3GPP TS 29198-4-2 VV9.0.0 (2009-12)

Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Access (OSA);

Application Programming Interface (API);

Part 4. Call control;

Sub-part 2: Generic call control Service Capability Feature
(SCF)

(Release 9)

™

SELL

GLOBAL SYSTEM FOR
MOBILE COMMUNICATIONS

The present document has been developed within the 3™ Generation Partnership Project (3GPP ') and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partnersand shall not be implemented.

This Specification isprovided for future development work within 3GPP only. The Organizational Partners accept no liability for any use ofthis Specification.
Specifications and reports for implementation of the 3GPP ™ system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Release 9 2 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Keywords
UMTS, API, OSA

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 492 94 42 00 Fax +334 93 6547 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.
UMTS™ js a Trade M ark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ET SI registered for the benefit of its M embers and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

Release 9 3 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Contents

0] (=10 (o PRSPPI 6
L0018 To3 § o] o SRR RP T PPPPP 6
1 RSToT o]0 O U PUP TR 8
2 L C (=] (=] 1o PRSP 8
3 Definitions and abDrEVIAIONSciiuiriee e it e e s e e e e e a e e e st e e e e e e e e e e sbeaaeeennees 9
3.1) T 1 To] g 9
3.2 N 0] o3 LA TR 9
4 Generic Call Control Service SeqUENCE DIAGIAMSuueiiiieiiiieiiiee st
4.1 F o o 10 gL @r= Y 1o Tod TSR
4.2 ALRrM Call oo

4.3 Application Initiated Callccoocerenivninnereceines

4.4 Call Barring L.......ccoeveneeeneeenereneieseeeensnnens

4.5 Number Translation 1..........ccoooevvvvenncrcnnenn

4.6 Number Translation 1 (with callbacks)

4.7 Number Translation 2..........cccocoevvrvecnnecnnenn,

4.8 Number Translation 3...........ccccoevvveennccnnnn,

4.9 Number Translation 4cccoevvvrennercnnnnn

4.10 Number Translation 5

411 Prepaid ..o

4.12 Pre-Paid With AdViICe OF Charge (AOC) ..ot b

5 (01 R DI o 2= 1 TP PO PP PPRTP

6 Generic Call Control Service INterface ClaSSES...........coiviiiiiiiiiiie s
6.1 Interface Class IpCallControlManager

6.1.1 Method createCall()ccocoeneerreevrievennnnnes

6.1.2 Method enableCallNotification()..............

6.1.3 Method disableCallNotification()..............

6.1.4 Method setCallLoadControl()cc.cc....

6.1.5 Method changeCallNotification().............

6.1.6 Method getCriterial)covemerreeneeriereeneeseeeeeeeenns

6.2 Interface Class IpAppCallControlManager.........c.ccocccneeeen.

6.2.1 Method callAborted()cccveieenreceeeece e

6.2.2 Method callEventNOtify ()cccocovvereeevirccesreeeeieeeas

6.2.3 Method callNotificationInterrupted()

6.2.4 Method callNotificationContinued()........

6.2.5 Method callOverload Encountered().........

6.2.6 Method callOverload Ceased()

6.2.7 Method abortMultipleCalls().....................

6.3 Interface Class IpCall..........cccccoovivvcnvecrcnennn,

6.3.1 Method routeReq()....ccovveerrvrvererrerecierennns

6.3.2 Method release()....c.ccoovvvrrreeerereccennn,

6.3.3 Method deassignCall()cccoveerrreenrviereesereeeeseeens

6.3.4 Method getCallINfOREq ()vovvverrerereenrrrieieerieseeeissieeas

6.3.5 Method setCallChargePlan()ccc.......

6.3.6 Method setAdviceOfCharge().....c.cocovunnne.

6.3.7 Method getMoreDialledDigitsReq()

6.3.8 Method superviseCallReq()cccrevevrvrnnes

6.3.9 Method continueProcessing()........oceevne.

6.4 Interface Class IpAppCall........ccccovenicniinn.

6.4.1 Method routeRES() ...c.veevreverieeriieiiceriennes

6.4.2 Method rOUtEErT()cvveereerrierececeiennas

6.4.3 Method getCallINfORES()cvverreecrriieericicnecreeeieenns

6.4.4 Method getCallINfTOEIT()covvevveeereerecricrecreeeneieenns

6.4.5 Method superviseCallRes()

3GPP

Release 9

4 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

6.4.6 Method SUPENVISECAITEIT() .uvuevevriereeiriiieieirieseeeee st sssa et ss sttt b st s st s s s s s
6.4.7 Method callFaultDetected().....ccc.ccuevuevnne.

6.4.8 Method getMoreDialledDigitsRes()

6.4.9 Method getMoreDialledDigitsErr()

6.4.10 Y= oo I oF: 11| T [T | TR

7 Generic Call Control Service State Transition Diagramsccoueiivieiiiieiiiieeiieee e 50
7.1 State Transition Diagrams for IpCallCoNtrOIMAaNAQETccceviiircrirrieee s 50
7.11 AACTIVE SEALEeee ettt s bbb s bR R bRt
7.1.2 NOLIfICAtioN tErMINALE STALEcveee e
7.2 State Transition Diagrams for IpCall

7.2.1 NETWOTK REIBASEU STALEeveeeeciceeiris ettt st et
7.2.2 FINISNEA SEALE.......eieeiiieiciee bbb bbb bbbttt
7.2.3 Application Released State

7.2.4 o 1Y L=
7.2.5 LPAITY IN CAIL STALE ...
7.2.6 2 Parties in Call State

7.2.7 INO PAITIES STALE ...ttt a bbb s bbb e e et re et s e st e s nee et
7.2.8 Routing t0 DeStINALION(S) STALE.......c..iree i

8 Generic Call Control SErVICE PrOPEITIES.ccuvvreeeiiiiiee et ee et e e ee e ere e e s e e e s nnraae e e enneeees 55
8.1 T 0] BT VA Tot e o 0] o 1= U= T 55
8.2 Service Property values for the CAMEL Service ENVIFONMENT.cccoiierniirrrreeesseeeis e 56
9 Generic Call Control Data DefiNItiONSccuurieeiiiiiieiiiiiie e e e e srra e e anaeee s 57
9.1 Generic Call Control Event Notification Data Definitionsccoervrerneiesrseesseee s 57
9.1.1 TPCAITEVENTNGIME ...ttt bbb bbbttt 57
9.1.2 TPCAIINOUFICALIONTYPE 1ottt 58
9.1.3 TpCallEventCriteria

9.1.4 TPRCAITEVENTINTO ..ottt
9.2 Generic Call Control Data Definitions

9.21 IPCall ..o

9.2.2 IDCAITRET ... R R
9.2.3 [0 0] 4 L% || OO OTT TP TRTRRTOT
9.2.4 IpAppCallRef

9.2.5 QLI L0211 1= o) L TR
9.2.6 IDAPPCACONTIOIMANAGETiecveeeececeeirie ettt b bbb bbb s s s s bbb st s s bt s s st et
9.2.7 IpAppCalliControlManagerRef

9.2.8 ToLOE Y 1 L@r0T 01 (0] 1Y =TT o -1 RPN
9.2.9 IpCallControlManagerRef

9.2.10 TpCallAppInfo

9.2.11 QLI o101 7N o o1) {2014 PP
9.2.12 QLI o101 N o 1) {0 PP
9.2.13 TpCallEndedReport

9.2.14 LI 010 L1 L U | PR
9.2.15 QLI 010 L a0 T o Lo PP TTOT
9.2.16 TpCallReleaseCause

9.2.17 LI 010 L1 oL TR
9.2.18 TPCallAAAItIONAIREPOITINTO ...t bbbt
9.2.19 TpCallReportRequest

9.2.20 TPCallAAAItIONAIREPOICIILETIAvveeeseeeiei ittt
9.2.21 TP CAIIREPOITREGUESTSEL. ...ttt bbb bbbt
9.2.22 TpCallReportType

9.2.23 TPCAIIT FEALIMENT ...ttt bbbt
9.2.24 TPCAIIEVENTCHEEIIARESUISEL ... bbb
9.2.25 TPCAIEVENTCHLEIIARESUIL ...

3GPP

Release 9 5 3GPP TS 29.198-4-2 V9.0.0 (2009-12)
Annex A (normative): OMG IDL Description of Generic Call Control SCF............cccccccceeeis 65
Anrex B (informative): W3C WSDL Description of Generic Call Control SCF...............ccove... 66
Annex C (informative): Java™ API Description of the Call Control SCFs................ccccccooiiineee 67
Anrex D (informative): Description of Call Control Sub-part 2: Generic call control SCF for
3GPP2 cdma2000 NETWOTKSceiiiiiieeiiiiire et 68
D.1 GENEIAI EXCEPLIONSitiiiieieitiie ettt ettt et ettt ettt et e et e e anbe e e e 68
D.2 SPECIFIC EXCEPLIONScvtiiiiiie ittt ettt ettt ettt et e e bb e et e e s e e enbe e e e
D.21 ClAUSE L: SCOPE....eeeteeteeet ettt eb bbb
D.2.2 (O =T LTl o (-] (-] 0 oF 1SR
D.2.3 Clause 3: Definitions and abhreViations............cocierirerie et
D.2.4 Clause 4: Generic Call Control Service Sequence Diagrams
D.2.5 Clause 5: Class DIAGTAIMScuuuerieerieerrtesi ettt s bbb bbb
D.2.6 Clause 6: Generic Call Control Service INterface ClaSSES ...t
D.2.7 Clause 7: Generic Call Control Service State Transition Diagrams
D.2.8 Clause 8: Generic Call Control SErVICE PrOPEITIESccurreiurirriieieieir ettt
D.2.9 Clause 9: Generic Call Control Data DefiNITIONS.cccrriirirrieicieiereree et
D.2.10 AnnexA (normative): OMG IDL Description of Generic Call Control SCF
D.2.11 AnnexB (informative): W3C WSDL Description of Generic Call Control SCF.........c.ccovvvvvvvvvsissss 69
D.2.12 Annex C (informative): Java™ API Description of the Call Control SCFSc.cccovrnirrnniininieininesieseneeissenenas 69
Annex E (informative): Change NISTONY......ccuiiiiii e 70

3GPP

Release 9 6 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Foreword

This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version Xx.y.z
where:
X the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 orgreater indicates TSGapproved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 4, sub-part 2 of a multi-part TS covering the 3" Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The APIspecification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";
Part 3: "Framework";

Part 4: ""Call Control™;

Sub-part 1: "Call Control Common Definitions™;
Sub-part 2: " Generic Call Control SCF";
Sub-part 3: "Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";
Sub-part 5: "Conference Call Control SCF";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 8)
Part 10: "Connectivity Manager SCF"; (new in 3GPP Release 8)
Part 11: "Account Management SCF";

Part 12: "Charging SCF".

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF";

Part 15 "Multi Media Messaging SCF";

Part 16: "Service Broker SCF".

The Mapping s pecification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

3GPP

Release 9

3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family

OSA API Mapping - 29.998-family

29.198-01 | Overview 29.998-01 Overview

29.198-02 | Common Data Definitions 29.998-02 Not Applicable

29.198-03 | Framework 29.998-03 Not Applicable

Call 29.198- 29.198- [29.198- [29.198- [29.198- | 29.998-04-1 Generic Call Control - CAP mapping

Control 04-1 04-2 04-3 04-4 04-5 29.998-04-2 Generic Call Control — INAP mapping

(Co) Common | Generic | Multi- M ulti- Conf 29.998-04-3 Generic Call Control — Megaco mapping

SCF CC data CC Party media CC SCF [29.998-04-4 Multiparty Call Control — ISC mapping

definitions | SCF CC SCF | CCSCF

29.198-05 | User Interaction SCF 29.998-05-1 User Interaction — CAP mapping
29.998-05-2 User Interaction — INAP mapping
29.998-05-3 User Interaction — Megaco mapping
29.998-05-4 User Interaction — SM 'S mapping

29.198-06 | Mobility SCF 29.998-06-1 User Status and User Location — MAP

mapping

29.998-06-2 User Status and User Location — SIP mapping

29.198-07 | Terminal Capabilities SCF 29.998-07 Not Applicable

29.198-08 | Data Session Control SCF 29.998-08 Data Session Control — CAP mapping

29.198-09 | Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 | Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 | Account Management SCF 29.998-11 Not Applicable

29.198-12 | Charging SCF 29.998-12 Not Applicable

29.198-13 | Policy Management SCF 29.998-13 Not Applicable

29.198-14 | Presence & Availability Management SCF 29.998-14 Not Applicable

29.198-15 | Mulki-media Messaging SCF 29.998-15 Not Applicable

29.198-16 | Service Broker SCF 29.998-16 Not Applicable

3GPP

Release 9 8 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

1 Scope

The present document is Part 4, Sub-part 2 of the Stage 3 specification for an Application Programming Interface (API)
for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are
contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Generic Call Control Service Capability Feature (SCF) aspects of the interface. All
aspects of the Generic Call Control SCF are defined here, these being:

e Sequence Diagrams

e Class Diagrams

e Interface specification plus detailed method descriptions
e State Transition diagrams

e Data definitions

o IDL Description of the interfaces

e WSDL Description of the interfaces

e Reference to the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT W G5, ETSI TISPAN and the Parlay Group, in co-
operation with a number of JAIN™ Community member companies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

o References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

e Foraspecific reference, subsequent revisions do not apply.

o Foranon-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1: Overview".
[2] 3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA); Stage 1".

[3] 3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4] 3GPP TS 22.002: "Circuit Bearer Services Supported by a PLMN".

[5] ISO 4217 (1995): " Codes for the representation of currencies and funds ".

[6] 3GPP TS 24.002: " GSM-UMTS Public Land Mobile Network (PLM N) Access Reference

Configuration™.

[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)".

3GPP

Release 9 9 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1[1] apply.

4 Generic Call Control Service Sequence Diagrams
The Generic Call Control API of 3GPP Rel.4 relies on the CAMEL Service Environment (CSE) and thus some

restrictions exist to the use of the interface. The most significant one is that there is no support for createCall method.
The detailed description of the supported methods and further restrictions is given in the chapter 8.

4.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of
events. If one of the call backs can not be used, e.g. because the application crashed, the other call back interface is used

instead.

3GPP

Release 9 10 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

first instance : (Logical : IpAppCallControlManager second instance : : IpAppCallControlManager : IpCallControlManager
View::IpAppLogic) (Logic...
1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

5: callEventNotify()

6: forward event'

7: "call Notify result: failure"

8: callEventNotify()

9: "forward event" (

[J L

1: The first instance of'the application is started on node 1. The application creates a new IpAppCallControlManager to
handle callbacks for this first instance of the logic.

2: The enableCallNotification is associated with an applicationID. The call control manager uses the applicationID to
decide whether this is the same application.

3: The second instance of the application is started on node 2. The application creates a new
IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNotification request is sent as for the first instance of the logic. Because both requests are
associated with the same application, the second request is not rejected, but the specified callback object is stored as an
additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different
policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin
scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable this is communicated with an exception to the
call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

3GPP

Release 9 11 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

4.2 Alarm Call

The following sequence diagram shows a 'reminder message', in the formof an alarm, being delivered to a customer as
aresult of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the
application could also trigger on events.

: (Logical : IpAppCall o - :IpCall = : IpUICall
View::l Logic IpAppUICall | | IpCallControlManager IpAppUIManager
1: new()
V 2: createCall()
3: new()
4: routeReq()
1 5: routeRes()
6: 'forward event'

]
7: createUlICall()
H 8: new()
9: sendInfoReq()
10: sendIinfoRes()
11: ‘forward event' (

12: release()

[13: release()

1: This message is used to create an object imp lementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load control values not
exceeded) is met it is created.

4: This message instructs the object implementing the Ip Call interface to route the call to the customer destined to
receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.
6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

3GPP

Release 9 12 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

8: Assuming all criteria are met, a new UlCall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarmto the customer's call.
10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UlICall object, since no further announcements are required. Alternatively, the
application could have indicated P_ FINAL REQUEST in the sendInfoReq in which case the UICall object would have
been implicitly released after the announcement was played.

13: The application releases the call and all associated parties.

4.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. This sequence could
be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk
to.

3GPP

Release 9 13 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

: (Logical . IpAppCall o . IpCall
View::IpAppLo... IpCallControlManager
1:new()

2: createCall()

1 3: new()

R —
\; 1

4:routeReq()

5:routeRes()

6: 'forward event' (

] L
7:routeReq()

H 8:routeRes() |
9: ‘forward event' {

] L

10: deassignCall()

3GPP

Release 9 14 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

1: This message is used to create an object imp lementing the IpAppCall interface.

2: This message requests the object imp lementing the IpCallControlManager interface to create an object
implementing the IpCall interface.

3: Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load control values not
exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request
response when the A party answers.

5: This message indicates that the A party answered the call.
6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or
failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is
automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the application is no longer interested in controlling the call, the application deassigns the call. The call will
continue in the network, but there will be no further communication between the call object and the application.

4.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received
by the call control service. Before the call is routed to the destination number, the calling party is asked fora PIN code.
The code is accepted and the call is routed to the original called party.

3GPP

Release 9 15 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

: (Logical : IpAppCallControlManager : IpAppCall o o : IpCall = : IpUICall
View::IpAppLogic) IpAppUICall IpCallControlManage IpUIManager
|
|
} 1: new()

]

2: enableCallNotification()

3: callEventNotify()

4:'forward event'

5:new()

6: createUICall

7:new()

—

8:sendinfoAndCollectReq()

9: sendInfoAndCollectRes()
10: ‘forward event'

11:release()

12:routeReq()

13: routeRes() LH
14: ‘forward event'

16: "forward event" 15: callEnded()

o

H

17: deassignCall()

- T

— Y

I: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a call barring service, it is likely that all new call events destined for a particular address or address range prompted for
a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a
message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for
creating an object imp lementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not
shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.
4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using the return parameter of the
callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given when creating the
UlCall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

3GPP

Release 9 16 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.
10: This message is used to forward the previous message to the [pAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. This notification will always
be received when the call is terminated by the network in a normal way, the application does not have to request this
event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

4.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control service.

3GPP

Release 9 17 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

. (Logical . IpAppCallControlManager . IpAppCall o . IpCall
View::IpAppLo... IpCallControlManager
1: new()

2: enableCallNotification

~

3: callEventNotify()

4: ‘forward event'

w 5: new()

6: 'translate number'

{Z

7: routeReq()

8: routeRes()

9: ‘forward event' (

10: deassignCall()

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

3GPP

Release 9 18 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using the return parameter of message
3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.
8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

4.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event
being received by the call control service.

For illustration, in this sequence the callback references are set explicitly. This is optional. All the callbacks references
can also be passed in other methods. Froman efficiency point of view that is also the preferred method. The rest of the
sequences use that mechanism.

3GPP

Release 9 19 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

: (Logical . IpAppCallControlManager : IpAppCall o . IpCall
View::IpAppLogic) IpCallControlManager
1: new()

2: setCallback()

3: enableCallNotification()

4: callEventNotify()

5: ‘forward event' (

[] {

6: new()

]

7: setCallbackWithSessionID()

T 8: 'translate number'

pE—

9: routeReq()

10: routeRes()

11: ‘forward event' (

12: deassignCall()

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The
CallControlManager reports the callEventNotify to referenced object only for enable CallNotifications that do not have
an explicit [pAppCallControlManager reference specified in the enable CallNotification.

3GPP

Release 9 20 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

3: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria set in message 3, arrives a message (notshown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

4: This message is used to pass the new call event to the object implementing the IpAppCallControIManager interface.
5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object imp lementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall for this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object.

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

4.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control service. If the translated number being routed to does not answer or is busy then the call is
automatically released.

3GPP

Release 9 21 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

: (Logical . IpAppCallControlManager . IpAppCall . IpCallControlManager . IpCall
View::IpAppLogic)
1: new()

2: enableCallNotification()

3: callEventNotify()

4: ‘forward event'

5: new()

6: translate number'

{Z

7: routeReq()

8: routeRes()

9: ‘forward event'

|

10: release(

~

1: This message is used by the application to create an object implementing the IpAppCallControIManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria, arrives a message (not shown) is directed to the object imp lementing the
IpCalliControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.
4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.
7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object imp lementing the IpCall interface sends a callback
in this message, indicating the unavailability of the called party.

3GPP

Release 9 22 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

4.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control service. If the translated number being routed to does not answer or is busy then the call is

automatically routed to a voice mailbox.

3GPP

Release 9 23 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

: (Logical : IpAppCallControlManager i Call : IpCallControlManager :IpCall
View::IpAppLogic)

| 1: new()

[]

2: enableCallNotification()
[]

3: callEventNotify()
4: 'forward event' (
‘ 5:‘new()

|

(o2

: 'translate number'

—

7:routeReq()

8: routeRes()

9: forward event' (T
] ”
10: 'translate number'
I
11:routeReq()
[]
12:routeRes()
13: ‘forward event' L A
[
i H
14: deassignCall()
H]

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria, arrives a message (not shown) is directed to the object imp lementing the
IpCallControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

3GPP

Release 9 24 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager usin g the return parameter of the
callEventNotify.

6: This message invokes the number translation function.
7. The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,
indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but this time the number is translated to a number
belonging to a voice mailboxsystem.

11: This message routes the call towards the voice mailbox.
12: This message passes the result of the call being answered to its callback object.
13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue
in the network, but there will be no further communication between the call object and the application.

4.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being
received by the call control service. Before the call is routed to the translated number, the application requests for all
call related information to be delivered back to the application on comp letion of the call.

3GPP

Release 9 25 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

‘ : (Logical ‘ ‘ : IpAppCallControlManager ‘ ‘ : IpAppCall H : IpCallControlManager ‘ ‘ _IpCall ‘
View::IpAppl ogic)
1: new()
]
2! enableCallNotification()
D 3: callEventNotify() u

4: ‘forward event'

6: 'translate number'

P—

7: getCallinfoReq()

8:routeReq()

9: routeRes()

10: forward event'

L]

11: callEnded()
12: “forward event”

7}

13: getCallinfoRes()

14: 'forward event' (J

15: deassignCall()

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled. When
anew call, that matches the event criteria, arrives a message (not shown) is directed to the object imp lementing the
IpCallControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP

Release 9 26 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using the return parameter of the
callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implementing the IpCall interface to return all call related information once the
call has been released.

8: The returned translated number is used to route the call towards the destination.
9: This message passes the result of the call being answered to its callback object.
10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object
implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object
implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the [pAppLogic

15: After the last information is received, the application deassigns the call. This will free the resources related to this
call in the gateway.

4.10 Number Translation 5

The following sequence diagram shows a simple number translation service which contains a status check function,
initiated as a result of a prearranged event being received. In the following sequence, when the application receives an
incoming call, it checks the status of the user, and returns a busy code to the calling party.

3GPP

Release 9 27 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

IpAppLogic . IpAppCallControlManager : IpA Il . IpCallControlManager . IpCall
1: new()
2! enableCallNotification()

3: callEventNotify()

4: 'forward event' (

5: new()

6: 'check status'

[r—

7: appropriate release cause

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (notshown) is directed to the object
implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall
interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and
associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.
4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object imp lementing the IpAppCall interface. The reference to
this object is passed back to the object implementing the Ip CallControlManager using the return parameter of message
3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicating that the user is
busy.

4.11 Prepaid

This sequence shows a Pre-paid application.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain
timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the
following sequence the end-user will receive an announcement before his final timeslice.

3GPP

Release 9 28 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Prepaid : (Logical H _ IpAppCall H _ IpAppCallControlManager HJ&AMLIQ&LL‘ ‘ “IpCall ‘ - IpCaliControlManager| | lpUiManager ~IpUlCall ‘
| 1inew() | |
\Q 2: enableCallNotification() i
| [
L i i
| 4: "forward event" i 3: callEventNotify() i
5: new()
|
i
i
i 6: superviseCallReq()
[
7:routeReq()
(]
8: superviseCallRes()
9: "forward event"H {
1
10: superviseCallReq() \ﬁ
11: iseCallR 1
[12: "forward event' -supenviseCallRes() i
i H
i 1
| 13: superviseCallReq() \ﬁ
D 14: superviseCallRes() 1
| 4
}15: "forward event
|
| 16: createUICall()
i
17:sendInfoReq(|)
18: sendinfoRes() \-‘]
19: "forward event" r
20: release()
21:supeniseCallReq()
Aupen |
iz?’: “orward event: 22: superviseCallRes() |
| | H 1
| 24:release() | ‘ |
Il \D 1
U | \ i
| | | |
i i i i

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,

3GPP

Release 9 29 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

that matches the event criteria, arrives a message (notshown) is directed to the object imp lementing the
IpCallControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).
4: The message is forwarded to the application.
5: A new object on the application side for the Generic Call object is created.

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7: Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call
duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.
9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11: At the end of each supervision period the application is informed and a new period is started.
12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

14: When the user is almost out of credit the application is informed.
15: The message is forwarded to the application.

16: The application decides to play an announcement to the parties in this call. A new UICall object is created and
associated with the call.

17: An announcement is played informing the user about the near-expiration of his credit limit.

18: When the announcement is comp leted the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall object.

21: The user does not terminate so the application terminates the call after the next supervision period.
22: The supervision period ends.

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no
userInteractionFaultDetected is sent to the application.

4.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature.

The application will send the charging information before the actual call setup and when during the call the charging
changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an
application in the end-user terminal to display the charges for the call, depending on the information received fromthe
application.

3GPP

Release 9 30 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Prepaid : (Logical _ IpAppCallControlManager _~IpAppCall || -IpAppUICall | [IpCallControlManager] : IpCall _lpUIManager _IpUlCall
View:IpAppLogic) \ |
1: new()
gl
2: enableCallNotification()
I
4 "forward event’ | 3: callEventNotify()
D 5: new()
H U
6: setAdviceOfCharge(|)
7: supeniseCallReq(|) U
8:routeReq()
T 9: superviseCallRes()
10: "forward event" [-
! {J H
11: supenviseCallReq()
13: "orward event" 1 12: supernviseCallRes()
14: setAdviceOfCharge()
| 15: superviseCallReq()
| 16: superviseCallRes()
17: "forward event" M
18: new()
U
L 19: createUlICall()] 20: new()
I —
21:sendinfoReq(|)
7 22:sendInfoRes()
23: "forward event" q N
24:superviseCallReq()
U 1
| 25: supenviseCallRes()
26: "forward event: (J
L 27:release()
U 28: userlnteractionFz;qutDetected()

3GPP

Release 9 31 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

1: This message is used by the application to create an object imp lementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts
a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,
that matches the event criteria, arrives a message (not shown) is directed to the object imp lementing the
IpCallControlManager. Assuming that the criteria for creating an object imp lementing the Ip Call interface (e.g. load
control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg
object.

3: The incoming call triggers the Pre-Paid Application (PPA).
4: The message is forwarded to the application.
5: A new object on the application side for the Call object is created.

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA
contains ALL the tariff in formation and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g. 18:00
hours) switches to tariff 2. The application is not informed about this (but the end -useris!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period
indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.
10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12: At the end of each supervision period the application is informed and a new period is started.
13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again,
at the tariff switch time, the network will send AoC information to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it
will indicate that the user is almost out of credit.

16: When the user is almost out of credit the application is informed.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created.
20: The Gateway creates a new Ul call object that will handle playing of the announcement.
21: With this message the announcement is played to the parties in the call.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.
25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

3GPP

Release 9 32 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The
UlCall object is terminated in the gateway and no further communication is possible between the UlCall and the
application.

5 Class Diagrams

The generic call control service consists of two packages, one for the interfaces on the application side and one for
interfaces on the service side.

The class diagrams in the following figures show the interfaces that make up the generic call control application
package and the generic call control service package. Communication between these packages is indicated with the
<<uses>>associations; e.g. the IpCallControlManager interface uses the IpAppCal IControlManager, by means of
calling callback methods.

This class diagram shows the interfaces of the generic call control service package.

<<Interface>>
IpSenice

setCallback()
setCallbackWithSessionID()

)

<<|nterface>>
IpCall

<<Interface>>
IpCallControlManager

routeReq()

release()

deassignCall()
getCallinfoReq()
setCallChargePlan()
setAdviceOfCharge()
getMoreDialledDigitsReq()
supenviseCallReq()
continueProcessing()

createCall() 1 0.n
enableCallNotification()
disableCallNotification()
setCallLoadControl()
changeCallNotification()
getCriteria()

Figure: Service Interfaces

This class diagram shows the interfaces of the generic call control application package and their relations to the
interfaces of the generic call control service package.

3GPP

Release 9 33 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

<<Interface>>
Ipinterface

:

<<Interface>>
IpAppCall

(from gccs)

<<Interface>>
IpAppCallControlManager

(from gccs)

®routeRes()
®routeErr()
%callAborted()
1 0.n %
%calEventNotify) | S getCallinfoRes()

®getCallinfoErr()
®superviseCallRes()
®superviseCallE ()
%callFaultDetected()
®getMoreDialledDigitsRes ()
®getMoreDialledDigitsE rr()

%callNotificationinterrupted()
%callNotificationContinued()
%callOverloadEncountered()
%®callOwrloadCeased()
®abortMultipleCalls()

A %callEnded()
<<uses>>
i <<uses>>
<<Interface>> <<Interface>>
IpCallControlManager 1 0..n IpCall
(from gces) | (from gces)

Figure: Application Interfaces

6 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third
party model, which allows calls to be instantiated fromthe network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network
(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

3GPP

Release 9 34 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

It is the intention of the GCCS that it could be readily specialised into call control specifications, forexample, ITU-T
Recommendations H.323, Q.763 ISUP, Q.931and Q.2931, ATM Foru mspecification UNI3.1and RFC 3261 Session
Initiation Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call
control does not give explicit access to the legs and the media channels. This is provided by the Multi-Party Call
Control Service. Furthermore, the generic call is restricted to two party calls, i.e. only two legs are active at any given
time. Active is defined here as 'being routed’ or connected.

The GCCS is represented by the IpCallControlManager and IpCall interfaces that interface to services provided by the
network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs.
In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle
responses and reports, the developer must implement IpAppCallControlManager and IpAppCall to provide the callback
mechanis m.

6.1 Interface Class IpCallControlManager

Inherits from: Ip Service

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use
this interface to provide overload control functionality, create call objects and to enable or disable call -related event
notifications.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the enableCallNotification() and disableCallNotification() methods shall
be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallldentifier

enableCallNoatification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallE ventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

6.1.1 Method createCall()

This method is used to create a new call object.
Callback reference:

An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control
will not be able to report a callAborted() to the application. The application shall invoke setCallback() prior to
createCall() if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

3GPP

Release 9 35 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Parameters

appCall : in IpAppCallRef
Specifies the application interface for callbacks from the call created.

Returns
TpCallIdentifier

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the
rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be
passed over. Only one application can place an interrupt request if the criteria overlap.

If a notification is requested by an application with an event type that is mutually exclusive compared to existing
requested event types, then there is no need to check against the rest of the criteria for overlap. An example could be
one application that trigger on "user busy" together with another application that trigger on "answer" - both requests
should be allowed as only one can occur on the same call or session.

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problems in
networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap
criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can
prevent other applications to be invoked in the case single point of application control applies in the network.

However, the criteria check for overlap may as a network option be overruled by Multi Service networks allowing more
services or applications to gain control of the same call or session at the same point in time. Refer to Call Control
Common Definitions subpart of this specification (TS 29.198-4-1) for further details on application control over a call
or session.

Setting the callback reference:

The callback reference can be registered either in a) enableCallNotification() or b) explicitly with a separate
setCallback() method depending on how the application provides its callback reference.

Case a:

Froman efficiency point of view the enable CallNotification() with explicit immed iate registration (no "Null" value) of
callback reference may be the preferred method.

Case b:

3GPP

Release 9 36 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

The enableCallNotfication() with no call back reference ("Null" value) is used where (e.g. due to distributed application
logic) the callback reference is provided previously in a setCallback(). If no callback reference has been provided
previously to the service, the exception P_NO_CALLBACK_ADDRESS_SET shall be raised.

In case the enableCallNotification() contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback(). See example in clause 4.6

Set additional callback:

If the same application invokes this method multip le times with exactly the same criteria but with different callback
references, then these shall be treated as additional callback references. Each such notification request shall share the
same assignmentID. The gateway shall use the most recent callback interface provided by the application using this
method. In the event that a callback reference fails or is no longer availab le, the next most recent callback reference
available shall be used. See example in clause 4.1.

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly -enabled
event notification.

Parameters
appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defau lts to the interface specified previously via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these

criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",

"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns
TpAssignmentID

Raises

TpCommonExceptions, P_INVALID CRITERIA, P_INVALID INTERFACE TYPE,
P_INVALID EVENT TYPE

6.1.3 Method disableCallNotification()

This method is used by the application to disable call notifications.

Parameters
assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the enableCallNotification() was
called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception
P_INVALID_ASSIGNMENT_ID will be raised.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

6.1.4 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for Tp CallEventCriteria.

3GPP

Release 9 37 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Returns assignmentID: Specifies the assignmentlID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters
duration : in TpDuration
Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application).
A duration of -2 indicates the network default duration.

mechanism : in TpCalllLoadControlMechanism

Specifies the load control mechanismto use (for example, ad mit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange
Specifies the address or address range to which the overload control should be applied or removed.

Returns
TpAssignmentID

Raises
TpCommonExceptions, P_INVALID ADDRESS, P_UNSUPPORTED ADDRESS PLAN

6.1.5 Method changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters
assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that
meet these criteria are reported.

3GPP

Release 9 38 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Raises

TpCommonExceptions, P_INVALID ASSIGNMENT ID, P_INVALID CRITERIA,
P_INVALID EVENT TYPE

6.1.6 Method getCriteria()

This method is used by the application to query the event criteria set with enable CallNotification or
changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

Returns
TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

6.2 Interface Class IpAppCallControlManager
Inherits from: Ip Interface

The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallldentifier, eventinfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : woid

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void
callOverloadCeased (assignmentID : in TpAssignmentID) : woid

abortMultipleCalls (callReferenceSet : in TpSessionIDSet) : void

3GPP

Release 9 39 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

6.2.1 Method callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters
callReference : in TpSessionID
Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.2 Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Setting the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode. When the
callEventNotify() method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. routeReq () is performed until an IpAppCall has been
passed to the gateway, either through an explicit setCallbackW ithSessionID() invocation on the supplied Ip Call, or via
the return of the callEventNotify () method.

The callback reference can be registered either in a) callEventNotify() or b) explicitly with a
setCallbackW ithSessionID() method e.g. depending on how the application provides its call reference.

Case a:
Froman efficiency point of view the callEventNotify () with explicit pass of registration may be the preferred method.
Case b:

The callEventNotify() with no callback reference ("Null” value) is used where (e.g. due to distributed application logic)
the callback reference is provided previously in a setCallbackWithSessionID(). If no callback reference has been
provided previously to the service, the exception P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further
application invocations related to the call shall be permitted.

In case the callEventNotify() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered previously by setCallbackWithSessionID(). See example in clause
4.6

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new
call. If the application has previously explicitly passed a reference to the IpAppCall interface using a

setCallbackW ithSessionlID() invocation, this parameter may be null, or if supplied must be the same as that provided
during the setCallbackWithSessionID().

This parameter will be null if the notification is in NOTIFY mode and in case b).

Parameters
callReference : in TpCallldentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this
parameter shall be ignored by the application client imp lementation, and consequently the imp lementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

3GPP

Release 9 40 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

eventInfo : in TpCallEventInfo
Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns
IpAppCallRef

6.2.3 Method callNotificationinterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).

Note that more permanent failures are reported via the Framework (integrity manage ment).

Parameters
No Parameters were identified for this method

6.2.4 Method callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoad Control. This implies the address range for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters
assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoad Control. This implies the address range for
within which the overload has been ceased.

3GPP

Release 9 41 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

6.2.7 Method abortMultipleCalls()

The service may invoke this method on the IpAppCallControlManager interface to indicate that a number of ongoing
call sessions have aborted or terminated abnormally. No further communication will be possible between the
application and the calls. This may be used for example in the event of service failure and recovery in order to instruct
the application that a number of call sessions have failed. The service shall provide a set of call sessionlDs indicating to
the application the call sessions that have aborted. In the case that the service invokes this method and provides an
empty set of sessionlDs, this shall be used to indicate that all call sessions previously active on the
IpCallControlManager interface have been aborted.

Parameters
callReferenceSet : in TpSessionIDSet

Specifies the set of sessionIDs of calls that have aborted or terminated abnormally. The empty set shall be used to
indicate that all calls have aborted.

6.3 Interface Class IpCall

Inherits from: Ip Service

The generic Call provides the possibility to control the call routing, to request information fromthe call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement, the routeReq (),
release() and deassignCall() methods shall be imp lemented.

3GPP

Release 9 42 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
. in TpAddress, originatingAddress : in TpAddress, original DestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, applnfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : wid

deassignCall (callSessionID : in TpSessionID) : void

getCallinfoReq (callSessionID : in TpSessionID, callinfoRequested : in TpCallinfoType) : woid
setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : woid

setAdviceOfCharge (callSessionID : in TpSessionID, aOClnfo : in TpAoClnfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionlID, length : in TpInt32) : woid

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : wid

continueProcessing (callSessionID : in TpSessionID) : void

6.3.1 Method routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. ‘answer' event) and 'failure’ events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to
P_ADDRESS PLAN_NOT_PRESENT), the information provided in corresponding addresses fromthe route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

This operation continues processing of the call implicitly.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g. in the multi-party call
control service.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet
Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g. when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports.

3GPP

Release 9 43 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

targetAddress : in TpAddress
Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress
Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress
Specifies the original destination address of the call.

redirectingAddress : in TpAddress
Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns
TpSessionID

Raises

TpCommonExceptions, P_INVALID SESSION ID, P _INVALID ADDRESS,
P_UNSUPPORTED ADDRESS PLAN, P_INVALID NETWORK STATE, P INVALID CRITERIA,
P_INVALID EVENT TYPE

6.3.2 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallinfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause
Specifies the cause of the release.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P _INVALID NETWORK STATE

6.3.3 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de -assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of

3GPP

Release 9 44 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.3.4 Method getCallinfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after

the call is ended if information is required to be sent to the application at the end of the call. In case the originating party

is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType
Specifies the call information that is requested.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.3.5 Method setCallChargePlan()

Set an operator specific charge plan for the call.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

3GPP

Release 9 45 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.3.6 Method setAdviceOfCharge()

This method allows for advice of charge (A OC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo
Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration
Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises
TpCommonExceptions, P_INVALID SESSION ID

6.3.7 Method getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return themto the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to performscreening.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

length : in TpInt32
Specifies the maximum number of digits to collect.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.3.8 Method superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

3GPP

Release 9 46 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

time : in TpDuration
Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment
Specifies how the network should react after the granted connection time expired.

Raises
TpCommonExceptions, P_INVALID SESSION_ID

6.3.9 Method continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE
will be raised.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

Raises
TpCommonExceptions, P_INVALID SESSION ID, P _INVALID NETWORK STATE

6.4 Interface Class IpAppCall

Inherits from: Ip Interface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

3GPP

Release 9 47 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorindication : in TpCallError, callLegSessionID : in
TpSessionID) : woid

getCallinfoRes (callSessionID : in TpSessionID, callinfoReport : in TpCallinfoReport) : void
getCallinfoErr (callSessionID : in TpSessionlD, errorindication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : woid
callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void
getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : wid
getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorindication : in TpCallError) : wvoid

callEnded (callSessionID : in TpSessionlD, report : in TpCallEndedReport) : voi d

6.4.1 Method routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agree ment), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

calllegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionlD returned at the routeReq() and can
be used to correlate the response with the request.

6.4.2 Method routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

3GPP

Release 9 48 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

calllegSessionID : in TpSessionID

Specifies the sessionlD of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

6.4.3 Method getCallinfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallinfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport
Specifies the call information requested.

6.4.4 Method getCalllnfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.5 Method superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in this
kind of event.

Itis also called when the connection is terminated before the supervision event occurs.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

3GPP

Release 9 49 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

report : in TpCallSuperviseReport
Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration
Specifies the used time for the call supervision (in milliseconds).

6.4.6 Method superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters
callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.7 Method callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault
Specifies the fault that has been detected.

6.4.8 Method getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID
Specifies the call session ID of the call.

digits : in TpString
Specifies the additional dialled digits if the string length is greater than zero.

3GPP

Release 9 50 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

6.4.9 Method getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters
callSessionID : in TpSessionID
Specifies the call session ID of the call.

errorIndication : in TpCallError
Specifies the error which led to the original request failing.

6.4.10 Method callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g. getCallinfoRes) related to the call. The application is expected to deassign the call object after
having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters
callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport
Specifies the reason the call is terminated.

7 Generic Call Control Service State Transition
Diagrams
7.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

3GPP

Release 9 51 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

"a call object has terminated abnormally” A"lpAppCallControlManager.callAborted

disableCallNotification "arrival of call related event"[notification active for thiscall event]/
create a Call object "lpAppCallControlManager.callEventNoti

enableCallNotificatio) PAPP 9 fy
createCall / create a Call object

Y

"new" ' Active

o— —

IpAccess.terminateServiceAgreement

°

Creation of
IpCallControlManager
by Service Instance
Lifecycle Manager

"notifications not possible"
IpAppCallControlManager.callNotificationinterrupted

"notifications possible again"
~pAppCallControlManager.callNotificationContinued

IpAccess.term{nateServiceAgreement

disableCallNotification

"a call object has terminated abnormally”
AlpAppCallControlManager.callAborted

Notification terminated

Figure : Application view on the Call Control Manager

711 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

7.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another

example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this
state no requests for new notifications will be accepted.

7.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

3GPP

Release 9 52 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

In state Finshed and No Parties, a timer

i superviseCallReq
mechanism should prevent the object from getCallinforeq

occupying resources. Upon the expiry of thistimer, sotadviceOiCharge

callFaultDetected(shall be invoked asthisis an a
abnormal termination. setCallChargePlan @
deassig
P from called party’[monitor""¢2Call | NoPparties release
mode = interrupt] ~routeRes, -1

getCalllnfoRes, superviseCallRes) ey e
IpAppCallControlManager.call EentNotify

continueProcessing
“connection to called party unsuccessful’[setAdviceOfCharge
tofathed st {lmRRERER 0de = fnterrupt] ~routeRes superviseCaliReq

routeReq[only 1 outstanding roy “connection to called party unsuccessful[no mfre

routeReq[number of routing requests <2]

N - etCallinfoReq outstanding routeReq operations] ArouteRes|
getMoreDialledDigitsReq[no routeReq outstanding | /\
"routing aborted or invalid address" [rojteffrr Active | v "requests failedf'[no more outstanding
“Ertorin collecting digits' “getMoreDiallediDigiRay in “answer from called party” Routing to routeReq operations] ArouteErm
Call = Detination(s)

“Digits collected" ~getMoreDialledDigitsRes

"party released’[no more|outstanding
. requests]
answer
2 Partiesin
TpAppCaliContiolManager.callEvent Call

Notify(Answer from call party)

elease

“call ends: calling party abarfdoned" ~callEnded deassignCall

“fault detected"[Rl ot HERBM NGRS H SRRt | AcallFaultDetected
“call ends: called party disconnects'[mefiitor for this event] callEnded, routeRes(party disconnect)
“call ends: calling party dissgfinects'[no monitor for this event] ~callEnded

Network Released
Application
Released

release

“fault detected"[fault cannot be communjcated with network event | “callFaultDetected

“requested inforprétion ready”

AgetCallinfoRes//“uperviseCallRdls call

“requested informatjon ready”
getCallinfoR¢s, supgviseCallRes
[no reports redyested with getCallinfdReq AND supenviseCallReq

[no reports requested with getCalllnfoReq AND superviseCallReq]

. deassignCall
Finished 1 release
“faultin retrieval of
U ngetcallinfoEr, J:pewm“gﬁca\\Fau\lDelecled(“nmeoulcn release")

“fault in retrieval of information” ~getCallinfofr, superviseGallEm

Figure : Application view on the IpCall object for 3GPP

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallinfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallinfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately a transition is made to

state Finished.

7.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only

release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release

the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCallinfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immed iately.

3GPP

Release 9 53 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

7.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), routeReq(), release() or deassignCall() method.

7.2.5 1 Partyin Call State

In this state there is one party in the call.

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallinfoReq(). The
setCallChargePlan() and getCallinfoReq() should be issued before requesting a connection to a second party in the call
by means of routeReq().

Two cases apply: network initiated calls and application initiated calls.

In case the call originated from the network the application can now request for more digits in case more digits are
needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the
application is informed with callEnded(). When the calling party abandons the call after the application has invoked
routeReq() but before the call has actually been established, the gateway informs the application by invoking
callEnded().

In case the call was setup by the application and the called party was reached by issuing a routeReq() the application
can request a connection to a second call party by calling the operation route Req() again.

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the
application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the
called party can disconnect before another party is reached. In this case depending on the actual configuration, the call
is ended or a transition is made back to the Routing to Destinations substate. When the second party answers the call, a
transition will be made to the 2 Parties in Call state.

In this state user interaction is possible unless there is an outstanding routing request.

7.2.6 2 Parties in Call State

A connection between two parties has been established.
In case the calling party disconnects, the gateway informs the application by invoking callEnded().
When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the
callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

7.2.7 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of
the call by calling setCallChargePlan(). The application can request for charging related information by calling

3GPP

Release 9 54 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

getCallinfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is
also allowed to request Advice of Charge information to be sent by calling setAdviceOfCharge().

7.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

3GPP

Release 9 55 3GPP TS 29.198-4-2 V9.0.0 (2009-12)
8 Generic Call Control Service Properties
8.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation

P_TRIGGERING_EVENT_TYPES | INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by
which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supportedaddress plans (defined in TpAddressPlan.) e.g.
{P_ADDRESS PLAN_E164,P_ADDRESS PLAN_IP}). Notethat more than one
address plan may be supported.

P_UI_CALL_BASED BOOLEAN_SET | Value =TRUE : User interaction can be performed on call level and areference to a Call
object can be used in the IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UL_AT_ALL_STAGES BOOLEAN_SET [Value =TRUE: User Interaction can be performed at any stage during a call.

Value = FALSE: User Interaction can be performed in case there isonly one party inthe
call.

P_MEDIA_TYPE INTEGER_SET Specifiesthe mediatype used by the Service. Values are defined by data-type

TpMediaType :P_AUDIO,P_VIDEO, P_DATA.

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are
used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilities of the

SCS.

Property

Type

Description

P_NOTIHCATION_ADDRESS RANGES

XML_ADDRESS RANGE_SET

Indicates for which numbers notifications may be set. More than
one range may be present. For terminating notifications they
apply tothe terminating number, for originating notifications
they apply only to the originating number.

P_NOTIHCATION_TYPES INTEGER_SET Indicates whetherthe application is allowedto set originating
and/or terminating triggers in the ECN. Set is:
P_ORIGINATING
P_TERMINATING
P_MONITOR_MODE INTEGER_SET Indicates whetherthe application is allowed to monitor in
interrupt and/or notify mode. Set is:
P_INTERRUPT
P_NOTIFY
P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbersthe application is allowed to change or
fill for legs in an incoming call. Allowed value set:
{P_ORIGINAL_CALLED_PARTY_NUMBER
P_REDIRECTING_NUMBER,
P_TARGET_NUMBER,
P_CALLING_ PARTY_NUMBER}.
P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging isallowed in the setCallChargeP lan

indicator. Allowed values:
{P_TRANSPARANT_CHARGING,
P_CHARGE PLAN}

P_CHARGEPLAN_MAPPING

INTEGER_INTEGER_MAP

Indicates the mapping of chargeplans (we assume they can be
indicated with integers) to a logical network chargeplan indicator.
When the chargeplan supports indicates P_CHARGE_PLAN
then only chargeplans inthis mapping are allowed.

3GPP

Release 9 56 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

8.2 Service Property values for the CAMEL Service
Environment.

Implementations of the Generic Call Control API relying on the CSE of CAMEL phase 4 shall have the Service
Properties outlined above set to the indicated values :

P OPERATION SET = {
“IpCallControlManager.createCall”,
“IpCallControlManager.enableCallNotification”,
“IpCallControlManager.disableCallNotification”,
“IpCallControlManager.changeCallNotification”,
“IpCallControlManager .getCriteria”,
“IpCallControlManager .setCallLoadControl”,
“IpCall.routeReq”,

“IpCall.release”,

“IpCall.deassignCall”,
“IpCall.getCallInfoReq”,
“IpCall.setCallChargePlan”,
“IpCall.setAdviceOfCharge”,
“IpCall.superviseCallReqg”

}

P TRIGGERING EVENT TYPES = {
P_CALL_REPORT ALERTING,

P EVENT GCCS ADDRESS COLLECTED EVENT,

P EVENT GCCS_ADDRESS ANALYSED EVENT,

P EVENT GCCS CALLED PARTY BUSY,

P EVENT GCCS _CALLED PARTY UNREACHABLE,

P EVENT GCCS NO ANSWER FROM CALLED PARTY,
P EVENT GCCS ROUTE SELECT FAILURE

}

P_DYNAMIC EVENT TYPES = {

P CALL REPORT ANSWER,
P_CALL_REPORT BUSY,

P CALL REPORT NO ANSWER,
P_CALL REPORT DISCONNECT,
P_CALL REPORT SERVICE CODE,
P_CALL_REPORT ROUTING FATLURE,
P CALL REPORT NOT REACHABLE

}

P_ADDRESS PLAN = {
P ADDRESS PLAN E164
}

P UI CALL BASED = {
TRUE
}

P UI AT ALL STAGES = {
FALSE
}

P MEDIA TYPE = {
P_AUDIO
}

3GPP

Release 9 57 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

9 Generic Call Control Data Definitions

This clause provides the GCC data definitions necessary to support the API specification.
The general format of a Data Definition specification is described below:
o Data Type
This shows the name of the data type.
e Description
This describes the data type.
e Tabular Specification
This specifies the data types and values of the data type.
o Example
If relevant, an example is shown to illustrate the data type.

All data types referenced in the present document but not defined in this clause are defined either in the common call
control data definitions in 3GPP TS 29.198-4-1 or in the common data definitions which may be found in
3GPP TS 29.198-2.

9.1 Generic Call Control Event Notification Data Definitions

9.1.1 TpCallEventName

Defines the names of event being notified. The following events are supported. The values may be combined by a
logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the
call process are found in the TpCallReportType data-type.

Name Value Description
P_EVENT NAME UNDEFINED 0 Undefined.
P_EVENT GCCS_OFFHOOK EVENT 1 GCCS — Offhook event

Thiscan be used for hot-line features. In case this event isset

in the TpCallEventCriteria only the originating address(es)
may be secified in the criteria.

P _EVENT GCCS_ADDRESS COLLECTED EVENT 2 GCCS— Address information collected

The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might st notifications forthis event
when part of the number analysis needs to be done in the
application (see also the getMoreDialledDigitsReq method on
the call class).

P _EVENT GCCS_ADDRESS ANALYSED EVENT 4 GCCS— Address information is analysed
The dialled number is a valid and complete number in the
network.

P EVENT GCCS CALLED PARTY BUSY 8 GCCS - Called party isbusy.

P EVENT GCCS CALLED PARTY UNREACHABLE 16 GCCS - Called party isunreachable (e.g. the called party has
a mobile telephone that is currently switched off).

P_EVENT GCCS_NO ANSWER FROM CALLED PARTY 32 GCCS — No answer from called party.

P EVENT GCCS ROUTE SELECT FAILURE 64 GCCS - Failure in routing the call.

P EVENT GCCS ANSWER FROM CALL PARTY 128 GCCS - Party answered call.

3GPP

Release 9 58 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

9.1.2 TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description
P_ORIGINATING 0 Indicates that the notification is related to the originating user inthe call.
P_TERMINATING 1 Indicates that the notification is related to the terminating user in the call.

9.1.3 TpCallEventCriteria

Defines the Sequence of Data Elements thatspecify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notifications against the
criteria.

Sequence Element Sequence Element Description
Name Type
DestinationAddress TpAddressRange Definesthe destination address or address range for which the notification is
requested.
OriginatingAddress TpAddressRange Definesthe origination address or a address range for which the notification is
requested.
CallEventName TpCallEventName Name of the event(s).
CallNotificationType | TpCallNotificationType Indicates whether it isrelated tothe originating or the terminating user in the
call.
MonitorMode TpCallMonitorMode Definesthe mode that the call is in following the notification.
Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR isnot a
legal value here.

9.14 TpCallEventinfo

Defines the Sequence of Data Elements thatspecify the information returned to the application in a Call event
notification.

Sequence Element Name Sequence Element Type
DestinationAddress TpAddress
OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress
RedirectingAddress TpAddress
CallAppInfo TpCallAppInfoSet
CallEventName TpCallEventName
CallNotificationType TpCallNotificationType
MonitorMode TpCallMonitorMode
9.2 Generic Call Control Data Definitions
9.2.1 IpCall

Defines the address ofan IpCall Interface.

9.2.2 IpCallRef

Defines a Reference to type IpCall.

3GPP

Release 9 59 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

9.2.3 IpAppCall

Defines the address of an IpAppCall Interface.

9.24 IpAppCallRef

Defines a Reference to type IpAppCall

9.2.5 TpCallldentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call ob ject

Sequence Element Sequence Element Sequence Element Description
Name Type
CallReference IpCallRef Thiselement specifies the interface reference forthe call object.
CallSessionID TpSessionID This element specifies the call session ID of the call.

9.2.6 IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

9.2.7 IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

9.2.8 IpCallControlManager

Defines the address of an IpCallControlManager Interface.

9.2.9 IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.

9.2.10 TpCallApplnfo

Defines the Tagged Choice of Data Elements thatspecify application-related call information.

Tag Element Type

TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element Name

P CALL APP ALERTING MECHANISM

TpCallAlertingMechanism

CallAppAlertingMechanism

P CALL APP NETWORK ACCESS TYPE

TpCallNetworkAccessType

CallAppNetworkAccessType

P CALL APP TELE SERVICE

TpCallTeleService

CallAppTeleService

P CALL APP BEARER SERVICE

TpCallBearerService

CallAppBearerService

P CALL APP PARTY CATEGORY TpCallPartyCategory CallAppPartyCategory

P _CALL APP PRESENTATION ADDRESS TpAddress CallAppPresentationAddress
P _CALL APP GENERIC_INFO TpString CallAppGenericInfo

P CALL APP ADDITIONAL ADDRESS TpAddress CallAppAdditionalAddress

3GPP

Release 9 60 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

9.2.11 TpCallAppinfoType

Defines the type of call application-related specific information.

Name Value Description

P CALL APP UNDEFINED 0 Undefined

P CALL APP ALERTING MECHANISM The alertingmechanism or pattemn to use

P CALL APP NETWORK ACCESS TYPE The network access type (e.g. ISDN)

P CALL APP TELE SERVICE Indicates the tele-service (e.qg. telephony)

P CALL APP BEARER SERVICE Indicates the bearer service (e.g. 64kbit/s nrestricted data).

P CALL APP PARTY CATEGORY The category ofthe calling party

P CALL APP PRESENTATION ADDRESS The address to be presentedto other call parties

P CALL APP GENERIC INFO Carries unspecified service-service information

Indicates an additional address

|l JdJ|l ol W] N -

P CALL APP ADDITIONAL ADDRESS

9.2.12 TpCallApplnfoSet

Defines a Numbered Set of Data Elements of TpCallAppinfo.

9.2.13 TpCallEndedReport

Defines the Sequence of Data Elements thatspecify the reason for the call ending.

Sequence Element Sequence Element Description
Name Type
CalllegSessionID TpSessionID The legthat initiated the release of the call.
If the call release was not initiated by the leg, then thisvalue is set to —1.
Cause TpCallReleaseCause The cause of the call ending.

9.2.14 TpCallFault

Defines the cause of the call fault detected.

Name Value Description
P CALL FAULT UNDEFINED 0 Undefined
P CALL TIMEOUT ON RELEASE 1 This fault occurs whenthe final report has

been sent to the application, but the application
did not explicitly release or deassign the call
object, within a specified time.

Thetimer value is operator specific.

P CALL TIMEOUT ON INTERRUPT 2 This fault occurs whenthe application did not
ingruct the gateway how to handle the call
within a specified time, after the gateway
reported an event that was requested by the
application in interrupt mode.

Thetimer value is operator specific.

3GPP

Release 9

61

9.2.15 TpCallinfoReport

Defines the Sequence of Data Elements thatspecify the call information requested. Information that was not

requested is invalid.

3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Sequence Element Sequence Element Description
Name Type
CallInfoType TpCallInfoType Thetype of call report.
CallInitiationStartTime TpDateAndTime Thetime and date whenthe call, or follow-on call, was
started asa result of a routeReq.
CallConnectedToResourceTime TpDateAndTime The date andtime whenthe call was connected to the
resource.
This data element is only valid when information on user
interaction is reported.
CallConnectedToDestinationTime TpDateAndTime The date and time when the call was connected to the
destination (i.e. when the degtination answeredthe call).
If the destination did not answer, the time is set to an
empty gring.
This data element is invalid when information on user
interaction is reported.
Cal 1EndT ime TpDateAndTime The date and time whenthe call or follow-on call or user
interaction was terminated.
Cause TpCallReleaseCause The cause ofthe termination.

A callinfoReport will be generated at the end of user interaction and at the end of the connection with the associated
address. This means that either the destination related information is present or the resource related information, but not

both.

9.2.16 TpCallReleaseCause

Defines the Sequence of Data Elements thatspecify the cause of the release of a call.

Sequence Element

Sequence Element

Name Type
Value TpInt32
Location TpInt32

NOTE:

The Value and Location are specified as in ITU-T Recommendation Q.850.

The following examp le was taken from Q.850 to aid understanding.

Equivalent Call Report Cause Value Set by Cause Value from
Application Network

P _CALL REPORT BUSY 17 17
P_CALL_REPORT_NO_ANSWER 19 18,19,21

P _CALL REPORT DISCONNECT 16 16

P _CALL REPORT REDIRECTED 23 23
P_CALL REPORT SERVICE CODE 31 NA

P _CALL REPORT NOT REACHABLE 20 20

P _CALL REPORT ROUTING FAILURE 3 Any other value

3GPP

Release 9 62 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

9.2.17 TpCallReport

Defines the Sequence of Data Elements thatspecify the call report and call leg report specific information.

Sequence Element Sequence Element
Name Type
MonitorMode TpCallMonitorMode
CallEventTime TpDateAndTime
CallReportType TpCallReportType
AdditionalReportInfo TpCallAdditionalReportInfo

9.2.18 TpCallAdditionalReportinfo

Defines the Tagged Choice of Data Elements thatspecify additional call report information for certain types
of reports.

Tag Element Type
TpCallReportType
Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFINED NULL Undefined
P _CALL REPORT PROGRESS NULL Undefined
P CALL REPORT ALERTING NULL Undefined
P CALL REPORT ANSWER NULL Undefined
P:CALL:REPORT:BUSY TpCallReleaseCause Busy
P _CALL REPORT NO ANSWER NULL Undefined
P CALL REPORT DISCONNECT TpCallReleaseCause CallDisconnect
P:C ALL:REPO RT:RE DIRECTED TpAddress ForwardAddress
P CALL REPORT SERVICE CODE TpCallServiceCode ServiceCode
P:C ALL:REPO RT:RO uT ING:F AILURE TpCallReleaseCause RoutingFailure
P _CALL REPORT QUEUED TpString QueueStatus
P _CALL REPORT NOT REACHABLE TpCallReleaseCause NotReachable

9.2.19 TpCallReportRequest

Defines the Sequence of Data Elements thatspecify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode
CallReportType TpCallReportType

AdditionalReportCriteria TpCallAdditionalReport Criteria

3GPP

Release 9

63

9.2.20 TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements thatspecify specific criteria.

3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Tag Element Type
TpCallReportType
Tag Element Choice Element Choice Element
Value Type Name

P_CALL REPORT UNDEFINED NULL Undefined
P_CALL REPORT PROGRESS NULL Undefined
P_CALL REPORT ALERTING NULL Undefined
P_CALL_REPORT ANSWER NULL Undefined
P_CALL_REPORT BUSY NULL Undefined
P_CALL REPORT NO_ ANSWER TpDuration NoAnswerDuration
P_CALL_REPORT DISCONNECT NULL Undefined
P_CALL REPORT REDIRECTED NULL Undefined
P_CALL_REPORT SERVICE CODE TpCallServiceCode ServiceCode
P _CALL REPORT ROUTING FAILURE NULL Undefined
P_CALL_REPORT QUEUED NULL Undefined
P_CALL_REPORT NOT REACHABLE NULL Undefined

9.2.21 TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

9.2.22 TpCallReportType

Defines a specific call event report type.

Name Value Description

P_CALL REPORT UNDEFINED 0 Undefined.

P _CALL REPORT PROGRESS 1 Call routing progress event: an indication from the network that progress has been made in
routingthe calltothe requested call party. This message may be sent morethan once, or

may not be sent at all by the gateway with respect to routing a given call legto a given
address.

P CALL REPORT ALERTING 2 Call is alerting at the call party.

P _CALL REPORT ANSWER 3 Call answered at address.

P_CALL_REPORT BUSY 4 Called address refused call due to busy.

P_CALL REPORT NO ANSWER 5 No answer at called address.

P _CALL REPORT DISCONNECT 6 The media stream of the called party has disconnected. This doesnot imply that the call has
ended. When the call isended, the callEnded method is called. This event can occur both
when the called party hangs up, or when the application explicitly releasesthe leg using
IpCallLeg.release() This cannot occur whenthe app explicitly releasesthe call leg and the

call.

P _CALL REPORT REDIRECTED 7 Call redirected to new address: an indication fromthe network that the call has been

redirected to a new address.

P CALL REPORT SERVICE CODE Mid-call service code received.

P_CALL_REPORT_ROUTING_FAILURE Call routing failed - re-routing is possible.

P CALL REPORT QUEUED 10 The callis being held in a queue. Thisevent may be sent morethan once during the routing

- - - ofa call.

P _CALL REPORT NOT REACHABLE 11 The called address is not reachable; e.g., the phone has been switched off or the phone is

outsidethe coverage area ofthe network.

3GPP

Release 9 64 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

9.2.23 TpCallTreatment

Defines the Sequence of Data Elements thatspecify the treatment for calls that will be handled only by the
network (for example, call which are not ad mitted by the call load control mechanism).

Sequence Element Sequence Element
Name Type
CallTreatmentType TpCallTreatmentType
ReleaseCause TpCallReleaseCause
AdditionalTreatmentInfo TpCallAdditional TreatmentInfo

9.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

9.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated
assignmentID.

Sequence Element Sequence Element Sequence Element
Name Type Description
CallEventCriteria TpCallEventCriteria Theevent criteria that were gecified by the application.
AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

3GPP

Release 9 65 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Annex A (normative):
OMG IDL Description of Generic Call Control SCF

The OMG IDL representation of this specification is contained in text files gcc_data.idl and gcc_interfaces.idl
(contained in archive 291980402V800IDL.ZIP) which accompany the present document.

3GPP

Release 9 66 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Annex B (informative):
W3C WSDL Description of Generic Call Control SCF

The W3C WSDL representation of this specification is contained in zip file 291980402V800WSDL.ZIP, which
accompanies the present document.

3GPP

Release 9 67 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Annex C (informative):
Java™ AP| Description of the Call Control SCFs

The Java™ API realisation of this specification is produced in accordance with the Java™ Realisation rules defined in
Part 1 ofthis specification series. These rules aimto deliver for Java™, a developer API, provided as a realisation,
supporting a Java™ API that represents the UML specifications. The rules support the production of both J2SE™ and
J2EE™ versions of the API from the common UML specifications.

The J2SE™ representation of this specification is provided as Java™ Code, contained in archive
291980402V800J2SE.ZIP that accompanies the present document.

The J2EE™ representation of this specification is provided as Java™ Code, contained in archive
291980402V800J2EE.ZIP that accompanies the present document.

3GPP

Release 9 68 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Annex D (informative):
Description of Call Control Sub-part 2: Generic call control
SCF for 3GPP2 cdma2000 networks

This annex is intended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications. It is an extension of OSA API specifications capabilities to enable operation in cdma2000 systems
environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in:

[1] 3GPP2 P.S0001-B: "Wireless IP Network Standard", Version 1.0, September 2000.

[2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems™,
Version 2.0, May 14, 2002.

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain", December 2003.

These requirements are expressed as additions to and/or exclusions fromthe 3GPP Release 8 specification.
The information given here is to be used by developers in 3GPP2 cd ma2000 network architecture to interpret the 3GPP
OSA specifications.

D.1 General Exceptions

The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used
(3GPP TR 21.905) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions
or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope

There are no additions or exclusions.

D.2.2 Clause 2: References

Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 systems.

D.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

D.2.4 Clause 4: Generic Call Control Service Sequence Diagrams

There are no additions or exclusions. Nevertheless, CAMEL and CAP mappings are not applicable for cdma 2000
systems.

D.2.5 Clause 5: Class Diagrams

There are no additions or exclusions.

3GPP

Release 9 69 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

D.2.6 Clause 6: Generic Call Control Service Interface Classes

There are no additions or exclusions.

D.2.7 Clause 7: Generic Call Control Service State Transition
Diagrams

There are no additions or exclusions.

D.2.8 Clause 8: Generic Call Control Service Properties

There are no additions or exclusions. Nevertheless, for cd ma2000 systems the CAMEL data types and service
properties are not applicable.

D.2.9 Clause 9: Generic Call Control Data Definitions

There are no additions or exclusions.

D.2.10 Annex A (normative): OMG IDL Description of Generic Call
Control SCF

There are no additions or exclusions.

D.2.11 Annex B (informative): W3C WSDL Description of Generic
Call Control SCF

There are no additions or exclusions.

D.2.12 Annex C (informative): Java™ API Description of the Call
Control SCFs

There are no additions or exclusions.

3GPP

Release 9 70 3GPP TS 29.198-4-2 V9.0.0 (2009-12)

Annex E (informative):
Change history

Change history

Date TSG# [TSGDoc. [CR |Rev |Subject/Comment Old New

Mar 2007 CT-35 |CP-070047 [0031]-- Update document for conversion to Release 7 6.4.1 [7.0.0

May 2008 CT-40 |CP-080254 [0032(-- Transfer of missing items from ETSI TISPAN OSA for GCC Routing to [7.0.0 [8.0.0
Destination(s)

2009-12 - - - - Update to Rel-9 version (MCC) 8.0.0 |9.0.0

3GPP

	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Generic Call Control Service Sequence Diagrams
	4.1 Additional Callbacks
	4.2 Alarm Call
	4.3 Application Initiated Call
	4.4 Call Barring 1
	4.5 Number Translation 1
	4.6 Number Translation 1 (with callbacks)
	4.7 Number Translation 2
	4.8 Number Translation 3
	4.9 Number Translation 4
	4.10 Number Translation 5
	4.11 Prepaid
	4.12 Pre-Paid with Advice of Charge (AoC)

	5 Class Diagrams
	6 Generic Call Control Service Interface Classes
	6.1 Interface Class IpCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method enableCallNotification()
	6.1.3 Method disableCallNotification()
	6.1.4 Method setCallLoadControl()
	6.1.5 Method changeCallNotification()
	6.1.6 Method getCriteria()

	6.2 Interface Class IpAppCallControlManager
	6.2.1 Method callAborted()
	6.2.2 Method callEventNotify()
	6.2.3 Method callNotificationInterrupted()
	6.2.4 Method callNotificationContinued()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()
	6.2.7 Method abortMultipleCalls()

	6.3 Interface Class IpCall
	6.3.1 Method routeReq()
	6.3.2 Method release()
	6.3.3 Method deassignCall()
	6.3.4 Method getCallInfoReq()
	6.3.5 Method setCallChargePlan()
	6.3.6 Method setAdviceOfCharge()
	6.3.7 Method getMoreDialledDigitsReq()
	6.3.8 Method superviseCallReq()
	6.3.9 Method continueProcessing()

	6.4 Interface Class IpAppCall
	6.4.1 Method routeRes()
	6.4.2 Method routeErr()
	6.4.3 Method getCallInfoRes()
	6.4.4 Method getCallInfoErr()
	6.4.5 Method superviseCallRes()
	6.4.6 Method superviseCallErr()
	6.4.7 Method callFaultDetected()
	6.4.8 Method getMoreDialledDigitsRes()
	6.4.9 Method getMoreDialledDigitsErr()
	6.4.10 Method callEnded()

	7 Generic Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpCallControlManager
	7.1.1 Active State
	7.1.2 Notification terminated State

	7.2 State Transition Diagrams for IpCall
	7.2.1 Network Released State
	7.2.2 Finished State
	7.2.3 Application Released State
	7.2.4 Active State
	7.2.5 1 Party in Call State
	7.2.6 2 Parties in Call State
	7.2.7 No Parties State
	7.2.8 Routing to Destination(s) State

	8 Generic Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment.

	9 Generic Call Control Data Definitions
	This shows the name of the data type.
	9.1 Generic Call Control Event Notification Data Definitions
	9.1.1 TpCallEventName
	9.1.2 TpCallNotificationType
	9.1.3 TpCallEventCriteria
	9.1.4 TpCallEventInfo

	9.2 Generic Call Control Data Definitions
	9.2.1 IpCall
	9.2.2 IpCallRef
	9.2.3 IpAppCall
	9.2.4 IpAppCallRef
	9.2.5 TpCallIdentifier
	9.2.6 IpAppCallControlManager
	9.2.7 IpAppCallControlManagerRef
	9.2.8 IpCallControlManager
	9.2.9 IpCallControlManagerRef
	9.2.10 TpCallAppInfo
	9.2.11 TpCallAppInfoType
	9.2.12 TpCallAppInfoSet
	9.2.13 TpCallEndedReport
	9.2.14 TpCallFault
	9.2.15 TpCallInfoReport
	9.2.16 TpCallReleaseCause
	9.2.17 TpCallReport
	9.2.18 TpCallAdditionalReportInfo
	9.2.19 TpCallReportRequest
	9.2.20 TpCallAdditionalReportCriteria
	9.2.21 TpCallReportRequestSet
	9.2.22 TpCallReportType
	9.2.23 TpCallTreatment
	9.2.24 TpCallEventCriteriaResultSet
	9.2.25 TpCallEventCriteriaResult
	Annex A (normative): OMG IDL Description of Generic Call Control SCF
	Annex B (informative): W3C WSDL Description of Generic Call Control SCF
	Annex C (informative): Java™ API Description of the Call Control SCFs
	Annex D (informative): Description of Call Control Sub-part 2: Generic call control SCF for 3GPP2 cdma2000 networks

	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: Generic Call Control Service Sequence Diagrams
	D.2.5 Clause 5: Class Diagrams
	D.2.6 Clause 6: Generic Call Control Service Interface Classes
	D.2.7 Clause 7: Generic Call Control Service State Transition Diagrams
	D.2.8 Clause 8: Generic Call Control Service Properties
	D.2.9 Clause 9: Generic Call Control Data Definitions
	D.2.10 Annex A (normative): OMG IDL Description of Generic Call Control SCF
	D.2.11 Annex B (informative): W3C WSDL Description of Generic Call Control SCF
	D.2.12 Annex C (informative): Java™ API Description of the Call Control SCFs
	Annex E (informative): Change history

