3GPP TS 29198-4-3 VV9.0.0 (2009-12)

Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Access (OSA);

Application Programming Interface (API);

Part 4. Call control;

Sub-part 3: Multi-party call control Service Capability Feature
(SCF)

(Release 9)

TM

The present document has been developed within the 3™ Generation Partnership Project (3GPP '™) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partnersand shall not be implemented.
This Specification isprovided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP ™ system should be obtained viathe 3GPP Organizational Partners' Publications Offices.

Release 9 2 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Keywords
UMTS, API, OSA

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 492 94 42 00 Fax +334 93 6547 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

©2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.

UMTS™ js a Trade M ark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ET SI registered for the benefit of its M embers and of the 3GPP Organizational Partners

LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

Release 9 3 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Contents

FOTBWOIT ...tttk b bt h et h e bttt ettt 7
INEFOTUCTION <.ttt h ekt e e et a bt e s et bb et et e et e 7
1 RSToT o]0 O U PUP TR 9
2 L C (=] (=] 1o PRSP 9
3 Definitions and abDrEVIATIONScivureeeiiiiie ettt et e e s e e e e e et e e e st e e e e e sbaaeessnseeeeeeans 10
3.1) o 3T 10
3.2 N 0] 23V LT P STSTTRR 10
4 MultiParty Call Control Service Sequence Diagrams

4.1 APPHCAtion INTHIATEA CAIT SEIUP.....cvv it
4.2 Call BArring 2....cccveivvieeineeeneeeneeeneieseeeenseens

4.3 Call forwarding on Busy Service..........c.c.....

4.4 Call Information Collect Service

4.5 Complex Card Service.......ceoveneeernernererenens

4.6 Hotline SErvice......covevvvccrrrerceereeens

4.7 Network Controlled Notifications

4.8 USE OF the REAITECTE BVENT......eieiece ettt bbbttt bbbttt

5 (01 T B I To | 221 0 TP PPT PR

6 MultiParty Call Control Service Interface CIASSESccouviiiiiiiiiiiiiiiie e
6.1 Interface Class IpMultiPartyCallCONTIOIMANAGETccvvreeirirircieirriesie ettt sesssessesesesssesnses
6.1.1 Method createCall()ccovvreerreenrsrise e

6.1.2 Method createNotification()ccoveeeenee

6.1.3 Method destroyNotification().........c.cee...

6.1.4 Method changeNotification()cc.cc....

6.1.5 Method setCallLoadControl()

6.1.6 Method enableNotifications()

6.1.7 Method disableNotifications()

6.1.8 Method getNext Notification()

6.2 Interface Class IpAppMultiPartyCallControlManager

6.2.1 Method reportNotification()ccorueeenee

6.2.2 Method callAborted()ccovvereevrierininnenns

6.2.3 Method managerinterrupted()cccue....

6.2.4 Method managerResumed()c.ccoeuevene.

6.2.5 Method callOverload Encountered()

6.2.6 Method callOverload Ceased()

6.2.7 Method abortMultipleCalls().....................

6.3 Interface Class IpMultiPartyCall

6.3.1 Method getCallLegs ()couvreerererereriisseesessese e

6.3.2 Method createCallLeg() ...cocoveerreereriieere e

6.3.3 Method createAndRouteCallLegReq()ccovvrvererririreens

6.3.4 Method release()ccoovvirrrnieerreees e

6.3.5 Method deassignCall()cccoveerrreenrviereesereeeeseeens

6.3.6 Method getInfoREq()vovvvvreeerrecns e

6.3.7 Method setChargePlan()cccoeovveeervieennneeesneeens

6.3.8 Method setAdviceOfCharge().....c.cocovenene.

6.3.9 Method superviseReq() ...c.covvrreeerereeerernnns

6.4 Interface Class IpAppMultiPartyCall

6.4.1 Method getinfoRes()

6.4.2 Method getInfOEIT() ..o

6.4.3 Method SUPErVISERES().....oveerereerireeriiereieiiieeneieeeeeeeieenas

6.4.4 Method superviseErr()

6.4.5 Method CaIENAEA()cvvrevereericiriceccreeeeeienienns

6.4.6 Method createAndRouteCallLeg Err()ccovvvereeernirnnnns

6.5 INTEITACE ClaSS IPCAIILEYcviceciicce s et

3GPP

Release 9 4 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

6.5.1 Y= oo I TUE =T - To T TR
6.5.2 Method eventReportReq()

6.5.3 Method release()cccovvvrrrnreerireeee e

6.5.4 Method getinfoReq()

6.5.5 Method getCall() ..cccoovvvveerrieerreeceenne

6.5.6 Method attachMediaReq()

6.5.7 Method detachMediaReq ()covvrerrererreeenreeeireneenneieenns

6.5.8 Method getCurrentDestinationAddress()

6.5.9 Method continueProcessing()

6.5.10 Method setChargePlan()cc.cccovevnrnnnns

6.5.11 Method setAdviceOfCharge()

6.5.12 Method superviseReq()ccoereeeereeeeriennnns

6.5.13 Method deasSigN().......cco e

6.5.14 Method getProperties().........covemeniemnienieneeneeeennenenns

6.5.15 Method SEtPrOPertieS ()cocureeererereererneeieieirereeieiseneneeas

6.6 Interface Class IpPAPPCAlILEGccceveeeeviiccerrece e

6.6.1 Method eventRePOMRES().....ccceurerereureririeieirrireeieiereeias

6.6.2 Method eventREPOMENT()....ccoceerverereriiieieiereieeee e

6.6.3 Method attachMediaRes ()cccovvverererrvieeeieiesieeesieens

6.6.4 Method attachMediaErr()cccoeveererevireeeesiseeeeieeeas

6.6.5 Method detachMediaRes ()cccvvvererererieicieiieeeeieeens

6.6.6 Method detachMediaErr()ccccvveeeeeviiecesiseeeesieeas

6.6.7 Method getinfoRes()

6.6.8 Method getinfoErr().............

6.6.9 Method FrOULEEIT() ..ot

6.6.10 Method SUPEerVISERES().....cuvvreerrrerereeeieiriereeeesessseae s

6.6.11 Method SUPENVISEEIT()....ccuvreerrrecieis e

6.6.12 Y =T oo ot | I =To I o [TR
7 MultiParty Call Control Service State Transition DIagramsS............eeveeeeeiiiiiiiiiireieeeeesseiiiiiieeeeeee s 54
7.1 State Transition Diagrams for IpMultiParty CallControlManagerccccvvvcerniiccenseess s 54
7.11 Active State

7.1.2 =T 0 oL 0=To] - (TR
7.13 OVerview OF AHIOWEA MEENOGS ... bbb
7.2 State Transition Diagrams for IpMultiPartyCall

7.2.1 D] - USSR
7.2.2 ACTIVE SEALE. ... cuceieetietieitet sttt bbb bbb bbb bbbt
7.2.3 RELEASED Statecooeovvvrveererrereenernennnns

7.2.4 OVerview OF allOWEd MELNOUScereers et s bbbt
7.3 State Transition Diagrams fOr IPCAITLEQYocveririeicrce e
7.3.1 Originating Call Leg

7.3.11 INTEIAEING STALE ..o
7.3.1.2 ANAIYSING SEALE ...t bbb s
7.3.1.3 Active State.........cccceuu...

7.3.1.4 Releasing State

7.3.1.5 Overview of allowed methods, Originating Call LEg STD ... 65
7.3.2 Terminating Call LEQocccuircerrecees et

7.3.2.1 Idle (tErmMINALING) SLALEccucviicce et s et bbbt n bbb b s s
7.3.2.2 ACHVE (IErMINATING) STALE ...ttt bbbttt
7.3.2.3 Releasing (terminating) State

7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STDcccoovvvvvevevcceneresercnann, 72
8 Multi-Party Call Control SErviCe PrOPertiESc.vvvieiiiiiie ettt 73
8.1 LSt OF SEIVICE PIOPEIIEScvviitcteisiiete sttt bbbt bbb bbb s a bbbt bbbt s s e ne bbbt ee 73
8.2 Service Property values for the CAMEL Service ENVIFONMENT.ccoviieeiicesrisese ettt 75
9 Multi-Party Call Control Data DefINIONSccvvrieiiiiiiee e e
9.1 Event Notification Data DeTINITIONS ..ottt
9.2 Multi-Party Call Control Data Definitions....

9.21 IDCAIILEG ..ot R R
9.2.2 D Gl LG RET ...t b bbb e R bbb Rt b st s st b
9.2.3 IpAppCallLeg

9.2.4 I A PP CAIILEG RET ... b bbbt b bbb bbbttt et b

3GPP

Release 9 5 3GPP TS 29.198-4-3 V9.0.0 (2009-12)
9.2.5 IpMultiPartyCall..........
9.2.6 IpMultiPartyCallRef
9.2.7 IpAppMultiPartyCall
9.2.8 IDAPPMURIPAIEY CAITRET ... bbb bbb
9.2.9 IPMUItiParty Call CONTIOIMANAGETveeeeeriiicieirrieieis ettt sns s ns s s
9.2.10 IpMultiPartyCallControlManagerRe f
9.2.11 IPAPPMUItIParty Call CONIIOIMEBNAGET ... v s 78
9.2.12 IpAppMultiParty CallControlManagerRET ..o s 78
9.2.13 TpAppCallLeg RefSet
9.2.14 TpMultiParty Callldentifier
9.2.15 TPAPPMURIPAITY CATIBACK.........cecvieeeiieireieitieisietee bbb bbb
9.2.16 TpAppMultiPartyCallBackRefType
9.2.17 TPAPPCallLeg CallBackK........ccverirrinrinrineren s
9.2.18 TpMultiParty CallldentifierSet ...
9.2.19 TpCallAppinfo
9.2.20 TpCallAppinfoType ...
9.2.21 TP CAHAPPINTOSEL ...t bbb bbb bbbt
9.2.22 TP CAHIEVENTREGUEST ..ottt bbbt bbb bbb a et b s st bbbt s s e bt s st beas
9.2.23 TpCallEventRequestSet
9.2.24 TPCAEVENITYPE ..ottt
9.2.25 TpAdditionalCallEventCriteria
9.2.26 TPCAEVENLINTO ...
9.2.27 TpCallAdditionalEventInfo ...
9.2.28 TPCalINOLIFICAtIONREGUEST ..o vttt s sttt nnr et
9.2.29 QLI o1 L1 LN o 4 t= T To 4 1ot o] o1 PP
9.2.30 TpCallNotificationINfocccvvivcerrrcee s
9.2.31 TpCallNotificationReportScope
9.2.32 TpNotificatioNREQUESTE........covveerreeeerrce e
9.2.33 TpNotificationReqUEStEdSetccvvrvceriecerreere e
9.2.34 TPREICASECAUSE ...
9.2.35 TPREIEASECAUSESEL........vercieet et s bbb bbb bbb
9.2.36 TPRCAIILEGIAENTIFIET ...t bbb bbbt bbbt
9.2.37 TpCallLegldentifierSet
9.2.38 TPCalILEGATIAChIMECNANISII ..ot bbb bbb
9.2.39 TPCallLeg CONNECLIONPIOPEITIEScouecvceeiiieitieiei ettt
9.2.40 TpCallLegInfoReport
9.2.41 TPCAIILEGINTOTYPE .ottt bbb bbbt
9.2.42 TPCallLEgSUPEIVISETIEATMENTecveeiiieitiei et
9.2.43 TpCallHighProbabilityCo mpletion
9.2.44 TpNotificationRequestedSetEntry
9.2.45 TpCarrierSet
9.2.46 TpCarriereennnn,
9.2.47 TPCAITIETID ...t
9.2.48 TPCArTErSEIECHIONFIE I ... bbbt bbbt bbb s bt s s bt
9.2.49 TPCAlILEGPIOPEIIYINGITIEcoviiicicteice ettt bbbttt e st ettt s st e st et
9.2.50 TpCallLegPropertyNameList
9.2.51 TpCallLegPropertyValue ...
9.2.52 TpCallLegProperty
9.2.53 QLI o1 L =T | (0T 1T 4 4] PP
Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF........................ 90
Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF.................... 91
Annex C (informative): Java API Description of the Call Control SCFscccoceviiiiiiiiiiiiiens 92
Annex D (informative): Description of Call Control Sub-part 3: Multi-party call control SCF

for 3GPP2 cdma2000 NETWOTKS.........cooviriieiiiiiiesiie e 93
D.1 GeNEral EXCEPLIONS ...ccoiiiiiiiieiie e e e e ettt e e e ettt e e e e e e e et e e e e e e s s e atbba e e e e e e e s s e aentbbnaeeeaeeenans 93
D.2 SPECITIC EXCEPLIONSeeeeeiiiiiieiiitiee ettt ettt e et e e et e e e sttt e e e e bbbt e e e anbbe e e e e nnbb e e e e annneeeas 93
D.2.1 ClAUSE L SCOPE ettt ettt b s a bbb bt A et A Rt b s A b b e R bt s R bbbt b et s n et s st b 93

3GPP

Release 9 6 3GPP TS 29.198-4-3 V9.0.0 (2009-12)
D.2.2 ClaUSE 21 RETEIBINCESvietieeseee ittt s bbb bbb bbbt
D.2.3 Clause 3: Definitions and abbreviations

D.2.4 Clause 4: MultiParty Call Control Service Sequence Diagrans

D.2.5 Clause 5: Class DIiagramsS........ccccrerrierniniereinieseneinesnesnesese s

D.2.6 Clause 6: MultiParty Call Control Service Interface ClasSescoovevvvirvrrreceneninnnns

D.2.7 Clause 7: MultiParty Call Control Service State Transition Diagrams

D.2.8 Clause 8: Multi-Party Call Control Service Properties

D.2.9 Clause 9: Multi-Party Call Control Data Definitions.........cccoereeeeieveirneniernseeisenenns

D.2.10 AnnexA (normative): OMG IDL Description of Multi-Party Call Control SCF

D.2.11 AnnexB (informative): W 3C WSDL Description of Multi-Party Call Control SCF

D.2.12 Annex C (informative): Java™ API Description of the Multi-Party Call Control SCF

Anrex E (informative): Change NISTONY.......ooiiiiiiie e 95

3GPP

Release 9 7 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Foreword

This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG mod ify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version Xx.y.z
where:
X the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 orgreater indicates TSGapproved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 4, sub-part 3 of a multi-part TS covering the 3" Generation Partnership Project: Technical
Specification Group Core Network and Terminals; Open Service Access (OSA); Application Programming Interface
(API), as identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";
Part 3: "Framework";

Part 4: ""Call Control™;

Sub-part 1: "Call Control Common Definitions™;
Sub-part 2: " Generic Call Control SCF";
Sub-part 3: ""Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";
Sub-part 5: "Conference Call Control SCF";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 8)
Part 10: "Connectivity Manager SCF"; (new in 3GPP Release 8)
Part 11: "Account Management SCF";

Part 12: "Charging SCF".

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF";

Part 15: "Multi Media Messaging SCF";

Part 16: "Service Broker SCF".

The Mapping s pecification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

3GPP

Release 9

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family

29.198-01 | Overview 29.998-01 Overview

29.198-02 | Common Data Definitions 29.998-02 Not Applicable

29.198-03 | Framework 29.998-03 Not Applicable

Call 29.198- 29.198- [29.198- 29.198- 29.998-04-1 Generic Call Control — CAP mapping

Control 04-1 04-2 04-3 04-4 29.998-04-2 Generic Call Control — INAP mapping

(Co) Common | Generic | Multi- Multi- 29.998-04-3 Generic Call Control — Megaco mapping

SCF CC data CC SCF | Party CC | mediaCC | 29.998-04-4 Multiparty Call Control — ISC mapping

definitions SCF SCF

29.198-05 | User Interaction SCF 29.998-05-1 User Interaction — CAP mapping
29.998-05-2 User Interaction — INAP mapping
29.998-05-3 User Interaction — Megaco mapping
29.998-05-4 User Interaction — SM'S mapping

29.198-06 | Mobility SCF 29.998-06 User Status and User Location —M AP mapping

29.198-07 | Terminal Capabilities SCF 29.998-07 Not Applicable

29.198-08 | Data Session Control SCF 29.998-08 Data Session Control — CAP mapping

29.198-09 | Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 | Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 | Account Management SCF 29.998-11 Not Applicable

29.198-12 | Charging SCF 29.998-12 Not Applicable

29.198-13 | Policy Management SCF 29.998-13 Not Applicable

29.198-14 | Presence & Availability Management SCF 29.998-14 Not Applicable

29.198-15 | MultiMedia Messaging SCF 29.998-15 Not Applicable

29.198-16 | Service Broker SCF 29.998-16 Not Applicable

3GPP

Release 9 9 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

1 Scope

The present document is Part 4, Sub-Part 3 of the Stage 3 specification for an Application Programming Interface (API)
for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are
contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Multi-Party Call Control Service Capability Feature (SCF) aspects of the interface.
Allaspects of the Multi-Party Call Control SCF are defined here, these being:

e Sequence Diagrams

e Class Diagrams

o Interface specification plus detailed method descriptions
e State Transition diagrams

e Data definitions

e IDL Description of the interfaces

e WSDL Description of the interfaces

e Reference to the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT W G5, ETSI TISPAN and the Parlay Group, in co-
operation with a number of JAIN™ Community member companies.

Maintenance of up to 3GPP Rel-8 and new OSA Stage 1, 2and 3 work beyond Rel-9 was moved to OMA in June 2008.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

o References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

e Fora specific reference, subsequent revisions do not apply.

e Foranon-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-01: "Open Service Access (OSA) Application Programming Interface (API);
Part 1: Overview".

[2] 3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA); Stage 1".

[3] 3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4] 3GPP TS 22.002: "Circuit Bearer Services (BS) supported by a Public Land Mobile Network
(PLMN)".

5] ISO 4217 (1995): " Codes for the representation of currencies and funds ".

3GPP

Release 9 10 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

[6] 3GPP TS 24.002: "GSM-UMTS Public Land Mobile Network (PLMN) Access Reference
Configuration”.
[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)".
[8] ITU-T Q.763: "Signalling System No. 7 - ISDN user part formats and codes".
9] ANSI T1.113: "Signalling System No. 7 (SS7) - Integrated Services Digital Network (ISDN) User
Part".
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1[1] apply.

4 MultiParty Call Control Service Sequence Diagrams

The Multi-Party Call Control AP1 of 3GPP Rel4 relies on the CAMEL Service Environment (CSE). It should be noted
that a number of restrictions exist because CAMEL phase 3 supports only two-party calls and no leg based operations.
Furthermore application initiated calls are not supported in CAMEL phase 3. The detailed description of the supported
methods is given in the chapter 8.

4.1 Application initiated call setup

The following sequence diagram shows an application creating a call between party A and party B. Here, a call is
created first. Then party A's call leg is created before events are requested on it for answer and then routed to the call.
On answer fromParty A, an announcement is played indicating that the call is being set up to party B. While the
announcement is being played, party B's call leg is created and then events are requested on it for answer. On answer
from Party B the announcement is cancelled and party B is routed to the call.

The service may as a variation be extended to include 3 parties (or more). After the two party call is established, the
application can create a new leg and request to route it to a new destination address in order to establish a 3 party call.

The event that causes this to happen could for example be the report of answer event from B -party or controlled by the
A-party by entering a service code (mid-call event).

The procedure for call setup to party Cis exactly the same as for the set up of the connection to party B (sequence 13 to
17 in the sequence diagram).

3GPP

Release 9 11 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

: (Logical & AppPartyA: AppPartyB : < o o PartyA: PartyB : = :IpUiCall
View::|| Logit IpAppMultiPartyCall| | (IpAppMultiPartyCallLeq) | | (IpAppMultiPartyCallLeq)| |IpAppUICall| |IpMultiPartyCallControlManager| |IpMultiPartyCall| | IpCallLeg || IpCallLeg ||lpUIManager|

1: new()
H 2: createCall() |
|‘ 3: new() |
T 4: setCallback() |
| 5: createCallLeg() |
\‘ >pp 6inen)
7: éventReportReq() |
H routeReq() |
D 9: eventReportRes ()
| L
| 10: createUICall()
H 11: sendinfoReq(
H 12 sendinfoRes()
| 13: createCallLeg() 1
14: new()
15: eventReportReq(|)]
|

16: routeReq()

B -
—

17: éventReportRes ()

18: abortActionReq()

19: deassignCall()

1: This message is used to create an object imp lementing the IpAppMultiPartyCall interface.

2: This message requests the object imp lementing the IpMultiPartyCallControlIManager interface to create an object
implementing the IpMultiPartyCall interface.

3: Assuming that the criteria for creating an object imp lementing the IpMultiPartyCall interface (e.g. load control
values not exceeded) is met it is created.

4: Once the object implementing the IpMultiPartyCall interface is created it is used to pass the reference of the object
implementing the IpAppMultiPartyCall interface as the callback reference to the object implementing the
IpMultiPartyCall interface. Note that the reference to the callback interface could already have been passed in the
createCall.

5: This message instructs the object implementing the IpMultiParty Call interface to create a call leg for customer A.

6: Assuming that the criteria for creating an object imp lementing the Ip CallLeg interface is met, message 6 is used to
create it.

7: This message requests the call leg for customer A to inform the application when the call leg answers the call.
8: The call is then routed to the originating call leg.

9: Assuming the call is answered, the object implementing party A's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

10: A UICall object is created and associated with the just created call leg.
11: This message is used to inform party A that the call is being routed to party B.

12: An indication that the dialogue with party A has commenced is returned via message 13 and eventually forwarded
via another message (not shown) to the object imp lementing the IpAppLogic interface.

3GPP

Release 9 12 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

13: This message instructs the object implementing the IpMultiParty Call interface to create a call leg for customer B.
14: Assuming that the criteria for creating a second object imp lementing the IpCallLeg interface is met, it is created.
15: This message requests the call leg for customer B to inform the application when the call leg answers the call.

16: The call is then routed to the call leg.

17: Assuming the call is answered, the object implementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object. This message is then forwarded via another message (not shown) to the
object implementing the IpAppLogic interface.

18: This message then instructs the object implementing the IpUICall interface to stop sendin g announcements to party
A.

19: The application deassigns the call. This will also deassign the associated user interaction.

4.2 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event b eing received
by the call control service. Before the call is routed to the destination number, the calling party is asked fora PIN code.
The code is rejected and the call is cleared.

13: ‘forward event'

: (Logical < - < : IpMultiPartyCallControlManager < 4 - IpUiCall
View::IpAppL... IpAppMultiPartyCallControlManager IpAppMultiPartyCall | | IpAppUICall IpMultiPartyCall IpUIM
ﬁ 1: new() |
‘ 2: createNotification(|)
3: reportNotification() jj
i 4: 'forward event'
[5: new()
‘ 6; getCallLegs()
7: createUlICall()
8: sendInfoAndCollectReq()
g 9: sendInfoAndCollectRes() Lﬁ
ﬁ‘ 10: forward event
11: sendinfoReq()
T
12: sendinfoRes() |
|

£4: release()

15: release()

L
|
|

1: This message is used by the application to create an object imp lementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for

3GPP

Release 9 13 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message
(not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for
creating an object imp lementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other
messages (not shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object imp lementing the I[pMultiPartyCallControlManager using the return
parameter of the callEventNotify.

6: The application requests a list of all the legs currently in the call.

7: This message is used to create a UlCall object that is associated with the incoming leg ofthe call.
8: The call barring service dialogue is invoked.

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the IpAppLogic

11: Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the
call cannot be completed.

12: This message passes the indication that the additional dialogue has been sent.
13: This message is used to forward the previous message to the IpAppLogic.
14: No more Ul is required, so the UICall object is released.

15: This message is used by the application to clear the call.

4.3 Call forwarding on Busy Service

The following sequence diagram shows an application establishing a call forwarding on busy.

When a call is made from A to B but the B-party is detected to be busy, then the application is informed of this and sets
up a connection towards a C party. The C party can for instance be a voicemail system.

3GPP

Release 9 14 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Applogic ApplegC: Appleg A: AppCall : App CCM : CCM: Call: Leg A: legB: legC: scs
IpAppCallLeg || IpAppCallleg IpAppMultiPartyCall | | IpAppMultiPartyCallControlManager | | IpMultiPartyCallControlManager | | IpMultiPartyCall IpCallLeg IpCallLeg IpCallLeg
1 1
| 1: "new’

| |
| |
2: createNotification() \D ; 3 .
: "armtrigger”
H 99 u
[4:"trigger event: Busy" |
| 5: ":hecki‘}pphcalion interested” H
; 6:"new"
} Il 7:"new"
|
| 8: "statetransition to Active”
| 7 o
| T i ition to Releasing"
| =
|
i 12: "forward event" 11: reportNotification() [
} 13: "new"
L
14:"hew"
U 15: "new"
16: createCallLeg() 17: "new’
18: "state transition to Idle”
19: eventReportReq()
20: routeReq() |
2T ransition to Active"
P—|
22 "inform Call objett"
23: continueProcessing() [H
|
24: "inform Call object”
25: "continue call processing"
26: "C-party answer”
27: eventReportRes() | :
28; "forward event” H |
L I 1
|
|
|
|
|

1: This message is used by the application to create an object imp lementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

4: When a new call, that matches the event criteria, arrives a message ("busy") is directed to the object imp lementing
the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object imp lementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg objects.

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: The new Call Leg instance transits to state Active.

11: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

12: This message is used to forward the message to the IpAppLogic.

13: This message is used by the application to create an object imp lementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object imp lementing the IpMultiPartyCallControlMana ger using the return
parameter of the reportNotification.

14: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.

15: A new AppCallLeg C is created to receive callbacks for another leg.

3GPP

Release 9 15 3GPP TS 29.198-4-3 V9.0.0 (2009-12)
16: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

19: The application requests to be notified (monitor mode "INTERRUPT") when party C answers the call.

20: The application requests to route the terminating leg to reach the associated party C.

The application may request information about the original destination address be sent by setting up the field
P CALL APP ORIGINAL DESTINATION ADDRESS of TpCallAppInfo in the request to route the call leg to the
remote party C.

23: The application requests to resume call processing for the terminating call leg to party B to terminate the leg.
Alternative the application could request to deassign the leg to party B for example if it is not interested in possible
requested call leg information (getInfoRes, superviseRes).

When the terminating call leg is destroyed, the AppLeg B is notified (callLegEnded) and the event is forwarded to the
application logic (not shown).

25: As aresult call processing is resumed in the network that will try to reach the associated party C.
26: When the party C answers the call, the termination call leg is notified.

27: Assuming the call is answered, the object implementing party C's Ip CallLeg interface passes the result of the call
being answered back to its callback object.

28: This answer message is then forwarded to the object implementing the IpAppLogic interface.

4.4 Call Information Collect Service

The following sequence diagram shows an application monitoring a call between party A and a party B in order to
collect call information at the end of'the call for e.g. charging and/or statistic information collection purposes. The
service may apply to ordinary two-party calls, but could also include a number translation of the dialled number and
special charging (e.g. a premium rate service).

Additional call leg related information is requested with the getInfoReq and superviseReq methods.

The answer and call release events are in this service example requested to be reported in notify mode and additional
call leg related information is requested with the getinfoReq and superviseReq methods in order to illustrate the
information that can be collected and sent to the application at the end of the call.

Furthermore the diagram shows the order in which information is sent to the application: network release event
followed by possible requested call leg information, then the destruction of the call leg object (callLeg Ended) and
finally the destruction of the call object (callEnded).

3GPP

Release 9 16 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Applogic ApplegB: Appleg A: I App CCM © CCM: Call Leg A: LegB: SCs
IpAppCallLeg | allL tyCall i allC IpMultiPartyCallControlManager IpMultiPartyCall IpCallLeg IpCallLeg
| o | | |
| |
2) 1 ; ;
3:"armtrigger” |
|
|
T 4 "frigger event: Analysed Information” |
; 5: "check |Bspphcall on interested” H
| T
| p=m—
1 6: "new"
| L 7:"new"
|
|
| 8: "statetransition to Active”
| P—
| 9: reportNotification() H
| 10: "forward event" [a
EJ 11: "new" \‘
12:"hew’ L
13: "new"
[14: createCallLeg()

15: 'Inew"
[16: "s|LtL‘ transition to Idle”

Pm—

17: eventReportReq ()

18: superviseReq()

19: getinfoReq() \LJ

20: setChargePTan() m

21: routeReq() ‘

22:"st; ; transition to Active'

23: “inform|Call object" p=m—
<~
24: eventReportReq() [

25: getinforeq () i

26: continueProcessing() m‘

27: "inform Call ob;cfil‘

- !

U 28: "%antinue call processing”

T
|
129: "B party. answer"i

30: eventReportRes()

3L "forward event’;

|

32 "Di from A-party"

33: "state wcmswllon to Releasing"

41:")

&

Disconnect from B-party”

42: "state {!,Jansmcn to Releasi %

=

34: eventReportRes() Zl T
35: "forward event"

U 4[36: getinfoRes()

| 37: "forward event”
D‘%4 38: callLegEnded()

[

} 39: "forward event" T 40: “inform Call omeg'
I [

[

|

|

|

|

|

|

|

|

|

43: eventReportRes()

i 44; "forward event

f

D 45: getinfoRes()

i 46: "forward event']

D 47: superviseRes()

| 48: "forward event

49: callLegEnded()

| 50: "forward event’
=z
[

X

51: "inform|Call object"

T
S e X ——

52 callEnded() (J

53: "forward event" "

]

1: This message is used by the application to create an object imp lementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

3GPP

Release 9 17 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

4: When a new call, that matches the event criteria, arrives a message ("analysed information") is directed to the object
implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object imp lementing the
IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg object

6: A new MultiPartyCall object is created to handle this particular call.
7: A new CallLeg object corresponding to Party A is created.
8: The new Call Leg instance transits to state Active.

9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt"

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object implementing the I[pMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.

17: The application requests to be notified (monitor mode "NOTIFY") when party B answers the calland when the leg
to B-party is released.

18: The application requests to supervise the call leg to party B.

19: The application requests information associated with the call leg to party B for example to calculate charging.
20: The application requests a specific charge plan to be set for the call leg to party B.

21: The application requests to route the terminating leg to reach the associated party B.

22: The Call Leg instance transits to state Active.

24: The application requests to be notified (monitor mode "Notify") when the leg to A-party is released.

25: The application requests information associated with the call leg to party A for example to calculate charging.

26: The application requests to resume call processing for the originating call leg. As a result call processing is resumed
in the network that will try to reach the associated party B.

29: When the B-party answers the call, the termination call leg is notified.

30: Assuming the call is answered, the object imp lementing party B's IpCallLeg interface passes the result of the call
being answered back to its callback object (monitor mode "NOTIFY").

31: This answer message is then forwarded.

32: When the A-party releases the call, the originating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "releasing state".

34: The application IpAppLeg A is notified, as the release event has been requested to be reported in Notify mode.
35: The event is forwarded to the application logic
36: The call leg information is reported.

37: The event is forwarded to the application logic.

3GPP

Release 9 18 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

38: The origination call leg is destroyed, the AppLeg A is notified.
39: The event is forwarded to the application logic

41: When the B-party releases the call or the call is released as a result of the release request fromparty A, i.e. an
"originating release" indication, the terminating call leg is notified and makes a transition to "releasing state".

43:Ifa network release event is received being a "terminating release" indication fromcalled party B, the application
IpAppLeg B is notified, as the release event from party B has been requested to be reported in NOTIFY mode.

Note that no report is sent if the release is caused by propagation of network release event being an "originating
release" indication coming from calling party A.

44: The event is forwarded to the application logic.

45: The call leg information is reported.

46: The event is forwarded to the application logic.

47: The supervised call leg in formation is reported.

48: The event is forwarded to the application logic.

49: The terminating call leg is destroyed, the AppLeg B is notified.
50: The event is forwarded to the application logic.

52: Assuming the IpCall object has been informed that the legs have been destroyed, the IpAppMultiPartyCall is
notified that the call is ended .

53: The event is forwarded to the application logic.

4.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being
received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID
and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is
then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to
the application. The call is then routed to the destination party. Sometime during the call the calling party enters #5'
which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination
party, to which it is then routed.

3GPP

Release 9 19 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

sendinfoAndCollectRes()

“(Logical & 2 AppPanyB ‘ AopPartyA: || Avppanye Y ‘ & ‘ Y PartyA PartyB : ParyB': & ipUICall
ogic) | | IpAppMultiParyCaliControlManager| |IpAppMultiPartyCall| | ipAppCallLea || ipAppCallLeg || ssCalieq || jpappuiCall| | allc IpMultiPartyCall| | IpCalileg || IpCallLeg | | IpCallleq ||lpUiManager
| 1 new) |
| | 2 createNotifcgtion() |
H 3 reportoticatkn() T
4 fomard event
5: ppw)
& gecalegst
D 7 createuicall|)
D & sendinfoafdColieciReal)

10: sendinfoAndCollectRea()

1: sendinfoAndColletiRes()

12: setCalbagkWithSessioniD()
13: evenfReportRea()
14: new)
15: createCalLeq)
16: eventReporiRed()
17: routeReq(|
T 19: “forward event 18: eventReportRes(|) |
T 20: attachfediaRea() ﬂ
| | 21: eventReportRes()
| 22: "forvard event” I
i T
| 23 release()
U 24: sendinfoAndColectReal)
5: sendinfoAndColletRes() |
261 new)]
U 27: cfeateAndRouteCall(
28: new)
26: eventReportRes() |
30 eventReporiRes()
31: Tomward event
| 22 callEnded(
| 33 Torwhrd event
34 useriteracton aulDetected!()
35: Yopward
| 36: deassignCall{)

1: This message is used by the application to create an object imp lementing the IpAppMultiPartyCallControIManager
interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range result in the
caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event
criteria set in message 2, arrives a message (not shown) is directed to the object implementing the
IpMultiPartyCallControlManager. Assuming that the criteria for creating an object imp lementing the IpMultiPartyCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface.

3GPP

Release 9 20 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object imp lementing the IpMultiPartyCallControlManager using the return
parameter of message 3.

6: This message returns the call legs currently in the call. In principle a reference to the call leg of the calling party is
already obtained by the application when it was notified of the new call event.

7: This message is used to associate a user interaction object with the calling party.
8: The initial card service dialogue is invoked using this message.

9: The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this
message and eventually forwarded via another message (not shown) to the IpAppLogic.

10: Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11: The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

12: This message is used to forward the address of the callback object.
13: The trigger for follow-on calls is set (on service code).

14: A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg
object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of'the
legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

16: The application requests to be notified when the leg is answered.

17: The application routes the leg. As a result the network will try to reach the associated party.
18: When the B-party answers the call, the application is notified.

19: The event is forwarded to the application logic.

20: Legs that are created and routed explicitly are by default in state detached. This means that the media is not
connected to the other parties in the call. In order to allow inband communication between the new party and the other
parties in the call the media have to be explicitly attached.

21: At some time during the call the calling party enters '#5'. This causes this message to be sent to the object
implementing the IpAppCalllLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22:The event is forwarded to the application.
23: This message releases the called party.
24: Another user interaction dialogue is invoked.

25: The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via
another message (not shown) to the IpAppLogic.

26: A new AppCallLeg is created to receive callbacks for another leg.
27: The call is then forward routed to the new destination party.
28: As aresult a new Callleg object is created.

29: This message passes the result of the call being answered to its callback object and is eventually forwarded via
another message (not shown) to the IpAppLogic.

30: When the A-party terminates the application is informed.

31: The event is forwarded to the application logic.

3GPP

Release 9 21 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

32: Since the release of the A-party will in this case terminate the entire call, the application is also notified with this
message.

33: The event is forwarded to the application logic.

34: Since the user interaction object were not released at the moment that the call terminated, the application receives
this message to indicate that the Ul resources are released in the gateway and no further communication is possible.

35: The event is forwarded to the application logic.

36: The application deassigns the call object.

4.6 Hotline Service

The following sequence diagram shows an application establishing a call between party A and pre-arranged party B
defined to constitute a hot-line address. The address of the destination party is provided by the application as the calling
party makes a call attempt (goes off-hook) and do not dial any number within a predefined time. In this case a pre-
defined number (hot-line number) is provided by the application. The call is then routed to the pre-defined destination

party.

The call release is monitored to enable the sending of information to the application at call release, e.g. for charging
purposes.

Note that this service could be extended as follows:

Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now
prompted to enter the address of a new destination party, to which it is then routed.

3GPP

Release 9 22 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Applogic ApplegB: ApplegA: Call: AppCCM : CCM: call Leg A LegB: scs
IpAppCaliLeg IpAppCallleg all allC: IpMultiPartyCallC IpMultiPartyCall IpCaliLeg IpCallleg
| T T
| 1:"new’ i i |
| |
2) \U | |
| 3:"armtrigger" |
u}
T 4:"triggef event: Originating Call Attempt Authorised” |
| 5 "check]flapplication interested" H
| sl
|
| < 6:"new’
1 5 7:"new’
|
1 8: "state'transition to Initiating’
| 9: reportNotification() H:I
i 10: "forward event” [T
D 11: "new"
12: "hew’ [
13: "new’
14: createCallLeg()
15: "new’
[16: "sLle transition to Idle”
17: eventReportReq() \H:I
18: routeReq() |
19: sl\z-ltl transition to Active”
20: "inform Gall object”
<
21: eventReportReq() [
U 22: continueProcessing() |
[23: "inform Call objecm
U 24: "lcpntinue call processing”
f | L
25: event "address_analysed”
D EE—
26: "sé& transition to Active”
I |
27: Disconnect from B-party”
28 "slateEAansilicn to Releasin|
29: eventReportRes()
30: "forward event”

[‘J 31: callLegEnded()

|

| 32 "orward event"

| 33: “inform Call object”

rﬂ [

34: "Disconnett from A-party’

<~
35 “slalEUansmcn toReleasing”

—
36: callLegEnded()
37: "forward event" U 38: "inform Call object
L L
39: callEnded()
40: "forward event U \‘

1: This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager
interface.

2: This message is sent by the application to enable notifications on new call events.

4: When a new call, that matches the event criteria, arrives a message ("originating call attempt authorised") is directed
to the object imp lementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object
implementing the IpMultiPartyCall interface is met, other messages are used to create the call and associated call leg
object.

6: A new MultiPartyCall object is created to handle this particular call.

7: A new CallLeg object corresponding to Party A is created.

3GPP

Release 9 23 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

8: The new Call Leg instance transits to state Initiating.

9: This message is used to pass the new call event to the object implementing the
IpAppMultiPartyCallControlManager interface. Applied monitor mode is "interrupt".

10: This message is used to forward message 9 to the IpAppLogic.

11: This message is used by the application to create an object imp lementing the IpAppMultiPartyCall interface. The
reference to this object is passed back to the object imp lementing the IpMultiPartyCallControlManager using the return
parameter of the reportNotification.

12: A new AppCallLeg is created to receive callbacks for the Leg corresponding to party A.
13: A new AppCallLeg is created to receive callbacks for another leg.

14: This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the
network.

15: A new CallLeg corresponding to party B is created.
16: A transition to state Idle is made after the Call leg has been created.
17: The application requests to be notified (monitor mode "NOTIFY") when the leg to party B is released.

18: The application requests to route the terminating leg to reach the associated party as specified by the application
("hot-line number").

19: The Call Leg instance transits to state Active.
21: The application requests to be notified (monitor mode "Notify") when the leg to A -party is released.

22: The application requests to resume call processing for the originating call leg. As a result call processing is resumed
in the network that will try to reach the associated party as specified by the application (E.164 number provided by
application).

25: The originating call leg is notified that the number (provided by application) has been analysed by the network and
the originating call leg STD makes a transition to "active" state. The application is not notified as it has not requested
this event to be reported.

27: When the B-party releases the call, the terminating call leg is notified (monitor mode "NOTIFY") and makes a
transition to "Releasing state".

29: The application is notified, as the release event has been requested to be reported in Notify mode.
30: The event is forwarded to the application logic.

31: The terminating call leg is destroyed, the AppLeg B is notified.

32: This answer message is then forwarded.

34: When the call release ("terminating release" indication) is propagated in the network toward the party A, the
originating call leg is notified and makes a transition to "releasing state". This release event (being propagated from
party B) is not reported to the application.

36: When the originating call leg is destroyed, the AppLeg A is notified.
37: The event is forwarded to the application logic.
39: When all legs have been destroyed, the IpAppMultiParty Call is notified that the call is ended.

40: The event is forwarded to the application logic.

3GPP

Release 9 24 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

4.7 Network Controlled Notifications

The following sequence diagram shows how an application can receive notifications that have not been created by the
application, but are provisioned from within the network.

AppLogic o o
IpAppMultiParty CallControlManager IpMultiParty CallControlManager
1: new()

gl

2: enableNotiﬁcations()

3: reportNotification()

4: 'forward event' (
5: reportNotification(...
6: forward event' (

7: disableNotifications()

1: The application is started. The application creates a new IpAppMultiPartyCallControlManager to handle callbacks.

2: The enableNotifications method is invoked on the IpMultiPartyCallControlManager interface to indicate that the
application is ready to receive notifications that are created in the network. For illustrative purposes we assume
notifications of type "B" are created in the network.

3: When a network created trigger occurs the application is notified on the callback interface.
4: The event is forwarded to the application.
5: When a network created trigger occurs the application is notified on the callback interface.
6: The event is forwarded to the application.

7: When the application does not want to receive notifications created in the network anymore, it invokes
disableNotifications on the IpMultiPartyCallConrolManager interface. From now on the gateway will not send any
notifications to the application that are created in the network.

3GPP

Release 9 25 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

4.8 Use of the Redirected event
AppLogic . IpAppCallLeg : IpCallLeg

1: eventReportReq()

2. routeReq()

3: tReportR
The Call and the Leg eventReportRes() o

have already been U
created.

4: eventReportRes()

1: The application has already created the call and a call leg. It places an event report request for the ANSWER and
REDIRECTED events in NOTIFY mode.

2: The application routes the call leg.

3: The call is redirected within the network and the application is informed. The new destination address is passed
within the event. The event is not disarmed, so subsequent redirections will also be reported. Also, the same call leg is
used so the application does not have to create a new one.

4: The call is answered at its new destination.

5 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the multi party call control application
package and the multi party call control service package. This class diagramshows the interfaces of the multi-party call
control application package and their relations to the interfaces of the multi-party call control service package.

3GPP

Release 9 26 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

<<Interface>>
IpInterface
(from csapi)

7

<<Interface>>
IpAppCallLeg
<<Interface>> —<Interface>> IS
IpAppMultiPartyCallControlM anager IpAppMultiPartyCall SeventReportRes)
LT {frommprcs) %eventReportErr()
%®attachMediaRes))
N _—
‘reilalc':a\nch:ttlthatlonO 1 0..n %getinfoRes() 1 0..n| %attachMediaErr(
‘;aana Derrntgrru wdg | 1 %getinfoEry | T 1 %detachMediaRes()
“managerResumped() ®supeniseRes)) ®detachMediaErr()
g %supeniseErr() %getinfoRes()
%*callOverloadEncounteredy) %callEnded() SgetinfoErr()
%
callOverloadCeasaci() %createAndRouteCall LegEr() ®routeErr()
%abortMultiple Calls) SaupenviseRes)
A
/\ FsupervissErr()
; ; %callLegEnded()

: <Gl sessE /?\<<um5>>
<<uses> | :

<<Interface>>
IpCallLeg
(frommpces)
<<Interface>> <<Interface>>
i LS
IpMulti PartyCallControlManager IpM ulti Party Call uteReal)
{from rrpccs) ‘eventReportReq()
(frommpccs) “release()
“+ LD
%createCall() ‘getCaIILegs() ‘getlnfoReq()
. . createCallLeg() getCall()
%createNotification() 1 0.ng 0.n o)
- . . createAndRouteCallLe gReq() attachMediaReq()
destroyNotification() %ral 0 SdetachMediaReq()
%changeNotification() release etacniiedianeq
N ®deassgnCall() 1 0.4 ®getCumentDedinationAddress()
setCallLoadControl () % e : .
. . getinfoReq() continueProcessing()
%cnableNotifications() % %
%disabloNotificati setChargePlan() setChargePlan()
isableNotifi cations() ®setAdviceOfCh ®cetAdvice OfCh
“getNextNotiﬁcation(} e v.lce arge() = v.lce arge()
%supeniseReq() %supeniseReq()
%deassign()
%getProperties()
%setProperties()

Figure: Application Interfaces

This class diagram shows the interfaces of the multi-party call control service package.

3GPP

Release 9 27 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

<<Interface>>
IpSenice
(fram csapi)

%setCallback()
%setCallbackWith SessionID()

<<Interface>>
IpCallLeg
(from m pees)
< <Interface>> |<n;|n|:?§a oy Call %
IpMulti Party CallControlManager pIutartyt-a routeRed)
(from m pees) %eventReportReq()
(from mpces)
%release()
%getCallLegs %getinfoRe
+ getCallLegs() g q0
‘crea:eﬁaltl_%) tion() 1 0. ¥createCallLeg() 1 0. ¥getCall)
createNotificationg (|1 4 %) %createAndRouteCallLegReq() = %attachMediaReq()
%destroyNotification() N N :
%ch Notificati release() detachMediaRec)
changeNotification() oassi % M
gnCall() getCurrentDestinationAddress()
%setCallLoadControl() N Yoot ‘
% L . getinfoReq() continueProcessing()
enableNotifications() % %
S . . setChargePlan() setChargePlan()
disableNotifications() % X % |
% ethlextNotification() s etAdviceOfCharge() setAdviceOfCharge()
g "super\»iseReq() "super\»iseReq()
%®deassign()
%®getProperties()
“setProperties()
Figure: Service Interfaces

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg
manage ment. It also allows for multi-party calls to be established, i.e. up to a service specific number of legs can be
connected simultaneously to the same call.

The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall,
IpCallLeg interfaces that interface to services provided by the network. Some methods are asy nchronous, in that they
do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more
calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement
IpAppMultiPartyCallControlManager, IpAppMultiParty Call and IpAppCallLeg to provide the callback mechanism.

6.1 Interface Class IpMultiPartyCallControlIManager

Inherits from: Ip Service

This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the ST D shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented, or the enableNotifications() and disableNotifications() methods shall be implemented.

3GPP

Release 9 28 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

<<Interface>>

IpMultiParty Call ControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiParty Callldentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest
. in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

enableNotifications (appCallControlManager : in IpAppMultiPartyCallControlManagerRef) : TpAssignmentID
disableNotifications () : void

getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppMultiParty CallControlManager should already have been
passed to the IpMultiPartyCallControlManager, otherwise the call control will not be able to report a callAborted() to
the application. The application shall invoke setCallback() prior to createCall() if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef
Specifies the application interface for callbacks from the call created.

Returns
TpMultiPartyCallIdentifier

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.

3GPP

Release 9 29 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

If some application already requested notifications with criteria that overlap the specified criteria or the specified
criteria overlap with criteria already present in the network (when provisioned from within the network), the request is
refused with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application
controlling the call or session at the same point in time during call or session processing.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

If a notification is requested by an application with an event type that is mutually exclusive compared to existing
requested event types, then there is no need to check against the rest of the criteria for overlap. An example could be
one application that trigger on "user busy" together with another application that trigger on "answer" - both requests
should be allowed as only one can occur on the same call or session.

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problems in
networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap
criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can
prevent other applications to be invoked in the case single point of application control applies in the network.

However, the criteria check for overlap may as a network option be overruled by Multi Service networks allowing more
services or applications to gain control of the same call or session at the same point in time. Refer to Call Control
Common Definitions subpart of this specification for further details on application control over a call or session.

Setting the callback reference:

The callback reference can be registered either in a) createNotication() or b) explicitly with a setCallBack() method e.g.
depending on how the application provides its callback reference.

Case a:
Froman efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:

The createNotification() with no callback reference (" Null" value) is used where (e.g. due to distributed application
logic) the callback reference is provided previously in a setCallback(). If no callback reference has been provided
previously to the service, the exception, P NO_CALLBACK_ADDRESS_SET shall be raised.

In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Setting additional callback:

If the same application invokes this method multip le times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentlD. The gateway shall use the most recent callback interface provided by the application using this
method. In the event that a callback reference fails or is no longer available, the next most recent callback reference
available shall be used.

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly -enabled event
notification.

Parameters
appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defau lts to the interface specified previously via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network™, "answer", "no answer",
"busy”. Individual addresses or address ranges may be specified for destination and/or origination.

3GPP

Release 9 30 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Returns
TpAssignmentID

Raises

TpCommonExceptions, P_INVALID CRITERIA, P_INVALID INTERFACE TYPE,
P_INVALID EVENT TYPE

6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only applies to notifications created
with create Notification().

Parameters
assignmentID : in TpAssignmentID

Specifies the assignment ID given by the multi party call control manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

6.1.4 Method changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be rep laced with the specified criteria.

Parameters
assignmentID : in TpAssignmentID

Specifies the 1D assigned by the multi party call control manager interface for the event notification. If two callbacks
have been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT ID, P_INVALID CRITERIA,
P_INVALID EVENT TYPE

6.1.5 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

3GPP

Release 9 31 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application).

A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanismto use (for example, ad mit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns
TpAssignmentID

Raises
TpCommonExceptions, P _INVALID ADDRESS, P _UNSUPPORTED ADDRESS PLAN

6.1.6 Method enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within
the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network manage ment
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

Setting the callback reference:

The callback reference can be registered either in a) enableNotications() or b) explicitly with a setCallback() method
e.g. depending on how the application provides its callback reference.

Case a:
For an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:

The enableNotifications() with no callback reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback reference is provided previously in a setCallback(). If no callback reference has been provided
previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised.

In case the enableNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Setting additional Call back:

If the same application invokes this method multip le times with different IpAppMultiPartyCallControlManager
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The gateway shall use the most recent callback interface provided by the application using this

3GPP

Release 9 32 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

method. In the event that a callback reference fails or is no longer availab le, the next most recent callback reference
available shall be used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it
is NOT recommended to use both mechanis ms on the same service manager.

The methods changeNotification(), getNextNotification(), and destroyNotification() do not apply to notifications
provisioned in the network and enabled using enableNotifications(). These only apply to natifications created using
createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in
any reportNotification() that relates to notifications provisioned from within the networkRepeated calls to
enableNotifications() return the same assignment ID.

Parameters
appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defau lts to the interface specified previously via the setCallback() method.

Returns
TpAssignmentID

Raises

TpCommonExceptions

6.1.7 Method disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these natifications that are NOT set using createNotification() but via, for
instance, a network manage ment system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

6.1.8 Method getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since a lot of data can potentially be returned (which might cause problem in the middleware), this method must be
used in an iterative way. Each method invocation may return part of the total set of notifications if the set is too large to
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is
requesting more notifications fromthe total set of notifications or is requesting that the total set of natifications shall be
returned fromthe beginning.

Returns notificationRequestedSetEntry: The set of notifications and an indication whether all o ff the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.

Note that the (maximum) number of items provided to the application is determined by the gateway.

3GPP

Release 9 33 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

reset : in TpBoolean
TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning.

FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.

The first time this method is invoked, reset shall be set to TRUE. Following the receipt of a final indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may
be thrown if these conditions are not met.

Returns
TpNotificationRequestedSetEntry

Raises

TpCommonExceptions

6.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: Ip Interface

The Multi-Party call control manager application interface provides the application call control management functions
to the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallldentifier, callLegReferenceSet : in
TpCallLegldentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void
managerinterrupted () : woid

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void
callOverloadCeased (assignmentID : in TpAssignmentID) : woid

abortMultipleCalls (callReferenceSet : in TpSessionIDSet) : void

6.2.1 Method reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Setting the callback reference:

3GPP

Release 9 34 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode.

When reportNotification() is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. createAndRouteCallLegReq() is performed until the
callback interface for the new call and/or new call leg has been passed to the gateway, either through an explicit
setCallbackW ithSessionlID() invocation, or via the return of the reportNotification() method.

The call back reference can be registered either in a) reportNotification() or b) explicitly with a
setCallbackW ithSessionID() method depending on how the application provides its callback reference.

Case a:
Froman efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method.
Case b:

The reportNotification() with no callback reference ("Null” value) is used where (e.g. due to distributed application
logic) the callback reference is provided previously in a setCallbackWithSessionID(). If no callback reference has been
provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further
application invocations related to the call shall be permitted.

In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered previously by setCallbackWithSessionID().

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the
new call and/or new call leg. Ifthe application has previously explicitly passed a reference to the callback interface
using a setCallbackWithSessionID() invocation, this parameter may be setto P_APP_CALLBACK_UNDEFINED, or
if supplied must be the same as that provided during the setCallbackWithSessionID().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode and in case
b).

Parameters
callReference : in TpMultiPartyCallldentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in
NOTIFY mode, this parameter shall be ignored by the application client imp lementation, and consequently the
implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses.

calllLegReferenceSet : in TpCalllLegldentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. fromthe
notificationInfo can be found on whose behalf the notification was sent.

However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the imp lementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationInfo : in TpCallNotificationInfo
Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

3GPP

Release 9 35 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Returns
TpAppMultiPartyCallBack

6.2.2 Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID
Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.3 Method managerinterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoad Control. This implies the addressrange for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

3GPP

Release 9 36 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentlID corresponding to the associated setCallLoad Control. This implies the addressrange for
within which the overload has been ceased.

6.2.7 Method abortMultipleCalls()

The service may invoke this method on the IpAppCallControlManager interface to indicate that a number of ongoing
call sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the calls. This may be used for example in the event of service failure and recovery in order to instruct
the application that a number of call sessions have failed. The service shall provide a set of call sessionIDs indicating to
the application the call sessions that have aborted. In the case that the service invokes this method and provides an
empty set of sessionlDs, this shall be used to indicate that all call sessions previously active on the
IpCallControlManager interface have been aborted.

Parameters

callReferenceSet : in TpSessionIDSet

Specifies the set of sessionIDs of calls that have aborted or terminated abnormally. The empty set shall be used to
indicate that all calls have aborted.

6.3 Interface Class IpMultiPartyCall

Inherits from: Ip Service

The Multi-Party Call provides the possibility to control the call routing, to request information fromthe call, control the
charging of the call, to release the call and to supervise the call. It also gives the possibility to manage call legs
explicitly. An application may create more then one call leg.

This interface shall be implemented by a Multi Party Call Control SCF. The release() and deassign Call() methods,
and either the createCallLeg() or the createAndRouteCallLegReq(), shall be implemented as a minimum require ment.

3GPP

Release 9 37 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

<<Interface>>

IpMultiPartyCall

getCallLegs (callSessionID : in TpSessionID) : TpCallLegldentifierSet
createCallLeg (callSessionID : in TpSessionID, appCallLeg : in IpAppCallLegRef) : TpCallLegldentifier

createAndRouteCallLegReq (callSessionID : in TpSessionID, eventsRequested : in
TpCallEventRequestSet, targetAddress : in TpAddress, originatingAddress : in TpAddress, appinfo : in
TpCallAppInfoSet, appLeginterface : in IpAppCallLegRef) : TpCallLegldentifier

release (callSessionID : in TpSessionID, cause : in TpReleaseCause) : wid

deassignCall (callSessionID : in TpSessionID) : void

getinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : woid
setChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

superviseReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : wid

6.3.1 Method getCallLegs()

This method requests the identification of the call leg objects associated with the call object. Returns the legs in the
order of creation.

Returns callLeg List: Specifies the call legs associated with the call. The set contains both the sessionIDs and the
interface references.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.
Returns
TpCalllegIdentifierSet

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.3.2 Method createCallLeg()

This method requests the creation of a new call leg object.

Returns callLeg: Specifies the interface and sessionID of the call leg created.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

3GPP

Release 9 38 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

appCallleg : in IpAppCalllegRef
Specifies the application interface for callbacks from the call leg created.

Returns
TpCalllegIdentifier

Raises
TpCommonExceptions, P_INVALID SESSION ID, P INVALID INTERFACE TYPE

6.3.3 Method createAndRouteCallLegReq()

This asynchronous operation requests creation and routing of a new callLeg. In case the connection to the destination
party is established successfully the CallLeg is attached to the call, i.e. no explicit attachMediaReq() operation is
needed. Requested events will be reported on the IpAppCallLeg interface. This interface the application must provide
through the appLeglinterface parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS _PLAN_NOT_PRESENT), the information provided in corresponding addresses fromthe route is used,
otherwise the network or gateway provided numbers will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

If this method is invoked, and call reports have been requested, yet the IpAppCallLeg interface parameter is NULL, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Note that for application initiated calls in some networks the result of the first createAndRouteCallLegReq() has to be
received before the next createAndRouteCallLegReq() can be invoked. The Service Property

P_PARALLEL_INITIAL ROUTING_REQUESTS (see clause 8.1 of the present document) indicates how a specific
implementation handles the initial createAndRouteCallLegReq(). This method shall throw P_TASK_REFUSED ifan
application is not allowed to use parallel routing requests.

Returns callLeg Reference: Specifies the reference to the CallLeg interface that was created.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

eventsRequested : in TpCallEventRequestSet

Specifies the event specific criteria used by the application to define the events required. Only events that meet these

non

criteria are reported. Examples of events are "address analysed”, "answer" and "release"”.

targetAddress : in TpAddress
Specifies the destination party to which the call should be routed.

originatingAddress : in TpAddress
Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-re lated information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

3GPP

Release 9 39 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

applegInterface : in IpAppCalllegRef

Specifies a reference to the application interface that imp lements the callback interface for the new call leg. Requested
events will be reported by the eventReportRes() operation on this interface.

Returns
TpCalllegIdentifier

Raises

TpCommonExceptions, P_INVALID SESSION ID, P _INVALID INTERFACE TYPE,
P_INVALID ADDRESS, P_UNSUPPORTED ADDRESS PLAN, P INVALID NETWORK STATE,
P_INVALID EVENT TYPE, P INVALID CRITERIA

6.3.4 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g. by means of getinfoReq) these reports
will still be sent to the application.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

cause : in TpReleaseCause

Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALID SESSION_ID, P_INVALID NETWORK STATE

6.3.5 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de -assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. Ifa call is de-assigned that has call information reports, call leg event reports or call Leg information
reports requested, then these reports will be disabled and any related information discarded.

When this method is invoked, all outstanding supervision requests will be cancelled.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.3.6 Method getinfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target add ress.

3GPP

Release 9 40 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType
Specifies the call information that is requested.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.3.7 Method setChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan
Specifies the charge plan to use.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.3.8 Method setAdviceOfCharge()

This method allows for advice of charge (A OC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

3GPP

Release 9 41 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Raises

TpCommonExceptions, P_INVALID SESSION_ ID, P INVALID CURRENCY,
P_INVALID AMOUNT

6.3.9 Method superviseReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this operation before it routes a call or a user interaction operation the time measurement will start
as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the call is connected in
the network, e.g. answered by the B-party or the user-interaction system.

treatment : in TpCallSuperviseTreatment
Specifies how the network should react after the granted connection time expired.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.4 Interface Class IpAppMultiPartyCall

Inherits from: Ip Interface

The Multi-Party call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppMultiPartyCall

getinfoRes (callSessionID : in TpSessionlD, callinfoReport : in TpCallinfoReport) : void
getinfoErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : woid
callEnded (callSessionID : in TpSessionlID, report : in TpCallEndedReport) : void

createAndRouteCallLegErr (callSessionID : in TpSessionID, callLegReference : in TpCallLegldentifier,
errorindication : in TpCallError) : wvoid

3GPP

Release 9 42 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

6.4.1 Method getinfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getinfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after reporting of all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport
Specifies the call information requested.

6.4.2 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.4.3 Method superviseRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in this
kind of event.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

report : in TpCallSuperviseReport
Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

6.4.4 Method superviseErr()

This asynchronous method reports a call supervision error to the application.

3GPP

Release 9 43 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.4.5 Method callEnded()

This method indicates to the application that the call has terminated in the network.

Note that the event that caused the call to end might have been received separately if the application was monitoring for
it.
Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport
Specifies the reason the call is terminated.

6.4.6 Method createAndRouteCallLegErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.). Note that the event cases that can be monitored and
correspond to an unsuccessful setup of a connection (e.g. busy, no_answer) will be reported by eventReportRes() and
not by this operation.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

calllLegReference : in TpCalllLegIdentifier
Specifies the reference to the CallLeg interface that was created.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.5 Interface Class IpCallLeg

Inherits from: Ip Service

The call leg interface represents the logical call leg associating a call with an address. The call leg tracks its own states
and allows charging summaries to be accessed. The leg represents the signalling relationship between the call and an
address. An application that uses the IpCallLeg interface to set up connections has good control, e.g. by defining leg
specific event request and can obtain call leg specific report and events.

3GPP

Release 9 44 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

This interface shall be implemented by a Multi Party Call Control SCF. The routeReq(), eventReportReq(),
release(), continueProcessing() and deassign() methods shall be implemented as a minimum require ment.

<<Interface>>

IpCallLeg

routeReq (callLegSessionID : in TpSessionID, targetAddress : in TpAddress, originatingAddress : in
TpAddress, applinfo : in TpCallAppInfoSet, connectionProperties : in TpCallLegConnectionProperties) :
void

eventReportReq (callLegSessionID : in TpSessionID, eventsRequested : in TpCallEventRequestSet) : wid
release (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : wid

getinfoReq (callLegSessionID : in TpSessionID, callLeginfoRequested : in TpCallLeginfoType) : void
getCall (callLegSessionID : in TpSessionID) : TpMultiPartyCallldentifier

attachMediaReq (callLegSessionID : in TpSessionID) : void

detachMediaReq (callLegSessionID : in TpSessionID) : wid

getCurrentDestinationAddress (callLegSessionID : in TpSessionID) : TpAddress

continueProcessing (callLegSessionID : in TpSessionID) : void

setChargePlan (callLegSessionID : in TpSessionlD, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callLegSessionID : in TpSessionID, aOClInfo : in TpAoClInfo, tariffSwitch : in
TpDuration) : void

superviseReq (callLegSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallLegSupervise Treatment) : void

deassign (callLegSessionID : in TpSessionID) : void

getProperties (callLegSessionID : in TpSessionID, propertyNames : in TpCallLegPropertyNameList) :
TpCallLegPropertyList

setProperties (callLegSessionID : in TpSessionID, properties : in TpCallLegPropertyList) : void

6.5.1 Method routeReq()

This asynchronous method requests routing of the call leg to the remote party indicated by the targetAddress.

In case the connection to the destination party is established successfully the CallLeg will be either detached or attached
to the call based on the attach Mechanism values specified in the connectionProperties parameter.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in the corresponding addresses fromthe route is
used, otherwise network or gateway provided addresses will be used.

If the application wishes that the call leg should be represented in the network as being a redirection it should include a
value for the field P_CALL_APP_ORIGINAL_DESTINATION_ADDRESS of TpCallAppInfo.

This operation continues processing of the call leg.

Note that for application initiated calls in some networks the result of the first route Req() has to be received before the
next routeReq() can be invoked. The Service Property P_PARALLEL_INITIAL_ROUTING_REQUESTS (see clause
8.1 of the present document) indicates how a specific implementation handles the initial routeReq().This method shall
throw P_TASK_REFUSED if an application is not allowed to use parallel routing requests.

3GPP

Release 9 45 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

targetAddress : in TpAddress
Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress
Specifies the address of the originating (calling) party.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call leg (such as alerting method, tele-service type, service
identities and interaction indicators).

connectionProperties : in TpCalllegConnectionProperties
Specifies the properties of the connection.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE,
P_INVALID ADDRESS, P_UNSUPPORTED ADDRESS PIAN

6.5.2 Method eventReportReq()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to
observe.

Parameters

calllLegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

eventsRequested : in TpCallEventRequestSet
Specifies the event specific criteria used by the application to define the events required. Only events that meet these

non

criteria are reported. Examples of events are "address analysed”, "answer" and "release".

Raises

TpCommonExceptions, P_INVALID SESSION ID, P INVALID EVENT TYPE,
P_INVALID CRITERIA

6.5.3 Method release()

This method requests the release of the call leg. If successful, the associated address (party) will be released fromthe
call, and the call leg deleted. Note that in some cases releasing the party may lead to release of the complete call in the
network. The application will be informed of this with callEnded().

This operation continues processing of the call leg.

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP

Release 9 46 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

cause : in TpReleaseCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P INVALID NETWORK STATE

6.5.4 Method getinfoReq()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for
example, to calculate charging). Note that in the call leg information must be accessible before the objects of concern
are deleted.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

calllLegInfoRequested : in TpCalllegInfoType
Specifies the call leg information that is requested.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.5.5 Method getCall()

This method requests the call associated with this call leg.

Returns callReference: Specifies the interface and sessionlD of the call associated with this call leg.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

Returns
TpMultiPartyCallIdentifier

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.5.6 Method attachMediaReq()

This method requests that the call leg be attached to its call object. This will allow transmission on all associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

In case this method is invoked while there is still a request to detach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

3GPP

Release 9 47 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

calllegSessionID : in TpSessionID
Specifies the sessionlD of the call leg to attach to the call.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE

6.5.7 Method detachMediaReq()

This method will detach the call leg from its call, i.e. this will prevent transmission on any associated bearer
connections or media streams to and from other parties in the call. The call leg must be in the connected state for this
method to complete successfully.

In case this method is invoked while there is still a request to attach the Media pending, the exception
"P_TASK_REFUSED" will be raised.

Parameters

calllegSessionID : in TpSessionID

Specifies the sessionID of the call leg to detach fromthe call.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P _INVALID NETWORK STATE

6.5.8 Method getCurrentDestinationAddress()

Queries the current address of the destination the leg has been directed to.
Returns the address of the destination point towards which the call leg has been routed.

If this method is invoked on the Originating Call Leg, exception P_INVALID_STATE will be thrown.

Parameters
calllegSessionID : in TpSessionID

Specifies the call session ID of the call leg.

Returns
TpAddress

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.5.9 Method continueProcessing()

This operation continues processing of the call leg. Applications can invoke this operation after call leg processing was
interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call leg processing is not interrupted the exception
P_INVALID_NETWORK_STATE will be raised.

3GPP

Release 9 48 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

Raises
TpCommonExceptions, P_INVALID SESSION_ID, P_INVALID NETWORK STATE

6.5.10 Method setChargePlan()

Set an operator specific charge plan for the call leg.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call party.

callChargePlan : in TpCallChargePlan
Specifies the charge plan to use.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.5.11 Method setAdviceOfCharge()

This method allows for Advice of Charge (AoC) information to be sent to terminals that are capable of receiving this
information.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call party.

aOCInfo : in TpAoCInfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID SESSION ID, P _INVALID CURRENCY,
P_INVALID AMOUNT

6.5.12 Method superviseReq()

The application calls this method to supervise a call leg. The application can set a granted connection time for this call.
If an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

3GPP

Release 9 49 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call party.

time : in TpDuration

Specifies the granted time in milliseconds for the connection. Measurement will start as soon as the callLeg is
connected in the network.

treatment : in TpCalllegSuperviseTreatment
Specifies how the network should react after the granted connection time expired.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.5.13 Method deassign()

This method requests that the relationship between the application and the call leg and associated objects be de-
assigned. It leaves the call leg in progress, however, it purges the specified call leg object so that the application has no
further control of call leg processing. If a call leg is de-assigned that has event reports or call leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should not release or deassign the call leg when received a callLeg Ended() or callEnded(). This
operation continues processing of the call leg.

When this method is invoked, all outstanding supervision requests will be cancelled.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.5.14 Method getProperties()

This synchronous method requests to receive the values of indicated property names if they are available. Examples are
aP_CALL_LEG PROPERTY_ICON (references an image suitable as an iconic representation of the caller or callee),
P_CALL_LEG PROPERTY_INFO (e.g. aweb page), or P_CALL LEG PROPERTY_CARD (abusiness card). The
caller's properties are available on the call leg object representing the originating address and the callee's properties are
available on the call leg object representing callee. If some property value is not available, the property name and value
will not be part of the returned list with properties. Note that parts of the caller and callee's public identity are also
made available through TpAddress.

The Service Property P_CALL_LEG_PROPERTIES (see clause 8.1) indicates the properties that are supported.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

propertyNames : in TpCallLegPropertyNameList
Specifies the property names of the call leg to be made available.

3GPP

Release 9 50 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Returns
TpCalllegPropertylList

Raises

TpCommonExceptions, P_INVALID SESSION ID, P_INVALID NETWORK STATE,
P_INFORMATION NOT AVAILABLE, P_UNAUTHORISED PARAMETER VALUE

6.5.15 Method setProperties()

This synchronous method requests to set the values of indicated property names and their values if they are supported.
Examples are aP_CALL LEG PROPERTY_ICON (references an image suitable as an iconic representation of the
caller or callee), P_CALL_LEG_PROPERTY_INFO (e.g.a web page),or P_ CALL_LEG PROPERTY_CARD (a
business card). The caller's properties are available on the call leg object representing the originating address and the
callee's properties are available on the call leg object representing callee. 1f some property name is not applicable, it
and its value will be ignored. Note that parts of the caller and callee's public identity are also made available through
TpAddress.

The Service Property P_CALL_LEG_PROPERTIES (see clause 8.1) indicates the properties that are supported.

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

properties : in TpCalllegPropertyList
Specifies the properties of the call leg to be set.

Raises

TpCommonExceptions, P_INVALID SESSION_ID, P_INVALID NETWORK STATE,
P _INFORMATION NOT AVAIIABLE, P _UNAUTHORISED PARAMETER VALUE

6.6 Interface Class IpAppCallLeg

Inherits from: Ip Interface

The application call leg interface is implemented by the client application developer and is used to handle responses and
errors associated with requests on the call leg in order to be able to receive leg specific information and events.

3GPP

Release 9 51 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

<<Interface>>

IpAppCallLeg

eventReportRes (callLegSessionID : in TpSessionID, eventinfo : in TpCallEventinfo) : void
eventReportErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
attachMediaRes (callLegSessionID : in TpSessionID) : void

attachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : wid
detachMediaRes (callLegSessionID : in TpSessionID) : void

detachMediaErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void
getinfoRes (callLegSessionID : in TpSessionID, callLegIinfoReport : in TpCallLegInfoReport) : woid
getinfoErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

routeErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : void

superviseRes (callLegSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseErr (callLegSessionID : in TpSessionID, errorindication : in TpCallError) : woid

callLegEnded (callLegSessionID : in TpSessionID, cause : in TpReleaseCause) : void

6.6.1 Method eventReportRes()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid -call
event, the party has requested to disconnect, etc.).

Depending on the type of event received, outstanding requests for events are discarded. The exact details of these so-
called disarming rules are captured in the data definition of the event type.

If this method is invoked for a report with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the
application has control of the call leg. If the application does nothing with the call leg within a specified time period
(the duration which forms a part of the service level agreement), then the connection in the network shall be released
and callLegEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Parameters

calllLegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg on which the event was detected.

eventInfo : in TpCallEventInfo
Specifies data associated with this event.

6.6.2 Method eventReportErr()

This asynchronous method indicates that the request to manage call leg event reports was unsuccessful, and the reason
(forexample, the parameters were incorrect, the request was refused, etc.).

3GPP

Release 9 52 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.6.3 Method attachMediaRes()

This asynchronous method reports the attachment of a call leg to a call has succeeded. The media channels or bearer
connections to this leg is now available.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg to which the information relates.

6.6.4 Method attachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.6.5 Method detachMediaRes()

This asynchronous method reports the detachment of a call leg froma call has succeeded. The media channels or bearer
connections to this leg is no longer available.

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg to which the information relates.

6.6.6 Method detachMediaErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

3GPP

Release 9 53 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.6.7 Method getinfoRes()

This asynchronous method reports all the necessary information requested by the application, for examp le to calculate
charging.

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg to which the information relates.

calllLegInfoReport : in TpCalllLegInfoReport
Specifies the call leg information requested.

6.6.8 Method getinfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters
calllLegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.6.9 Method routeErr()

This asynchronous method indicates that the request to route the call leg to the destination party was unsuccessful - the
call leg could not be routed to the destination party (for example, the network was unable to route the call leg, the
parameters were incorrect, the request was refused, etc.).

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.6.10 Method superviseRes()

This asynchronous method reports a call leg supervision event to the application when it has indicated its interest in this
kind of event.

It is also called when the connection to a party is terminated before the supervision event occurs.

3GPP

Release 9 54 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Parameters

calllegSessionID : in TpSessionID
Specifies the call leg session ID of the call leg.

report : in TpCallSuperviseReport
Specifies the situation which triggered the sending of the call leg supervision response.

usedTime : in TpDuration
Specifies the used time for the call leg supervision (in milliseconds).

6.6.11 Method superviseErr()

Parameters
calllegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.6.12 Method callLegEnded()

This method indicates to the application that the leg has terminated in the network. The application has received all
requested results (e.g. getinfoRes) related to the call leg. The call leg will be destroyed after returning fromthis method.

Parameters
calllLegSessionID : in TpSessionID

Specifies the call leg session ID of the call leg.

cause : in TpReleaseCause
Specifies the reason the connection is terminated.

7 MultiParty Call Control Service State Transition
Diagrams
7.1 State Transition Diagrams for

IpMultiPartyCallControlManager

3GPP

Release 9 55 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

“managerinterrupted

Interrupted | Active

"managerResumed

IpAccess.terminateSeniceAgreement
‘new'

IpAccess.terminateSeniceAgreement

\
7 N
L ®
Figure : Application view and the Multi-Party Call Control Manager

711 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to
indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object
with the appropriate number of Call Leg objects and informthe application. The application can also indicate it is no
longer interested in certain call related events by calling destroyNotification().

7.1.2 Interrupted State

When the Manager is in the Interrupted state it is temporarily unavailable for use. Events requested cannot be
forwarded to the application and methods in the API cannot successfully be executed. A number of reasons can cause
this: for instance the application receives more notifications from the network than defined in the Service Agreement.
Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure.

7.1.3 Overview of allowed methods

Call Control Manager State Methods applicable

Active createCall,
createNotification,
destroyNotification,
changeNotification,
getNextNotification,
setCallLoadControl,
enableNotifications,
disableNotifications

Interrupted getNextNotification,
enableNotifications,
disableNotifications

3GPP

Release 9 56 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

7.2 State Transition Diagrams for [pMultiPartyCall

The state transition diagram shows the application view on the MultiParty Call object.

When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a
notification with a monitor mode of P_CALL MONITOR_MODE_INTERRUPT, an activity timer is started. The
activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this
activity timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the
case when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the
IpAppMultiPartyCallControlManager as this is an abnormal termination.

IpMultiPartyCallManager.createCall J’ IDLE
/]

coming call]
ApAppMultiPartyCallControlManager.reportNotification uteCallLeg

ACTIVE J
deassign
deassignCall
[RELEASED W AcallEnded f.
A timer mechanisem preventsthat the object AN

keeps occupying resources. In case the timer
expires, callEnded() isinvoked on the
IpAppMultiPartyCall with a release cause of
P_TIMER_EXPIRY. In the case when no
IpAppMultiPartyCall is available on which to invoke
callEnded(), callAborted() shall be invoked on the
IpAppMultiPartyCallControlManager as thisisan
abnormal termination.

Figure : Application view on the MultiParty Call object

7.2.1 IDLE State

In this state the Call object has no Call Leg object associated to it.

The application can request for charging related information reports, call supervision, set the charge plan and set Advice
Of Charge indicators. When the first Call Leg object is requested to be created a state transition is made to the Active
state.

3GPP

Release 9 57 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

7.2.2 ACTIVE State

In this state the Call object has one or more Call Leg objects associated to it. The application is allowed to create
additional Call Leg objects.

Furthermore, the application can request for call supervision. The Application can request charging related information
reports, set the charge plan and set Advice Of Charge indicators in this state prior to call establishment.

7.2.3 RELEASED State

In this state the last Call leg object has released or the call itself was released. While the call is in this state, the
requested call information will be collected and returned through getinfoRes() and / or superviseRes(). As soon as all
information is returned, the application will be informed that the call has ended and Call object transition to the end
state.

7.2.4 Overview of allowed methods

Methods applicable Call Control Call Call Control
State Manager State

getCallLegs Idle, Active, Released | -

createCallLeg, Idle, Active Active

createAndRouteCallL

egReq,

setAdviceOfCharge,

superviseReq,

release Active Active

deassignCall Idle, Active -

setChargePlan, Idle, Active Active

getinfoReq

7.3

The IpCallLeg State Transition Diagram is divided in two State Transition Diagrams, one for the originating call leg
and one for the terminating call leg.

State Transition Diagrams for IpCallLeg

Call Leg State Model General Objectives:

1) Events in backwards direction (upstream), coming from terminating leg, are not directly visible in originating leg
model. NOTE1

2) Events in forwards direction (downstream), coming fromoriginating leg, are not directly visible in terminating
leg model. NOTE1

3) States are as seen from the application: if there is no change in the method an application is permitted to apply
on the IpCallLeg object, then there is no state change. Therefore receipt of e.g. answer or a lerting events on
terminating leg do not change state. NOTE 2

4) Call processing is suspended if for a leg a network event is met, which was requested to be monitored in the
P_CALL MONITOR_MODE_INTERRUPT. The application shallsend a request to continue processing (using
an appropriate method like continueProcessing, deassign, release or routeReq) for each leg and event reported in
monitor mode ‘interrupt’.

If the event leads to a state transition, the call processing is suspended when entering the state.

5) In case on aleg more than one network event (for example a mid -call event ‘service code’ and a disconnection
event) is to be reported to the application at quasi the same time, then the events are to be reported one by one to
the application in the order received from the network. When for a leg an event is reported in interrupt mode, a
next pending event is not to be reported to the application until a request to resume call processing for the current
reported event has been received on the leg.

3GPP

Release 9 58 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

NOTEL: Although events coming from a specific party will always be tied to the callLeg related to that party, these
events might lead to state transitions of other callLegs. Examples of such events are terminating release,
where also the originating leg might transit to the releasing state and originating_release where the
terminating leg might transit to the releasing state.

NOTEZ2: Even though there in the Originating Call Leg STD is no change in the methods the application is
permitted to apply to the IpCallLeg object for the states Analysing and Active, separate states are
maintained. The states may therefore froman application viewpoint appear as just one state that may be
have substates like Analysing and Active. The digit collection task in state Analysing state may be viewed
as a specialised task that may not at all be applicable in some networks and therefore here described as
being a state on its own.

7.3.1 Originating Call Leg

3GPP

Release 9

Al States

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

IpAppMultiPartyCallControlManager.
reportNotification(originating Call Attempt))

59
Originating Call Leg. ﬁ

‘originating call attempt authorizﬂ

e e DY
Initiati
attachMedia niating
detachMedia

A /

‘Address Collected'

IpAppMultiPartyCallControlManager .
reportNotification(originating Call AttemptAuthorized)

IpAppMultiPartyCallControlManager.

‘networkRelease’
f ‘Address_Collected'
e &
Anal
attachMedia wing
detachMedia

‘networkrelease’

'Address Analysed'

1

-~

‘originating service_code'

reportNotification(address_collected)

IpAppMultiPartyCallControlManager.
reportNotification(address_analysed)

Active
attachMedia W
detachMedia J

IpAppMultiPartyCallControlManager.
reportNotification(originating service code)

\ ‘networkrelease'
(Releasing
‘rel 3 - - 5
release do/ send reports if requested, or error reports if required
"timer expiry ‘
deasign

7.31.1

Entry events:

~@)

pAppCallLeg.callLegEnded

1 IpAppMultiPartyCallContro|Manager.
reportNotification(originating
release)

Transitions/events not shown:

All states:

continueProcessing, getLastRedirectedAddress, getCall: no state change
All states except Releasing:

ewentReportReq, setAdviceOfCharge, getinfoReq, superviseReq,
setChargePlan

Figure : Originating Leg

Initiating State

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an
‘Originating_Call_Attempt' initial notification criterion.

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an
'Originating_Call_Attempt_Authorised' initial notification criterion.

3GPP

Release 9 60 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Functions:

In this state the network checks the authority/ability of the party to place the connection to the remote (destination)
party with the given properties, e.g. based on the originating party’s identity and service profile.

The setup of the connection for the party has been initiated and the application activity timer is being provided.

The figure below shows the order in which network events may be detected in the Initiating state and depending on the
monitor mode be reported to the application.

Initiating See q OREL
State Note2

> oCA > 0CAA > AC
See Notel

Note 1: Event oCA only applicable as an initial notification .

Note 2: The release event (0REL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:

oCA: originating Call Attempt;

0CAA originating Call Attem pt Authorized;

AC: Address Collected:;

OREL originating RELease.

Figure : Application view on event reporting order in Initiating State

In this state the following functions are applicable:

The detection of a 'Originating_Call_Attempt' initial notification criterion.

The detection ofan 'Originating_Call_Attempt_Authorised' initial notification criterion as a result that the call

attempt authorisation is successful.

The report of the 'Originating_Call_Attempt_Authorised’ event indication whereby the following functions are
performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL _EVENT_CALL ATTEMPT_AUTHORISED then the event is reported and call leg processing is
suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL _EVENT_CALL ATTEMPT_AUTHORISED then the event is notified and call leg processing
continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL EVENT_CALL ATTEMPT_AUTHORISED then no monitoring is performed.

The receipt of destination address information, i.e. initial information package/dialling string as received from
calling party.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

3GPP

Release 9 61 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Exit events:

- Availability of destination address information, i.e. the initial information package/dialling string received from
the calling party.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

Receipt of a deassign() method.

Receipt of a release() method.

Detection of a 'originating release' indication as a result of a premature disconnect fromthe calling party.

7.3.1.2 Analysing State

Entry events:

- Availability of an 'Address_Collected' event indication as a result of the receipt of the (complete) initial
information package/dialling string from the calling party.

- Availability of an 'Address_Collected' event indication as a result of additional digits received from the calling
party as requested by the application (with eventReportReq).

- Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an 'Address_Collected'
initial notification criterion.

Functions:
In this state the destination address provided by the calling party is collected and analysed.

The received information (dialled address string fromthe calling party) is being collected and examined in accordance
to the dialling plan in order to determine end of address information (digit) collection. Additional address digits can be
collected. Upon completion of address collection the address is analysed.

The address analysis is being made according to the dialling plan in force to determine the routing address of the call
leg connection and the connection type (e.g. local, transit, gateway).

The request (with eventReportReq method) to collect a variable number of more address digits and report themto the
application (within eventReportRes method) is handled within this state. The collection of more digits as requested and
the reporting of received digits to the application (when the digit collect criteria is met) is done in this state. This action
can be repeated, e.g. the application may request first for 3 digits to be collected and when reported request further
digits.

The figure below shows the order in which network events may be detected in the Analysing state and depending on the
monitor mode be reported to the application.

3GPP

Release 9 62 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

oREL

Analysing Notel >
State

0CAA | AC . AA

Note 1: The release event (OREL) can occur in any state resulting in a transition to Releasing state.
Abbreviations used for the events:

oCAA: originating Call Attempt Authorized;

AC: Address Collected;

AA: Address Analysed;
OREL: originating RELease.

Figure : Application view on event reporting order in Analysing State

In this state the following functions are applicable:
- The detection of an 'Address_Collected' initial notification criterion.
- On receipt of the 'Address_Collected' indication the following functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_COLLECTED then the event is reported and call leg processing is
suspended.

ii) When the P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL _EVENT_ADDRESS_COLLECTED then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL _EVENT_ADDRESS_COLLECTED then no monitoring is performed.

- Receipt of an eventReportReq() method defining the criteria for the events the call leg object is to observe.

- Resumption of suspended call leg processing occurs on receipt of a continueProcessing() or a routeReq()
method.

Exit events:

- Detection of an 'Address_Analysed' indication as a result of the availability of the routing address and nature of
address.

- Receipt of a deassign() method.
- Receipt of a release() method.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

- Detection of a'originating release' indication as a result of a premature disconnect fromthe calling party.

7.3.1.3 Active State
Entry events:

- Receipt of an 'Address_Analysed' indication as a result of the availability of the routing address and nature of
address.

3GPP

Release 9 63 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Sending of a reportNotification() method by the IpMultiPartyCallControlManager for an 'Address_Analysed'

initial indication criterion.

Functions:

In this state the call leg connection to the calling party exists and originating mid call events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

See Notel
See
ﬂ Note2
oSC AN
AC > AA oREL
Active
State

Note 1: Only the detected service code or the range to which the service code belongs is disarmed as the service

code is reported to the application.

Note 2: The release event (0REL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:
AC: Address Collected:;

AA: Address Analysed;

0SC: originating Service Code;
OREL: originating RELease.

Figure : Application view on event reporting order Active State

In this state the following functions are applicable:

The detection of an Address_Analysed initial indication criterion.
On receipt of the 'Address_Analysed' indication the following functions are performed:

i) When the P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is reported and call leg processing is suspended.

ii) When the P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ADDRESS_ANALYSED then the event is notified and call leg processing continues.

iii) When the P CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL _EVENT_ADDRESS _ANALYSED then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

When entering this state the routing information is interpreted, the authority of the calling party to establish this
connection is verified. Note that no call leg connection is set up to the remote party at this point when the
application is still in control. The application explicitly has to create and route the terminating leg, optionally
using the address information from the Address_Analysed event. Only in case the call is deassigned (the

3GPP

Release 9 64 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

application relinquishes control) in this state, the network will setup the connection to terminating leg
automatically based on the received information.

In this state a connection to the calling party is established.
On receipt of the 'originating_service code' indication the following functions are performed:

i) When the P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODED then the event is notified and call leg processing
continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ORIGINATING_SERVICE_CODE then no monitoring is performed.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

Detection of an ‘'originating release' indication as a result of a disconnect fromthe calling party.
Detection of a propagated disconnect fromthe called party

Receipt of a deassign() method.

Receipt of a release() method from the application.

Application activity timer expiry indicating that no requests from the application have been received during a
certain period while call processing is suspended.

7.3.1.4 Releasing State

Entry events:

Detection of an 'Originating_Release' indication as a result of the network release initiated by calling party.
Propagated release from called party.

Release of the entire call (e.g., after invoking IpCall.release())

Reception of the release() method from the application.

A transition due to fault detection to this state is made when the Call leg object is in a state and no requests from
the application have been received during a certain time period (timer expiry).

Functions:

In this state the connection to the call party is released as requested by the network or by the application and the reports
are processed and sent to the application if requested.

When the Releasing state is entered the order of actions to be performed is as follows:

i) The network release event handling is performed.

ii) The possible call leg information requested with getinfoReq() and/ or superviseReq() is collected and send to
the application.

iii) The callLeg Ended() method is sent to the application to inform that the call leg object is destroyed.

In this state the following functions are applicable:

The detection of an ‘'originating_release' initial indication criterion..

3GPP

Release 9 65 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

On receipt of the 'originating_release' indication the following functions are performed:
- The network release event handling is performed as follows:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is reported and call leg processing is suspended.

i) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_RELEASE then the event is notified and call leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_RELEASE then no monitoring is performed.

Note that this handling is not performed for propagated releases fromthe called party.
Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

The possible call leg information requested with the getinfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediate ly
and additionally the application will also be informed that the connection has ended

In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not availab le and additionally the
application is informed that the call leg object is destroyed (callLeg Ended) and the leg is released in the
network.

Note: the call in the network may continue or be released, depending e.g. on the call state.

In case the release() method is received in Releasing state it will be discarded. The request fromthe application
to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLeg Ended() method.

After the sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLeg Ended()
method.

Application activity timer expiry indicating that no requests from the application have been received during a

certain period while processing is suspended for the leg (re-enter releasing state).

Receipt of a deassign() method. The leg will be released and call leg object destroyed, but no reports will be sent
to the application anymore. Also no CallLegEnded will be invoked.

7.3.1.5 Overview of allowed methods, Originating Call Leg STD

3GPP

Release 9

66

State

Methods allowed

Initiating

getProperties

setProperties

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Analysing

getProperties

setProperties

attachMediaReq (as a request),
detachMediaReq, (as a request)
getCall,

continueProcessing,

release (call leg),

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

getProperties
setProperties
attachMediaReq,
detachMediaReq,
getCall,
continueProcessing,
release

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall,
continueProcessing,
release

deassign

7.3.2

Terminating Call Leg

3GPP

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Release 9 67
Terminating Call Leg. ﬁ
Idle
(terminating) .
L IpMultiPartyCall.createCallLeg
routeReq
IpAppMultiPartyCallControlManager.r
‘terminating call attempt authorized', eportNotification("terminating call
‘alerting', 'answer', ‘terminating senice attempt", "terminating call attempt
code’, redirected’, 'queued' authorised”, "alerting", "answer",
) “terminating senice code",
; Active "redirected", "queued")
attachMedia (terminating)
detachMedia -
IpMultiPartyCall.createAndRouteCallLegReq
‘network release’
Al States release Releasing (terminating) -
| (terminating)) ‘timer expiry* \ do/ send reports if requested, or error reports if requirt... IpAppMuliiParty CallControlManager.

NpAppCallLeg.callLegEnded

@

deasign

Transitions/events not shown:
All states:

supeniseRes: no state change,
All states except Releasing:

created and is initialized to be in the Active state.

continueProcessing, getLastRedirectedAddress, getCall, sending getinfoRes,

eventReportReq, setAdviceOfCharge, getinfoReq, supeniseReq, setChargePlan.

When the application is notified in reportNotfication of an call related network event
associated with the Terminating Call Leg STD, then the Originating Call Leg STD is

Figure : Terminating Leg

73.2.1 Idle (terminating) State

Entry events:

reportNotification(terminating

release)

- Receipt of a createCallLeg() method to start an application initiated call leg connection.

Functions:

In this state the call leg object is created and the interface connection is idled.

The application activity timer is being provided.

In this state the following functions are applicable:

- Invoking routeReq will result in a request to actually route the call leg object and resumption of call processing.

Exit events:

- Receipt of a routeReq() method from the application.

3GPP

Release 9 68 3GPP TS 29.198-4-3 V9.0.0 (2009-12)
- Application activity timer expiry indicating that no requests from the application have been received during a
certain period to continue processing.
- Receipt of a deassign() method.
- Receipt of a release() method.
- Propagation ofa network release event as a result of a disconnect from the calling party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.

7.3.2.2 Active (terminating) State
Entry events:
- Receipt of a routeReq will result in actually routing the call leg object.
- Receipt of a createAndRouteCallLegReq() method to start an application initiated call leg connection.

- Sending of a reportNotification() method by the IpMultiPartyCallControlIManager for the following trigger
criteria: 'Terminating_Call_Attempt’, ‘Terminating_Call_Attempt_Authorised’, 'Alerting’, 'Answer’,
‘Terminating service code’, 'Redirected' and 'Queued'.

Functions:

In this state the routing information is interpreted, the authority of the called party to establish this connection is verified
for the call leg connection. In this state a connection to the call party is established whereby events fromthe network
may indicate to the application when the party is alerted (acknowledge connection setup) and when the party answer
(confirmation of connection setup).

Furthermore, in this state terminating service code events can be received.

The figure below shows the order in which network events may be detected in the Active state and depending on the
monitor mode be reported to the application.

3GPP

Release 9 69 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Active
State [
N
tCA 1+—p| tCAA »| tREL

Note 1

Note2 p tSC

Note 1: Event tCA applicable as initial notification.

Note 2: Only the detected service code or the range to which the service code belongs is disarmed as the service
code is reported to the application.

Note 3: The release event (tREL) can occur in any state resulting in a transition to Releasing state.

Abbreviations used for the events:

tCA: Terminating Call Attempt;

tCAA: terminating Call Attempt Authorized;
AL: Alerting;

ANS: Answer;

tREL: terminating RELease;

Q: Queued;

RD: ReDirected;

tSC: terminating Service Code.

Figure : Application view on event reporting order in Active State

In this state the following functions are applicable:

- The detection and report of the Terminating_Call_Attempt_Authorised’ event indication whereby the following
functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_ CALL ATTEMPT_AUTHORISED then the event is reported and call
leg processing is suspended.

ii) When the P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_CALL ATTEMPT_AUTHORISED then the event is notified and call
leg processing continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL EVENT_CALL TERMINATING_ATTEMPT_AUTHORISED then no monitoring is performed.

- Detection of an 'Queued' indication as a result of the terminating call being queued.
- On receipt of the 'Queued' indication the following functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_QUEUED then the event is notified and call leg processing continues.

3GPP

Release 9 70 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_QUEUED then no monitoring is performed.

On receipt of the 'Alerting’ indication the following functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is reported and call leg processing is suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ALERTING then the event is notified and call leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ALERTING then no monitoring is performed.

Detection of an 'Answer' indication as a result of the remote party being connected (answered).
On receipt of the 'Answer' indication the following functions are performed:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is reported and call leg processing is suspended.

ii) When the P_CALL_MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_ANSWER then the event is notified and call leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_ANSWER then no monitoring is performed.

The detection of a 'service_code' trigger criterion suspends call leg processing.
On receipt of the 'service code' indication the following functions are performed:

i) When the P_CALL_MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODE then the event is reported and call leg processing is
suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODEthen this is not a valid event (that event is not
notified) and call leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_SERVICE_CODEthen no monitoring is performed.

On receipt of the 'redirected" indication the following functions are performed:

i) When the P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is reported and call leg processing is suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_REDIRECTED then the event is notified and call leg processing continues.

iii) When the P_CALL MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_REDIRECTED then no monitoring is performed.

Resumption of call leg processing occurs on receipt of a continueProcessing() method.

Exit events:

Detection of a network release event being a ‘terminating release' indication as a result of the following events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

3GPP

Release 9 71 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

iii) Detection of a route busy condition received from the remote call leg connection portion.
iv) Detection of a no-answer condition received fromthe remote call leg connection portion.
v) Detection that the remote party was not reachable.

- Propagation of a network release event as a result of the following events:
- Detection of a premature disconnect fromthe calling party.

- Receipt of a deassign() method.

- Receipt of a release() method from the application.

- Propagation of network release event as a result of a disconnect fromthe calling party .

- Detection of a network release event being a 'terminating release' indication as a result of a disconnect from the
called party.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg.
7.3.2.3 Releasing (terminating) State
Entry events:
- Propagation ofa network release disconnect fromthe calling party.

- Detection of a network release event being a ‘terminating release' indication as a result of the network release
initiated by called party.

- Release of the entire call (e.g. after invoking Ip Call.release())
- Sending of the release() method by the application.

- Atransition due to fault detection to this state is made when the Call leg object awaits a request fromthe
application and this is not received within a certain time period.

- Detection of a network event being a 'terminating release' indication as a result of the following events:

i) Unable to select a route or indication from the remote party of the call leg connection cannot be presented
(this is the network determined busy condition).

ii) Occurrence of an authorisation failure when the authority to place the call leg connection was denied (e.g.
business group restriction mismatch).

iii) Detection of a route busy condition received from the remote call leg connection portion.
iv) Detection of a no-answer condition received fromthe remote call leg connection portion.
v) Detection that the remote party was not reachable.
- Propagation of a network release event as a result of the following events:
- Detection of a premature disconnect fromthe calling party.
Functions:

In this state the connection to the call party is released as requested by the network or by the application
and the reports are processed and sent to the application if requested .

When the Releasing state is entered the order of actions to be performed is as follows:
i) The release event handling is performed.

ii) The possible call leg information requested with getinfoReq() and/ or superviseReq() is collected and send to the
application.

3GPP

Release 9 72 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

iii) The callLeg Ended() method is sent to the application to inform that the call leg object is destroyed.

Where the entry to this state is caused by the application, for example because the application has requested the leg to
be released or deassigned or a fault (e.g. timer expiry, no response fromapplication) has been detected, then i) is not
applicable. In the fault case for action ii) error report methods are sent to the application for any possible requested
reports.

In this state the following functions are applicable:
- The detection of a 'Terminating Release' trigger criterion.

- Onreceipt of the network release event being a ‘Terminating Release' indication the fo llowing functions are
performed:

- The network release event handling is performed as follows:

i) Whenthe P_CALL MONITOR_MODE_INTERRUPT is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASEthen the event is reported and call leg processing is
suspended.

ii) Whenthe P_CALL MONITOR_MODE_NOTIFY is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASE then the event is notified and call leg processing
continues.

iii) When the P_CALL_MONITOR_MODE_DO_NOT_MONITOR is requested for the call leg event
P_CALL_EVENT_TERMINATING_RELEASEthen no monitoring is performed.

Note that this handling is not performed for propagated releases fromthe calling party.

Resumption of suspended call leg processing occurs on receipt of a continueProcessing() method.

- The possible call leg information requested with the getinfoReq() and/or superviseReq() is collected and sent to
the application with respectively the getinfoRes() and/or superviseRes() methods.

- The callLegEnded() method is sent to the application after all information has been sent. In case that the
application has not requested additional call leg related information the call leg object is destroyed immediately
and additionally the application will also be informed that the connection has ended

- In case of abnormal termination due to a fault and the application requested for call leg related information
previously, the application will be informed that this information is not availab le and additionally the application
is informed that the call leg object is destroyed (callLegEnded) and the leg is released in the network.

NOTE: The call in the network may continue or be released, depending e.g. on the call state.

- In case the release() method is received in Releasing state it will be discarded. The request fromthe
application to release the leg is ignored in this case because release of the leg is already ongoing.

Exit events:

- In case that the application has not requested additional call leg related information the call leg object is
destroyed immediately and additionally the application is informed that the call leg connection has ended, by
sending the callLeg Ended() method.

- Afterthe sending of the last call leg information to the application the Call Leg object is destroyed and
additionally the application is informed that the call leg connection has ended, by sending the callLeg Ended()
method.

- Application activity timer expiry indicating that no requests from the application have been received during a
certain period while processing is suspended for the leg (re-enter releasing state).

- Receipt of a deassign() method. The leg will be released and call leg object destroyed, but no reports will be sent
to the application anymore. Also no CallLegEnded will be invoked.

7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

3GPP

Release 9

73

State

Methods allowed

Idle

routeReq,

getCall ,
getCurrentDestinationAddress,
release,

deassign

eventReportReq,

getinfoReq,

setChargePlan,
setAdviceOfCharge,
superviseReq

Active

getProperties
setProperties
attachMediaReq
detachMediaReq
getCall ,
getCurrentDestinationAddress,
continueProcessing,
release,

deassign
eventReportReq,
getinfoReq,
setChargePlan,
setAdviceOfCharge,
superviseReq

Releasing

getCall,
getCurrentDestinationAddress,
continueProcessing,

release,

deassign

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

8

8.1

List of Service Properties

The following table lists properties relevant for the MPCC API.

3GPP

Multi-Party Call Control Service Properties

Release 9

74

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Property

Type

Description / Interpretation

P_TRIGGERING_EVENT_TYPES

INTEGER_SET

Indicates the static event types supported by the SCS. Static
events are the events by which applicationsare initiated.

P_DYNAMIC EVENT_TYPES

INTEGER_SET

Indicates the dynamic event types supported by the SCS.
Dynamic eventsarethe eventsthe application can request
for during the context of a call.

P_ADDRESSPLAN

INTEGER_SET

Indicates the supportedaddress plans (defined in
TpAddressPlan.) e.g. {P_ADDRESS _PLAN_E164,
P_ADDRESS PLAN_IP}). Notethat more than one
address plan may be supported.

P_UI_CALL BASED

BOOLEAN _SET

Value = TRUE : User interaction can be performed on call
level and areferenceto a Call object can be used inthe
IpUIManager createUICall() operation.

Value = FALSE: No User interaction on call level is
supported.

P_UI_AT_ALL_STAGES

BOOLEAN _SET

Value = TRUE: User Interaction can be performed at any
stage during acall .

Value = FALSE: User Interaction can be performed in case
there isonly one party in the call.

P_MEDIA_TYPE

INTEGER_SET

Specifiesthe mediatype used by the Service. Values are
defined by data-type TpMediaType : P_AUDIO,
P_VIDEO, P_DATA

P_MAX_CALLLEGS PER CALL

INTEGER_SET

Indicates the maximum number of legs in a call for which a
connectionto a call party exissinthe network. The
enforcement of this property is done only when aleg is
created or routed by the application.

P_UI_CALLLEG_BASED

BOOLEAN_SET

Value = TRUE : User interaction can be performed on leg
level and areferenceto a CallLegobject can be used in the
IpUIManager createUl Call() operation.

Value = FALSE : No user interaction on leg level is
supported.

P_CALLLEG_PROPERTIES

STRING_SET

Indicates which ofthe user identity fields are available,
valid values are given by TpCallLegPropertiesName.

P PARALLEL_INITIAL_ROUTING REQUESTS

BOOLEAN_SET

Indicates whether for application inttiated calls it is possible
to issue multiple routing request methods in parallel orthat
the application has to wait for the result ofthe first request
before another one can be invoked.

Value = TRUE: Multiple routing requests can be invoked in
parallel.

Value = FALSE: Result of first request hasto be received
before another request can be issued.

3GPP

Release 9

75

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the

SCS.

Property

Type

Description

P_NOTIFICATION_ADDRESS RANGES

XML_ADDRESS RANGE_SET

Indicates for which numbers notifications may be set. More
than one range may be present. For terminating
notifications they apply tothe terminating number, for
originating notifications they apply only to the originating
number.

P_MONITOR_MODE INTEGER_SET Indicates whetherthe application is allowedto monitor in
interrupt and/or notify mode. Set is:
P_INTERRUPT
P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbersthe application is allowedto
change or fill for legs in an incoming call. Allowed value
set:
{P_ORIGINAL_CALLED_PARTY_NUMBER,
P_REDIRECTING_NUMBER,
P_TARGET_NUMBER,
P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging isallowed in the

setCallChargePlan indicator. Allowed values:
{P_TRANSPARANT_CHARGING,
P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING

INTEGER_INTEGER_MAP

Indicates the mapping of chargeplans (we assume they can
be indicated with integers) to a logical network chargeplan
indicator. Whenthe chargeplan supports indicates
P_CHARGE_PLAN then only chargeplansinthis mapping
are allowed.

P_HIGH PROBABILITY_OF COMPLETION

BOOLEAN SET

Value =T RUE : high probability of call completion field
can be set.

Value = FALSE : high probability of call completion field
can not be st. FALSE isthe default value.

The following table explains how the P_TRIGGERING_ADDRESSES property that is inherited via the Generic Call
Control properties should be interpreted with respect to which of the notifications apply to originating numbers and
which of the notifications apply to terminating numbers.

P CALL EVENT ORIGINATING CALL ATTEMPT Originating
P CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED Originating
P CALL EVENT ADDRESS COLLECTED Originating
P CALL EVENT ADDRESS ANALYSED Originating
P CALL EVENT ORIGINATING SERVICE CODE Originating
P CALL EVENT ORIGINATING RELEASE Originating
P CALL EVENT TERMINATING CALL ATTEMPT Terminating
P CALL EVENT TERMINATING CALL ATTEMPT AUTHORISED Terminating
P CALL EVENT ALERTING Terminating
P CALL EVENT ANSWER Terminating
P CALL EVENT TERMINATING RELEASE Terminating
P _CALL EVENT REDIRECTED Terminating
P CALL EVENT TERMINATING SERVICE CODE Terminating
P CALL EVENT QUEUED N/A

8.2

Service Property values for the CAMEL Service
Environment.

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 4 shall have the Service
Properties outlined above set to the indicated values :

P_OPERATION_SET = ({
“IpMultiPartyCallControlManager.createCall”,
“IpMultiPartyCallControlManager.createNotification”,

3GPP

Release 9 76 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,
“IpMultiPartyCallControlManager.getNextNotification”,
“IpMultiPartyCallControlManager.enableNotifications”,
“IpMultiPartyCallControlManager.disableNotifications”,
“IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCalllegs”,
“IpMultiPartyCall.createCalllLeg”,
“IpMultiPartyCall.createAndRouteCalllegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,

“IpMultiPartyCall. setAdviceOfCharge”,
“IpMultiPartyCall. superviseReq”,
“IpCallleg.routeReq”,

“IpCalllLeg.eventReportReq”,

“IpCallleg.release”,

“IpCalllLeg.getInfoReq”,

“IpCallleg.getCall”,

“IpCallLeg.continueProcessing”

}

P TRIGGERING EVENT TYPES = {

P_CALL EVENT ADDRESS COLLECTED,

P CALL EVENT ADDRESS ANALYSED,

P_CALL EVENT ORIGINATING RELEASE,

P CALL EVENT TERMINATING CALL ATTEMPT AUTHORISED,
P CALL EVENT TERMINATING RELEASE

}

NOTE: P_CALL _EVENT_ORIGINATING_RELEASE only for the routing failure case, Tp ReleaseCause =
P ROUTING FAILURE.

P_DYNAMIC EVENT TYPES = {

P CALL EVENT ALERTING,

P_CALL_EVENT ANSWER,

P CALL EVENT ORIGINATING RELEASE,

P CALL EVENT ORIGINATING SERVICE CODE,
P CALL EVENT TERMINATING RELEASE,

P CALL EVENT TERMINATING SERVICE CODE
}

P_ADDRESS PLAN = {
P ADDRESS PLAN E164
}

P UI CALL BASED = {
TRUE
}

P UI AT ALL STAGES = {
FALSE
}

P MEDIA TYPE = {
P_AUDIO
}

_MAX CALLLEGS PER CALL = {

P
l’
2,
3’
4,
5
6
}

’

P UI CALLLEG BASED = {
TRUE
}

P MEDIA ATTACH EXPLICIT = {
FALSE

3GPP

Release 9 77 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

9 Multi-Party Call Control Data Definitions

This clause provides the MPCC data definitions necessary to support the API specification.

The general format of a data definition specification is described below:
o Data Type

This shows the name of the data type.
e Description

This describes the data type.
e Tabular Specification

This specifies the data types and values of the data type.

e Example
If relevant, an example is shown to illustrate the data type.

All data types referenced in the present document but not defined in this clause are defined either in the common call
control data definitions in 3GPP TS 29.198-4-1 or in the common data definitions which may be found in
3GPP TS 29.198-2.

9.1 Event Notification Data Definitions

No specific event notification data defined.

9.2 Multi-Party Call Control Data Definitions

9.2.1 IpCallLeg

Defines the address of an IpCallLeg Interface.

9.2.2 IpCallLegRef

Defines a Reference to type IpCallLeg.

9.2.3 IpAppCallLeg

Defines the address of an IpAppCallLeg Interface.

9.2.4 IpAppCallLegRef

Defines a Reference to type IpAppCallLeg.

3GPP

Release 9 78 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

9.25 IpMultiPartyCall

Defines the address ofan IpMultiPartyCall Interface.

9.2.6 IpMultiPartyCallRef

Defines a Reference to type IpMultiPartyCall.

9.2.7 IpAppMultiPartyCall

Defines the address of an IpAppMultiPartyCall Interface.

9.2.8 IpAppMultiPartyCallRef

Defines a Reference to type IpAppMultiPartyCall.

9.2.9 IpMultiPartyCallControlManager

Defines the address ofan IpMultiPartyCallControlManager Interface.

9.2.10 IpMultiPartyCallControlIManagerRef

Defines a Reference to type IpMultiPartyCallControlManager.

9.2.11 IpAppMultiPartyCallControlManager

Defines the address of an TpAppMultiPartyCallControlManager Interface.

9.2.12 IpAppMultiPartyCallControlManagerRef

Defines a Reference to type IpAppMultiParty CallControlManager..

9.2.13 TpAppCallLegRefSet

Defines a Numbered Set of Data Elements of IpAppCallLegRef.

9.2.14 TpMultiPartyCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call object.

Sequence Element

Sequence Element

Sequence Element

Name Type Description
CallReference IpMultiPartyCallRef Thiselement specifies the interface reference forthe Multi-party call object.
CallSessionID TpSessionID Thiselement specifies the call session ID.

3GPP

Release 9 79 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

9.2.15 TpAppMultiPartyCallBack

Defines the Tagged Choice of Data Elements that references the application callback interfaces

Tag Element Type

TpAppMultiPartyCallBackRefType

Tag Element Value Choice Element Type Choice Element Name
P_APP CALLBACK UNDEFINED NULL Undefined
P APP MULTIPARTY CALL CALLBACK IpAppMultiParty CallRef AppMultiPartyCall
P_APP CALL LEG CALLBACK IpAppCallLegRef AppCallLeg
P APP CALL AND CALL LEG_CALLBACK TpAppCallLegCallBack AppMultiPartyCallAndCallLeg

9.2.16 TpAppMultiPartyCallBackRefType

Defines the type application call back interface.

Name Value Description
P _APP CALLBACK UNDEFINED 0 Application Call back interface undefined
P APP MULTIPARTY CALL CALLBACK 1 Application Multi-Party Call interface
referenced
P _APP CALL LEG CALLBACK 2 Application CallLeg interface referenced
P_APP CALL AND CALL LEG_CALLBACK 3 Application Multi-Party Call and Callleg
interface referenced

9.2.17 TpAppCallLegCallBack

Defines the Sequence of Data Elements that references a call and a call leg application interface.

Sequence Element Name Sequence Element Type
AppMultiPartyCall IpAppMultiPartyCallRef
AppCallLegSet TpAppCallLegRefSet Specifiesthe set of all call leg call back

references. First inthe set isthe reference

to the call back of the originating callLeg.

In case there isa call back to a destination
call legthis will be second in the set.

9.2.18 TpMultiPartyCallldentifierSet

Defines a Numbered Set of Data Elements of TpMultiParty Callidentifier.

3GPP

Release 9

9.2.19 TpCallAppinfo

80

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Defines the Tagged Choice of Data Elements thatspecify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P CALL APP ALERTING MECHANISM

TpCallAlertingMechanism

CallAppAlertingMechanism

P CALL APP NETWORK ACCESS TYPE

TpCallNetworkAccessType

CallAppNetworkAccessType

P CALL APP TELE SERVICE

TpCallTeleService

CallAppTeleService

P CALL APP BEARER SERVICE

TpCallBearerService

CallAppBearerService

P _CALL APP PARTY CATEGORY TpCallPartyCategory CallAppPartyCategory

P CALL APP PRESENTATION ADDRESS TpAddress CallAppPresentationAddress

P _CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P CALL APP ADDITIONAL ADDRESS TpAddress CallAppAdditionalAddress

P CALL APP ORIGINAL DESTINATION ADDRESS | TpAddress CallAppOriginalDestinationAddress
P CALL APP REDIRECTING ADDRESS TpAddress CallAppRedirectingAddress

P CALL APP HIGH PROBABILITY COMPLETION

TpCallHighProbabilityComple

CallHighProbabilityCompletion

ion
P CALL APP CARRIER ;pgarrierSet CallAppCarrier
9.2.20 TpCallAppinfoType
Defines the type of call application-related specific information.
Name Value Description
P CALL APP UNDEFINED 0 Undefined
P CALL APP ALERTING MECHANISM 1 The alerting mechanism or pattem to use
P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)
P CALL APP TELE SERVICE 3 Indicates the tele-service (e.g. telephony)
P CALL APP BEARER SERVICE 4 Indicates the bearer service (e.g. 64 kbit/s unrestricted data)
P CALL APP PARTY CATEGORY 5 The category ofthe calling party
P CALL APP PRESENTATION ADDRESS 6 The addressto be presentedto other call parties
P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information
P _CALL APP ADDITIONAL ADDRESS 8 Indicates an additional address
P CALL APP ORIGINAL DESTINATION ADDRESS 9 Containsthe original address specified by the originating user when
launchingthe call
P CALL APP REDIRECTING ADDRESS 10 Contains the address of the user from which the call is diverting
P CALL APP HIGH PROBABILITY COMPLETION 11 Indicates high probability of completion and its priority
P _CALL APP CARRIER 12 Indicates the set of Carrier identificationsto be usedto route the call

9.2.21 TpCallApplnfoSet

Defines a Numbered Set of Data Elements of TpCallAppinfo.

3GPP

Release 9

9.2.22 TpCallEventRequest

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Defines the Sequence of Data Elements thatspecify the criteria relating to call report requests.

Sequence Element Name

Sequence Element Type

CallEventType TpCallEventType
AdditionalCallEventCriteria TpAdditionalCallEventCriteria
CallMonitorMode TpCallMonitorMode

9.2.23 TpCallEventRequestSet

Defines a Numbered Set of Data Elements of TpCallEventRequest.

9.2.24 TpCallEventType

Defines a specific call event report type.

Name Value Description
P_CALL_EVENT UNDEFINED 0 Undefined
P CALL EVENT ORIGINATING CALL ATTEMPT 1 An originating call attempt takes place (e.g. Off-hook event).
P CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED 2 An originating call attempt is authorised
P CALL EVENT ADDRESS COLLECTED 3 The destination address has been collected
P_CALL_EVENT ADDRESS ANALYSED 4 The destination address has been analysed
P _CALL EVENT ORIGINATING SERVICE CODE 5 Mid-call originating service code received
P CALL EVENT ORIGINATING RELEASE 6 A originating call/call leg is released
P CALL EVENT TERMINATING CALL ATTEMPT 7 Aterminating call attempt takes place
P CALL EVENT TERMINATING CALL ATTEMPT AUTHORISED 8 Aterminating call is authorized
P_CALL_EVENT ALERTING 9 Call is alerting at the call party
P_CALL_EVENT ANSWER 10 Call answered at address
P _CALL EVENT TERMINATING RELEASE 11 Aterminating call leg has been released or the call could not
be routed
P _CALL EVENT REDIRECTED 12 Call redirected to new address: an indication fromthe network
that the call has been redirectedto a new address (no events
disarmed asaresult of this)
P_CALL EVENT TERMINATING SERVICE CODE 13 Mid call terminating service code received
14 The Call Event has been queued. (no eventsare disarmed asa

P CALL_EVENT QUEUED

result of this)

EVENT HANDLING RULES:

The following general event handling rules apply to dynamically armed events:

When requesting events for one leg;

e When the monitor mode is setto P_CALL MONITOR_MODE_DO_NOT_MONITOR all events armed for that
eventtype are disarmed. The additionalEventCriteria are not taken into account.

o When requesting two events for the same event type with different criteria and/or different monitor mode the last

used criteria and monitor mode apply.

e Events that are not applicable to a leg are refused with exception P_INVALID_EVENT_TYPE. The same
exception is used when criteria are used that are not applicable to the leg,
e.g., requesting P_CALL_EVENT_TERMINATING_SERVICE_CODE on an originating leg is refused with

exception P_INVALID_CRITERIA.

When P_CALL _EVENT_ORIGINATING_RELEASE is requested with P_BUSY in the criteria the request is

refused with the same exception.

When receiving events:

e Ifanarmed eventis met, then it is disarmed, unless explicit stated that it will not to be disarmed.

3GPP

Release 9

leg may become disarmed (see table below) .

82

3GPP TS 29.198-4-3 V9.0.0 (2009-12)

If an event is met that causes the release of the related leg, then all events related to that leg are disarmed .

When an event is met on a call leg irrespective of the event monitor mode, then only events belonging to that call

If a call is released, then all events related to that call are disarmed.

NOTE 1: Event disarmed means monitor mode is set to DO_NOT_MONITOR. and
event armed means monitor mode is set to INTERRUPT or NOTIFY..

The table below defines the disarming rules for dynamic events. In case such an event occurs on a call leg the table
shows which events are disarmed (are not monitored anymore) on that call leg and should be re-armed by
eventReportReq() in case the application is still interested in these events.

Event Occurred

Events Disarmed

P CALL EVENT UNDEFINED

Not Applicable

P CALL EVENT ORIGINATING CALL ATTEMPT

Not applicable, can only be armed as trigger

P _CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED

P _CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED

P CALL EVENT ADDRESS COLLECTED

P_CALL_EVENT ADDRESS COLLECTED

P CALL EVENT ADDRESS ANALYSED

P_CALL EVENT_ADDRESS COLLECTED
P_CALL EVENT_ADDRESS ANALYSED

P_CALL_EVENT ALERTING

P_CALL EVENT _ALERTING

P_CALL EVENT_TERMINATING_RELEASE with criteria:
P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL RESTRICTED

P_UNAVAILABLE_RESOURCES

P CALL EVENT ANSWER

P_CALL EVENT _ALERTING
P_CALL EVENT_ANSWER

P_CALL EVENT_TERMINATING_RELEASE with criteria:
P_USER_NOT_AVAILABLE

P_BUSY

P_NOT_REACHABLE

P_ROUTING_FAILURE

P_CALL RESTRICTED

P_UNAVAILABLE_RESOURCES

P_NO_ANSWER

P CALL EVENT ORIGINATING RELEASE

All pending network events for the call leg are disarmed

P CALL EVENT TERMINATING RELEASE

All pending network events for the call leg are disarmed

P_CALL_EVENT ORIGINATING SERVICE CODE

P_CALL_EVENT_ORIGINATING_SERVICE_CODE *) see NOTE 2

P CALL EVENT TERMINATING SERVICE CODE

P_CALL EVENT_TERMINATING SERVICE_CODE *) see NOTE 2

NOTE 2: Onlythe detected service code or the range to which the service code belongs is disarmed.

3GPP

Release 9

83 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

NOTE 3: ON MAPPING EVENTYPES TO IN TRIGGER DETECTION POINTS (TDPs):

When the eventtypes as defined above are used for requesting the initial notification (with
createNotification), not all events have a one to one correspondence with a Trigger Detection Point
(TDP). For instance, when the underlying network is ITU-T CS2 based, one cannot distinghuish in
createNotification whether the P_CALL_EVENT_ORIGINATING_RELEASE is intended to be on the
Originating side (O_BCSM) or the Terminating side (T_BCSM) of the call. Likewise , the

P_CALL _EVENT_ANSWER,P_CALL EVENT_ALERTING and the

P_CALL _EVENT_TERMINATING RELEASE.

The basic assumption is that the operator is responsible for provisioning of triggers in the network as in
this domain full awarness exists of all other services and applications.Therefore, createNotification does
not automatically lead to immediate provisioning of these triggers. And thus in createNotification it is not
necessary to indicate whether the initial notification should be on the originating or terminating side of
the call.

9.2.25 TpAdditionalCallEventCriteria
Defines the Tagged Choice of Data Elements thatspecify specific criteria.
Tag Element Type
TpCallEventType
Tag Element Choice Element Choice Element
Value Type Name
P CALL EVENT UNDEFINED NULL Undefined
P_CALL_EVENT ORIGINATING CALL ATTEMPT NULL Undefined
P CALL EVENT ORIGINATING CALL ATTEMPT AUTHO NULL Undefined
RISED
P CALL EVENT ADDRESS COLLECTED TpInt32 MinAddressLength
P CALL EVENT ADDRESS ANALYSED NULL Undefined
P CALL EVENT ORIGINATING SERVICE CODE TpCallServiceCodeSet OriginatingServiceCode
P CALL EVENT ORIGINATING RELEASE TpReleaseCauseSet OriginatingReleaseCauseSet
P CALL EVENT TERMINATING CALI, ATTEMPT NULL Undefined
P CALL_EVENT TERMINATING CALI, ATTEMPT AUTHO NULL Undefined
RISED
P_CALL_EVENT ALERTING NULL Undefined
P CALL EVENT ANSWER NULL Undefined
P CALL EVENT TERMINATING RELEASE TpReleaseCauseSet TerminatingReleaseCauseSet
P CALL EVENT REDIRECTED NULL Undefined
P CALL EVENT TERMINATING SERVICE CODE TpCallServiceCodeSet TerminatingServiceCode
P _CALL EVENT QUEUED NULL Undefined

9.2.26 TpCallEventinfo

Defines the Sequence of Data Elements thatspecify the event reportspecific information.

Sequence Element
Name

Seq

uence Element
Type

CallEventType

TpCallEventType

AdditionalCallEventInfo

TpCallAdditionalEventInfo

CallMonitorMode

Tp

CallMonitorMode

CallEventTime

TpDateAndT ime

3GPP

Release 9 84 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

9.2.27 TpCallAdditionalEventinfo

Defines the Tagged Choice of Data Elements thatspecify additional call event information for certain types
of events.

Tag Element Type
TpCallEventType
Tag Element Choice Element Choice Element
Value Type Name
P CALL EVENT UNDEFINED NULL Undefined
P_CALL_EVENT ORIGINATING CALL ATTEMPT NULL Undefined
P CALL EVENT ORIGINATING CALL ATTEMPT AUTHORISED NULL Undefined
P CALL EVENT ADDRESS COLLECTED TpAddress CollectedAddress
P_CALL_EVENT ADDRESS_ ANALYSED TpAddress CalledAddress
P CALL EVENT ORIGINATING SERVICE CODE TpCallServiceCode OriginatingServiceCode
P_CALL EVENT ORIGINATING RELEASE TpReleaseCause OriginatingReleaseCause
P CALL EVENT TERMINATING CALL ATTEMPT NULL Undefined
P CALL EVENT TERMINATING CALL ATTEMPT AUTHORISED NULL Undefined
P CALL EVENT ALERTING NULL Undefined
P _CALL EVENT ANSWER NULL Undefined
P _CALL EVENT TERMINATING RELEASE TpReleaseCause TerminatingReleaseCause
P CALL EVENT REDIRECTED TpAddress ForwardAddress
P CALL EVENT TERMINATING SERVICE CODE TpCallServiceCode TerminatingServiceCode
P CALL EVENT QUEUED NULL Undefined
9.2.28 TpCallNotificationRequest
Defines the Sequence of Data Elements that specify the criteria for an event notification.
Sequence Element Name Sequence Element Type Description

CallNotificationScope

TpCallNotificationScope

Definesthe scope of the notification reques.

CallEventsRequested

TpCallEvent Request Set

Defines the events which are requested.

9.2.29 TpCallNotificationScope

Defines a the sequence of Data elements that specify the scope of a notification request.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the

criteria.

Sequence Element

Sequence Element

Description

Name Type
DestinationAddress TpAddressRange Definesthe destination address or address range for which the notification is
requested.
OriginatingAddress TpAddressRange Definesthe origination address or address range for which the notification is
requested.

3GPP

Release 9

85 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

9.2.30 TpCallNotificationinfo

Defines the Sequence of Data Elements thatspecify the information returned to the application in a Call

notification report.

Sequence Element Sequence Element Description
Name Type
CallNotificationReportScope TpCallNotificationReportScope Definesthe scope of the notification report.
CallAppInfo TpCallAppInfoSet Contains additional call info.
CallEventInfo TpCallEventInfo Containsthe event which isreported.

9.2.31 TpCallNotificationReportScope

Defines the Sequence of Data Elements thatspecify the scope for which a notification report was sent.

Sequence Element Sequence Element Description
Name Type
DestinationAddress TpAddress Containsthe destination address of the call.
OriginatingAddress TpAddress Containsthe origination address of the call.

9.2.32 TpNotificationRequested

Defines the Sequence of Data Elements that specify the criteria relating to event requests.

Sequence Element Sequence Element
Name Type
AppCallNotificationRequest TpCallNotificationRequest

AssignmentID TpInt32

9.2.33 TpNotificationRequestedSet

Defines a numbered Set of Data Elements of TpNotification Requested.

9.2.34 TpReleaseCause

Defines the reason for which a call is released.

Name Value Description

P_UNDEFINED 0 The reason of release is not known, because no info was received fromthe network.

P USER NOT AVAILABLE 1 The user isnot available in the network. This means that the number is not allocated or that the user is
not registered.

P_BUSY 2 The user isbusy.

P_NO_ANSWER 3 No answer was received.

P NOT REACHABLE 4 The user terminal is not reachable.

P _ROUTING FAILURE 5 A routing failure occurred. For example an invalid address was received.

P PREMATURE DISCONNECT 6 The user disconnected the call / call leg during the setup phase.

P_DISCONNECTED 7 A disconnect was received.

P _CALL RESTRICIED 8 The call was subject of restrictions.

P _UNAVAILABLE RESOURCE 9 The request could not be carried out as no resources were available.

P _GENERAL FAILURE 10 A general network failure occurred.

P_TIMER EXPIRY 11 The call/ call leg was released because an activity timer expired.

P_UNSUPPORTED MEDIA 12 Thecall/ call leg was released either because the message body of the request is in a format not
supported or because the media is not supported.

3GPP

Release 9

86 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

9.2.35 TpReleaseCauseSet

Defines a Numbered Set of Data Elements of Tp ReleaseCause.

9.2.36 TpCallLegldentifier

Defines the Sequence of Data Elements that unambiguously specify the Call Leg object.

Sequence Element Sequence Element Sequence Element

Name Type Description
CalllegReference IpCalllegRef Thiselement specifies the interface reference forthe callLeg object.
CalllegSessionID TpSessionlID Thiselement specifies the callLeg session ID.

9.2.37 TpCallLegldentifierSet

Defines a Numbered Set of Data Elements of TpCallLegldentifier.

9.2.38 TpCallLegAttachMechanism

Defines how a CallLeg should be attached to the call.

Name Value Description
P CALLLEG ATTACH IMPLICITLY 0 CallLeg should be attached implicitly tothe call.
P CALLLEG ATTACH EXPLICITLY 1 CallLeg should be attached explicitly to the call by using the attachMediaReq() operation. This

allows e.g. the applicationto do first user interactiontothe party before he/she is placed in the
call.

9.2.39 TpCallLegConnectionProperties

Defines the Sequence of Data Ele ments that specify the connection properties of the Call Leg object.

Sequence Element Sequence Element Sequence Element
Name Type Description
AttachMechanism TpCalllegAttachMechanism Defineshow a CallLeg should be attachedtothe call.

3GPP

Release 9 87 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

9.2.40 TpCallLeginfoReport

Defines the Sequence of Data Elements thatspecify the call leg information requested.

Sequence Element Sequence Element Description
Name Type
CalllegInfoType TpCalllegInfoType Thetype of call leg information.
CalllegStartTime TpDateAndTime Thetime and date whenthe call leg was started (i.e. the leg was routed).
CalllegConnectedToResourceTime TpDateAndTime The date and time whenthe call leg was connected to the resource. If no

resource was connected the time is set to an empty sring.
Either this element is valid or the CallConnectedT oAddressT ime is valid,
depending on whether the report is sent asa result of user interaction.

CalllegConnectedToAddressTime TpDateAndTime The date andtime whenthe call leg was connected to the destination (i.e.
when the destination answered the call). If the destination did not
answer, thetime is setto an empty string.
Either this element is valid or the CallConnectedT oResourceT ime is
valid, depending on whetherthe report is sent as a result of user

interaction.
CalllegEndTime TpDateAndTime The date and time whenthe call leg was released.
ConnectedAddress TpAddress The address of the party associated with the leg. If duringthe call the

connected address was received from the party then this is returned,
otherwise the destination address (for legs connectedto a destination) or
the originating address (for legs connectedtothe origination) isreturned.

CalllLegReleaseCause TpReleaseCause The cause ofthe termination. May be present with
P_CALL _LEG INFO_RELEASE CAUSE was specified.
CallAppInfo TpCallAppInfoSet Additional information forthe leg. May be present with

P_CALL _LEG INFO_APPINFO was specified.

9.2.41 TpCallLeginfoType

Defines the type of call leg information requested and reported. The values may be combined by a logical 'OR' function.

Name Value Description
P _CALL LEG INFO UNDEFINED 00h Undefined
P CALL LEG INFO TIMES 01h Relevant call times
P CALL LEG INFO RELEASE CAUSE 02h Call leg release cause
P_CALL_LEG_INFO_ADDRESS 04h Call leg connected address
P_CALL_LEG_INFO_ APPINFO 08h Call leg application related information

9.2.42 TpCallLegSuperviseTreatment

Defines the treatment of the call leg by the call control service when the call leg supervision timer expires. The values
may be combined by a logical 'OR' function.

Name Value Description
P_CALL LEG SUPERVISE RELEASE 01h Release the call leg when the call leg supervision timer expires
P CALL LEG SUPERVISE RESPOND 02h Notify the application when the call leg supervisiontimer expires
P CALL LEG SUPERVISE APPLY TONE 04h Send a warningtone onthe call leg when the call leg supervision timer
expires. If call legrelease isrequested, then the call leg will be
released following thetone after an administered time period

9.2.43 TpCallHighProbabilityCompletion

This data type is identical to a TpInt32, and defines the probability of completion under network congestion. A value of
0 indicates no special treatment (default). The other values of this data type are region specific. For example, a priority
value between 1, 2, 3, ..., n indicates special treatment, where 1 is the highest priority and n the lowest priority other
than no special treatment.

3GPP

Release 9 88 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

9.2.44 TpNotificationRequestedSetEntry

Defines the Sequence of Data Elements that specify a set of requested natifications and an indication whether more
notifications can be requested.

Sequence Element Name Sequence Element Type Description
NotificationRequestSet TpNotificationRequestedSet Numbered set of requested notifications.
Final TpBoolean Indication whether the set of notifications isthe final set
(TRUE)or if there are more notifications available
(FALSE).

9.2.45 TpCarrierSet

Defines a Numbered Set of Data Elements of TpCarrier. In case the set is empty, the SCF will assume
default processing.

9.2.46 TpCarrier

Defines the Sequence of Data Elements thatindicates carrier information. It consists of the carrier selection
field followed by the Carrier ID information to be used for routing a call to a carrier.

Sequence Element Name Sequence Element Type
CarrierID TpCarrierID
CarrierSelectionField TpCarrierSelectionField

9.2.47 TpCarrierlD

This data type is identical to a TpOctetSet. Forencoding of the field, depending on the network, either ITU-T
Recommendation Q.763 [8] or ANSI ISUP T.113 [9] applies.

9.2.48 TpCarrierSelectionField

Defines the type of Carrier Selection Field-related specific information. This parameter indicates how the selected
carrier is provided (e.g. pre-subscribed).

Name Value Description
P_CIC UNDEFINED 0 No indication.
pP_CIC NO_INPUT 1 The carrier identification code (CIC) is pre subscribed (not provided by
the calling party).
pP_CIC_ INPUT 2 The carrier identification code (CIC) is pre subscribed and provided by
the calling party.
P_CIC_UNDETERMINED 3 The selected carrier identification code (CIC) is pre subscribed, but no
indication is present of whether it is provided by the calling party
(undetermined).
P_CIC_NOT_PRESCRIBED 4 The selected carrier identification code (CIC) is provided by calling party
(not pre subscribed).

3GPP

Release 9 89 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

9.2.49 TpCallLegPropertyName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the call leg
properties that are to be supported by the Multi Party Call Control API. Other Network operator specific properties may
also be used, butshould be preceded by thestring *sP_". The following values are defined.

Character String Value Description
P_CALL_LEG_PROPERTY INFO The info property name isassociated with a URL value that describes the caller or callee
in general, for example, through a web page.
P CALL LEG PROPERTY ICON The icon parameter property name is asociated with a URL valuethat pointsto data
suitable asan iconic representation of the caller or callee.
P CALL LEG PROPERTY CARD The card property name isassociated with a business card, for example, in vCard or
LDIF formats.

9.2.50 TpCallLegPropertyNameList

This data type defines a Numbered List of Data Elements oftype TpCallLegPropertyName.

9.2.51 TpCallLegPropertyValue

This data type is identical to TpString. Itis the value associated with a property.

9.2.52 TpCallLegProperty

This data type is a Sequence of Data Elements which describes a property. It is a structured data type
consisting of the following {name,value} pair:

Sequence Element Name Sequence Element Type
CalllLegPropertyName TpCallLegPropertyName
CallLegPropertyvalue TpCallLegPropertyValue

9.2.53 TpCallLegPropertyList

This data type defines a Numbered List of Data Elements oftype TpCallLegProperty.

3GPP

Release 9 90 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Annex A (normative):
OMG IDL Description of Multi-Party Call Control SCF

The OMG IDL representation of this interface specification is contained in text files mpcc_data.idl and
mpcc_interfaces.id| (contained in archive 291980403V800IDL.ZIP) which accompany the present document.

3GPP

Release 9 91 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Annex B (informative):
W3C WSDL Description of Multi-Party Call Control SCF

The W3C WSDL representation of this interface specification is contained in zip file 291980403 VV800WSDL.ZIP,
which accompanies the present document.

3GPP

Release 9 92 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Annex C (informative):
Java API Description of the Call Control SCFs

The Java API realisation of this interface specification is produced in accordance with the Java Realisation rules defined
in Part 1 of this specification. These rules aimto deliver for Java, a developer API, provided as a realisation, supporting
a Java API that represents the UML specifications. The rules support the production of both J2SE and J2EE versions of
the API from the common UM L specifications.

The J2SE representation of this interface specification is provided as Java Code, contained in archive
291980403V800J2SE.ZIP that accompanies the present document.

The J2EE representation of this interface specification is provided as Java Code, contained in archive
291980403V800J2EE.ZIP that accompanies the present document.

3GPP

Release 9 93 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Annex D (informative):
Description of Call Control Sub-part 3: Multi-party call
control SCF for 3GPP2 cdma2000 networks

This annex is intended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in:

[1] 3GPP2 P.S0001-B: "Wireless IP Network Standard™, Version 1.0, September 2000.

[2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems”,
Version 2.0, May 14, 2002.

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain", December 2003.

These requirements are expressed as additions to and/or exclusions fromthe 3GPP specification.
The information given here is to be used by developers in 3GPP2 cd ma2000 network architecture to interpret the 3GPP
OSA specifications.

D.1 General Exceptions

The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used
(3GPP TR 21.905) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions
or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope

There are no additions or exclusions.

D.2.2 Clause 2: References

Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 systems.

D.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

D.2.4 Clause 4: MultiParty Call Control Service Sequence
Diagrams

There are no additions or exclusions.

D.2.5 Clause 5: Class Diagrams

There are no additions or exclusions.

3GPP

Release 9 94 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

D.2.6 Clause 6: MultiParty Call Control Service Interface Classes

There are no additions or exclusions.

D.2.7 Clause 7: MultiParty Call Control Service State Transition
Diagrams

There are no additions or exclusions.

D.2.8 Clause 8: Multi-Party Call Control Service Properties

There are no additions or exclusions. Nevertheless, for cd ma2000 systems the CAMEL data types and service
properties are not applicable.

D.2.9 Clause 9: Multi-Party Call Control Data Definitions

There are no additions or exclusions.

D.2.10 Annex A (normative): OMG IDL Description of Multi-Party
Call Control SCF

There are no additions or exclusions.

D.2.11 Annex B (informative): W3C WSDL Description of Multi-
Party Call Control SCF

There are no additions or exclusions.

D.2.12 Annex C (informative): Java™ API Description of the Multi-
Party Call Control SCF

There are no additions or exclusions.

3GPP

Release 9 95 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Annex E (informative):
Change history

Change history

Date TSG# [TSGDoc. [CR |Rev |Subject/Comment Old New
Mar 2001 CN_11 |NP-010134 (047 |- CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.20 [1.0.0
June 2001 [CN_12 |NP-010327 |-- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 |4.0.0
Sep 2001 CN_13 |NP-010467 |001 |-- Changing references to JAIN 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |002 |-- Correction of text descriptions for methods enableCallNotification and |4.0.0 [4.1.0
createNotification
Sep 2001 CN_13 |NP-010467 |003 |-- Specify the behaviourwhen acall leg times out 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |004 |-- Removal of Faulty state in MPCCS Call State Transition Diagramand |4.0.0 [4.1.0
method callFaultDetected in MPCCS in OSA R4
Sep 2001 CN_13 |NP-010467 |005 |-- Missing TpCallAppinfoSet description in OSA R4 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |006 |-- Redirecting a call leg vs. creating a call leg clarffication in OSA R4 400 [4.1.0
Sep 2001 CN_13 |NP-010467 |007 |-- Introduction of MPCC Originating and Terminating Call Leg STDs for [4.0.0 [4.1.0
IpCallLeg
Sep 2001 CN_13 |NP-010467 |008 |-- Corrections to SetChargePlan() Addition of PartyToCharge parmeter [4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |009 |-- Corrections to SetChargePlan() 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |010 |-- Remove distinction between final- and intermediate-report 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |011 |-- Inclusion of TpMediaType 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 [012 |-- Corrections to GCC STD 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |013 |-- Introduction of sequence diagrams for MPCC services 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |014 |-- The use of the REDIRECT event needs to be illustrated 400 [4.1.0
Sep 2001 CN_13 |NP-010467 |015 |-- Corrections to SetCallChargePlan() 400 [4.1.0
Sep 2001 CN_13 |NP-010467 |016 |-- Add one additional error indication 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 |017 |-- Corrections to Call Control — GCCS Exception handling 4.0.0 [4.1.0
Sep 2001 CN_13 |NP-010467 (018 |-- Corrections to Call Control — Errors in Exceptions 4.0.0 [4.1.0
Dec 2001 CN_14 |NP-010597 |019 |-- Replace Out Parameters with Return Types 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |020 |-- Removal of time based charging property 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |021 |-- Make attachMedia() and detachMedia() asynchronous 4.1.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |022 |-- Correction of treatment datatype in superviseReq on call leg 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |023 |-- Corrections to Call Control Data Types 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 [024 |-- Correction to Call Control (CC) 410 [4.2.0
Dec 2001 CN_14 |NP-010597 |025 |-- Amend the Generic Call Control introductory part 410 [4.2.0
Dec 2001 CN_14 |NP-010597 |026 |-- Correction in TpCallEventType 41.0 [4.2.0
Dec 2001 CN_14 |NP-010597 |027 |-- Addition of missing description of RouteErr() 41.0 |4.2.0
Dec 2001 CN_14 |NP-010597 |028 |-- Misleading description of createAndRouteCallLegErr() 410 [4.2.0
Dec 2001 CN_14 |NP-010597 |029 |-- Correction to values of TpCallNotificationType, 410 [4.2.0
TpCallLoadControlMechanismType
Dec 2001 CN_14 |NP-010695 |030 |-- Correction of method getLastRedirectionAddress 410 |4.2.0
Mar 2002 CN_15 |NP-020106 (031 (-- Add P_INVALID_INTERFACE_TY PE exception to 420 [4.3.0
IpService.setCallback() and IpService setCallbackWithSessionID()
Mar 2002 CN_15 |NP-020106 [032 |-- Correction of Event Subscription/Notification Data Type 420 [4.3.0
Mar 2002 CN_15 |NP-020106 |033 |-- Correction of parameter name in IpCallLeg.routeReq() and in 42.0 [4.3.0
IpCallLeg.setAdviceOf Charge()
Mar 2002 CN_15 |NP-020106 |034 |-- Clarification of ambiguous Event handling rules 42.0 [4.3.0
Jun 2002 CN_16 |NP-020180 |035 |-- Correction to TpCallChargePlan 43.0 [4.4.0
Jun 2002 CN_16 |NP-020180 [036 |-- Correction to CAMEL Service Property values 430 [4.4.0
Jun 2002 CN_16 |NP-020181 (037 |- Addition of supportfor Java APl technology realisation 440 |5.00
Jun 2002 CN_16 |NP-020182 |038 |- Addition of supportfor WSDL realisation 4.4.0 |5.0.0
Jun 2002 CN_16 |NP-020187 |039 |- Addition of supportfor Emergency Telecommunications Service 44,0 |5.0.0
Jun 2002 CN_16 |NP-020183 |040 |- Addition of supportfor Netw ork Controlled Notifications MPCC 4.4.0 [5.0.0
Jun 2002 CN_16 |NP-020187 |041 |- Changes to getNotification() 4.4.0 [5.0.0
Jun 2002 CN_16 |NP-020187 (042 |- Addition of P_UNSUPPORTED_MEDIA release cause to 4.4.0 |5.0.0
TpReleaseCause
Jun 2002 CN_16 |NP-020187 |043 |- Addition of CAMEL Phase 4 Service Property values 4.4.0 [5.0.0
Jun 2002 CN_16 |NP-020187 |044 |- Addition of indication whether SCS supports initially multiple 44.0 |5.00
routeRegs in parallel
Jun 2002 CN_16 |NP-020187 |045 |- Explicit exception for continueProcessing when not in interrupted 4.4.0 [5.0.0
mode
Jun 2002 CN_16 |NP-020187 (046 |- Indication needed that supervision will be ended when call or callLeg |4.4.0 [5.0.0
is deassigned
Jun 2002 CN_16 |NP-020187 (047 |- Clarify ambiguous Supervision duration 4.4.0 [5.0.0
Jun 2002 CN_16 |NP-020187 |048 |- Detach/Attach request illegal during pending Attach/Detach request [4.4.0 |5.0.0
Jun 2002 CN_16 |NP-020187 |049 |- Correction of Multi-Party Call Control properties 4.4.0 |5.0.0
Jun 2002 CN_16 |NP-020187 |050 |- Correcting the sequence diagram descriptions in GCC and MPCC 4.4.0 |5.0.0
Jun 2002 CN_ 16 |NP-020187 (051 |- Correcting erroneous description of Ul behaviour in call control 4.4.0 |5.0.0

3GPP

Release 9 96 3GPP TS 29.198-4-3 V9.0.0 (2009-12)

Jun 2002 CN_16 |NP-020187 (052 |- Correcting the descriptions of sequence diagrams that don't match the|4.4.0 |5.0.0
diagram
Jun 2002 CN_16 |NP-020187 |053 |- Correcting erroneous references to GCC in MPCC 4.4.0 |5.0.0
Jun 2002 CN_16 |NP-020187 |054 |- Addition of the Multi-media A Pls to Call control SCF (29.198-4) 4.4.0 [5.0.0
Jun 2002 CN_16 |NP-020187 |055 |- Updating Clause 4 for Release 5 4.4.0 [5.00
Jun 2002 CN_16 |NP-020188 |056 |- Spliting of 29.198-04 into 4 separate TSs (sub-parts) 4.4.0 |5.0.0
Sep 2002 CN_17 |NP-020431 (001 29.198-04-3 Correction of error in Call Forw ard on Busy sequence 5.0.0 [5.1.0
diagram
Sep 2002 CN_17 |NP-020431 |002 Correct inconsistencies in IpCallLeg state transition diagrams 5.0.0 |5.1.0
Sep 2002 CN_17 |NP-020431 {003 Clarification of the overlapping criteria definition and eventType 5.0.0 ([5.1.0
mapping to IN TDPs
Sep 2002 CN_17 |NP-020431 |004 Add support for Carrier selection 5.0.0 |5.1.0
Sep 2002 CN_17 |NP-020431 |005 Correction on use of NULL in Call Control API 5.0.0 |5.1.0
Sep 2002 CN_17 |NP-020395 |006 Add text to clarify relationship between 3GPP and ETSl/Parlay OSA [5.0.0 |5.1.0
specfications
Mar 2003 CN_19 |NP-030031 |007 |-- Correction of status of MPCC methods 5.1.0 |5.2.0
Mar 2003 CN_19 |NP-030031 |008 |-- Inconsistent description of use of secondary callback 5.1.0 |5.2.0
Mar 2003 CN_19 |NP-030020 |009 |-- Correction to TpReleaseCauseSet in Multi Party Call Control IDL 5.1.0 |5.2.0
Mar 2003 CN_19 |NP-030130 (010 |-- Correction of definition of the P MAX_CALLLEGS PER_CALL 5.1.0 [5.2.0
Jun 2003 CN_20 |NP-030238 |011 |-- Correction of the description for callEventNotify & reportNotification 5.2.0 |5.3.0
Jun 2003 CN_20 |NP-030305 |012 |1 Unclear overlap criteria for rejection of createNotification 5.3.0 |6.0.0
Jun 2003 CN_20 |NP-030247 [013 |-- Add support for advanced subscriber presentation 5.3.0 [6.0.0
Dec 2003 CN_22 |NP-030550 |017 |-- Correction of description of TpNotificationRequestedSetEntry 6.0.0 [6.1.0
Dec 2003 CN_22 |NP-030553 (019 |-- Add OSA API supportfor 3GPP2 networks 6.0.0 [6.1.0
Jun 2004 CN_24 |NP-040267 |021 |-- Correction of description in superviseRes - Align with Rel-5 6.1.0 |6.2.0
Jun 2004 CN_24 |NP-040256 [023 |-- Correct the P_TRIGGERING_ADDRESSES service property 6.1.0 [6.2.0
Jun 2004 CN_24 |NP-040273 |024 |-- Remove the <> stereotype from methods w hich are no longer new 6.1.0 |6.2.0
Jun 2004 CN_24 | NP-040257 |026 |-- Correction of callbacks sequence and timing conditions in MPCCS 6.1.0 |6.2.0
Sep 2004 CN_25 |NP-040354 [019 |-- Correction to Java Realisation Annex 6.2.0 [6.3.0
Sep 2004 CN_25 |NP-040358 (021 |-- Support High Availability at APl Level 6.2.0 [6.3.0
Dec 2004 CN_26 |NP-040485 (035 |-- Removal of OSA APl SCFs description in W3C WSDL 6.3.0 [6.4.0
Dec 2004 -- -- -- -- Added missing code attachments 6.40 [6.4.1
Jun 2005 CT_28 |CP-050155 |0037|-- Correct support for Emergency Telecommunications Service 6.4.1 |6.5.0
Jun 2005 -- -- -- -- Java code attachments notavailable at TS delivery deadline 6.4.1 |6.5.0
Jul 2005 -- -- -- -- Added the missing Java code attachments 6.5.0 [6.5.1
Jun 2006 CT_32 |CP-060195 |0038| -- Change reference to OSA Stage 2 from 23.127 to 23.198 6.5.1 |6.6.0
Jun 2006 CT_32 |CP-060194 |0039| -- Resubmission of OSA API SCFs description in W3C WSDL 6.5.1 |6.6.0
Jul 2006 -- -- -- -- Added missing code attachments 6.6.0 |6.6.1
Jul 2006 CT_32 |CP-060206 |0040| -- Remove deprecated item: getNotification() method 6.6.1 |7.0.0
Sep 2006 -- -- -- -- Added missing code attachments J2EE and J2SE 7.00 |7.0.1
Dec 2008 CT_42 Upgraded unchanged from Rel-7 7.0.1 [8.0.0
2009-12 - - - - Update to Rel-9 version (MCC) 8.0.0 [9.0.0

3GPP

	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 MultiParty Call Control Service Sequence Diagrams
	4.1 Application initiated call setup
	4.2 Call Barring 2
	4.3 Call forwarding on Busy Service
	4.4 Call Information Collect Service
	4.5 Complex Card Service
	4.6 Hotline Service
	4.7 Network Controlled Notifications
	4.8 Use of the Redirected event

	5 Class Diagrams
	6 MultiParty Call Control Service Interface Classes
	6.1 Interface Class IpMultiPartyCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method createNotification()
	6.1.3 Method destroyNotification()
	6.1.4 Method changeNotification()
	6.1.5 Method setCallLoadControl()
	6.1.6 Method enableNotifications()
	6.1.7 Method disableNotifications()
	6.1.8 Method getNextNotification()

	6.2 Interface Class IpAppMultiPartyCallControlManager
	6.2.1 Method reportNotification()
	6.2.2 Method callAborted()
	6.2.3 Method managerInterrupted()
	6.2.4 Method managerResumed()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()
	6.2.7 Method abortMultipleCalls()

	6.3 Interface Class IpMultiPartyCall
	6.3.1 Method getCallLegs()
	6.3.2 Method createCallLeg()
	6.3.3 Method createAndRouteCallLegReq()
	6.3.4 Method release()
	6.3.5 Method deassignCall()
	6.3.6 Method getInfoReq()
	6.3.7 Method setChargePlan()
	6.3.8 Method setAdviceOfCharge()
	6.3.9 Method superviseReq()

	6.4 Interface Class IpAppMultiPartyCall
	6.4.1 Method getInfoRes()
	6.4.2 Method getInfoErr()
	6.4.3 Method superviseRes()
	6.4.4 Method superviseErr()
	6.4.5 Method callEnded()
	6.4.6 Method createAndRouteCallLegErr()

	6.5 Interface Class IpCallLeg
	6.5.1 Method routeReq()
	6.5.2 Method eventReportReq()
	6.5.3 Method release()
	6.5.4 Method getInfoReq()
	6.5.5 Method getCall()
	6.5.6 Method attachMediaReq()
	6.5.7 Method detachMediaReq()
	6.5.8 Method getCurrentDestinationAddress()
	6.5.9 Method continueProcessing()
	6.5.10 Method setChargePlan()
	6.5.11 Method setAdviceOfCharge()
	6.5.12 Method superviseReq()
	6.5.13 Method deassign()
	6.5.14 Method getProperties()
	6.5.15 Method setProperties()

	6.6 Interface Class IpAppCallLeg
	6.6.1 Method eventReportRes()
	6.6.2 Method eventReportErr()
	6.6.3 Method attachMediaRes()
	6.6.4 Method attachMediaErr()
	6.6.5 Method detachMediaRes()
	6.6.6 Method detachMediaErr()
	6.6.7 Method getInfoRes()
	6.6.8 Method getInfoErr()
	6.6.9 Method routeErr()
	6.6.10 Method superviseRes()
	6.6.11 Method superviseErr()
	6.6.12 Method callLegEnded()

	7 MultiParty Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpMultiPartyCallControlManager
	7.1.1 Active State
	7.1.2 Interrupted State
	7.1.3 Overview of allowed methods

	7.2 State Transition Diagrams for IpMultiPartyCall
	7.2.1 IDLE State
	7.2.2 ACTIVE State
	7.2.3 RELEASED State
	7.2.4 Overview of allowed methods

	7.3 State Transition Diagrams for IpCallLeg
	7.3.1 Originating Call Leg
	7.3.1.1 Initiating State
	7.3.1.2 Analysing State
	7.3.1.3 Active State
	7.3.1.4 Releasing State
	7.3.1.5 Overview of allowed methods, Originating Call Leg STD

	7.3.2 Terminating Call Leg
	7.3.2.1 Idle (terminating) State
	7.3.2.2 Active (terminating) State
	7.3.2.3 Releasing (terminating) State
	7.3.2.4 Overview of allowed methods and trigger events, Terminating Call Leg STD

	8 Multi-Party Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment.

	9 Multi-Party Call Control Data Definitions
	This shows the name of the data type.
	9.1 Event Notification Data Definitions
	9.2 Multi-Party Call Control Data Definitions
	9.2.1 IpCallLeg
	9.2.2 IpCallLegRef
	9.2.3 IpAppCallLeg
	9.2.4 IpAppCallLegRef
	9.2.5 IpMultiPartyCall
	9.2.6 IpMultiPartyCallRef
	9.2.7 IpAppMultiPartyCall
	9.2.8 IpAppMultiPartyCallRef
	9.2.9 IpMultiPartyCallControlManager
	9.2.10 IpMultiPartyCallControlManagerRef
	9.2.11 IpAppMultiPartyCallControlManager
	9.2.12 IpAppMultiPartyCallControlManagerRef
	9.2.13 TpAppCallLegRefSet
	9.2.14 TpMultiPartyCallIdentifier
	9.2.15 TpAppMultiPartyCallBack
	9.2.16 TpAppMultiPartyCallBackRefType
	9.2.17 TpAppCallLegCallBack
	9.2.18 TpMultiPartyCallIdentifierSet
	9.2.19 TpCallAppInfo
	9.2.20 TpCallAppInfoType
	9.2.21 TpCallAppInfoSet
	9.2.22 TpCallEventRequest
	9.2.23 TpCallEventRequestSet
	9.2.24 TpCallEventType
	9.2.25 TpAdditionalCallEventCriteria
	9.2.26 TpCallEventInfo
	9.2.27 TpCallAdditionalEventInfo
	9.2.28 TpCallNotificationRequest
	9.2.29 TpCallNotificationScope
	9.2.30 TpCallNotificationInfo
	9.2.31 TpCallNotificationReportScope
	9.2.32 TpNotificationRequested
	9.2.33 TpNotificationRequestedSet
	9.2.34 TpReleaseCause
	9.2.35 TpReleaseCauseSet
	9.2.36 TpCallLegIdentifier
	9.2.37 TpCallLegIdentifierSet
	9.2.38 TpCallLegAttachMechanism
	9.2.39 TpCallLegConnectionProperties
	9.2.40 TpCallLegInfoReport
	9.2.41 TpCallLegInfoType
	9.2.42 TpCallLegSuperviseTreatment
	9.2.43 TpCallHighProbabilityCompletion
	9.2.44 TpNotificationRequestedSetEntry
	9.2.45 TpCarrierSet
	9.2.46 TpCarrier
	9.2.47 TpCarrierID
	9.2.48 TpCarrierSelectionField
	9.2.49 TpCallLegPropertyName
	9.2.50 TpCallLegPropertyNameList
	9.2.51 TpCallLegPropertyValue
	9.2.52 TpCallLegProperty
	9.2.53 TpCallLegPropertyList
	Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF
	Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF
	Annex C (informative): Java API Description of the Call Control SCFs
	Annex D (informative): Description of Call Control Sub-part 3: Multi-party call control SCF for 3GPP2 cdma2000 networks

	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: MultiParty Call Control Service Sequence Diagrams
	D.2.5 Clause 5: Class Diagrams
	D.2.6 Clause 6: MultiParty Call Control Service Interface Classes
	D.2.7 Clause 7: MultiParty Call Control Service State Transition Diagrams
	D.2.8 Clause 8: Multi-Party Call Control Service Properties
	D.2.9 Clause 9: Multi-Party Call Control Data Definitions
	D.2.10 Annex A (normative): OMG IDL Description of Multi-Party Call Control SCF
	D.2.11 Annex B (informative): W3C WSDL Description of Multi-Party Call Control SCF
	D.2.12 Annex C (informative): Java™ API Description of the Multi-Party Call Control SCF
	Annex E (informative): Change history

