Release 4 46 3GPP TS 29.198-4 V4.11.0 (2004-12)

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
. in TpAddress, originatingAddress : in TpAddress, original DestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, applnfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : wid

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : woid
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : woid

setAdviceOfCharge (callSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : wid

<<new>> continueProcessing (callSessionID : in TpSessionID) : woid

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful’ (e.g. 'answer' event) and 'failure’ events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originating Address is optional. If not present (i.e., the plan is set to
P_ADDRESS _PLAN_NOT_PRESENT), the information provided in corresponding addresses fromthe route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

This operation continues processing of the call implicitly.

Returns callLegSessionID: Specifies the sessionlID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet
Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

3GPP

Release 4 47 3GPP TS 29.198-4 V4.11.0 (2004-12)

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress
Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress
Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress
Specifies the original destination address of the call.

redirectingAddress : in TpAddress
Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns
TpSessionID

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID ADDRESS,
P_UNSUPPORTED ADDRESS PLAN, P_INVALID NETWORK STATE, P INVALID CRITERIA,
P_INVALID EVENT TYPE

Method
release ()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallinfoReq) these
reports will still be sent to the application.

This operation continues processing of the call implicitly.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

cause : in TpCallReleaseCause
Specifies the cause of the release.

3GPP

Release 4 48 3GPP TS 29.198-4 V4.11.0 (2004-12)

Raises
TpCommonExceptions, P_INVALID SESSION ID, P _INVALID NETWORK STATE

Method
deassignCall ()

This method requests that the relationship between the application and the call and associated objects be de -assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

This operation continues processing of the call implicitly.
The application should always either release or deassign the call when it is finished with the call, unless

callFaultDetected is received by the application.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appro priate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType
Specifies the call information that is requested.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
setCallChargePlan ()

Set an operator specific charge plan for the call.

3GPP

Release 4 49 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan
Specifies the charge plan to use.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
setAdviceOfCharge ()

This method allows for advice of charge (A OC) information to be sent to terminals that are capable of receiving this
information.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return themto the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to performscreening.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

length : in TpInt32
Specifies the maximumnumber of digits to collect.

3GPP

Release 4 50 3GPP TS 29.198-4 V4.11.0 (2004-12)

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
superviseCallReq ()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment
Specifies how the network should react after the granted connection time expired.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
<<new>> continueProcessing ()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE
will be raised.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P _INVALID NETWORK STATE

6.3.4 Interface Class IpAppCall
Inherits from: Ip Interface

The generic call application interface is imp lemented by the client application developer and is used to handle call
request responses and state reports.

3GPP

Release 4 51 3GPP TS 29.198-4 V4.11.0 (2004-12)

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorindication : in TpCallError, callLegSessionID : in
TpSessionID) : woid

getCallinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void
getCallinfoErr (callSessionID : in TpSessionlD, errorindication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : woid
callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : wid
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : wid
getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : wvoid
callEnded (callSessionID : in TpS essionID, report : in TpCallEndedReport) : wid

Method
routeRes ()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

calllLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionlD returned at the routeReq() and can
be used to correlate the response with the request.

3GPP

Release 4 52 3GPP TS 29.198-4 V4.11.0 (2004-12)

Method
routeErr ()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

calllegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionlD returned at the routeReq() and can
be used to correlate the error with the request.

Method
getCallInfoRes ()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallinfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getCallInfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

3GPP

Release 4 53 3GPP TS 29.198-4 V4.11.0 (2004-12)

Method
superviseCallRes ()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

Itis also called when the connection is terminated before the supervision event occurs.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

Method
superviseCallErr ()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID
Specifies the call session 1D of the call.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault
Specifies the fault that has been detected.

3GPP

Release 4 54 3GPP TS 29.198-4 V4.11.0 (2004-12)

Method
getMoreDialledDigitsRes ()

This asynchronous method returns the collected digits to the application.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Method
getMoreDialledDigitsErr ()

This asynchronous method reports an error in collecting digits to the application.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallinfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID
Specifies the call sessionID.

report : in TpCallEndedReport
Specifies the reason the call is terminated.

6.4 Generic Call Control Service State Transition Diagrams

6.4.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

3GPP

Release 4 55 3GPP TS 29.198-4 V4.11.0 (2004-12)

"a call object has terminated abnormally” A"lpAppCallControlManager.callAborted

disableCallNotification "arrival of call related event"[notification active for thiscall event]/
create a Call object “"lpAppCallControlManager.callEventNoti
enableCallNotificatio) pAPP 9 fy

createCall / create a Call obj...
™

"new" ' Active

. 1

IpAccess.terminateServiceAgreement

o

Creation of
CallControlManager
by Service Instance
Lifecycle Manager

"notifications not possible"
IpAppCallControlManager.callNotificationinterrupted

"notifications possible again"
~pAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement
disableCallNotification

"a call object has terminated abnormally”
AlpAppCallControlManager.callAborted

Notification terminated

Figure : Application view on the Call Control Manager

6.41.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

6.4.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multip le reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this
state no requests for new notifications will be accepted.

6.4.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

3GPP

Release 4 56

IpAppCallControlManager.callEv entNotify setCallChargePlan
"disconnect from called party "[monitor mode =

interrtpt] youteRes, getCallinfoRes,

SuperviseCyIRES|infoReq
routeReq

setAdviceOf Charge
superviseCallReq

[}

3GPP TS 29.198-4 V4.11.0 (2004-12)

a\
[

Active
(1 Party in W
Call J
"answer" 2 Parties in
- — call
“connection to called party
unsuccessful'[monitor mode = interrupt]
YouteRes
"routing aborted or invalid address" ~youteErr

“call ends : calljfg party disconnects" “callEnded

"call ends: calling party abandoned" “callEnded
“call ends : called party disconnects"[pronitor for this event | “callEnded, routeRes(part

"call ends: calling party disconnects"[no monitor for this event] "callEnded

disconnect)

Network Released) d

@

apsignCall
release

“network event recei

"call supervisiohev ent"superviseCallRes

ed for which was monitored[routeRes]

J/ Application

"fault detected"[fault cannot be comm

[no reports requested fvith getCallinfgReq AN
superyiseCallReq]

"r¢quested infornjation ready "\'getCallinfoRes,
superviseCallRi

"faulf in retrieval of information" "getCallinfoErr,

uperviseCallErr

deassignCall
release

Finished

nicated with network event] “callFaultDetected

1 Released

- 0@

"requested information ready "
“getCallinfoRes, superviseCallRes

“®

timeout “callFaultDetected("timeout on release")

In state Finished, a timer should prevent the
object from occupuing resources.

Upon expiry of this timer, callFaultDetected()
shall be invoked as this is an abnormal
termination.

Figure : Application view on the IpCall object for 3GPP

6.4.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallinfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallinfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately a transition is made to

state Finished.

6.4.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release

3GPP

Release 4 57 3GPP TS 29.198-4 V4.11.0 (2004-12)

the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.
6.4.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCallinfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

6.4.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P_CALL _MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), routeReq(), release() or deassignCall() method.

6.4.25 1PartyinCall State

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallinfoReq(). The
setCallChargePlan() and getCallinfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking callFault Detected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

6.4.2.6 2 Partiesin Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the
callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

3GPP

Release 4

6.5

6.5.1

58 3GPP TS 29.198-4 V4.11.0 (2004-12)

Generic Call Control Service Properties

List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation

P_TRIGGERING_EVENT_TYPES | INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by
which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plans (defined in TpAddressPlan.) e.g.
{P_ADDRESS PLAN_E164,P_ADDRESS PLAN_IP}). Notethat more than one
address plan may be supported.

P_UI_CALL BASED BOOLEAN_SET | Value =TRUE : User interaction can be performed on call level and areference to a Call
object can be used in the IpUlManager .createUl Call() operation.

Value = FALSE: No Usr interaction on call level is supported.

P_UIL_AT_ALL_STAGES BOOLEAN_SET | Value =TRUE: User Interaction can be performed at any stage during acall .

Value = FALSE: User Interaction can be performed in cas there isonly one party inthe
call.

P_MEDIA_TYPE INTEGER_SET Specifiesthe mediatype used by the Service. Values are defined by data-type

TpMediaType :P_AUDIO,P_VIDEO, P_DATA

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the

SCS.

Property

Type

Description

P_TRIGGERING_ADDRESSES
(Deprecated)

ADDRESSRANGE_SET

Indicates for which numbersthe notification may be set. For
terminating notifications it appliestothe terminating number, for
originating notifications it appliesonly to the originating number.

P_NOTIFICATION_ADDRESS RANGES

XML_ADDRESS RANGE_SET

Indicates for which numbers notifications may be set. More than
one range may be present. For terminating notifications they
apply tothe terminating number, for originating notifications
they apply only to the originating number.

P_NOTIHICATION_TYPES INTEGER_SET Indicates whetherthe application is allowedto set originating
and/or terminating triggers in the ECN. Set is:
P_ORIGINATING
P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whetherthe application is allowed to monitor in
interrupt and/or notify mode. Set is:
P_INTERRUPT
P_NOTIFY

P_NUMBERS TO_BE_CHANGED INTEGER_SET Indicates which numbersthe application is allowedto change or
fill for legs in an incoming call. Allowed value set:
{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBEBER,
P_TARGET_NUMBER,
P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging isallowed in the setCallChargePlan

indicator. Allowed values:
{P_TRANSPARANT_CHARGING,
P_CHARGE PLAN}

P_CHARGEPLAN_MAPPING

INTEGER_INTEGER_MAP

Indicates the mapping of chargeplans (we assume they can be
indicated with integers) to a logical network chargeplan indicator.
When the chargeplan supports indicatesP_CHARGE _PLAN
then only chargeplans inthis mapping are allowed.

3GPP

Release 4 59 3GPP TS 29.198-4 V4.11.0 (2004-12)

6.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the Generic Call Control API relying on the CSE of CAMEL phase 3 shall have the Service
Properties outlined above set to the indicated values :

P _OPERATION SET = {
“IpCallControlManager.enableCallNotification”,
“IpCallControlManager.disableCallNotification”,
“IpCallControlManager.changeCallNotification”,
“IpCallControlManager.getCriteria”,
“IpCallControlManager .setCallLoadControl”,
“IpCall. routeReq”,

“IpCall.release”,

“IpCall.deassignCall”,
“IpCall.getCallInfoReq”,
“IpCall.setCallChargePlan”,
“IpCall.setAdviceOfCharge”,
“IpCall.superviseCallReqg”

}

P TRIGGERING EVENT TYPES = {

P EVENT GCCS_ADDRESS COLLECTED EVENT,

P EVENT GCCS ADDRESS ANALYSED EVENT,

P EVENT GCCS_CALLED PARTY BUSY,

P EVENT GCCS CALLED PARTY UNREACHABLE,

P EVENT GCCS NO ANSWER FROM CALLED PARTY,
P EVENT GCCS ROUTE SELECT FAILURE

}

P DYNAMIC EVENT TYPES = {

P CALL REPORT ANSWER,

P CALL REPORT BUSY,

P CALL REPORT NO ANSWER,

P CALL REPORT DISCONNECT,

P CALL REPORT ROUTING FAILURE,
P CALL REPORT NOT REACHABLE

}

P ADDRESS PLAN = {
P ADDRESS PLAN E164
}

P UI CALL BASED = {
TRUE
}

P UI AT ALL STAGES = {
FALSE
}

P MEDIA TYPE = {

P AUDIO
}

3GPP

Release 4 60 3GPP TS 29.198-4 V4.11.0 (2004-12)

6.6 Generic Call Control Data Definitions

This clause provides the GCC data definitions necessary to support the API specification.
The general format of a Data Definition specification is described below.
o Data Type
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example
If relevant, an example is shown to illustrate the data type.
All data types referenced but not defined in this clause are either in the common call control data definitions clause of

the present document (clause 8) or in the common data definitions which may be found in 3GPP TS 29.198-2.

6.6.1 Generic Call Control Event Notification Data Definitions

6.6.1.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT NAME UNDEFINED 0 Undefined
P_EVENT GCCS_OFFHOOK EVENT 1 GCCS - Offhook event

Thiscan be used for hot-line features. In case this event isset
in the TpCallEventCriteria, only the originating address(es)
may be specified in the criteria.

P _EVENT GCCS_ADDRESS COLLECTED EVENT 2 GCCS— Address information collected

The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might st notifications forthis event
when part of the number analysis needs to be done in the
application (see also the getMoreDialledDigitsReq method on
the call class).

P _EVENT GCCS_ADDRESS ANALYSED EVENT 4 GCCS— Address information is analysed
The dialled number is a valid and complete number in the
network.

P_EVENT GCCS_CALLED PARTY BUSY 8 GCCS - Called party is busy

P EVENT GCCS CALLED PARTY UNREACHABLE 16 GCCS - Called party isunreachable (e.g. the called party has
a mobile telephone that is currently switched off).

P_EVENT GCCS_NO ANSWER FROM CALLED PARTY 32 GCCS - No answer from called party

P EVENT GCCS ROUTE SELECT FAILURE 64 GCCS - Failure in routing the call

P EVENT GCCS ANSWER FROM CALL PARTY 128 GCCS - Party answered call.

3GPP

Release 4 61 3GPP TS 29.198-4 V4.11.0 (2004-12)

6.6.1.2 TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORIGINATING 0 Indicates that the notification is related to the originating user inthe call.
P_TERMINATING 1 Indicates that the notification is related to the terminating user in the call.

6.6.1.3 TpCallEventCriteria
Defines the Sequence of Data Elements thatspecify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element Sequence Element Description
Name Type

DestinationAddress TpAddressRange Definesthe destination address or address range for which the notification is

requested.
OriginatingAddress TpAddressRange Definesthe origination address or a address range for which the notification is

requested.

CallEventName TpCallEventName Name of the event(s)
CallNotificationType | TpCallNotificationType Indicates whether it isrelatedtothe originating or the terminating user in the
call.
MonitorMode TpCallMonitorMode Defines the mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR isnot a
legal value here.

6.6.1.4 TpCallEventinfo

Defines the Sequence of Data Elements thatspecify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress
OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress
RedirectingAddress TpAddress
CallAppInfo TpCallAppInfoSet
CallEventName TpCallEventName
CallNotificationType TpCallNotificationType
MonitorMode TpCallMonitorMode

6.6.2 Generic Call Control Data Definitions

6.6.2.1 IpCall

Defines the address of an IpCall Interface.

6.6.2.2 IpCallRef

Defines a Reference to type IpCall.

3GPP

Release 4 62 3GPP TS 29.198-4 V4.11.0 (2004-12)

6.6.2.3 IpAppCall

Defines the address of an IpAppCall Interface.

6.6.2.4 IpAppCallRef

Defines a Reference to type IpAppCall

6.6.2.5 TpCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call ob ject

Sequence Element Sequence Element Sequence Element Description
Name Type
CallReference IpCallRef Thiselement specifies the interface reference for the call object.
CallSessionID TpSessionID Thiselement specifies the call session 1D of the call.

6.6.2.6 IpAppCallControlManager

Defines the address of an ITpAppCallControlManager Interface.

6.6.2.7 IpAppCallControlIManagerRef

Defines a Reference to type IpAppCallControlManager.

6.6.2.8 IpCallControlManager

Defines the address of an ITpCallControlManager Interface.

6.6.2.9 I[pCallControIManagerRef

Defines a Reference to type IpCallControlManager.

6.6.2.10 TpCallAppInfo

Defines the Tagged Choice of Data Elements thatspecify application-related call information.

Tag Element Type
TpCallAppInfoType
Tag Element Choice Element Choice Element Name
Value Type
P _CALL_APP_ALERTING MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism
P CALL APP NETWORK ACCESS TYPE TpCallNetworkAccessType CallAppNetworkAccessType
P CALL APP TELE SERVICE TpCallTeleService CallAppTeleService
P _CALL APP BEARER SERVICE TpCallBearerService CallAppBearerService
P CALL APP PARTY CATEGORY TpCallPartyCategory CallAppPartyCategory
P CALL APP PRESENTATION ADDRESS TpAddress CallAppPresentationAddress
P CALL APP_GENERIC_ INFO TpString CallAppGenericInfo
P CALL APP ADDITIONAL ADDRESS TpAddress CallAppAdditionalAddress

3GPP

Release 4 63 3GPP TS 29.198-4 V4.11.0 (2004-12)

6.6.2.11 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description

P _CALL_APP UNDEFINED 0 Undefined

P CALL APP ALERTING MECHANISM The alerting mechanism or pattern to use

P _CALL APP NETWORK ACCESS TYPE The network access type (e.g. ISDN)

P CALL APP TELE SERVICE Indicates the tele-service (e.g. telephony)

P CALL APP BEARER SERVICE Indicates the bearer service (e.g. 64kbit/s unresricted data).

P _CALL APP PARTY CATEGORY The category ofthe calling party

P CALL APP PRESENTATION ADDRESS The address to be presentedto other call parties

P CALL APP GENERIC INFO Carries unspecified service-service information

O JdJ]l ool WIN| -

Indicates an additional address

P CALL APP ADDITIONAL ADDRESS

6.6.2.12 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppinfo.

6.6.2.13 TpCallEndedReport

Defines the Sequence of Data Elements thatspecify the reason for the call ending.

Sequence Element Sequence Element Description
Name Type
CallLegSessionID TpSessionID The legthat initiated the release of the call.
If the call release was not initiated by the leg, then this value is set to 1.
Cause TpCallReleaseCause The cause of the call ending.

6.6.2.14 TpCallFault

Defines the cause of the call fault detected.

Name Value Description
P _CALL FAULT UNDEFINED 0 Undefined
P CALL TIMEOUT ON RELEASE 1 This fault occurs when the final report has

been sent to the application, but the application
did not explicitly release or deassign the call
object, within a gecified time.

Thetimer value is operator specific.

P _CALL TIMEOUT ON_INTERRUPT 2 This fault occurs whenthe application did not
insruct the gateway how to handle the call
within a specifiedtime, after the gateway
reported an event that was requested by the
application in interrupt mode.

Thetimer value is operator specific.

3GPP

Release 4

6.6.2.15 TpCallinfoReport

Defines the Sequence of Data Elements thatspecify the call information requested. Information that was not

requested is invalid.

64

3GPP TS 29.198-4 V4.11.0 (2004-12)

Sequence Element Sequence Element Description
Name Type
CallInfoType TpCallInfoType Thetype of call report.
CalllnitiationStartTime TpDateAndTime Thetime and date whenthe call, or follow-on call, was
started asa result of a routeReq.
CallConnectedToResourceTime TpDateAndTime The date and time when the call was connected to the
resource.
This data element is only valid when information on user
interaction is reported.
CallConnectedToDestinationTime TpDateAndTime Th_e da:te an_dtime whenthe Fa"_VVdS connectedto the
destination (i.e. when the destination answered the call).
If the destination did not answer, the time is set to an
empty string.
This data element is invalid when information on user
interaction is reported.
CallEndTime TpDateAndTime The date and time when the call or follow-on call or user
interaction was terminated.
Cause TpCallReleaseCause The cause ofthe termination.

A callinfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not

both.

6.6.2.16 TpCallReleaseCause

Defines the Sequence of Data Elements thatspecify the cause of the release of a call.

Sequence Element

Sequence Element

Name Type
Value TpInt32
Location TpInt32

NOTE:

The Value and Location are specified as in ITU-T Recommendation Q.850.

The following examp le was taken from Q.850 to aid understanding:

Equivalent Call Report Cause Value Set by Cause Value from
Application Network

P_CALL_REPORT_BUSY 17 17

P _CALL_REPORT NO ANSWER 19 18,19,21

P _CALL REPORT DISCONNECT 16 16

P_CALL REPORT REDIRECTED 23 23

P _CALL REPORT SERVICE CODE 31 NA

P _CALL REPORT NOT REACHABLE 20 20

P_CALL REPORT ROUTING FAILURE 3 Any other value

3GPP

Release 4

6.6.2.17 TpCallReport

65

3GPP TS 29.198-4 V4.11.0 (2004-12)

Defines the Sequence of Data Elements thatspecify the call report and call leg report specific information.

Sequence Element Sequence Element
Name Type
MonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime
CallReportType TpCallReportType
AdditionalReportInfo TpCallAdditionalReportInfo

6.6.2.18 TpCallAdditionalReportinfo

Defines the Tagged Choice of Data Elements thatspecify additional call report information for certain types

of reports.

Tag Element Type

TpCallReportType

Tag Element Value

Choice Element Type Choice Element Name

P _CALL REPORT UNDEFINED NULL Undefined
P_CALL REPORT_ PROGRESS NULL Undefined
P_CALL REPORT ALERTING NULL Undefined
P _CALL REPORT ANSWER NULL Undefined
P_CALL_REPORT BUSY TpCallReleaseCause Busy
P_CALL_REPORT_NO_ANSWER NULL Undefined
P CALL REPORT DISCONNECT TpCallReleaseCause CallDisconnect
P7C ALLiREPO RTiRE DIRECTED TpAddress ForwardAddress
P_CALL REPORT SERVICE CODE TpCallServiceCode ServiceCode
P CALL REPORT ROUTING FAILURE TpCallReleaseCause RoutingFailure
P_CALL REPORT_ QUEUED TpString QueueStatus
TpCallReleaseCause NotReachable

P CALL REPORT NOT REACHABLE

6.6.2.19 TpCallReportRequest

Defines the Sequence of Data Elements thatspecify the criteria relating to call report requests.

Sequence Element Name

Sequence Element Type

MonitorMode

TpCallMonitorMode

CallReportType

TpCallReportType

AdditionalReportCriteria

TpCallAdditionalReportCriteria

3GPP

Release 4

6.6.2.20 TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements thatspecify specific criteria.

66

3GPP TS 29.198-4 V4.11.0 (2004-12)

Tag Element Type
TpCallReportType
Tag Element Choice Element Choice Element
Value Type Name
P_CALL_REPORT UNDEFINED NULL Undefined
P _CALL REPORT PROGRESS NULL Undefined
P_CALL REPORT ALERTING NULL Undefined
P_CALL REPORT ANSWER NULL Undefined
P_CALL REPORT BUSY NULL Undefined
P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration
P_CALL REPORT DISCONNECT NULL Undefined
P_CALL_REPORT_REDIRECTED NULL Undefined
P _CALL REPORT SERVICE CODE TpCallServiceCode ServiceCode
P_CALL REPORT ROUTING FAILURE NULL Undefined
P_CALL_REPORT_ QUEUED NULL Undefined
P_CALL REPORT NOT REACHABLE NULL Undefined

6.6.2.21 TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

6.6.2.22 TpCallReportType

Defines a specific call event report type.

Name Value Description
P _CALL REPORT UNDEFINED 0 Undefined.
P CALL REPORT PROGRESS 1 Call routing progress event: an indication from the network that progress has been made in
routingthe calltothe requested call party. This message may be sent morethan once, or
may not be sent at all by the gateway with respect to routing a given call legto a given
address.
P _CALL REPORT ALERTING 2 Call is alerting at the call party.
P CALL REPORT ANSWER 3 Call answered at address.
P_CALL_REPORT BUSY 4 Called address refused call due to busy.
P_CALL REPORT NO_ANSWER 5 No answer at called address.
P _CALL REPORT DISCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has

ended. When the call isended, the callEnded method is called. This event can occur both

when the called party hangs up, or when the application explicitly releasesthe leg using

IpCallLeg.release() This cannot occur whenthe app explicitly releasesthe call leg andthe
call.

P _CALL REPORT REDIRECTED 7 Call redirected to new address: an indication fromthe network that the call has been
redirected to a new address.
P _CALL REPORT SERVICE CODE 8 Mid-call service code received.
P CALL REPORT ROUTING FAILURE Call routing failed - re-routing is possible.
P CALL REPORT QUEUED 10 The callis being held in a queue. This event may be sent morethan once during the routing
B B B of a call.
P CALL REPORT NOT REACHABLE 11 The called address isnot reachable; e.g., the phone has been switched off or the phone is

outsidethe coverage area ofthe network.

3GPP

Release 4 67 3GPP TS 29.198-4 V4.11.0 (2004-12)

6.6.2.23 TpCallTreatment

Defines the Sequence of Data Elements thatspecify the treatment for calls that will be handled only by the
network (for example, call which are not ad mitted by the call load control mechanis m).

Sequence Element Sequence Element
Name Type
CallTreatmentType TpCallTreatmentType
ReleaseCause TpCallReleaseCause
AdditionalTreatmentInfo TpCallAdditional TreatmentInfo

6.6.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

6.6.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element Sequence Element Sequence Element
Name Type Description
CallEventCriteria TpCallEventCriteria Theevent criteria that were gecified by the application.
AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

7 MultiParty Call Control Service

The Multi-Party Call Control AP1 of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported
methods is given in the chapter 7.5.

7.1 Sequence Diagrams

7.1.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is
created first. Then party A's call leg is created before events are requested on it for answer and then routed to the call.
On answer from Party A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B-party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party Cis exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

3GPP

Release 4 68 3GPP TS 29.198-4 V4.11.0 (2004-12)

_(Logical s AppPartyA : AppPartyB : £ & = PartyA: PartyB : = : IpUICall
View:IpAppLogi IpAppMultiPartyCall| | (IpAppMultiPartyCalll eg) | | (IpAppMuliPartyCalll eg) | | lpAppUiCall| |lpMultiPartyCallControlMan IpMultiPartyCall| | IpCaliLeg || IpCallLeg ||IpUIManager

1: new()

2: createCall()

4: setCallback

5: createCalleg()

7: gventReportReq()

routeReq()

9: eventReportRes () #

10: createliCall()

11: sendinfoReq(

13: createCaliLeg()

14: new()
15: eventReportReq(|)
16: routeReq()

17: gventReportRes ()

18 abortActionReq()

19: deassignCall()

1: This message is used to create an object imp lementing the IpAppMultiPartyCall interface.

2: This message requests the object imp lementing the IpMultiPartyCallControlIManager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteria for creating an object imp lementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object
implementing the IpAppMultiPartyCall interface as the callback reference to the object imple menting the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiParty Call interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object imp lementing the Ip CallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.
8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object imp lementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.
11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object imp lementing the IpAppLogic interface.

3GPP

Release 4 69 3GPP TS 29.198-4 V4.11.0 (2004-12)

13: This message instructs the object implementing the IpMultiParty Call interface to create a call leg for customer B.
14: Assuming that the criteria for creating a second object imp lementing the IpCallLeg interface is met, it is created.
15: This message requests the call leg for customer B to inform the application when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's Ip CallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sending announcements to party
A.

19: The application deassigns the call. This will also deassign the associated user interaction.

7.1.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked fora PIN code.
The code is rejected and the call is cleared.

: (Logical - - - : IpMultiPartyCallControlManager - ~ : IpUiCall
View:IpAppL... IpAppMultiPartyCallControlManager IpAppMultiPartyCall IpAppUICall IpMultiPartyCall IpuIM

1: new()

2: createNotification(|)

w

reportNotification() jj

4: 'forward event'

5: new()

6t getCallLegs()

7: createUlICall()

8: sendinfgAndCollectReq()

|
|
|
ﬂ u
i ‘
|
|

9: sendInfoAndCollectRes{)

10: forward event

11: sendinfoReq()

12: sendinfoRes()

13: ‘forward event'

1h: release()

115: release() \[TH
\

1: This message is used by the application to create an object imp lementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diag ram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message

3GPP

Release 4 70 3GPP TS 29.198-4 V4.11.0 (2004-12)

(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for
creating an object imp lementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object imp lementing the IpMultiPartyCallControlManager using the return
parameter of the callEventNotify.

6: The application requests an list of all the legs currently in the call.

7: This message is used to create a UICall object that is associated with the incoming leg ofthe call.
8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.
13: This message is used to forward the previous message to the IpAppLogic.
14: No more Ul is required, so the UICall object is released.

15: This message is used by the application to clear the call.

7.1.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forwarding on busy.

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets
up a connection towards a C party. The C party can for instance be a voicemail system.

3GPP

Release 4 71 3GPP TS 29.198-4 V4.11.0 (2004-12)

AppLogic ApplegC: |[ApplegA: AppCall: AppCCM.: ccM: Call: LegA: LegB: LegC: scs
IpAppCalileg || IpAppCalileg | | lpAppMultiParyCall | | IpAppMultiPartyCallControlManager | | lpMultiPartyCallControlManager | | lpMultiPartyCall InCallLeg IpCallleg InCallLeg

1:"new"
2 créateNotification() [
3:"armtrigger”
4:"trigger event: Busy"
5: "checkif application interested” L
6: "new’
H 7:"new"
8: "statefransition to Active"
9" <
16-“statetransition to Releasing”
P—|
12: "forward event" 11: reportNotification()
13: "new"
L
14:"hew"
15: "new"
16: createCallLeg() 17: "new’
{ 18: "state transition to Idle"
19: eventReportReq()
20: routeReq()
2T ransition to Active”"
P—|
22 "inform Call objett"
23: continueProcessing() [ﬂ L
24: "inform Call ObJjH
25: "continue call processing”

28: "forward event"

26: "C-party answer”
27: eventReportRes() %

1: This message is used by the application to create an object imp lementing the IpAppMultiPartyCallControlIManager
interface.

2: This message is sent by the application to enable notifications on new call events.
3:

4: When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object imp lementing
the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object imp lementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

S

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Initiating.

9:

10:

11: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

12: This message is used to forward the message to the IpAppLogic.

3GPP

Release 4 72 3GPP TS 29.198-4 V4.11.0 (2004-12)

13: This message is used by the application to create an object imp lementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object imp lementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
15: A new AppCalllLeg C is created to receive callbacks for another leg.

16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

17:

18:

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.
20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P CALL APP ORIGINAL DESTINATION ADDRESS of TpCallAppInfo in the request to route the call leg to the
remote party C.

21:
22:

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for example if it is not interested in possible
requested call leg information (getInfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLeg B is notified and the event is forwarded to the application logic
(not shown).

24:

25: The application requests to resume call processing for the originating call leg.

As aresult call processing is resumed in the network that will try to reach the associated party B.
26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object imp lementing party C's IpCallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

7.1.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end ofthe call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number translation of the dialled number and
special charging (e.g. a premium rate service) .

Additional call leg related information is requested with the getInfoReq and superviseReq methods.
The answer and call release events are in this service example requested to be reported in notify mode and

additional call leg related information is requested with the getinfoReq and superviseReq methods in order to illustrate
the information that can be collected and sent to the application at the end of the call.

Furthermore is shows the order in which information is sent to the application: network release event followed by
possible requested call leg information, then the destroy of the call leg object (callLeg Ended) and finally the destroy of
the call object (callEnded).

3GPP

Release 4 73 3GPP TS 29.198-4 V4.11.0 (2004-12)

Applogic ApplegB: Appleg A: I M CCM . Call Leg A: LegB: SCs
IpAppCallLeg | allL tyCall i allC IpMultiPartyCallControlManager IpMultiPartyCall IpCallLeg IpCallLeg
1 "new"
2) L
3:"armtrigger”
4:"trigger event: Analysed Information”
5: "checkif lication interested" L
6: "new"
H 7:"new"
8: "statertransition to Active”
9: reportNotification() =
10: "forward event" (
11: "new" \‘
12:"hew" L
13: "new"
14: createCallLeg()
15: new’
transition to Idle”
17: quentReportReq() =
18: superviseReq()
19: getinfoReq()
20: setChargePlan()
21: routeReq()
22: "stateltransition to Active'|
23: “inform|Call object" p=m—
24: eventReportReq() [
25. getinforeq ()
26: continueProcessing()
27: "inform Call object"
1 : ["¢ontinue call processing”
129: "B party answer"|
30: eventReportRes() r
3L "forward event"{
32 "Dit from A-party"
33: "state isition to Releasing"
34: eventReportRes() Zl T
35: "forward event"
36: getinfoRes()
37: "forward event"
38: callLegEnded()
39: Morward 4D: "inform Call objegt!
41: "Disconnect from B-party”
42: "state transition to Releasi %
43: eventReportRes() <
44: "forward event
45 getinfoRes()
46: "forward event'
1
47: superviseRes()
48: "forward event"
[49: callLegEnded()
50: "forward event'
51: "inform|Call object"
T 52: callEnded()
53: "forward event" "

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControl[Manager
interface.

2: This message is sent by the application to enable notifications on new call events.

3:

3GPP

Release 4 74 3GPP TS 29.198-4 V4.11.0 (2004-12)

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object imp lementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

5:

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.

8: The new Call Leg instance transits to state Active.

9: This message is used to pass the new call event to the object 1mplement1ng the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"”

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object imp lementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object imp lementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCalllLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the call and when the leg
to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party b for example to calculate charging.
20: The application requests a specific charge plan to be set for the call leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22: The Call Leg instance transits to state Active.

23:

24: The application requests to be notified (monitor mode "Notify") when the leg to A -party is released.

25: The application requests information associated with the call leg to party A for example to calculate charging.
26: The application requests to resume call processing for the originating call leg.

As aresult call processing is resumed in the network that will try to reach the associated party B.

27:

28:

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state".

3GPP

Release 4 75 3GPP TS 29.198-4 V4.11.0 (2004-12)

33:

34: The application IpAppLeg A is notified, as the release event has been requested to be reported in Notify mode.
35: The event is forwarded to the application logic

36: The call leg information is reported.

37: The event is forwarded to the application logic

38: The origination call leg is destroyed, the AppLeg A is notified.

39: The event is forwarded to the application logic

40:

41: When the B-party releases the call or the call is released as a result of the release request fromparty A, ie. a
"originating release" indication, the terminating call leg is notified and makes a transition to "releasing state".

42:

43: If a network release event is received being a "terminating release" indication fromcalled party B, the application
IpAppLeg B is notified, as the release event from party B has been requested to be reported in NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being a "originating release"
indication coming fromcalling party A.

44: The event is forwarded to the application logic.

45: The call leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg in formation is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLeg B is notified.
50: The event is forwarded to the application logic.

51:

52: Assuming the IpCall object has been informed that the legs have been destroyed, the [pAppMultiPartyCall is
notified that the call is ended .

53: The event is forwarded to the application logic.

7.1.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID
and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is
then set on the controlling leg (the calling party's leg) such that if the calling party enters a #5' an event will be sent to
the application. The call is then routed to the destination party. Sometime during the call the calling party enters #5'
which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination
party, to which it is then routed.

3GPP

Release 4 76 3GPP TS 29.198-4 V4.11.0 (2004-12)

“(Logical & 2 AWBML‘ AppPartyA: | [Aoppartye: Y ‘ & ‘ Y PartyA PartyB : ParyB': & ipUICall
ouic) | | IpAppMultiPartyCaliControlManager| |IpAppMultiPartyCall| | IpApnCaliLea || pAppCallLeg || leteocaltes || jpappuicall| | allc IpMultiPartyCall| | IpCalileg || IpCallLeg | | IpCallleq ||lpUiManager

1: new)

4: forvard event

6: getCallegs

7: createuiCal()

& sendinfoafidCollectReq()

sendinfoAndColledtRes()

10: sendinfondCollectRea()

h1: sendinfoAndCollefiRes()

12: setCalbadkWitnSessioniD()

13 everfReportReq()

14: new()

15 createCallLeg|)

18: eventReportR
10: forward event” 8: eveniReportRes()

20: atachiediaReq() J

22: "forward event” H 21: eventReportRes{)
T 23: release()

F 24: sendinfoAndCollectReq()

5: sendinfoAndCollefiRes()

26: new

u 27: cfeateAndRouteCall(
28: new

29: eventReportRes() j

31: "orvard event

32: callEnded()
33: *forwfrd event” .

rd event
[‘J 36: deassigncall)

34{ userlnteractionF aultpetected()

1: This message is used by the application to create an object imp lementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object imp lementing the [pMultiPartyCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

3GPP

Release 4 77 3GPP TS 29.198-4 V4.11.0 (2004-12)

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object imp lementing the IpMultiPartyCallControlManager using the return
parameter of message 3.

6: This message returns the call legs currently in the call. In principle a reference to the call leg ofthe calling party is
already obtained by the application when it was notified of the new call event.

7: This message is used to associate a user interaction object with the calling party.
8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.
13: The trigger for follow-on calls is set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As a result the network will try to reach the associated party.
18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the media is not
connected to the other parties in the call. In order to allow inband communication between the new party and the other
parties in the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22:The event is forwarded to the application.
23: This message releases the called party.
24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.
27: The call is then forward routed to the new destination party.
28: As aresult a new Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

31: The event is forwarded to the application logic.

3GPP

Release 4 78 3GPP TS 29.198-4 V4.11.0 (2004-12)

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the Ul resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

7.1.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-
defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination

party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
purposes.

Note that this service could be extended as follows:

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now
prompted to enter the address of a new destination party, to which it is then routed.

3GPP

Release 4 79 3GPP TS 29.198-4 V4.11.0 (2004-12)

Applogic ApplegB: ApplegA: Call: AppCCM : CCM: call Leg A LegB: scs
lpAppCallleg. lpAppCallleg. all allC IpMultiPartyCallC IpMultiPartyCall IpCallLeg IpCallleg

2) \L\}

3 "arm trigge”

4:"trigget event: Originating Cal| Attempt Authorised|
fapplication interested" L

6: "new"
L 7 "new
8: "state"ransition to Initiating

5: "check|

9 reportNotification()

10: "forward event" "

11: "new"

12: "hew’ [

13: "new"

14: createCallLeg()

16: "state transition to Idle”

=
5

éventReportReq()

18: routeReq()

19: "state transition to Active”

20: inform Gall object”

21: eventRepoftReq()

22: continueProgessing()

23: "inform Call object”.

24 "continue call processing”
T L

25: event "addfess_analysed"

26: “slﬁ transition to Active”|

27: {Disconnect from B+

28 “state@ansincn to Releasin

p—

29: eventReportRes()
30: “forward event"

31: callLegEnded()

32: "forward event"

33: “inform Call object”

34: "Disconneft from A-party’

< 1
35 "state transition to Releasing”

=

36: callLeg Ended()

37: "forward event" 138: "inform Call object
I I

39: callEnded()

[40 forward evertt ﬁ {

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.
3:

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object imp lementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

5:

3GPP

Release 4 80 3GPP TS 29.198-4 V4.11.0 (2004-12)

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: The new Call Leg instance transits to state Initiating.

9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object imp lementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object imp lementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCallleg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.
17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.

20:

21: The application requests to be notified (monitor mode "Notify") when the leg to A -party is released.
22: The application requests to resume call processing for the originating call leg.

As aresult call processing is resumed in the network that will try to reach the associated party as specified by the
application (E.164 number provided by application).

23:
24

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and
the originating call leg STD makes a transition to "active" state. The application is not notified as it has not requested
this event to be reported.

26:

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "Releasing state".

28:

29: The application is notified, as the release event has been requested to be reported in Notify mode.
30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLeg B is notified.

32: This answer message is then forwarded.

33:

3GPP

Release 4 81 3GPP TS 29.198-4 V4.11.0 (2004-12)

34: When the call release ("terminating release" indication) is propagated in the network toward the party A, the
originating call leg is notified and makes a transition to "releasing state". This release event (being propagated from
party B) is not reported to the application.

35:

36: When the originating call leg is destroyed, the AppLeg A is notified.

37: The event is forwarded to the application logic

38:

39: When all legs have been destroyed, the IpAppMultiParty Call is notified that the call is ended.

40: The event is forwarded to the application logic.

7.1.7 Use of the Redirected event

AppLoagic . IpAppCallLeg . IpCallLeg

1: eventReportReq(...

2: routeReq()

U]

3: eventReportRes(...
The Call and the Leg P : [

hawe already been U
created.

4: eventReportRes(...

1: The application has already created the call and a call leg. It places an event report request for the ANSWER and
REDIRECTED events in NOTIFY mode.

2: The application routes the call leg.

3GPP

Release 4 82 3GPP TS 29.198-4 V4.11.0 (2004-12)

3: The call is redirected within the network and the application is informed. The new destination address is passed
within the event. The event is not disarmed, so subsequent redirections will also be reported. Also, the same call leg is
used so the application does not have to create a new one.

4: The call is answered at its new destination.

7.2 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagramshows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

<<Interface>>
Ipinterface
(from csapi)

7

<<Interface>>

IpAppCallLeg
(frommpccs)
<<Interface>> <<Interface>>
IpAppMultiPartyCallControlManager IpAp pMultiPartyCall %eventReponRes()
(fromrmpces) (fromrmpces) "EVEntREpOI‘lEITO
“%attachMediaRes()
@reportNotification) _1___“_§ %gstinfoRes() v 0.M sqttachMediaEnm()
%callAborted () ®getinfoErm() 21 %detachMediaRes()
%managerinterupted() ®superviseRes() %detachMediaEr()
%managerResumed() ®superviseEm() %getinfoRes()
%callOverloadEncountered() %callEnded() %getinfoEny()
%callOverloadCeased() %createAndRouteCallLegEny() ®routeEm()
M A %superviseRes()

®superviseEm()
%callLegEnded()

|
|
|<<uses=> : —éeu-seﬁ%—/‘\
| | g
|
| | <<Interface>>
l | IpCallLeg
: <<|nterface>> (frommpecs)
IpMultiPartyCall
<<Interface>> .
h (from rmpces) routeRe q()
IpMuItlPan;(:ffﬂﬁg:st)rolr\nanager ‘eveniReportReq()
%getCallLegs) :release()
%createCallLeg() 1 p..n FgetinfoReq()
A 1 0..n] "
‘crea:eﬁal!g R =l %createAndRoute CallLegReq() [— == ®getCall)
‘f,re: : ,\T:-I:a It(-m() release() *aﬂachMedi.aReq()
», es1oy 0|.|.ca |.on() %deassignCall() %detachMediaReq()
*Ch?r:gt?t['\lm:'ﬂcatmno %getinfoReq() tgetc_urremnesnin_ationAddress()
ﬁgsic:lllLl::cllgz(n)irol() $setChargePlan() $continueProcessing)
®setAdviceOfCharge() $setChargePlan()
®supenviseRe q() %setAdviceOfCharge()
®superviseReq()
®deassign()

Figure: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

3GPP

Release 4 83 3GPP TS 29.198-4 V4.11.0 (2004-12)

<<Interface>>
IpSenice
(fram csapi)

%setCallback()
%setCallback WithSes sionID()

2

<<Interface>>
IpCallLeg
<<Interface>> (from mpces)
IpMultiPartyCall
] <<Interface>> A————— %routeReq()
IpMulti PartyCallControlManager - = q rtReq()
{fram mpces) SSnLEsepoi.eq
%getCallLegs() %release()
$createCallLe %getinfoRe
+ 1 0.n createCallleg() 1 o.n 9 40
*z:::::ﬁzltligcation() ————— = %createAndRouteCallLegReq() | — — — — — = % getCall()
SdestroyNotification) %release() %attachMediaReq()
*cﬁzr:ogNgtilﬁ‘c::tilg:() %deassignCall() %detachMediaReq)
% etNgtiﬁcation() ®getinfoReq() % getCurrent DestinationAddress()
"'getCallLoadControl() %setChargePlan() *continueProcessing()
®setAdviceOfCharge() %setChargePlan()
@supeniseReq|() *setAdviceOfCharge()
*supeniseReq()
%deassign()
Figure: Service Interfaces
7.3 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
manage ment. It also allows for multi-party calls to be established, i.e., up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must imple ment
IpAppMultiPartyCallControlManager, IpAppMultiParty Call and IpAppCallLeg to provide the callback mechanism.

7.3.1 Interface Class IpMultiPartyCallControlManager
Inherits from: Ip Service

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the ST D shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented.

3GPP

Release 4 84 3GPP TS 29.198-4 V4.11.0 (2004-12)

<<Interface>>

IpMultiParty Call ControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallldentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
. in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedS et

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall ()

This method is used to create a new call object. An IpAppMultiParty CallControlManager should already have been
passed to the IpMultiPartyCallControlManager, otherwise the call control will not be able to report a callAborted() to
the application. The application shall invoke setCallback() prior to createCall() if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters
appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns
TpMultiPartyCallIdentifier

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

3GPP

Release 4 85 3GPP TS 29.198-4 V4.11.0 (2004-12)

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number p lan is used.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be registered either in a) createNotification() or b) explicitly with a setCallback() method
e.g. depending on how the application provides its callback reference.

Case a:
Froman efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:

The createNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back reference is provided previously in a setCallback(). If no callback reference has been provided
previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised. In case the
createNotification() contains no callback, at the moment the application needs to be informed the gateway will use as
callback the callback that has been registered by setCallback().

Set additional Call back:

If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly -enabled event
notification.

Parameters
appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defau lts to the interface specified previously via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these

criteria are reported. Examples of events are "incoming call attempt reported by network™, "answer", "no answer",

"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssignmentID

Raises

TpCommonExceptions, P_INVALID CRITERIA, P_INVALID INTERFACE TYPE,
P_INVALID EVENT TYPE

Method
destroyNotification ()

This method is used by the application to disable call notifications.

3GPP

Release 4 86 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification()
was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception
P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment ID both of
them will be disabled.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

Method

changeNotification ()
This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be rep laced with the s pecified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two callbacks have
been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT ID, P_INVALID CRITERIA,
P_INVALID EVENT TYPE

Method
getNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.

Returns notificationsRequested: Specifies the notifications that have been requested by the application.

Parameters
No Parameters were identified for this method

3GPP

Release 4 87 3GPP TS 29.198-4 V4.11.0 (2004-12)

Returns
TpNotificationRequestedSet

Raises

TpCommonExceptions

Method
setCallloadControl ()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentlID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters
duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.

mechanism : in TpCallloadControlMechanism

Specifies the load control mechanismto use (for example, ad mit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns
TpAssignmentID

Raises
TpCommonExceptions, P_INVALID ADDRESS, P_UNSUPPORTED ADDRESS PLAN

7.3.2 Interface Class IpAppMultiPartyCallControlManager
Inherits from: Ip Interface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

3GPP

Release 4 88 3GPP TS 29.198-4 V4.11.0 (2004-12)

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallldentifier, callLegReferenceSet : in
TpCallLegldentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void
managerinterrupted () : wvoid

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : wvoid

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
reportNotification ()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Set of the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode.

When reportNotification() is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. createAndRouteCallLegReq() is performed until the
callback interface for the new call and/or new call leg has been passed to the gateway, either through an explicit
setCallbackW ithSessionID() invocation, or via the return of the reportNotification() method.

The call back reference can be registered either in a) reportNotification() or b) explicitly with a
setCallbackW ithSessionID() method depending on how the application provides its callback reference.

Case a:
Froman efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method.

Case b:

The reportNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the call back reference is provided previously in a setCallbackWithSessionID(). If no callback reference has been
provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further
application invocations related to the call shall be permitted. In case reportNotification() contains no callback, at the

mo ment the application needs to be informed the gateway will use as callback the callback that has been registered
previously by setCallbackWithSessionID().

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. Ifthe application has previously explicitly passed a reference to the callback interface
using a setCallbackWithSessionID() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or
if supplied must be the same as that provided during the setCallbackWithSessionID().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode and in case b.

3GPP

Release 4 89 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters

callReference : in TpMultiPartyCallldentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in
NOT IFY mode, this parameter shall be ignored by the application client imp lementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses.
calllLegReferenceSet : in TpCalllLegldentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. fromthe
notificationInfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the imp lementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationInfo : in TpCallNotificationInfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns
TpAppMul tiPartyCallBack

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further

communication will be possible between the call and application.

Parameters
callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

Method
managerResumed ()

This method indicates to the application that event notifications are possible and method invocations are enabled.

3GPP

Release 4 90 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters
No Parameters were identified for this method

Method
callOverloadEncountered ()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters
assignmentID : in TpAssignmentID

Specifies the assignmentlID corresponding to the associated setCallLoad Control. This implies the addressrange for
within which the overload has been encountered.

Method
callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters
assignmentID : in TpAssignmentID

Specifies the assignmentlID corresponding to the associated setCallLoad Control. This implies the addressrange for
within which the overload has been ceased

7.3.3 Interface Class IpMultiPartyCall

Inherits from: Ip Service

The Multi-Party Call provides the possibility to control the call routing, to request information fromthe call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

This interface shall be implemented by a Multi Party Call Control SCF. The release() and deassignCall() methods,
and either the createCallLeg() or the createAndRouteCallLegReq(), shall be implemented as a minimum require ment.

3GPP

Release 4 91 3GPP TS 29.198-4 V4.11.0 (2004-12)

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegldentifierSet
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegldentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appinfo : in
TpCallAppInfoSet, appLeginterface : in IpAppCallLegRef) : TpCallLegldentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : woid

deassignCall (callSessionID : in TpSessionID) : void

getinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : wid
setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : wid

Method
getCalllegs ()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLeg List: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

Returns
TpCalllegIdentifierSet

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
createCallleg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionlD of the call leg created.

3GPP

Release 4 92 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

appCalllLeg : in IpAppCalllLegRef
Specifies the application interface for callbacks from the call leg created.

Returns
TpCalllegIdentifier

Raises
TpCommonExceptions, P_INVALID SESSION ID, P_INVALID INTERFACE TYPE

Method
createAndRouteCalllegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appLeglinterface parameter.

The extra address information such as originating Address is optional. If not present (i.e., the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses fromthe route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppinfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLeg Reference: Specifies the reference to the CallLeg interface that was created.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet
Specifies the event specific criteria used by the application to define the events required. Only events that meet these

non

criteria are reported. Examples of events are "address analysed”, "answer" and "release"”.

targetAddress : in TpAddress
Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress
Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-re lated information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

3GPP

Release 4 93 3GPP TS 29.198-4 V4.11.0 (2004-12)

applegInterface : in IpAppCalllLegRef

Specifies a reference to the application interface that imp lements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns
TpCalllegIdentifier

Raises

TpCommonExceptions, P_INVALID SESSION ID, P _INVALID INTERFACE TYPE,
P_INVALID ADDRESS, P_UNSUPPORTED ADDRESS PLAN, P INVALID NETWORK STATE,
P_INVALID EVENT TYPE, P INVALID CRITERIA

Method
release ()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getinfoReq) these reports
will still be sent to the application.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

cause : in TpReleaseCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P _INVALID NETWORK STATE

Method
deassignCall ()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
getInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

3GPP

Release 4 94 3GPP TS 29.198-4 V4.11.0 (2004-12)

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType
Specifies the call information that is requested.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
setChargePlan ()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan
Specifies the charge plan to use.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
setAdviceOfCharge ()

This method allows for advice of charge (A OC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

3GPP

Release 4 95

Raises

3GPP TS 29.198-4 V4.11.0 (2004-12)

TpCommonExceptions, P_INVALID SESSION_ ID, P INVALID CURRENCY,

P_INVALID AMOUNT

Method
superviseReq ()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start

as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

7.3.4 Interface Class IpAppMultiPartyCall

Inherits from: Ip Interface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call

request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID : in TpSessionlID, callinfoReport : in TpCallinfoReport) : void

getinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in

TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

callEnded (callSessionID : in TpSessionlID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegldentifier,

errorindication : in TpCallError) : woid

3GPP

Release 4 96 3GPP TS 29.198-4 V4.11.0 (2004-12)

Method
getInfoRes ()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getinfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport
Specifies the call information requested.

Method
getInfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

Method
superviseRes ()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

Itis also called when the connection is terminated before the supervision event occurs.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport
Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

3GPP

Release 4 97 3GPP TS 29.198-4 V4.11.0 (2004-12)

Method
superviseErr ()

This asynchronous method reports a call supervision error to the application.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.

Parameters

callSessionID : in TpSessionID
Specifies the call sessionID.

report : in TpCallEndedReport
Specifies the reason the call is terminated.

Method
createAndRouteCallLegErr ()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

calllegReference : in TpCalllLegIdentifier
Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

3GPP

Release 4 98 3GPP TS 29.198-4 V4.11.0 (2004-12)

7.3.5 Interface Class IpCallLeg

Inherits from: Ip Service

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

This interface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(),
release(), continueProcessing() and deassign() methods shall be implemented as a minimum require ment.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, applinfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : woid
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : woid

getinfoReq (callLegSessionID : in TpSessionID, callLeginfoRequested : in TpCallLeglnfoType) : woid
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallldentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : wid

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOClInfo : in TpAoClInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSupervise Treatment) : void

deassign (callLegSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originating Address is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in the corresponding addresses fromthe route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

3GPP

Release 4 99 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress
Specifies the destination party to which the call leg should be routed

originatingAddress : in TpAddress
Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCalllegConnectionProperties
Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE,
P_INVALID ADDRESS, P_UNSUPPORTED ADDRESS PIAN

Method
eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet
Specifies the event specific criteria used by the application to define the events required. Only events that meet these

criteria are reported. Examples of events are "address analysed”, "answer" and "release"”.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID EVENT TYPE,
P_INVALID CRITERIA

Method

release ()
This method requests the release of the call leg. If successful, the associated address (party) will be released fromthe
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

3GPP

Release 4 100 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALID SESSION_ID, P_INVALID NETWORK STATE

Method
getInfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

calllegInfoRequested : in TpCalllegInfoType
Specifies the call leg information that is requested.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
getCall ()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionID of the call associated with this call leg.

Parameters
calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

3GPP

Release 4 101 3GPP TS 29.198-4 V4.11.0 (2004-12)

Returns
TpMultiPartyCallIdentifier

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters
calllegSessionID : in TpSessionID

Specifies the sessionlD of the call leg to attach to the call.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE

Method
detachMediaReq ()

This method will detach the call leg from its call, i.e., this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

Parameters
calllegSessionID : in TpSessionID

Specifies the sessionlD of the call leg to detach fromthe call.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P _INVALID NETWORK STATE

Method
getCurrentDestinationAddress ()

Queries the current address of the destination the leg has been directed to.
Returns the address of the destination point towards which the call leg has been routed..

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters
calllLegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

3GPP

Release 4 102

Returns
TpAddress

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
continueProcessing()

3GPP TS 29.198-4 V4.11.0 (2004-12)

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE

Method
setChargePlan ()

Set an operator specific charge plan for the call leg.

Parameters
calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

Method
setAdviceOfCharge ()

This method allows for advice of charge (A OC) information to be sent to terminals that are capable of receiving this

information.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo
Specifies two sets of Advice of Charge parameter.

3GPP

Release 4 103 3GPP TS 29.198-4 V4.11.0 (2004-12)

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID CURRENCY,
P_TINVALID AMOUNT

Method
superviseReq ()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallLegSuperviseTreatment
Specifies how the network should react after the granted connection time expired.

Raises
TpCommonExceptions, P_INVALID SESSION ID

Method
deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLeg Ended() or callEnded(). This
operation continues processing of the call leg.

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

Raises
TpCommonExceptions, P_INVALID SESSION ID

7.3.6 Interface Class IpAppCallLeg

Inherits from: Ip Interface

3GPP

Release 4 104 3GPP TS 29.198-4 V4.11.0 (2004-12)

The application call leg interface is implemented by the client application developer and is used to hand le responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventinfo : in TpCallEventinfo) : woid
eventReportErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
getinfoRes (callLegSessionID : in TpSessionID, callLeginfoReport : in TpCallLegInfoReport) : wid
getinfoErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionlD, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

Method
eventReportRes ()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of theseso-
called disarming rules are captured in the data definition of the event type.

If this method is invoked for a report with a monitor mode of P_CALL MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo
Specifies data associated with this event.

3GPP

Release 4 105 3GPP TS 29.198-4 V4.11.0 (2004-12)

Method
eventReportErr ()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(forexample, the parameters were incorrect, the request was refused, etc.).

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

Method

attachMediaRes ()
This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connections to this leg is now availab le.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg to which the information relates.

Method
attachMediaErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

Method
detachMediaRes ()

This asynchronous method reports the detachment of a call leg froma call has succeeded. The media channels or bearer
connections to this leg is no longer available.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg to which the information relates.

3GPP

Release 4 106 3GPP TS 29.198-4 V4.11.0 (2004-12)

Method
detachMediaErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters
calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
getInfoRes ()

This asynchronous method reports all the necessary information requested by the application, for example to calculate
charging.

Parameters
calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg to which the information relates.

calllLegInfoReport : in TpCalllLegInfoReport

Specifies the call leg information requested.

Method
getInfoErr ()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters
calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
routeErr ()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

3GPP

Release 4 107 3GPP TS 29.198-4 V4.11.0 (2004-12)

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

Method
superviseRes ()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in
these kind of events.

It is also called when the connection to a party is terminated before the supervision event occurs.

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg

report : in TpCallSuperviseReport
Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration
Specifies the used time for the call leg supervision (in milliseconds).

Method
superviseErr ()

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
calllLegEnded ()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g., getinfoRes) related to the call leg. The call leg will be destroyed after returning from this
method.

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP

Release 4 108 3GPP TS 29.198-4 V4.11.0 (2004-12)

cause : in TpReleaseCause
Specifies the reason the connection is terminated.

7.4 MultiParty Call Control Service State Transition Diagrams

74.1 State Transition Diagrams for I[pMultiPartyCallControlManager

managerinterrupted

Interrupted | Active
W

IpAccess.terminateSeniceAgreement

new'

IpAccess.terminateSeniceAgreement

\
7 N
L ®
Figure : Application view and the Multi-Party Call Control Manager

7411 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and informthe application. The application can also indicate it is no
longer interested in certain call related events by calling destroyNotification().

74.1.2 Interrupted State

When the Manager is in the Interrupted state it is temporarily unavailable for use. Events requested cannot be
forwarded to the application and methods in the API cannot successfully be executed. A number of reasons can cause
this: for instance the application receives more notifications from the network than defined in the Service Agreement.
Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure.

3GPP

Release 4 109 3GPP TS 29.198-4 V4.11.0 (2004-12)
74.1.3 Overview of allowed methods
Call Control Manager State Methods applicable
Active createCall,
createNotification,
destroyNotification,
changeNotification,
getNotification,
setCallLoadControl
Interrupted getNotification
7.4.2 State Transition Diagrams for I[pMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the
case when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the
IpAppMultiPartyCallControlManager as this is an abnormal termination.

. IpMultiPartyCallManager.createCall ‘” IDLE)
\
coming call]
ApAppMultiPartyCallControlManager.reportNotification UteCallLeg
“” ACTIVE
~—
deassign
deassignCall
"~ RELEASED 1 AcallEnded Jé
A timer mechanisem preventsthat the object N

keeps occupying resources. In case the timer
expires, callEnded() isinvoked on the
IpAppMultiPartyCall with a release cause of
P_TIMER_EXPIRY. In the case when no
IpAppMultiPartyCall is available on which to invoke
callEnded(), callAborted() shall be invoked on the
IpAppMultiPartyCallControlManager as thisisan
abnormal termination.

3GPP

Release 4

7421

110 3GPP TS 29.198-4 V4.11.0 (2004-12)

Figure : Application view on the MultiParty Call object

IDLE State

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created astate transition is made to the Active

state.

71422

ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicators in this state prior to call establishment.

7423

RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the
requested call information will be collected and returned through getinfoRes() and / or superviseRes(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end

state.

7424

Overview of allowed methods

Methods applicable

Call Control Call
State

Call Control
Manager State

getCallLegs, Idle, Active, Released | -
createCallLeg, Idle, Active Active
createAndRouteCallL

egReq,

setAdviceOfCharge,

superviseReq,

release Active Active
deassignCall Idle, Active -
setChargePlan, Idle, Active Active
getinfoReq

7.4.3 State Transition Diagrams for IpCallLeg

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

Call Leg State Model General Objectives:

1) Events in backwards direction (upstream), coming from terminating leg, are not visible in originating leg model.

2) Events in forwards direction (downstream), coming fromoriginating leg, are not visible in terminating leg

model.

3) States are as seen from the application: if there is no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or alerting events on
terminating leg do not change state. NOTE 2

4) The application is to send a request to continue processing (using an appropriate method like
continueProcessing) for each leg and event reported in monitor mode ‘interrupt’.

3GPP

Release 4 111 3GPP TS 29.198-4 V4.11.0 (2004-12)

5) In case on aleg more than one network event (for example mid-call event ‘service_code’) is to be reported to the
application at quasi the same time, then the events are to be reported one by one to the application in the order
received from the network. When for a leg an event is reported in interrupt mode, a next pending event is not to
be reported to the application until a request to resume call processing for the current reported event has been
received on the leg.

NOTEL: Call processing is suspended if for a leg a network event is met, which was requested to be monitored in
the P_CALL_MONITOR_MODE_INTERRUPT.

NOTEZ2: Even though there in the Originating Call Leg STD is no change in the methods the application is
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore froman application viewpoint appear as just one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

7431 Originating Call Leg

3GPP

Release 4

Al States

3GPP TS 29.198-4 V4.11.0 (2004-12)

IpAppMultiPartyCallControlManager.
reportNotification(originating Call Attempt))

112
Originating Call Leg. ﬁ

‘originating call attempt authorizﬂ

e e DY
Initiati
attachMedia niating
detachMedia

A /

‘Address Collected'

|/

Analysing)

‘networkRelease’

-~

attachMedia

‘Address_Collected'

IpAppMultiPartyCallControlManager .
reportNotification(originating Call AttemptAuthorized)

IpAppMultiPartyCallControlManager.

detachMedia

‘networkrelease’

'Address Analysed'

1

-~

‘originating service_code'

reportNotification(address_collected)

IpAppMultiPartyCallControlManager.
reportNotification(address_analysed)

Active
attachMedia W
detachMedia J

IpAppMultiPartyCallControlManager.
reportNotification(originating service code)

\ ‘networkrelease'
(Releasing
‘rel 3 - - 5
release do/ send reports if requested, or error reports if required
"timer expiry ‘
deasign

~@)

74311

Entry events:

pAppCallLeg.callLegEnded

1 IpAppMultiPartyCallContro|Manager.
reportNotification(originating
release)

Transitions/events not shown:

All states:

continueProcessing, getLastRedirectedAddress, getCall: no state change
All states except Releasing:

ewentReportReq, setAdviceOfCharge, getinfoReq, superviseReq,
setChargePlan

Figure : Originating Leg

Initiating State

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an
“Originating_Call_Attempt” initial notification criterion.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an
“Originating_Call Attempt Authorised” initial notification criterion.

3GPP

Release 4 113 3GPP TS 29.198-4 V4.11.0 (2004-12)

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party’s identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

Initiating See q OREL
State Note2

> oCA > 0CAA > AC
See Notel

Note 1: Event oCA only applicable as an initial notification .

Note 2: The release event (0REL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

oCA: originating Call Attempt; oCAA originating Call Attempt Authorized; AC: Address Collected, oREL originating

RELease.

Figure : Application view on event reporting order in Initiating State

In this state the following functions are applicable:

The detection of a “Originating_Call Attempt” initial notification criterion.

The detection of an “Originating Call Attempt Authorised” initial notification criterion as a result that the call

attempt authorisation is successful.

The report of the “Originating_Call Attempt Authorised” event indication whereby the following functions are
performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL _EVENT_CALL ATTEMPT_AUTHORISED then the event is reported and call leg processing is

suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL _EVENT_CALL ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) When the P CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL EVENT_CALL ATTEMPT_AUTHORISED then no monitoring is performed.

The receipt of destination address information, i.e. initial information package/dialling string as received from
calling party.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing () method.

Exit events:

3GPP

Release 4 114 3GPP TS 29.198-4 V4.11.0 (2004-12)

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period.

Receipt of a deassign() method.

Receipt of a release() method.

Detection of a “originating release” indication as a result of a premature disconnect fromthe calling party.

7.4.3.1.2 Analysing State
Entry events:

- Availability of an “Address_Collected” event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an “Address_Co llected”
initial notification criterion.

Functions:

In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string fromthe calling party) is being collected and examined in accordance
to the dialling plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report themto the
application (within eventReportRes method)) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteria is met) is done in this state. This action
is recursive, e.g. the application could ask for 3 digits to be collected and when report request can be done repeatedly,
e.g. the application may for example request first for 3 digits to be collected and when reported request further digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

oREL

Analysing Notel >
State

0CAA | AC AA

Note 1: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

0oCAA: originating Call Attempt Authorized; AC: Address Collected; AA: Address Analysed; oREL: originating
RELease.

Figure : Application view on event reporting order in Analysing State

3GPP

Release 4 115 3GPP TS 29.198-4 V4.11.0 (2004-12)

In this state the following functions are applicable:
- The detection ofa “Address_Collected* initial notification criterion.
- On receipt ofthe “Address_Collected” indication the following functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event

P_CALL_EVENT_ADDRESS_COLLECTED then the event is reported and call leg processing is
suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii) When the P CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL EVENT_ADDRESS_COLLECTED then no monitoring is performed.

- Receipt of a eventReportReq() method defining the criteria for the events the call leg object is to observe.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq/()
method.

Exit events:

- Detection ofan “Address Analysed” indication as a result of the availability of the routing address and nature
of address.

- Receipt of a deassign() method.
- Receipt of a release() method.

- Detection of a “originating release” indication as a result of a premature disconnect fromthe calling party.

7.4.3.1.3 Active State

Entry events:

- Receiptofan “Address Analysed” indication as a result of the availability of the routing address and nature of
address.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an “Address_Analysed
initial indication criterion.

Functions:
In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

3GPP

Release 4 116 3GPP TS 29.198-4 V4.11.0 (2004-12)

See Notel
See
ﬂ Note2
oSC AN
AC > AA oREL
Active
State

Note 1: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

Note 2: The release event (OREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

AC: Address Collected; AA: Address Analysed; oSC: originating Service Code; oREL: originating RELease.

Figure : Application view on event reporting order Active State

In this state the following functions are applicable:
- The detection of a Address_Analysed initial indication criterion.

- Onreceipt of the “Address_Analysed” indication the following functions are performed:

i) Whenthe P CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL _EVENT_ADDRESS_ANALYSED then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- Inthis state the routing information is interpreted, the authority of the calling party to establish this connection is
verified and the call leg connection is set up to the remote party.

- Inthis state a connection to the call party is established.

- Detection of a “terminating release” indication (not visible to the application) fromremote party caused by a
network release event propagated froma terminating party, possibly resulting in an “originating release”
indication and causing the originating call leg STD to transit to Releasing state:

- Detection of a disconnect from the calling party.

- Receipt of adeassign() method.

- Receipt of a release() method.

- Onreceipt of the “originating_service code” indication the following functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE _CODE then the event is reported and call leg processing is
suspended.

3GPP

Release 4 117 3GPP TS 29.198-4 V4.11.0 (2004-12)

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ORIGINATING SERVICE_CODED then the event is notified and call leg processing
continues..

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

- Detection of an “originating release” indication as a result ofa disconnect from the calling party and a
“terminating release” indication as a result ofa disconnect fromcalled party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

7.4.3.1.4 Releasing State
Entry events:

- Detection ofan “Originating Release” indication as a result of the network release initiated by calling party or
called party.

- Reception of the release() method from the application.

- Atransition due to fault detection to this state is made when the Call leg object is in a state and no requests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:
i) the network release event handling is performed.

ii) the possible call leg information requested with getinfoReq() and/ or superviseReq() is collected and send to
the application.

iii) the callLeg Ended() method is sent to the application to inform that the call leg object is destroyed.

In this state the following functions are applicable:
- The detection of a “originating_release” initial indication criterion..
- Onreceipt of the “originating_release” indication the following functions are performed:
- The network release event handling is performed as follows:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getinfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

3GPP

Release 4 118 3GPP TS 29.198-4 V4.11.0 (2004-12)

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

- Incase of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application is informed that the call leg object is destroyed (callLeg Ended).

Note: the call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request fromthe application
to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLeg Ended() method.

- Afterthe sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLeg Ended()
method.

7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

3GPP

Release 4

119

State

Methods allowed

Initiating

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall,
continueProcessing,
release

deassign

7.4.3.2

Terminating Call Leg

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12)

Release 4 120 3GPP TS 29.198-4 V4.11.0 (2004-12)

Terminating Call Leg. ﬁ

Idle
(terminating)

IpMultiPartyCall.createCallLeg

routeReq
IpAppMultiPartyCallControlManager.r

‘terminating call attempt authorized', eportNotification("terminating call
‘alerting', 'answer', ‘terminating senice attempt", "terminating call attempt
code’, redirected’, 'queued' authorised”, "alerting", "answer",

) “terminating senice code",

; Active "redirected", "queued")
attachMedia (terminating)
detachMedia -
IpMultiPartyCall.createAndRouteCallLegReq

‘network release’

Al States release Releasing (terminating)
EI

(terminating) timer expiry’ ~ | 5 5 5 pAppMultiParty CallControlManager.
|) piy" | do/ send reports if requested, or error reports if requirc... reportNotification(terminating

release)

NpAppCallLeg.callLegEnded

@

deasign

Transitions/events not shown: AN
All states:

continueProcessing, getLastRedirectedAddress, getCall, sending getinfoRes,
supeniseRes: no state change,

All states except Releasing:

eventReportReq, setAdviceOfCharge, getinfoReq, supeniseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is
created and is initialized to be in the Active state.

Figure : Terminating Leg

7.4.3.2.1 Idle (terminating) State
Entry events:
- Receipt of a createCallLeg() method to start an application initiated call leg connection.
Functions:
In this state the call leg object is created and the interface connection is idled.

The application activity timer is being provided.

In this state the following functions are applicable:
- Invoking routeReq will result in a request to actually route the call leg object.
- Resumption of call leg processing occurs on receipt of a routeReq() method.

Exit events:

3GPP

Release 4

121

- Receipt of a routeReq() method from the application.

3GPP TS 29.198-4 V4.11.0 (2004-12)

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.

- Receipt of a deassign() method.

- Receipt of a release() method.

- Detection of a network release event being an “originating release” indication as a result of a premature disconnect
fromthe calling party.

7.4.3.2.2 Active (terminating) State

Entry events:

- Receipt of an routeReq will result in actually routing the call leg object.

- Receipt of a createAndRouteCallLegReq() method to start an application initiated call leg connection.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for the following trigger
criteria: “Terminating_Call Attempt”, “Terminating Call Attempt Authorised”, “Alerting”, “Answer”,
“Terminating service code”, “Redirected” and “Queued”.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events fromthe network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

<_
P

Active

State [
tCA1— tCAA
Note 1

Note3

N

Note2 >

tSC

3GPP

tREL

Release 4 122 3GPP TS 29.198-4 V4.11.0 (2004-12)

Note 1: EventtCAapplicable as initial notification

Note 2: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application

Note 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

tCA: Terminating Call Attempt; tCAA: terminating Call Attempt Authorized; AL: Alerting; ANS: Answer; tREL:
terminating RELease; Q: Queued; RD: ReDirected; tSC: terminating Service Code.

Figure : Application view on event reporting order in Active State

In this state the following functions are applicable:

- The detection and report of the “Terminating_Call Attempt Authorised” event indication whereby the following
functions are performed:

i) When the P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL _ATTEMPT_AUTHORISED then the event is reported and call
leg processing is suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL _EVENT_CALL TERMINATING_ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection ofan “Queued” indication as a result of the terminating call being queued.
- On receipt of the “Queued” indication the following functions are performed:

i) When the P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

- On receipt of the “Alerting” indication the following functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

- Detection ofan “Answer” indication as a result of the remote party being connected (answered).
- On receipt ofthe “Answer” indication the following functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended.

ii) Whenthe P CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

- The detection of a “service_code” trigger criterion suspends call leg processing.

3GPP

Release 4 123 3GPP TS 29.198-4 V4.11.0 (2004-12)

On receipt of the “service code” indication the following functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODEthen the event is reported and call leg processing is
suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODEthen this is not a valid event (that event is not
notified) and call leg processing continues.

iii) When the P CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL _EVENT_TERMINATING_SERVICE_CODEthen no monitoring is performed.

On receipt of the “redirected” indication the following functions are performed:

i) Whenthe P CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

ii) When the P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

Detection of a network release event being an “terminating release” indication as a result of the following
events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition)

i) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.

iv) Detection of a no-answer condition received fromthe remote call leg connection portion.

v) Detection that the remote party was not reachable.

Detection of a network release event being an “originating release” indication as a result of the following events:
vi) Detection of a premature disconnect fromthe calling party.

Receipt of a deassign() method.

Receipt of a release() method from the application.

Detection of a network release event being an “originating release” indication as a result ofa disconnect from
the calling party ora “terminating release” indication as a result of a disconnect fromthe called party.

7.4.3.2.3 Releasing (terminating) State

Entry events:

Detection of a network release event being an “originating release” indication as a result of the network release
initiated by calling party or a “terminating release” indication as a result of the network release initiated by
called party..

Sending of the release() method by the application.

3GPP

Release 4 124 3GPP TS 29.198-4 V4.11.0 (2004-12)
- Atransition due to fault detection to this state is made when the Call leg object awaits a request fromthe
application and this is not received within a certain time period.
- Detection of a network event being a “terminating release” indication as a result of the following events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition)

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.
iv) Detection of a no-answer condition received fromthe remote call leg connection portion.
v) Detection that the remote party was not reachable.
- Detection of a network release event being an “originating release” indication as a result of the following events:
vi) Detection of a premature disconnect fromthe calling party.

Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:
i) the release event handling is performed.

ii) the possible call leg information requested with getinfoReq() and/ or superviseReq() is collected and send to the
application.

iii) the callLeg Ended() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or a fault (e.g. timer expiry, no response fromapplication) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:
- The detection of a “Terminating Release” trigger criterion.

- On receipt of the network release event being a “Terminating Release” indication the following functions are
performed:

- The network release event handling is performed as follows:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASEthen the event is reported and call leg processing is
suspended.

ii) Whenthe P_CALL _MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASEthen the event is notified and call leg processing
continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASEthen no monitoring is performed.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing () method.

- The possible call leg information requested with the getinfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

3GPP

Release 4

125

3GPP TS 29.198-4 V4.11.0 (2004-12)

The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not available and additionally the
application is informed that the call leg object is destroyed (callLeg Ended).

Note: the call in the network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request fromthe
application to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLeg Ended() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLeg Ended()

method.

7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

State

Methods allowed

Idle

routeReq,

getCall,
getCurrentDestinationAddress,
release,

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

attachMediaReq
detachMediaReq
getCall,
getCurrentDestinationAddress,
continueProcessing,
release,

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall,
getCurrentDestinationAddress,
continueProcessing,

release,

deassign

3GPP

Release 4 126 3GPP TS 29.198-4 V4.11.0 (2004-12)

7.5 Multi-Party Call Control Service Properties

7.5.1 List of Service Properties

The following table lists properties relevant for the MPCC API. These properties are additional to the properties of the
GCC, from which the MPCC is an extension.

Property Type Description
P_MAX_CALLLEGS PER CALL INTEGER_SET | Indicates how many partiescan be in one call.
P_UI_CALLLEG BASED BOOLEAN_SET | Value = TRUE : User interaction can be performed on leg level and a

referenceto a CallLegobject can be used in the
IpUIManager createUICall() operation.
Value = FALSE : No user interaction on leg level is supported.

P_ROUTING WITH_CALLLEG OPERATIONS | BOOLEAN_SET | Value =TRUE : the atomic operations for routing a CallLegare supported
{IpMultiParty Call.createCallLeg(), IpCallLeg.eventReportReq(),
IpCallLegrouteReq(), IpCallLeg.attachMediaReq() }

Value = FALSE : the convenience function hasto be used for routing a
CallLeg.

P_MEDIA_ATTACH_EXPLICIT BOOLEAN_SET | Value =TRUE : the CallLeg shall be explicitly attachedto a Call.
Value = FALSE : the CallLeg is automatically attachedto a Call, no
IpCallLeg.attachMediaReq() is needed when a party answers.

7.5.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 3 shall have the Service
Properties outlined above set to the indicated values :

P OPERATION SET = {
“IpMultiPartyCallControlManager.createNotification”,
“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,
“IpMultiPartyCallControlManager.getNotification”,
“IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCalllegs”,
“IpMultiPartyCall.createCallleg”,
“IpMultiPartyCall.createAndRouteCalllegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,

“IpMultiPartyCall. setAdviceOfCharge”,
“IpMultiPartyCall. superviseReq”,
“IpCallLeg.routeReqg”,

“IpCallleg.eventReportReq”,

“IpCallleg.release”,

“IpCallleg.getInfoReq”,

“IpCallleg.getCall”,

“IpCallleg.continueProcessing”

}

P TRIGGERING EVENT TYPES = {

P CALL EVENT ADDRESS COLLECTED,

P CALL EVENT ADDRESS ANALYSED,

P CALL EVENT ORIGINATING RELEASE,

P CALL EVENT TERMINATING CALL ATTEMPT AUTHORISED,
P CALL EVENT TERMINATING RELEASE

}

Note: P_CALL_EVENT_ORIGINATING_RELEASE only for the routing failure case, Tp ReleaseCause =
P ROUTING FAILURE

P DYNAMIC EVENT TYPES = {

P CALL EVENT ANSWER,

P CALL EVENT ORIGINATING RELEASE,
P CALL EVENT TERMINATING RELEASE
}

P ADDRESS PIAN = {

3GPP

Release 4

P ADDRESS PLAN E164
}

P UI CALL BASED = {
TRUE
}

P UI AT ALL STAGES =
FALSE
}

P MEDIA TYPE = {

P AUDIO
}

P
OI
2
}

P UI CALLLEG BASED = {

FALSE
}

P MEDIA ATTACH EXPLICIT

FALSE
}

_MAX CALLLEGS PER CALL

127

3GPP

3GPP TS 29.198-4 V4.11.0 (2004-12)

Release 4 128 3GPP TS 29.198-4 V4.11.0 (2004-12)

7.6 Multi-Party Call Control Data Definitions

This clause provides the MPCC data definitions necessary to support the API specification.

The general format of a data definition specification is described below.
o Data Type
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
e Example
If relevant, an example is shown to illustrate the data type.

All data types referenced but not defined in this clause are either in the common call control data definitions clause of
the present document (clause 8) or in the common data definitions which may be found in 3GPP TS 29.198-2.

7.6.1 Event Notification Data Definitions

No specific event notification data defined.
7.6.2 Multi-Party Call Control Data Definitions

76.2.1 IpCallLeg

Defines the address of an IpCallLeg Interface.

76.2.2 IpCallLegRef

Defines a Reference to type IpCallLeg.

7.6.2.3 IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

76.24 IpAppCallLegRef

Defines a Reference to type IpAppCalllLeg.

7.6.25 IpMultiPartyCall

Defines the address of an IpMultiPartyCall Interface.

7.6.2.6 IpMultiPartyCallRef

Defines a Reference to type IpMultiPartyCall.

7.6.2.7 IpAppMultiPartyCall

Defines the address of an TpAppMultiPartyCall Interface.

3GPP

Release 4 129 3GPP TS 29.198-4 V4.11.0 (2004-12)

7.6.2.8 IpAppMultiPartyCallRef

Defines a Reference to type IpAppMultiPartyCall.

7.6.2.9 IpMultiPartyCallControlManager

Defines the address of an ITpMultiPartyCallControlManager Interface.

7.6.2.10 IpMultiPartyCallControlIManagerRef

Defines a Reference to type IpMultiPartyCallControlManager.

7.6.2.11 IpAppMultiPartyCallControlManager

Defines the address of an TpAppMultiPartyCallControlManager Interface.

7.6.2.12 IpAppMultiPartyCallControlManagerRef

Defines a Reference to type IpAppMultiPartyCallControlManager..

7.6.2.13 TpAppCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppCallLegRef.

7.6.2.14 TpMultiPartyCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object

Sequence Element Sequence Element Sequence Element
Name Type Description
CallReference IpMultiPartyCallRef Thiselement specifies the interface reference forthe Multi-party call object.
CallSessionID TpSessionlD Thiselement specifies the call session ID.

7.6.2.15 TpAppMultiiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type

TpAppMul tiPartyCal 1BackRe fType

Tag Element Value Choice Element Type Choice Element Name
P _APP CALLBACK UNDEFINED NULL Undefined
P _APP MULTIPARTY CALL CALLBACK IpAppMultiParty CallRef AppMultiPartyCall
P_APP CALL LEG CALLBACK IpAppCallLegRef AppCallleg
P _APP CALL AND CALL LEG CALLBACK TpAppCallLegCallBack AppMultiPartyCallAndCallleg

3GPP

Release 4

130

7.6.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

3GPP TS 29.198-4 V4.11.0 (2004-12)

Name Value Description
P APP CALLBACK UNDEFINED 0 Application Call back interface undefined
P_APP MULTIPARTY CALL CALLBACK 1 Application Multi-Party Call interface
referenced
P_APP CALL LEG CALLBACK 2 Application CallLeg interface referenced
P APP CALL AND CALL LEG CALLBACK 3 Application Multi-Party Call and CallLeg
interface referenced

7.6.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a calland a call leg application interface.

Sequence Element Name

Sequence Element Type

AppMultiPartyCall

IpAppMultiPartyCallRef

AppCallLegSet

TpAppCallLegRefSet

Specifiesthe set of all call leg call back
references. Firgt inthe set isthe reference
to the call back of the originating callLeg.
In case there isa call back to a destination

call legthis will be second in the set.

7.6.2.18 TpMultiPartyCallldentifierSet

Defines a Numbered Set of Data Elements of TpMultiParty Callldentifier.

7.6.2.19 TpCallAppinfo

Defines the Tagged Choice of Data Elements thatspecify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P CALL APP ALERTING MECHANISM

TpCallAlertingMechanism

CallAppAlertingMechanism

P CALL APP NETWORK ACCESS TYPE

TpCallNetworkAccessType

CallAppNetworkAccessType

P CALL APP TELE SERVICE

TpCallTeleService

CallAppTeleService

P CALL APP BEARER SERVICE

TpCallBearerService

CallAppBearerService

P CALL APP PARTY CATEGORY TpCallPartyCategory CallappPartyCategory

P CALL APP PRESENTATION ADDRESS TpAddress CallAppPresentationAddress

P _CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P CALL APP ADDITIONAL ADDRESS TpAddress CallAppAdditionalAddress

P CALL APP ORIGINAL DESTINATION ADDRESS | TpAddress CallAppOriginalDestinationAddress
P CALL APP REDIRECTING ADDRESS TpAddress CallAppRedirectingAddress

3GPP

Release 4 131 3GPP TS 29.198-4 V4.11.0 (2004-12)

7.6.2.20 TpCallAppInfoType

Defines the type of call application-related specific information.

Name Value Description
P CALL APP UNDEFINED 0 Undefined
P CALL APP ALERTING MECHANISM 1 The alerting mechanism or pattem to use
P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network accesstype (e.g. ISDN)
P CALL APP TELE SERVICE 3 Indicates the tele-service (e.g. telephony)
P CALL APP BEARER SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data).
P CALL APP PARTY CATEGORY 5 The category ofthe calling party
P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties
P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information
P _CALL APP_ADDITIONAL ADDRESS 8 Indicates an additional address
P CALL APP ORIGINAL DESTINATION ADDRESS 9 Containsthe original address specified by the originating user when
launchingthe call.
P CALL APP REDIRECTING ADDRESS 10 Contains the address of the user from which the call is diverting.

7.6.2.21 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppinfo.

7.6.2.22 TpCallEventRequest

Defines the Sequence of Data Elements thatspecify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
CallEventType TpCallEventType
AdditionalCallEventCriteria TpAdditionalCallEventCriteria
CallMonitorMode TpCallMonitorMode

7.6.2.23 TpCallEventRequestSet

Defines a Numbered Set of Data Elements of TpCallEventRequest.

3GPP

Release 4 132 3GPP TS 29.198-4 V4.11.0 (2004-12)
7.6.2.24 TpCallEventType
Defines a specific call event report type.
Name Value Description
P CALL EVENT UNDEFINED 0 Undefined
P CALL EVENT ORIGINATING CALL ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P_CALL_EVENT ORIGINATING CALL ATTEMPT AUTHORISED 2 An originating call attempt is authorised
P _CALL _EVENT ADDRESS COLLECTED 3 The destination address has been collected.
P CALL EVENT ADDRESS ANALYSED 4 The destination address has been analysed.
P CALL EVENT ORIGINATING SERVICE CODE 5 Mid-call originating service code received.
P CALL EVENT ORIGINATING RELEASE 6 A originating call/call leg is released
P_CALL_EVENT TERMINATING CALL ATTEMPT 7 Aterminating call attempt takes place
P_CALL_EVENT TERMINATING CALL ATTEMPT AUTHORISED 8 Aterminating call is authorized
P _CALL _EVENT ALERTING 9 Call is alerting at the call party.
P CALL EVENT ANSWER 10 Call answered at address.
P CALL EVENT TERMINATING RELEASE 11 Aterminating call leg has been released or the call could not
be routed.
P_CALL_EVENT REDIRECTED 12 Call redirected to new address: an indication fromthe network
that the call has been redirectedto a new address (no events
disarmed asa result of this).
P CALL EVENT TERMINATING SERVICE CODE 13 Mid call terminating service code received.
14 The Call Event has been queued. (no eventsare disarmed asa

P _CALL_EVENT QUEUED

result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg;

e When the monitor mode is setto P_CALL_MONITOR_MODE_DO_NOT_MONITOR all events armed for that
eventtype are disarmed. The additionalEventCriteria are not taken into account.

e When requesting two events for the same event type with different criteria and/or different monitor mode the last

used criteria and monitor mode apply.

e Events that are not applicable to a leg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,
Eg., requesting P_CALL_EVENT_TERMINATING_SERVICE _CODE on an originating leg is refused with

exception P_INVALID_CRITERIA.

When P_CALL_EVENT_ORIGINATING_RELEASE is requested with P_BUSY in the criteria the request is

refused with the same e xception.

When receiving events:

o Ifanarmed eventis met, then it is disarmed, unless explicit stated that it will not to be disarmed.

e Ifaneventis met that causes the release of the related leg, then all events related to that leg are disarmed .

e When an event is met on a call leg irrespective of the event monitor mode, then only events belonging to that call

leg may become disarmed (see table below) .

e |facallis released, then all events related to that call are disarmed.

NOTE 1: Event disarmed means monitor mode is setto DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY..

3GPP

Release 4

133

3GPP TS 29.198-4 V4.11.0 (2004-12)

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

Event Occurred

Events Disarmed

P CALL EVENT UNDEFINED

Not Applicable

P CALL EVENT ORIGINATING CALL ATTEMPT

Not applicable, can only be armed as trigger

P CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED

P CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED

P CALL EVENT ADDRESS COLLECTED

P_CALL EVENT_ADDRESS COLLECTED

P _CALL EVENT ADDRESS ANALYSED

P_CALL EVENT ADDRESS COLLECTED
P_CALL EVENT ADDRESS ANALYSED

P CALL EVENT ALERTING

P_CALL_EVENT _ALERTING
P_CALL_EVENT_TERMINATING_RELEASE with criteria:
P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL_RESTRICTED

P_UNAVAILABLE_RESOURCES

P CALL EVENT ANSWER

P_CALL EVENT _ALERTING
P_CALL EVENT_ANSWER

P_CALL EVENT_TERMINATING_RELEASE with criteria:
P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P CALL _EVENT ORIGINATING RELEASE

All pending network events for the call leg are disarmed

P CALL EVENT TERMINATING RELEASE

All pending network events for the call legare disarmed

P CALL EVENT ORIGINATING SERVICE CODE

P_CALL_EVENT ORIGINATING_SERVICE_CODE *) see NOTE 2

P CALL EVENT TERMINATING SERVICE CODE

P_CALL_EVENT_TERMINATING_SERVICE_CODE *) see NOTE 2

NOTE 2: Onlythe detected service code or the range to wh

ch the service code belongs is disamed.

3GPP

Release 4

7.6.2.25 TpAdditionalCallEventCriteria

Defines the Tagged Choice of Data Elements thatspecify specific criteria.

134

3GPP TS 29.198-4 V4.11.0 (2004-12)

Tag Element Type

TpCallEventType

Tag Element Choice Element Choice Element
Value Type Name
P _CALL EVENT UNDEFINED NULL Undefined
P CALL EVENT ORIGINATING CALL ATTEMPT NULL Undefined
P CALL EVENT ORIGINATING CALI, ATTEMPT AUTHO NULL Undefined
RISED
P_CALL_EVENT ADDRESS COLLECTED TpInt32 MinAddressLength
P _CALL EVENT ADDRESS ANALYSED NULL Undefined
P CALL EVENT ORIGINATING SERVICE CODE TpCallServiceCodeSet OriginatingServiceCode

P CALL EVENT ORIGINATING RELEASE

TpReleaseCauseSet

OriginatingReleaseCauseSet

P CALL EVENT TERMINATING CALL ATTEMPT NULL Undefined
P CALL EVENT TERMINATING CALL ATTEMPT AUTHO NULL Undefined
RISED

P CALL EVENT ALERTING NULL Undefined
P CALL EVENT ANSWER NULL Undefined

P CALL EVENT TERMINATING RELEASE

TpReleaseCauseSet

TerminatingReleaseCauseSet

P_CALL_EVENT REDIRECTED NULL Undefined
P _CALL_EVENT TERMINATING SERVICE CODE TpCallServiceCodeSet TerminatingServiceCode
P CALL EVENT QUEUED NULL Undefined

7.6.2.26 TpCallEventinfo

Defines the Sequence of Data Elements thatspecify the event reportspecific information.

Sequence Element
Name

Sequence Element
Type

CallEventType

TpCallEventType

AdditionalCallEvent Info

TpCallAdditionalEventInfo

CallMonitorMode

TpCallMonitorMode

CallEventTime

TpDateAndT ime

3GPP

Release 4 135 3GPP TS 29.198-4 V4.11.0 (2004-12)

7.6.2.27 TpCallAdditionalEventinfo

Defines the Tagged Choice of Data Elements thatspecify additional call event information for certain types
of events.

Tag Element Type
TpCallEventType
Tag Element Choice Element Choice Element
Value Type Name

P CALL EVENT UNDEFINED NULL Undefined
P CALL EVENT ORIGINATING CALL ATTEMPT NULL Undefined
P_CALI,_EVENT ORTGINATING CALI_ATTEMPT AUTHORTSED NULL Undefined
P CALL EVENT ADDRESS COLLECTED TpAddress CollectedAddress
P CALL EVENT ADDRESS ANALYSED TpAddress CalledAddress
P_CALL_EVENT ORIGINATING SERVICE_CODE TpCallServiceCode OriginatingServiceCode
P _CALL EVENT ORIGINATING RELEASE TpReleaseCause OriginatingReleaseCause
P_CALI,_EVENT TERMINATING CALI_ATTEMPT NULL Undefined
P_CALL_EVENT TERMINATING CALIL ATTEMPT AUTHORISED NULL Undefined
P _CALL EVENT ALERTING NULL Undefined
P CALL EVENT ANSWER NULL Undefined
P CALL EVENT TERMINATING RELEASE TpReleaseCause TerminatingReleaseCause
P_CALL_EVENT REDIRECTED TpAddress ForwardAddress
P _CALL EVENT TERMINATING SERVICE CODE TpCallServiceCode TerminatingServiceCode
P _CALL EVENT QUEUED NULL Undefined

7.6.2.28 TpCallNotificationRequest

Defines the Sequence of Data Elements that specify the criteria for an event notification

Sequence Element Name

Sequence Element Type

Description

CallNotificationScope

TpCallNotificationScope

Defines the scope of the notification request.

CallEventsRequested

TpCallEvent Request Set

Defines the events which are requested

7.6.2.29 TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.

Sequence Element

Sequence Element

Description

Name Type
DestinationAddress TpAddressRange Definesthe destination address or address range for whichthe notification is
requested.
OriginatingAddress TpAddressRange Definesthe origination address or address range for which the notification is
requested.

3GPP

Release 4

136 3GPP TS 29.198-4 V4.11.0 (2004-12)

7.6.2.30 TpCallNotificationInfo

Defines the Sequence of Data Elements thatspecify the information returned to the application in a Call

notification report.

Sequence Element Sequence Element Description
Name Type
CallNotificationReportScope TpCallNotificationReportScope Defines the scope of the notification report.
CallAppInfo TpCallAppInfoSet Contains additional call info.
CallEventInfo TpCallEvent Info Containsthe event which is reported.

7.6.2.31 TpCallNotificationReportScope

Defines the Sequence of Data Elements thatspecify the scope for which a notification report was sent.

Sequence Element Sequence Element Description
Name Type
DestinationAddress TpAddress Containsthe destination address of the call.
OriginatingAddress TpAddress Containsthe origination address of the call

7.6.2.32 TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element Sequence Element
Name Type
AppCallNotificationRequest TpCallNotificationRequest
AssignmentID TpInt32
7.6.2.33 TpNotificationRequestedSet
Defines a numbered Set of Data Elements of TpNotification Requested.
7.6.2.34 TpReleaseCause
Defines the reason for which a call is released.
Name Value Description
P_UNDEFINED 0 The reason of release is not known, because no info was received fromthe network.
P USER NOT AVAILABLE 1 The user isnot available in the network. This means that the number is not allocated or that the user is
not registered.
P_BUSY 2 The user isbusy.
P_NO ANSWER 3 No answer was received
P NOT REACHABLE 4 The user terminal is not reachable
P_ROUTING FAILURE 5 A routing failure occurred. For example an invalid address was received
P_PREMATURE DISCONNECT 6 The user disconnectedthe call / call leg during the setup phase.
P _DISCONNECTED 7 A disconnect was received.
P CALL RESTRICIED 8 The call was subject of restrictions
P_UNAVAILABLE RESOURCE 9 The request couldnot be carried out as no resources were available.
P_GENERAL FAILURE 10 A general network failure occurred.
P TIMER EXPIRY 11 The call/ call leg was released because an activity timer expired.

7.6.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of Tp ReleaseCause.

3GPP

Release 4

7.6.2.36 TpCallLegldentifier

137

3GPP TS 29.198-4 V4.11.0 (2004-12)

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Sequence Element Sequence Element

Name Type Description
CalllegReference IpCalllegRef Thiselement specifies the interface reference forthe callLeg object.
CalllegSessionID TpSessionID This element specifies the callLeg session ID.

7.6.2.37 TpCallLegldentifierSet

Defines a Numbered Set of Data Elements of TpCallLegldentifier.

7.6.2.38 TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name Value Description
P CALLLEG ATTACH IMPLICITLY 0 CallLeg should be attached implicitly tothe call.
P CALLLEG ATTACH EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachMediaReq() operation. This

call.

allows e.g. the applicationto do first user interactiontothe party before he/she is placed in the

7.6.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Elements that specify the connection properties of the Call Leg object

Sequence Element
Type

Sequence Element
Name

Sequence Element
Description

AttachMechanism

TpCallLegAttachMechanism

Defineshow a CallLeg should be attachedtothe call.

7.6.2.40 TpCallLeginfoReport

Defines the Sequence of Data Elements thatspecify the call leg information requested.

Sequence Element Sequence Element Description
Name Type
CallLegInfoType TpCalllLegInfoType Thetype of call leg information.
CalllegStartTime TpDateAndTime Thetime and date whenthe call leg was started (i.e.the leg was routed).
CalllegConnectedToResourceTime TpDateAndTime The date andtime whenthe call leg was connected to the resource. If no
resource was connected the time is set to an empty sring.
Either this element is valid or the CallConnectedT oAddressT ime is valid,
depending on whether the report is sent asa result of user interaction.
CalllegConnectedToAddressTime TpDateAndTime The date andtime whenthe call leg was connected to the degtination (i.e.
when the destination answered the call). If the destination did not
answer, thetime is setto an empty string.
Either this element is valid or the CallConnectedT oResourceT ime is
valid, dependingon whetherthe report is sent as a result of user
interaction.
CalllegEndTime TpDateAndTime The date and time whenthe call leg was released.
ConnectedAddress TpAddress The address ofthe party associated with the leg. If duringthe call the
connected address was received from the party thenthisis returned,
otherwise the destination address (for legs connectedto a destination) or
the originating address (for legs connectedtothe origination) isreturned.
CalllegReleaseCause TpReleaseCause The cause ofthe termination. May be present with
P_CALL_LEG INFO_RELEASE_CAUSE was specified.
CallAppInfo TpCallAppInfoSet Additional information forthe leg. May be present with
P CALL LEG INFO APPINFO was specified.

3GPP

Release 4 138 3GPP TS 29.198-4 V4.11.0 (2004-12)

7.6.2.41 TpCallLegInfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P_CALL LEG INFO_ UNDEFINED 00h Undefined
P CALL LEG INFO TIMES 01h Relevant call times
P_CALL_LEG_INFO_RELEASE_CAUSE 02h Call leg release cause
P_CALL_LEG INFO_ADDRESS 04h Call leg connected address
P CALL LEG INFO APPINFO 08h Call leg application related information

7.6.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values
may be combined by a logical 'OR' function.

Name Value Description
P CALL LEG SUPERVISE RELEASE 01h Release the call leg when the call leg supervision timer expires
P _CALL LEG SUPERVISE RESPOND 02h Notify the application when the call leg supervisiontimer expires
P CALL LEG SUPERVISE APPLY TONE 04h Send a warning tone onthe call leg when the call leg supervision timer
expires. If call legrelease isrequested, then the call leg will be
released following thetone after an administered time period

8 Common Call Control Data Types

The following data types referenced in this clause are defined in 3GPP TS 29.198-5:
TpUIInfo

All other data types referenced but not defined in this clause are common data definitions which may be found in
3GPP TS 29.198-2.

8.1 TpCallAlertingMechanism

This data type is identical to a TpInt 32, and defines the mechanismthat will be used to alert a call party. The values
of this data type are operatorspecific.

3GPP

Release 4 139 3GPP TS 29.198-4 V4.11.0 (2004-12)

8.2

This data type defines the type of call application-related specific information (Q.931: Information Transfer Capability,

TpCallBearerService

and 3G TS 22.002)

Name Value Description
P CALL BEARER SERVICE UNKNOWN 0 Bearer capability information unknown at this time
P CALL BEARER SERVICE SPEECH 1 Speech
P CALL BEARFER SERVICE DIGITALUNRESTRICTED 2 Unrestricted digital information
P CALL BEARER SERVICE DIGITALRESTRICTED 3 Restricted digital information
P_CALL BEARER SERVICE AUDIO 4 3,1 kHz audio
P CALL BEARER SERVICE DIGITALUNRESTRICTED 5 Unresricted digital information with tones/announcements
TONES
P _CALL BEARER SERVICE VIDEO 6 Video

8.3

Defines the Sequence of Data Elements thatspecify the charge plan for the call.

TpCallChargePlan

Sequence Element Name Sequence Element Type Description

ChargeOrderType TpCallChargeOrderCategory Charge order

TransparentCharge TpOctetSet Operator gecific charge plan secification,
e.g. chargingtable name/ chargingtable entry.
The associated charge plan data will be send

trangparently tothe charging records.

Only applicable whentransparent charging is
selected.

ChargePlan TpInt32 Pre-defined charge plan. Example of the
charge plan set from which the application can
choose could be : (0 =normal user, 1 = silver

card user, 2 = gold card user).

Only applicable when predefined charge plan
is selected.

AdditionallInfo TpOctetSet Descriptive sring which issenttothe billing

system without prior evaluation. Could be
included inthe ticket.

PartyToCharge TpCallPartyToChargeType Identifiesthe entity or party to be charged for

the call or call leg.

PartyToChargeAdditionalInfo TpCallPartyToChargeAdditionalInfo | Containsadditional information regardingthe

charged party.

8.4 TpCallParty ToCharge Additionallnfo

Defines the Tagged Choice of Data Elements that identifies the entity or party to be charged.

Tag Element Type

TpCallPartyToChargeType

Tag Element Value Choice Element Choice Element Name
Type
P_CALL_PARTY_ORIGINATING NULL Undefined
P_CALL_PARTY_DEST INAT ION NULL Undefined
P_CALL PARTY_SPECIAL TpAddress CallPartySpecial

3GPP

Release 4 140 3GPP TS 29.198-4 V4.11.0 (2004-12)

8.5 TpCallPartyToChargeType

Defines the type of call party to charge

Name Value Description
P_CALL_PARTY_ORIGINATING 0 Calling party, i.e. party that initiated the call. For application initiated calls this
indicates the first party of the call
P_CALL _PARTY_DESTINATION 1 Called party
P_CALL_PARTY_SPECIAL 2 An address identifying e.g. athird party, a service provider

8.6 TpCallChargeOrderCategory

Defines the type of charging to be applied

Name Value Description

P_CALL CHARGE TRANSPARENT 0 Operator gecific charge plan specification, e.g. charging table name /
chargingtable entry. The associated charge plan data will be send
transparently tothe charging records

P CALL CHARGE PREDEFINED SET 1 Pre-defined charge plan. Example ofthe charge plan set from which the

application can choose could be : (0 =normal user, 1 = silver card user, 2 =
gold card user).

8.7 TpCallEndedReport

Defines the Sequence of Data Elements thatspecify the reason for the call ending.

Sequence Element Name Sequence Element Type Description

CalllegSessionID TpSessionID The legthat initiated the release of the call.

If the call release was not initiated by the leg,
then thisvalue is setto—1.

Cause TpReleaseCause The cause of the call ending.

8.8 TpCallError

Defines the Sequence of Data Elements thatspecify the additional information relating to a call error.

Sequence Element Name Sequence Element Type
ErrorTime TpDateAndTime
ErrorType TpCallErrorType

AdditionalErrorInfo TpCallAdditionalErrorInfo

3GPP

Release 4 141 3GPP TS 29.198-4 V4.11.0 (2004-12)

8.9 TpCallAdditionalErrorinfo

Defines the Tagged Choice of Data Elements thatspecify additional call error and call error specific
information. This is also used to specify call leg errors and information errors.

Tag Element Type

TpCallErrorType

Tag Element Value Choice Element Type Choice Element Name
P _CALL ERROR UNDEFINED NULL Undefined
P CALL ERROR INVALID ADDRESS TpAddressError CallErrorInvalidAddress
P _CALL ERROR INVALID STATE NULL Undefined
P _CALL ERROR RESOURCE UNAVAILABLE NULL Undefined

8.10 TpCallErrorType

Defines a specific call error.

Name Value Description
P _CALL ERROR UNDEFINED 0 Undefined; the method failed or was refused,
but no gecific reason can be given.
P CALL ERROR INVALID ADDRESS 1 The operation failed because an invalid address
was given
P CALL ERROR INVALID STATE 2 The call was not in a valid sate for the

requested operation

P CALL ERROR RESOURCE UNAVAILABLE 3 There are not enough resources to completethe
request successfully

8.11 TpCallinfoReport

Defines the Sequence of Data Elements thatspecify the call information requested. Information that was not
requested is invalid.

Sequence Element Name Sequence Element Type Description
CallInfoType TpCallinfoType Thetype of call report.
CallInitiationStartTime TpDateAndTime Thetime and date whenthe call, or

follow-on call, was started.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was
connected to the resource.

This data element is only valid when
information on user interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time whenthe call was
connected to the destination (i.e., when the
destination answered the call). Ifthe
destination did not answer, thetime is set
to an empty string.

This data element is invalid when

information on user interaction isreported
with an intermediate report.

CallEndTime TpDateAndTime The date and time whenthe call or follow-
on call or user interaction was terminated.

Cause TpReleaseCause The cause ofthe termination.

3GPP

Release 4 142 3GPP TS 29.198-4 V4.11.0 (2004-12)

A callinfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not
both.

8.12 TpCallinfoType

Defines the type of call information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P _CALL INFO UNDEFINED 00h Undefined
P_CALL_INFO_TIMES 01h Relevant call times
P CALL INFO RELEASE CAUSE 02h Call release cause

8.13 TpCallLoadControlMechanism

Defines the Tagged Choice of Data Elements that specify the applied mechanismand associated parameters.

Tag Element Type

TpCallLoadControlMechanismType

Tag Element Value Choice Element Type Choice Element Name

P CALL LOAD CONTROL PER INTERVAL TpCallLoadControlIntervalRate CallLoadControlPerInterval

8.14 TpCallLoadControlintervalRate

Defines the call ad mission rate of the call load control mechanismused. This data type indicates the interval (in
milliseconds) between calls that are ad mitted.

Name Value Description

P_CALL_LOAD_CONTROL ADMIT_NO_CALLS 0 Infinite interval
(do not admit any calls)

Duration in milliseconds

1-
60000

8.15 TpCallLoadControlIMechanismType

Defines the type of call load control mechanismto use.

Name Value Description

P_CALL_LOAD CONTROL PER_INTERVAL 0 admit one call per interval

3GPP

Release 4 143 3GPP TS 29.198-4 V4.11.0 (2004-12)

8.16 TpCallMonitorMode

Defines the mode that the call will monitor for events, or the mode that the call is in following a detected event.

Name Value Description

P CALL MONITOR MODE INTERRUPT 0 The call event is intercepted by the call control
service and call processing is interrupted. The
application isnotified ofthe event and call
processing resumes following an appropriate
API call or network event (such as a call
release)

P CALL MONITOR MODE NOTIFY 1 The call event is detected by the call control
service but not intercepted. The application is
notified ofthe event and call processing
continues

P_CALL_MONITOR MODE DO NOT MONITOR 2 Do not monitor for the event

8.17 TpCallNetworkAccessType

This data defines the bearer capabilities associated with the call. (3G TS 24.002) This information is network operator
specific and may not always be available because there is no standard protocol to retrieve the information.

Name Value Description
P _CALL NETWORK ACCESS TYPE UNKNOWN 0 Network type information unknown at thistime
P_CALL_NETWORK ACCESS_TYPE_POT 1 POTS
P CALL NETWORK ACCESS TYPE ISDN 2 ISDN
P CALL NETWORK ACCESS TYPE DIALUPINTERNET 3 Dial-up Internet
P _CALL NETWORK ACCESS TYPE XDSL 4 xDSL
P CALL NETWORK ACCESS TYPE WIRELESS 5 Wireless

8.18 TpCallPartyCategory

This data type defines the category of a calling party. (Q.763: Calling Party Category / Called Party Category)

Name Value Description
P CALL PARTY CATEGORY UNKNOWN 0 calling party's category unknown at thistime
P CALL PARTY CATEGORY OPERATOR F 1 operator, language French
P_CALL PARTY CATEGORY OPERATOR E 2 operator, language English
P CALL PARTY CATEGORY OPERATOR G 3 operator, language German
P_CALL_PARTY CATEGORY_ OPERATOR_R 4 operator, language Russian
P CALL PARTY CATEGORY OPERATOR_S 5 operator, language Spanish
P _CALL PARTY CATEGORY ORDINARY SUB 6 ordinary calling subscriber
P _CALL PARTY CATEGORY PRIORITY SUB 7 calling subscriber with priority
P _CALL PARTY CATEGORY DATA CALL 8 data call (voice band data)
P CALL PARTY CATEGORY TEST CALL 9 tegt call
P _CALL PARTY CATEGORY PAYPHONE 10 payphone

3GPP

Release 4 144 3GPP TS 29.198-4 V4.11.0 (2004-12)

8.19 TpCallServiceCode

Defines the Sequence of Data Elements thatspecify the service code and type of service code received during
a call. The service code type defines how the value string should be interpreted.

Sequence Element Name Sequence Element Type
CallServiceCodeType TpCallServiceCodeType
ServiceCodeValue TpString

8.20 TpCallServiceCodeSet

Defines a Numbered Set of Data Elements of Tp CallService Code.

8.21 TpCallServiceCodeType

Defines the different types of service codes that can be received during the call.

Name Value Description
P CALL SERVICE CODE UNDEFINED 0 Thetype of service code is unknown. The corresponding string is
operator specific.
P CALL SERVICE CODE DIGITS 1 The user entered a digit sequence during the call. The corresponding
string isan ASCII representation of the received digits.
P_CALL_SERVICE CODE FACILITY 2 A facility information element is received. The corresponding sring
contains the facility information element as defined in ITU Q.932
P_CALL_SERVICE CODE U2U 3 A user-to-user message was received. The associated string contains
the content ofthe user-to-user information element.
P CALL SERVICE CODE HOOKFLASH 4 The user performed a hookflash, optionally followed by some digits.
The corresponding string isan ASCII representation of the entered
digits.
P CALL SERVICE CODE RECALL 5 The user pressedthe register recall button, optionally followed by
some digits. The corresponding string is an ASCI| representation of
the entered digits.

8.22 TpCallSuperviseReport

Defines the responses fromthe call control service for calls that are supervised. The values may be combined by a
logical 'OR' function.

Name Value Description
P_CALL_SUPERVISE TIMEOUT 01h The call supervision timer has expired
P CALL SUPERVISE CALL ENDED 02h The call has ended, either due to timer expiry

or call party release. In case the called party
disconnects but a follow-on call can still be
made also this indication is used.

P CALL SUPERVISE TONE APPLIED 04h A warning tone has been applied. This isonly
sent in combination with
P_CALL_SUPERVISE_TIMEOUT

P _CALL SUPERVISE UI FINISHED 08h The user interaction has finished.

3GPP

Release 4 145 3GPP TS 29.198-4 V4.11.0 (2004-12)

8.23 TpCallSuperviseTreatment

Defines the treatment of the call by the call control service when the call supervision timer expires. The values may be
combined by a logical 'OR' function.

Name Value Description
P _CALL SUPERVISE RELEASE 01h Release the call whenthe call supervision
timer expires
P _CALL SUPERVISE RESPOND 02h Notify the application when the call

supervision timer expires

P CALL SUPERVISE APPLY TONE 04h Send a warningtone to the originating party
when the call supervisiontimer expires. If call
release is requested, then the call will be

released following thetone after an
administered time period

8.24 TpCallTeleService

This data type defines the tele-service associated with the call. (Q.763: User Teleservice Information, Q.931: High
Layer Compatibility Information, and 3G TS 22.003)

Name Value Description
P CALL TELE SERVICE UNKNOWN 0 Teleservice information unknown at this time
P CALL TELE SERVICE TELEPHONY 1 Telephony
P CALL TELE SERVICE FAX 2 3 2 Facsimile Growp 2/3
P CALL TELE SERVICE FAX 4 I 3 Facsimile Grow 4, Class |
P _CALL TELE_SERVICE FAX 4 II III 4 Facsimile Grow 4, Classes Il and Il
P CALL TELE SERVICE VIDEOTEX SYN 5 Syntax based Videotex
P_CALL_TELE_SERVICE VIDEOTEX_ INT 6 Intemational Videotex interworking via gateways or interworking
units
P CALL TELE SERVICE TELEX 7 Telex service
P_CALL_TELE_SERVICE MHS 8 Message Handling Systems
P CALL TELE SERVICE OSI 9 OSl application
P CALL TELE SERVICE FTAM 10 FT AM application
P CALL TELE SERVICE VIDEO 11 Videotelephony
P CALL TELE SERVICE VIDEO CONF 12 Videoconferencing
P CALL TELE SERVICE AUDIOGRAPH CONF 13 Audiographic conferencing
P CALL TELE SERVICE MULTIMEDIA 14 Multimedia services
P CALL TELE SERVICE CS INI H221 15 Capability set of initial channel of H.221
P CALL TELE SERVICE CS SUB H221 16 Capability set of subsequent channel of H.221
P CALL TELE SERVICE CS INI CALL 17 Capability set of initial channel associated with an active 3,1 kHz
audio or speech call.
P CALL TELE SERVICE DATATRAFFIC 18 Data traffic.
P CALL TELE SERVICE EMERGENCY CALLS 19 Emergency Calls
P _CALL TELE_SERVICE SMS MT PP 20 Short message MT PP
P CALL TELE SERVICE SMS MO PP 21 Short message MO/PP
P CALL TELE SERVICE CELL BROADCAST 22 Cell Broadcast Service
P CALL TELE SERVICE ALT SPEECH FAX 3 23 Alternate speech and facsimile group 3
P CALL TELE SERVICE AUTOMATIC FAX 3 24 Automatic Facsimile group 3
P_CALL TELE_SERVICE VOICE GROUP CALL 25 Voice Grow Call Service
P CALL TELE SERVICE VOICE BROADCAST 26 Voice Broadcast Service

3GPP

Release 4 146 3GPP TS 29.198-4 V4.11.0 (2004-12)

8.25 TpCallTreatment

Defines the Sequence of Data Elements thatspecify the treatment for calls that will be handled only by the
network (for example, call which are not ad mitted by the call load control mechanis m).

Sequence Element Name Sequence Element Type
CallTreatmentType TpCallTreatmentType
ReleaseCause TpReleaseCause
AdditionalTreatmentInfo TpCallAdditional TreatmentInfo

8.26 TpCallTreatmentType

Defines the treatment for calls that will be handled only by the network.

Name Value Description
P _CALL_TREATMENT DEFAULT 0 Default treatment
P _CALL TREATMENT RELEASE 1 Release the call
P_CALL_TREATMENT SIAR 2 Send information to the user, andreleasethe
call (SendInfo & Release)

8.27 TpCallAdditionalTreatmentinfo

Defines the Tagged Choice of Data Elements thatspecify the information to be sent to a call party.

Tag Element Type

TpCallTreatmentType

Tag Element Value Choice Element Type Choice Element Name
P _CALL TREATMENT DEFAULT NULL Undefined
P _CALL TREATMENT RELEASE NULL Undefined
P CALL TREATMENT SIAR TpUIInfo InformationToSend

8.28 TpMediaType

Defines the media type of a media stream. The values may be combined by a logical 'OR' function.

Name Value Description
P_AUDIO 1 Audio stream
P_VIDEO 2 Video stream
P _DATA 4 Data stream (e.g., T.120)

3GPP

Release 4 147 3GPP TS 29.198-4 V4.11.0 (2004-12)

Annex A (normative):
OMG IDL Description of Call Control SCF

The OMG IDL representation of this interface specification is contained in text files (contained in archive
2919804V4b0IDL.ZIP) which accompany the present document.

3GPP

Release 4 148 3GPP TS 29.198-4 V4.11.0 (2004-12)

Annex B (informative):
Change history

Change history

Date TSG# [TSGDoc. [CR |Rev |Subject/Comment Old New
Mar 2001 CN_11 |NP-010134 (047 |- CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.20 [1.0.0
June 2001 [CN_12 |NP-010327 |-- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 |4.0.0
Sep 2001 CN_13 |NP-010467 |001 |-- Changing references to JAIN 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |002 |-- Correction of text descriptions for methods enableCallNotification and |4.0.0 [4.1.0
createNotification
Sep 2001 CN_13 |NP-010467 |003 |-- Specify the behaviourwhen acall leg times out 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |004 |-- Removal of Faulty state in MPCCS Call State Transition Diagramand |4.0.0 [4.1.0
method callFaultDetected in MPCCS in OSA R4
Sep 2001 CN_13 |NP-010467 |005 |-- Missing TpCallAppinfoSet description in OSA R4 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |006 |-- Redirecting a call leg vs. creating a call leg clarffication in OSA R4 400 [4.1.0
Sep 2001 CN_13 |NP-010467 |007 |-- Introduction of MPCC Originating and Terminating Call Leg STDs for [4.0.0 [4.1.0
IpCallLeg
Sep 2001 CN_13 |NP-010467 |008 |-- Corrections to SetChargePlan() Addition of PartyToCharge parmeter [4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |009 |-- Corrections to SetChargePlan() 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |010 |-- Remove distinction between final- and intermediate-report 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |011 |-- Inclusion of TpMediaType 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 [012 |-- Corrections to GCC STD 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |013 |-- Introduction of sequence diagrams for MPCC services 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |014 |-- The use of the REDIRECT event needs to be illustrated 400 [4.1.0
Sep 2001 CN_13 |NP-010467 |015 |-- Corrections to SetCallChargePlan() 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |016 |-- Add one additional error indication 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |017 |-- Corrections to Call Control — GCCS Exception handling 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 (018 |-- Corrections to Call Control — Errors in Exceptions 4.0.0 [4.1.0
Dec 2001 CN_14 |NP-010597 |019 |-- Replace Out Parameters with Return Types 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |020 |-- Removal of time based charging property 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |021 |-- Make attachMedia() and detachMedia() asynchronous 4.1.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |022 |-- Correction of treatment datatype in superviseReq on call leg 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |023 |-- Corrections to Call Control Data Types 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 [024 |-- Correction to Call Control (CC) 410 [4.2.0
Dec 2001 CN_14 |NP-010597 |025 |-- Amend the Generic Call Control introductory part 410 [4.2.0
Dec 2001 CN_14 |NP-010597 |026 |-- Correction in TpCallEventType 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |027 |-- Addition of missing description of RouteErr() 41.0 |4.2.0
Dec 2001 CN_14 |NP-010597 |028 |-- Misleading description of createAndRouteCallLegErr() 410 [4.2.0
Dec 2001 CN_14 |NP-010597 |029 |-- Correction to values of TpCallNotificationType, 410 [4.2.0
TpCallLoadControlMechanismType
Dec 2001 CN_14 |NP-010695 |030 |-- Correction of method getLastRedirectionAddress 410 |4.2.0
Mar 2002 CN_15 |NP-020106 (031 (-- Add P_INVALID_INTERFACE_TY PE exception to 420 [4.3.0
IpService.setCallback() and IpService.setCallbackWithSessionID()
Mar 2002 CN_15 |NP-020106 [032 |-- Correction of Event Subscription/Notification Data Type 420 [4.3.0
Mar 2002 CN_15 |NP-020106 |033 |-- Correction of parameter name in IpCallLeg.routeReq() and in 42.0 [4.3.0
IpCallLeg.setAdviceOf Charge()
Mar 2002 CN_15 |NP-020106 |034 |-- Clarification of ambiguous Event handling rules 42.0 [4.3.0
Jun 2002 CN_16 |NP-020180 |035 |-- Correction to TpCallChargePlan 43.0 [4.4.0
Jun 2002 CN_16 |NP-020180 [036 |-- Correction to CAMEL Service Property values 430 [4.4.0
Sep 2002 CN_17 |NP-020424 (057 |-- Correction on use of NULL in Call Control API 440 |450
Mar 2003 CN_19 |NP-030020 |058 |-- Correction of status of methods to interfaces in clause 6.3 45.0 [4.6.0
Mar 2003 CN_19 |NP-030020 |059 |-- Correction to TpReleaseCauseSet in Multi Party Call Control 45.0 [4.6.0
Mar 2003 CN_19 |NP-030020 |060 |-- Correction to Sequence Diagrams to remove incorrect Framework 45.0 [4.6.0
references
Mar 2003 CN_19 |NP-030020 |061 |-- Correction to User Interaction Prepaid Sequence Diagrams 45.0 [4.6.0
Mar 2003 CN_19 |NP-030020 |062 |-- Correction to remove unused TpCallChargeOrder 45.0 [4.6.0
Mar 2003 CN_19 |NP-030020 |063 |-- Correction to TpCallEventCriteriaResult in Generic Call Control 45.0 [4.6.0
Mar 2003 CN_19 |NP-030020 (064 |-- Correction of status of methods to interfaces in clause 7.3 45.0 |4.6.0
Jun 2003 CN_20 |NP-030238 [065 |-- Correction of the description for callEventNotify & reportNotification [4.6.0 [4.7.0
Dec 2003 CN_22 |NP-030544 |066 |-- Correction of description in superviseRes and superviseCallRes 47.0 [4.8.0
Jun 2004 CN_24 | NP-040255 |067 |-- Correction of continueProcessing method for Generic Call Control 48.0 [4.9.0
Service (GCCS)
Jun 2004 CN_24 |NP-040256 (068 |-- Correct the P_TRIGGERING_ADDRESSES service property 4.8.0 [4.9.0
Jun 2004 CN_24 | NP-040257 |069 |-- Correction of callbacks sequence and timing conditions in GCCS and |4.8.0 [4.9.0
MPCCS
Sep 2004 CN_25 |NP-040352 |070 |-- Correct State Transition Diagram for IpCall 49.0 (4.10.0
Dec 2004 CN_25 |NP-040483 |071 |-- Correct Behaviour of CallBack sequence and timing 4.10.0 (4.11.0

3GPP

Release 4 149 3GPP TS 29.198-4 V4.11.0 (2004-12)

3GPP

	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Call Control SCF
	4.1 Call Model Description
	4.2 General requirements on support of methods

	5 The Service Interface Specifications
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService

	6 Generic Call Control Service
	6.1 Sequence Diagrams
	6.1.1 Additional Callbacks
	6.1.2 Alarm Call
	6.1.3 Application Initiated Call
	6.1.4 Call Barring 1
	6.1.5 Number Translation 1
	6.1.6 Number Translation 1 (with callbacks)
	6.1.7 Number Translation 2
	6.1.8 Number Translation 3
	6.1.9 Number Translation 4
	6.1.10 Number Translation 5
	6.1.11 Prepaid
	6.1.12 Pre-Paid with Advice of Charge (AoC)

	6.2 Class Diagrams
	6.3 Generic Call Control Service Interface Classes
	6.3.1 Interface Class IpCallControlManager
	6.3.2 Interface Class IpAppCallControlManager
	6.3.3 Interface Class IpCall
	6.3.4 Interface Class IpAppCall

	6.4 Generic Call Control Service State Transition Diagrams
	6.4.1 State Transition Diagrams for IpCallControlManager
	6.4.1.1 Active State
	6.4.1.2 Notification terminated State

	6.4.2 State Transition Diagrams for IpCall
	6.4.2.1 Network Released State
	6.4.2.2 Finished State
	6.4.2.3 Application Released State
	6.4.2.4 Active State
	6.4.2.5 1 Party in Call State
	6.4.2.6 2 Parties in Call State

	6.5 Generic Call Control Service Properties
	6.5.1 List of Service Properties
	6.5.2 Service Property values for the CAMEL Service Environment.

	6.6 Generic Call Control Data Definitions

	This shows the name of the data type.
	6.6.1 Generic Call Control Event Notification Data Definitions
	6.6.1.1 TpCallEventName
	6.6.1.2 TpCallNotificationType
	6.6.1.3 TpCallEventCriteria
	6.6.1.4 TpCallEventInfo

	6.6.2 Generic Call Control Data Definitions
	6.6.2.1 IpCall
	6.6.2.2 IpCallRef
	6.6.2.3 IpAppCall
	6.6.2.4 IpAppCallRef
	6.6.2.5 TpCallIdentifier
	6.6.2.6 IpAppCallControlManager
	6.6.2.7 IpAppCallControlManagerRef
	6.6.2.8 IpCallControlManager
	6.6.2.9 IpCallControlManagerRef
	6.6.2.10 TpCallAppInfo
	6.6.2.11 TpCallAppInfoType
	6.6.2.12 TpCallAppInfoSet
	6.6.2.13 TpCallEndedReport
	6.6.2.14 TpCallFault
	6.6.2.15 TpCallInfoReport
	6.6.2.16 TpCallReleaseCause
	6.6.2.17 TpCallReport
	6.6.2.18 TpCallAdditionalReportInfo
	6.6.2.19 TpCallReportRequest
	6.6.2.20 TpCallAdditionalReportCriteria
	6.6.2.21 TpCallReportRequestSet
	6.6.2.22 TpCallReportType
	6.6.2.23 TpCallTreatment
	6.6.2.24 TpCallEventCriteriaResultSet
	6.6.2.25 TpCallEventCriteriaResult

	7 MultiParty Call Control Service
	7.1 Sequence Diagrams
	7.1.1 Application initiated call setup
	7.1.2 Call Barring 2
	7.1.3 Call forwarding on Busy Service
	7.1.4 Call Information Collect Service
	7.1.5 Complex Card Service
	7.1.6 Hotline Service
	7.1.7 Use of the Redirected event

	7.2 Class Diagrams
	7.3 MultiParty Call Control Service Interface Classes
	7.3.1 Interface Class IpMultiPartyCallControlManager
	7.3.2 Interface Class IpAppMultiPartyCallControlManager
	7.3.3 Interface Class IpMultiPartyCall
	7.3.4 Interface Class IpAppMultiPartyCall
	7.3.5 Interface Class IpCallLeg
	7.3.6 Interface Class IpAppCallLeg

	7.4 MultiParty Call Control Service State Transition Diagrams
	7.4.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.4.1.1 Active State
	7.4.1.2 Interrupted State
	7.4.1.3 Overview of allowed methods

	7.4.2 State Transition Diagrams for IpMultiPartyCall
	7.4.2.1 IDLE State
	7.4.2.2 ACTIVE State
	7.4.2.3 RELEASED State
	7.4.2.4 Overview of allowed methods

	7.4.3 State Transition Diagrams for IpCallLeg
	7.4.3.1 Originating Call Leg
	7.4.3.1.1 Initiating State
	7.4.3.1.2 Analysing State
	7.4.3.1.3 Active State
	7.4.3.1.4 Releasing State
	7.4.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.4.3.2 Terminating Call Leg
	7.4.3.2.1 Idle (terminating) State
	7.4.3.2.2 Active (terminating) State
	7.4.3.2.3 Releasing (terminating) State
	7.4.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	7.5 Multi-Party Call Control Service Properties
	7.5.1 List of Service Properties
	7.5.2 Service Property values for the CAMEL Service Environment.

	7.6 Multi-Party Call Control Data Definitions

	This shows the name of the data type.
	7.6.1 Event Notification Data Definitions
	7.6.2 Multi-Party Call Control Data Definitions
	7.6.2.1 IpCallLeg
	7.6.2.2 IpCallLegRef
	7.6.2.3 IpAppCallLeg
	7.6.2.4 IpAppCallLegRef
	7.6.2.5 IpMultiPartyCall
	7.6.2.6 IpMultiPartyCallRef
	7.6.2.7 IpAppMultiPartyCall
	7.6.2.8 IpAppMultiPartyCallRef
	7.6.2.9 IpMultiPartyCallControlManager
	7.6.2.10 IpMultiPartyCallControlManagerRef
	7.6.2.11 IpAppMultiPartyCallControlManager
	7.6.2.12 IpAppMultiPartyCallControlManagerRef
	7.6.2.13 TpAppCallLegRefSet
	7.6.2.14 TpMultiPartyCallIdentifier
	7.6.2.15 TpAppMultiPartyCallBack
	7.6.2.16 TpAppMultiPartyCallBackRefType
	7.6.2.17 TpAppCallLegCallBack
	7.6.2.18 TpMultiPartyCallIdentifierSet
	7.6.2.19 TpCallAppInfo
	7.6.2.20 TpCallAppInfoType
	7.6.2.21 TpCallAppInfoSet
	7.6.2.22 TpCallEventRequest
	7.6.2.23 TpCallEventRequestSet
	7.6.2.24 TpCallEventType
	7.6.2.25 TpAdditionalCallEventCriteria
	7.6.2.26 TpCallEventInfo
	7.6.2.27 TpCallAdditionalEventInfo
	7.6.2.28 TpCallNotificationRequest
	7.6.2.29 TpCallNotificationScope
	7.6.2.30 TpCallNotificationInfo
	7.6.2.31 TpCallNotificationReportScope
	7.6.2.32 TpNotificationRequested
	7.6.2.33 TpNotificationRequestedSet
	7.6.2.34 TpReleaseCause
	7.6.2.35 TpReleaseCauseSet
	7.6.2.36 TpCallLegIdentifier
	7.6.2.37 TpCallLegIdentifierSet
	7.6.2.38 TpCallLegAttachMechanism
	7.6.2.39 TpCallLegConnectionProperties
	7.6.2.40 TpCallLegInfoReport
	7.6.2.41 TpCallLegInfoType
	7.6.2.42 TpCallLegSuperviseTreatment

	8 Common Call Control Data Types
	8.1 TpCallAlertingMechanism
	8.2 TpCallBearerService
	8.3 TpCallChargePlan
	8.4 TpCallPartyToChargeAdditionalInfo
	8.5 TpCallPartyToChargeType
	8.6 TpCallChargeOrderCategory
	8.7 TpCallEndedReport
	8.8 TpCallError
	8.9 TpCallAdditionalErrorInfo
	8.10 TpCallErrorType
	8.11 TpCallInfoReport
	8.12 TpCallInfoType
	8.13 TpCallLoadControlMechanism
	8.14 TpCallLoadControlIntervalRate
	8.15 TpCallLoadControlMechanismType
	8.16 TpCallMonitorMode
	8.17 TpCallNetworkAccessType
	8.18 TpCallPartyCategory
	8.19 TpCallServiceCode
	8.20 TpCallServiceCodeSet
	8.21 TpCallServiceCodeType
	8.22 TpCallSuperviseReport
	8.23 TpCallSuperviseTreatment
	8.24 TpCallTeleService
	8.25 TpCallTreatment
	8.26 TpCallTreatmentType
	8.27 TpCallAdditionalTreatmentInfo
	8.28 TpMediaType
	Annex A (normative): OMG IDL Description of Call Control SCF
	Annex B (informative): Change history

