
3GPP TS 29.198-4-2 V9.0.0 (2009-12)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access (OSA);
Application Programming Interface (API);

Part 4: Call control;
Sub-part 2: Generic call control Service Capability Feature

(SCF)
(Release 9)

GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

The present document has been developed within the 3
rd

 Generation Partnership Project (3GPP
 TM

) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP
 TM

 system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 2 Release 9

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 3 Release 9

Contents

Foreword ..6

Introduction ..6

1 Scope ..8

2 References ...8

3 Definitions and abbreviations..9
3.1 Definitions .. 9
3.2 Abbreviations ... 9

4 Generic Call Control Service Sequence Diagrams ..9
4.1 Additional Callbacks... 9
4.2 Alarm Call .. 11
4.3 Application Init iated Call ... 12
4.4 Call Barring 1 ... 14
4.5 Number Translation 1 ... 16
4.6 Number Translation 1 (with callbacks) ... 18
4.7 Number Translation 2 ... 20
4.8 Number Translation 3 ... 22
4.9 Number Translation 4 ... 24
4.10 Number Translation 5 ... 26
4.11 Prepaid ... 27
4.12 Pre-Paid with Advice of Charge (AoC)... 29

5 Class Diagrams ..32

6 Generic Call Control Service Interface Classes...33
6.1 Interface Class IpCallControlManager .. 34
6.1.1 Method createCall() .. 34
6.1.2 Method enableCallNotification().. 35
6.1.3 Method disableCallNot ification()... 36
6.1.4 Method setCallLoadControl() ... 36
6.1.5 Method changeCallNot ification()... 37
6.1.6 Method getCriteria() ... 38
6.2 Interface Class IpAppCallControlManager... 38
6.2.1 Method callAborted() ... 39
6.2.2 Method callEventNotify().. 39
6.2.3 Method callNotificationInterrupted() .. 40
6.2.4 Method callNotificationContinued().. 40
6.2.5 Method callOverloadEncountered()... 40
6.2.6 Method callOverloadCeased() .. 40
6.2.7 Method abortMultipleCalls()... 41
6.3 Interface Class IpCall.. 41
6.3.1 Method routeReq().. 42
6.3.2 Method release().. 43
6.3.3 Method deassignCall() ... 43
6.3.4 Method getCallInfoReq()... 44
6.3.5 Method setCallChargePlan() ... 44
6.3.6 Method setAdviceOfCharge()... 45
6.3.7 Method getMoreDialledDigitsReq() .. 45
6.3.8 Method superviseCallReq()... 45
6.3.9 Method continueProcessing().. 46
6.4 Interface Class IpAppCall .. 46
6.4.1 Method routeRes() .. 47
6.4.2 Method routeErr() ... 47
6.4.3 Method getCallInfoRes() ... 48
6.4.4 Method getCallInfoErr() .. 48
6.4.5 Method superviseCallRes() ... 48

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 4 Release 9

6.4.6 Method superviseCallErr() .. 49
6.4.7 Method callFaultDetected()... 49
6.4.8 Method getMoreDialledDigitsRes() .. 49
6.4.9 Method getMoreDialledDigitsErr() ... 50
6.4.10 Method callEnded() .. 50

7 Generic Call Control Service State Transition Diagrams ...50
7.1 State Transition Diagrams for IpCallControlManager.. 50
7.1.1 Active State .. 51
7.1.2 Notification terminated State .. 51
7.2 State Transition Diagrams for IpCall ... 51
7.2.1 Network Released State ... 52
7.2.2 Fin ished State... 52
7.2.3 Application Released State .. 52
7.2.4 Active State .. 53
7.2.5 1 Party in Call State .. 53
7.2.6 2 Parties in Call State ... 53
7.2.7 No Part ies State ... 53
7.2.8 Routing to Destination(s) State... 54

8 Generic Call Control Service Properties...55
8.1 List of Serv ice Properties ... 55
8.2 Service Property values for the CAMEL Serv ice Environment. ... 56

9 Generic Call Control Data Definitions ...57
9.1 Generic Call Control Event Notification Data Definitions .. 57
9.1.1 TpCallEventName... 57
9.1.2 TpCallNotificationType ... 58
9.1.3 TpCallEventCriteria .. 58
9.1.4 TpCallEventInfo .. 58
9.2 Generic Call Control Data Defin itions .. 58
9.2.1 IpCall ... 58
9.2.2 IpCallRef .. 58
9.2.3 IpAppCall ... 59
9.2.4 IpAppCallRef... 59
9.2.5 TpCallIdentifier ... 59
9.2.6 IpAppCallControlManager .. 59
9.2.7 IpAppCallControlManagerRef ... 59
9.2.8 IpCallControlManager ... 59
9.2.9 IpCallControlManagerRef ... 59
9.2.10 TpCallAppInfo... 59
9.2.11 TpCallAppInfoType ... 60
9.2.12 TpCallAppInfoSet ... 60
9.2.13 TpCallEndedReport .. 60
9.2.14 TpCallFau lt... 60
9.2.15 TpCallIn foReport .. 61
9.2.16 TpCallReleaseCause ... 61
9.2.17 TpCallReport.. 62
9.2.18 TpCallAdditionalReportInfo ... 62
9.2.19 TpCallReportRequest ... 62
9.2.20 TpCallAdditionalReportCriteria ... 63
9.2.21 TpCallReportRequestSet.. 63
9.2.22 TpCallReportType .. 63
9.2.23 TpCallTreatment ... 64
9.2.24 TpCallEventCriteriaResultSet... 64
9.2.25 TpCallEventCriteriaResult .. 64

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 5 Release 9

Annex A (normative): OMG IDL Description of Generic Call Control SCF65

Annex B (informative): W3C WSDL Description of Generic Call Control SCF66

Annex C (informative): Java™ API Description of the Call Control SCFs...................................67

Annex D (informative): Description of Call Control Sub-part 2: Generic call control SCF for

3GPP2 cdma2000 networks ..68

D.1 General Exceptions ..68

D.2 Specific Exceptions ..68
D.2.1 Clause 1: Scope.. 68
D.2.2 Clause 2: References... 68
D.2.3 Clause 3: Definit ions and abbreviations .. 68
D.2.4 Clause 4: Generic Call Control Serv ice Sequence Diagrams .. 68
D.2.5 Clause 5: Class Diagrams... 68
D.2.6 Clause 6: Generic Call Control Serv ice Interface Classes ... 69
D.2.7 Clause 7: Generic Call Control Serv ice State Transition Diagrams ... 69
D.2.8 Clause 8: Generic Call Control Serv ice Properties .. 69
D.2.9 Clause 9: Generic Call Control Data Definit ions... 69
D.2.10 Annex A (normat ive): OMG IDL Description of Generic Call Control SCF ... 69
D.2.11 Annex B (informative): W 3C WSDL Description of Generic Call Control SCF .. 69
D.2.12 Annex C (informative): Java™ API Description of the Call Control SCFs .. 69

Annex E (informative): Change history..70

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 6 Release 9

Foreword

This Technical Specification has been produced by the 3
rd

 Generat ion Partnership Pro ject (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal

TSG approval. Should the TSG modify the contents of the present documen t, it will be re-released by the TSG with an

identifying change of release date and an increase in version number as fo llows:

Version x.y.z

where:

x the first digit :

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

updates, etc.

z the third digit is incremented when editorial on ly changes have been incorporated in the document.

Introduction

The present document is part 4, sub-part 2 of a multi-part TS covering the 3
rd

 Generat ion Partnership Pro ject: Technical

Specification Group Core Network; Open Serv ice Access (OSA); Application Programming Interface (API), as

identified below. The API s pecification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control";

 Sub-part 1: "Call Control Common Definit ions";

 Sub-part 2 : "Generic Call Control SCF";

 Sub-part 3: "Multi-Party Call Control SCF";

 Sub-part 4: "Multi-Media Call Control SCF";

 Sub-part 5: "Conference Call Control SCF";

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 8)

Part 10: "Connectivity Manager SCF"; (new in 3GPP Release 8)

Part 11: "Account Management SCF";

Part 12: "Charging SCF".

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF";

Part 15 "Multi Media Messaging SCF";

Part 16: "Service Broker SCF".

.

The Mapping s pecification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.

A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.

Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 7 Release 9

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family

29.198-01 Overview 29.998-01 Overview

29.198-02 Common Data Definitions 29.998-02 Not Applicable

29.198-03 Framework 29.998-03 Not Applicable

Call

Control

(CC)

SCF

29.198-

04-1

Common

CC data
definitions

29.198-

04-2

Generic

CC
SCF

29.198-

04-3

Multi-

Party
CC SCF

29.198-

04-4

Multi-

media
CC SCF

29.198-

04-5

Conf

CC SCF

29.998-04-1 Generic Call Control – CAP mapping

29.998-04-2 Generic Call Control – INAP mapping

29.998-04-3 Generic Call Control – Megaco mapping

29.998-04-4 Multiparty Call Control – ISC mapping

29.198-05 User Interaction SCF 29.998-05-1 User Interaction – CAP mapping

29.998-05-2 User Interaction – INAP mapping

29.998-05-3 User Interaction – Megaco mapping

29.998-05-4 User Interaction – SMS mapping

29.198-06 Mobility SCF 29.998-06-1 User Status and User Location – MAP
mapping

29.998-06-2 User Status and User Location – SIP mapping

29.198-07 Terminal Capabilities SCF 29.998-07 Not Applicable

29.198-08 Data Session Control SCF 29.998-08 Data Session Control – CAP mapping

29.198-09 Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 Account Management SCF 29.998-11 Not Applicable

29.198-12 Charging SCF 29.998-12 Not Applicable

29.198-13 Policy Management SCF 29.998-13 Not Applicable

29.198-14 Presence & Availability Management SCF 29.998-14 Not Applicable

29.198-15 Multi-media Messaging SCF 29.998-15 Not Applicable

29.198-16 Service Broker SCF 29.998-16 Not Applicable

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 8 Release 9

1 Scope

The present document is Part 4, Sub-part 2 of the Stage 3 specification for an Applicat ion Programming Interface (API)

for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality

through an open standardised interface, i.e . the OSA APIs. The concepts and the functional architecture for the OSA are

contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Generic Call Control Service Capability Feature (SCF) aspects of the interface. All

aspects of the Generic Call Control SCF are defined here, these being:

 Sequence Diagrams

 Class Diagrams

 Interface specificat ion plus detailed method descriptions

 State Transition diagrams

 Data defin itions

 IDL Description of the interfaces

 WSDL Description of the interfaces

 Reference to the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the

Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT W G5, ETSI TISPAN and the Parlay Group, in co -

operation with a number of JAIN™ Community member companies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present

document.

 References are either specific (identified by date of publication, edit ion number, version n umber, etc.) o r

non-specific.

 For a specific reference, subsequent revisions do not apply.

 For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including

a GSM document), a non-specific reference implicit ly refers to the latest version of that document in the same

Release as the present document.

[1] 3GPP TS 29.198-1 "Open Service Access; Application Programming Interface; Part 1: Overview".

[2] 3GPP TS 22.127: "Serv ice Requirement for the Open Services Access (OSA); Stage 1".

[3] 3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4] 3GPP TS 22.002: "Circuit Bearer Services Supported by a PLMN".

[5] ISO 4217 (1995): " Codes for the representation of currencies and funds ".

[6] 3GPP TS 24.002: " GSM-UMTS Public Land Mobile Network (PLMN) Access Reference

Configurat ion".

[7] 3GPP TS 22.003: "Circuit Teleservices supported by a Public Land Mobile Network (PLMN)".

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 9 Release 9

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Generic Call Control Service Sequence Diagrams

The Generic Call Control API of 3GPP Rel.4 relies on the CAMEL Serv ice Environment (CSE) and thus some

restrictions exist to the use of the interface. The most significant one is that there is no support for createCall method.

The detailed description of the supported methods and further restrictions is given in the chapter 8.

4.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of

events. If one of the call backs can not be used, e.g. because the application crashed , the other call back interface is used

instead.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 10 Release 9

first instance : (Logical

View::IpAppLogic)

second instance :

(Logic...

 : IpAppCallControlManager : IpAppCallControlManager : IpCallControlManager

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1: The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to

handle callbacks for this first instance of the logic.

2: The enableCallNotification is associated with an applicationID. The call control manager uses the applicationID to

decide whether this is the same applicat ion.

3: The second instance of the application is started on node 2. The applicat ion creates a new

IpAppCallControlManager to handle callbacks for this second instance of the logic.

4: The same enableCallNot ification request is sent as for the first instance of the logic. Because both requests are

associated with the same applicat ion, the second request is not rejected, but the specified callback object is stored as an

additional callback.

5: When the trigger occurs one of the first instance of the application is notified. The gateway may have different

policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin

scheme.

6: The event is forwarded to the first instance of the logic.

7: When the first instance of the application is overloaded or unavailable th is is communicated with an exception to the

call control manager.

8: Based on this exception the call control manager will notify another instance of the application (if available).

9: The event is forwarded to the second instance of the logic.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 11 Release 9

4.2 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as

a result of a trigger from an application. Typically, the applicat ion would be set to trigger at a certain t ime, however, the

application could also trigger on events.

 :

IpCallControlManager

 : IpAppCall : IpCall : IpUICall :

IpAppUIManager

 :

IpAppUICall

 : (Logical

View::IpAppLogic)

1: new()

2: createCall()

3: new()

4: routeReq()

5: routeRes()

9: sendInf oReq()

6: 'f orward ev ent'

7: createUICall()

8: new()

10: sendInf oRes()

11: 'f orward ev ent'

12: release()

13: release()

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object

implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not

exceeded) is met it is created.

4: This message instructs the object implementing the IpCall interface to route the call to the customer destined to

receive the 'reminder message'

5: This message passes the result of the call being answered to its callback object.

6: This message is used to forward the previous message to the IpAppLogic.

7: The application requests a new UICall object that is associated with the call object.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 12 Release 9

8: Assuming all criteria are met, a new UICall object is created by the service.

9: This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10: When the announcement ends this is reported to the call back interface.

11: The event is forwarded to the application logic.

12: The application releases the UICall ob ject, since no further announcements are required. Alternatively, the

application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have

been implicit ly released after the announcement was played.

13: The application releases the call and all associated parties.

4.3 Application Initiated Call

The following sequence diagram shows an application creating a call between party A and party B. Th is sequence could

be done after a customer has accessed a Web page and selected a name on the page of a person or organisation to talk

to.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 13 Release 9

 :
IpCallControlManager

 : IpAppCall : IpCall : (Logical
View::IpAppLo...

5: routeRes()

1: new()

2: createCall()

3: new()

4: routeReq()

7: routeReq()

8: routeRes()

6: 'forward event'

9: 'forward event'

10: deassignCall()

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 14 Release 9

1: This message is used to create an object implementing the IpAppCall interface.

2: This message requests the object implementing the IpCallControlManager interface to create an object

implementing the IpCall interface.

3: Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not

exceeded) is met, it is created.

4: This message is used to route the call to the A subscriber (origination). In the message the application request

response when the A party answers.

5: This message indicates that the A party answered the call.

6: This message forwards the previous message to the application logic.

7: This message is used to route the call to the B-party. Also in this case a response is requested for call answer or

failure.

8: This message indicates that the B-party answered the call. The call now has two parties and a speech connection is

automatically established between them.

9: This message is used to forward the previous message to the IpAppLogic.

10: Since the applicat ion is no longer interested in controlling the call, the application deassigns the call. The call will

continue in the network, but there will be no further communication between the call object and the application.

4.4 Call Barring 1

The following sequence diagram shows a call barring service, init iated as a result of a prearranged event being received

by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code.

The code is accepted and the call is routed to the original called party.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 15 Release 9

 : (Logical

View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCall : IpUICall :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall() 7: new()

11: release()

15: callEnded()16: "forward event"

17: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a call barring service, it is likely that all new call events des tined for a particular address or address range prompted for

a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a

message (not shown) is directed to the object implement ing the IpCallControlMan ager. Assuming that the criteria for

creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not

shown) are used to create the call and associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall in terface. The reference to

this object is passed back to the object implementing the IpCallControlManager using the return parameter of the

callEventNotify.

6: This message is used to create a new UICall object. The reference to the call object is given wh en creating the

UICall.

7: Provided all the criteria are fulfilled, a new UICall object is created.

8: The call barring service dialogue is invoked.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 16 Release 9

9: The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: This message releases the UICall object.

12: Assuming the correct PIN is entered, the call is forward routed to the destination party.

13: This message passes the result of the call being answered to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: When the call is terminated in the network, the application will receive a notification. Th is notificat ion will always

be received when the call is terminated by the network in a normal way, the application does not have to request this

event explicitly.

16: The event is forwarded to the application.

17: The application must free the call related resources in the gateway by calling deassignCall.

4.5 Number Translation 1

The following sequence diagram shows a simple number t ranslation service, in itiated as a result of a prearranged event

being received by the call control service.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 17 Release 9

 :

IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical

View::IpAppLo...

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled. When

a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object

implementing the IpCallControlManager. Assuming that the criteria for creating an object implement ing the IpCall

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and

associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 18 Release 9

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager using the return parameter of message

3.

6: This message invokes the number translation function.

7: The returned translated number is used in message 7 to route the call towards the destination.

8: This message passes the result of the call being answered to its callback object

9: This message is used to forward the previous message to the IpAppLogic.

10: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue

in the network, but there will be no further communication between the call object and the application.

4.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number t ranslation service, in itiated as a result of a prearranged event

being received by the call control service.

For illustration, in this sequence the callback references are set explicit ly. Th is is optional. All the callbacks references

can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the

sequences use that mechanism.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 19 Release 9

 :

IpCallControlManager

 : IpAppCall : IpCall : IpAppCallControlManager : (Logical

View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'translate number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

12: deassignCall()

7: setCallbackWithSessionID()

2: setCallback()

3: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The

CallControlManager reports the callEventNotify to referenced object only for enableCallNotificat ions that do not have

an explicit IpAppCallControlManager reference specified in the enableCallNotification.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 20 Release 9

3: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled. When

a new call, that matches the event criteria set in message 3, arrives a message (not shown) is directed to the object

implementing the IpCallControlManager. Assuming that the criteria for creating an object implement ing the IpCall

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and

associated call leg object.

4: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5: This message is used to forward message 4 to the IpAppLogic.

6: This message is used by the application to create an object implementing the IpAppCall interface.

7: This message is used to set the reference to the IpAppCall fo r this call.

8: This message invokes the number translation function.

9: The returned translated number is used in message 7 to route the call towards the destination.

10: This message passes the result of the call being answered to its callback object.

11: This message is used to forward the previous message to the IpAppLogic.

12: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue

in the network, but there will be no further communication between the call object and the application.

4.7 Number Translation 2

The following sequence diagram shows a number translation service, in itiated as a result of a prearranged event being

received by the call control service. If the translated number being routed to does not answer or is busy then the c all is

automatically released.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 21 Release 9

 : (Logical

View::IpAppLogic)

 : IpAppCallControlManager : IpAppCall : IpCallControlManager : IpCall

6: 'translate number'

9: 'forward event'

8: routeRes()

7: routeReq()

10: release()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled. When

a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager using the return pa rameter of the

callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback

in this message, indicating the unavailability of the called party.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 22 Release 9

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to release the call.

4.8 Number Translation 3

The following sequence diagram shows a number translation service, in itiated as a result of a prearranged event being

received by the call control service. If the translated number being routed to does not answer or is busy then the call is

automatically routed to a voice mailbox.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 23 Release 9

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical

View::IpAppLogic)

8: routeRes()

7: routeReq()

9: 'forward event'

12: routeRes()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

6: 'translate number'

10: 'translate number'

11: routeReq()

13: 'forward event'

14: deassignCall()

1: This message is used by the application to create an object implementing the IpAppCallCo ntrolManager interface.

2: This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be en abled. When

a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward the previous message to the IpAppLogic.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 24 Release 9

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager usin g the return parameter of the

callEventNotify.

6: This message invokes the number translation function.

7: The returned translated number is used to route the call towards the destination.

8: Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback,

indicating the unavailability of the called party.

9: This message is used to forward the previous message to the IpAppLogic.

10: The application takes the decision to translate the number, but th is time the number is translated to a number

belonging to a voice mailbox system.

11: This message routes the call towards the voice mailbox.

12: This message passes the result of the call being answered to its callback object.

13: This message is used to forward the previous message to the IpAppLogic.

14: The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue

in the network, but there will be no further communication between the call object and the application.

4.9 Number Translation 4

The following sequence diagram shows a number translation service, in itiated as a result of a prearranged event being

received by the call control service. Before the call is routed to the translated number, the application requests for all

call related informat ion to be delivered back to the application on completion of the call.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 25 Release 9

 : IpCallControlManager : IpAppCall : IpCall : IpAppCallControlManager : (Logical

View::IpAppLogic)

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()
14: 'forward event'

10: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deassignCall()

11: callEnded()
12: "forward event"

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled. When

a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 26 Release 9

4: This message is used to forward the previous message to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface. The reference to

this object is passed back to the object implementing the IpCallControlManager using the return parameter of the

callEventNotify.

6: This message invokes the number translation function.

7: The application instructs the object implement ing the IpCall interface to return all call related information once the

call has been released.

8: The returned translated number is used to route the call towards the destination.

9: This message passes the result of the call being answered to its callback object.

10: This message is used to forward the previous message to the IpAppLogic.

11: Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object

implementing the IpCall. Th is causes an event, to be passed to the object implementing the IpAppCall object.

12: This message is used to forward the previous message to the IpAppLogic.

13: The application now waits for the call information to be sent. Now that the call has completed, the object

implementing the IpCall interface passes the call information to its callback object.

14: This message is used to forward the previous message to the IpAppLogic

15: After the last informat ion is received, the application deassigns the call. This will free the resources related to this

call in the gateway.

4.10 Number Translation 5

The following sequence diagram shows a simple number t ranslation service which contains a status check function,

initiated as a result of a p rearranged event being received. In the following sequence, when the application receives an

incoming call, it checks the status of the user, and returns a busy code to the calling party.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 27 Release 9

 : IpAppCall : IpAppCallControlManager : IpCallIpAppLogic : IpCallControlManager

1: new()

2: enableCallNotification()

3: callEventNotify()

4: 'forward event'

5: new()

6: 'check status'

7: appropriate release cause

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a number translation service, it is likely that only new call events within a certain address range will be enabled.

When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object

implementing the IpCallControlManager. Assuming that the criteria for creating an object implement ing the IpCall

interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and

associated call leg object.

3: This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4: This message is used to forward message 3 to the IpAppLogic.

5: This message is used by the application to create an object implementing the IpAppCall interface . The reference to

this object is passed back to the object implementing the IpCallControlManager using the return parameter of message

3.

6: This message invokes the status checking function.

7: The application decides to release the call, and sends a release cause to the calling party indicat ing that the user is

busy.

4.11 Prepaid

This sequence shows a Pre-paid applicat ion.

The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain

timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the

following sequence the end-user will receive an announcement before his final t imeslice.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 28 Release 9

Prepaid : (Logical

View::IpAppLogic)

 : IpAppCallControlManager : IpCallControlManager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

7: routeReq()

8: superviseCallRes()
9: "forward event"

10: superviseCallReq()

11: superviseCallRes()
12: "forward event"

13: superviseCallReq()

14: superviseCallRes()

15: "forward event"

6: superviseCallReq()

17: sendInfoReq()

18: sendInfoRes()
19: "forward event"

21: superviseCallReq()

22: superviseCallRes()
23: "forward event:

24: release()

16: createUICall()

20: release()

5: new()

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 29 Release 9

that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: The incoming call t riggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Generic Call object is created.

6: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period

indicated in the message. This period is related to the credits left on the account of the pre -paid subscriber.

7: Before continuation of the call, PPA sends all charging informat ion, a possible tariff switch time and the call

duration supervision period, towards the GW which forwards it to the network.

8: At the end of each supervision period the application is informed and a new period is started.

9: The message is forwarded to the application.

10: The Pre-Paid Application (PPA) requests to supervise the call fo r another call duration.

11: At the end of each supervision period the application is informed and a new period is started.

12: The message is forwarded to the application.

13: The Pre-Paid Application (PPA) requests to supervise the call fo r another call duration. When the timer expires it

will indicate that the user is almost out of credit.

14: When the user is almost out of credit the application is informed.

15: The message is forwarded to the application.

16: The application decides to play an announcement to the parties in this call. A new UICall object is created and

associated with the call.

17: An announcement is played informing the user about the near-exp irat ion of his credit limit.

18: When the announcement is completed the application is informed.

19: The message is forwarded to the application.

20: The application releases the UICall ob ject.

21: The user does not terminate so the application terminates the call after the next supervision period.

22: The supervision period ends.

23: The event is forwarded to the logic.

24: The application terminates the call. Since the user interaction is already explicitly terminated no

userInteractionFaultDetected is sent to the application.

4.12 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid applicat ion that uses the Advice of Charge feature.

The application will send the charging informat ion before the actual call setup and when during the call the charging

changes new information is sent in order to update the end-user. Note: the Advice of Charge feature requires an

application in the end-user terminal to display the charges for the call, depending on the informat ion received from the

application.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 30 Release 9

Prepaid : (Logical

View::IpAppLogic)

 : IpAppCallControlManager : IpCallControlManager : IpCall : IpUICall : IpUIManager : IpAppUICall : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: superviseCallReq()

27: release()

21: sendInfoReq()

18: new()

22: sendInfoRes()

23: "forward event"

9: superviseCallRes()
10: "forward event"

12: superviseCallRes()
13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()
17: "forward event"

25: superviseCallRes()

26: "forward event:

6: setAdviceOfCharge()

19: createUICall() 20: new()

28: userInteractionFaultDetected()

5: new()

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 31 Release 9

1: This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2: This message is sent by the application to enable notificat ions on new call events. As this sequence diagram depicts

a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call,

that matches the event criteria, arrives a message (not shown) is directed to the object implementing the

IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load

control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg

object.

3: The incoming call t riggers the Pre-Paid Application (PPA).

4: The message is forwarded to the application.

5: A new object on the application side for the Call object is created.

6: The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA

contains ALL the tariff in formation and knows how to charge the user).

During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch t ime (e.g. 18:00

hours) switches to tariff 2. The applicat ion is not informed about this (but the end -user is!)

7: The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period

indicated in the message. This period is related to the credits left on the account of the pre -paid subscriber.

8: The application requests to route the call to the destination address.

9: At the end of each supervision period the application is informed and a new period is started.

10: The message is forwarded to the application.

11: The Pre-Paid Application (PPA) requests to supervise the call fo r another call duration.

12: At the end of each supervision period the application is informed and a new period is started.

13: The message is forwarded to the application.

14: Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again,

at the tariff switch time, the network will send AoC informat ion to the end-user.

15: The Pre-Paid Application (PPA) requests to supervise the call fo r another call duration. When the timer expires it

will indicate that the user is almost out of credit.

16: When the user is almost out of credit the application is informed.

17: The message is forwarded to the application.

18: The application creates a new call back interface for the User interaction messages.

19: A new UI Call object that will handle playing of the announcement needs to be created.

20: The Gateway creates a new UI call object that will handle p laying of the announcement.

21: With this message the announcement is played to the parties in the call.

22: The user indicates that the call should continue.

23: The message is forwarded to the application.

24: The user does not terminate so the application terminates the call after the next supervision period.

25: The user is out of credit and the application is informed.

26: The message is forwarded to the application.

27: With this message the application requests to release the call.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 32 Release 9

28: Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The

UICall object is terminated in the gateway and no further communication is possible between the UICall and the

application.

5 Class Diagrams

The generic call control service consists of two packages, one for the interfaces on the application side and one for

interfaces on the service side.

The class diagrams in the fo llowing figures show the interfaces that make up the generic call control application

package and the generic call control service package. Communicat ion between these packages is indicated with the

<<uses>> associations; e.g. the IpCallControlManager interface uses the IpAppCal lControlManager, by means of

calling callback methods.

This class diagram shows the interfaces of the generic call control service package.

IpCallControlManager

createCall()

enableCallNotification()

disableCallNotification()

setCallLoadControl()

changeCallNotification()

getCriteria()

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

IpCall

routeReq()

release()

deassignCall()

getCallInfoReq()

setCallChargePlan()

setAdviceOfCharge()

getMoreDialledDigitsReq()

superviseCallReq()

continueProcessing()

<<Interface>>

1 0..n

Figure: Service Interfaces

This class diagram shows the interfaces of the generic call control application package and their relat ions to the

interfaces of the generic call control service package.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 33 Release 9

Figure: Application Interfaces

6 Generic Call Control Service Interface Classes

The Generic Call Control Service (GCCS) provides the basic call control service for the API. It is based around a third

party model, which allows calls to be instantiated from the network and routed through the network.

The GCCS supports enough functionality to allow call routing and call management for today's Intelligent Network

(IN) services in the case of a switched telephony network, or equivalent for packet based networks.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 34 Release 9

It is the intention of the GCCS that it could be readily specialised into call control specifications, for example, ITU -T

Recommendations H.323, Q.763 ISUP, Q.931 and Q.2931, ATM Foru m specification UNI3.1 and RFC 3261 Session

Initiat ion Protocol, or any other call control technology.

For the generic call control service, only a subset of the call model defined in clause 4 is used; the API for generic call

control does not give exp lic it access to the legs and the media channels. This is provided by the Multi-Party Call

Control Service. Furthermore, the generic call is restricted to two party calls, i.e. only two legs are active at any given

time. Active is defined here as 'being routed' or connected.

The GCCS is represented by the IpCallControlManager and IpCall interfaces that interface to services provided by the

network. Some methods are asynchronous, in that they do not lock a thread into wait ing whilst a transaction performs.

In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle

responses and reports, the developer must implement IpAppCallControlManager and IpAppCall to provide the callback

mechanis m.

6.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface fo r the Generic Call Control Service. The generic call control manager

interface provides the management functions to the generic call control service. The application programmer can use

this interface to provide overload control functionality, create call objects and to enable or disable call -related event

notifications.

 This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the

createCall() method shall be implemented, or the enableCallNotificat ion() and disableCallNot ification() methods shall

be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

6.1.1 Method createCall()

This method is used to create a new call object.

Callback reference:

An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control

will not be able to report a callAborted() to the applicat ion. The application shall invoke setCallback() prior to

createCall() if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 35 Release 9

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an

application has to do to get initial notification of calls happening in the network. When such an event happens, the

application will be informed by callEventNotify(). In case the application is interested in other events during the context

of a particular call session it has to use the routeReq() method on the call object. The applicat ion will get access to the

call object when it receives the callEventNotify(). (Note that the enableCallNotificat ion() is not applicable if the call is

setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when

certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the

application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some applicat ion already requested notificat ions with criteria that overlap the specified criteria, the request is refused

with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges

overlap and the same number p lan is used and the same CallNotificationType is used.

If a notificat ion is requested by an application with the monitor mode set to notify, then there is no need to check the

rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be

passed over. Only one application can place an interrupt request if the criteria overlap.

If a notificat ion is requested by an application with an event type that is mutually exclusive compared to existing

requested event types, then there is no need to check against the rest of the criteria for overlap. An example could be

one application that trigger on "user busy" together with another application that trigger on "answer" - both requests

should be allowed as only one can occur on the same call or session.

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problems in

networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap

criteria check. Therefore where dynamic event arming from an application causes a persistent control relat ionship it can

prevent other applications to be invoked in the case single point of application control applies in the network.

However, the criteria check for overlap may as a network option be overruled by Multi Serv ice networks allowing more

services or applications to gain control of the same call or session at the same point in t ime. Refer to Call Control

Common Definitions subpart of this specification (TS 29.198-4-1) for further details on application control over a call

or session.

Setting the callback reference:

The callback reference can be registered either in a) enableCallNotificat ion() or b) exp licitly with a separate

setCallback() method depending on how the application provides its callback reference.

Case a:

From an efficiency point of view the enableCallNotification() with exp licit immediate registration (no "Null" value) of

callback reference may be the preferred method.

Case b:

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 36 Release 9

The enableCallNotficat ion() with no call back reference ("Null" value) is used where (e.g. due to distributed application

logic) the callback reference is provided previously in a setCallback(). If no callback reference has been provided

previously to the service, the exception P_NO_CALLBACK_ADDRESS_SET shall be raised.

In case the enableCallNotificat ion() contains no callback, at the moment the application needs to be informed the

gateway will use as callback the callback that has been registered by setCallback(). See example in clause 4.6

Set additional callback:

If the same applicat ion invokes this method multip le times with exactly the same criteria but with different callback

references, then these shall be treated as additional callback references. Each such notification request shall share the

same assignmentID. The gateway shall use the most recent callback interface provided by the application using this

method. In the event that a callback reference fails or is no longer availab le, the next most recent callback reference

available shall be used. See example in clause 4.1.

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly -enabled

event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e . not NULL) it specifies a reference to the application interface, which is used for callbacks. If

set to NULL, the applicat ion interface defau lts to the interface specified previously via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these

criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",

"busy". Individual addresses or address ranges may be specified fo r destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,

P_INVALID_EVENT_TYPE

6.1.3 Method disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the enableCallNotification() was

called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception

P_INVALID_ASSIGNMENT_ID will be raised.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

6.1.4 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control

service. The address matching mechanis m is similar as defined for TpCallEventCriteria.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 37 Release 9

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be

used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.

A duration of 0 indicates that the load control should be removed.

A duration of -1 indicates an infinite duration (i.e . until disabled by the application).

A duration of -2 indicates the network default durat ion.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,

such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control

duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

6.1.5 Method changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotificat ion. Any stored

criteria associated with the specified assignmentID will be rep laced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have

been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that

meet these criteria are reported.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 38 Release 9

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,

P_INVALID_EVENT_TYPE

6.1.6 Method getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or

changeCallNotification.

Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only

events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

Returns

TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

6.2 Interface Class IpAppCallControlManager

Inherits from: Ip Interface

The generic call control manager applicat ion interface provides the application call control management functions to the

generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, event Info : in TpCallEvent Info, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

abortMultipleCalls (callReferenceSet : in TpSessionIDSet) : void

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 39 Release 9

6.2.1 Method callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No

further communication will be possible between the call and applicat ion.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.2 Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has

control of the call. If the APL does nothing with the call (including its associated legs) within a specified t ime period

(the duration of which forms a part of the service level agreement), then the call in the network shall be released and

callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Setting the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.

However, the setting of a call back reference is only applicable if the notificat ion is in INTERRUPT mode. When the

callEventNotify() method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the

application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been

passed to the gateway, either through an exp licit setCallbackW ithSessionID() invocation on the supplied IpCall, or via

the return of the callEventNotify () method.

The callback reference can be registered either in a) callEventNotify() or b) exp licit ly with a

setCallbackW ithSessionID() method e.g. depending on how the application provides its call reference.

Case a:

From an efficiency point of view the callEventNotify () with explicit pass of registration may be the preferred method.

Case b:

The callEventNotify() with no callback reference ("Null" value) is used where (e.g. due to distributed application logic)

the callback reference is provided previously in a setCallbackWithSessionID(). If no callback reference has been

provided previously to the service, the exception P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further

application invocations related to the call shall be permitted.

In case the callEventNotify() contains no callback, at the moment the applicat ion needs to be informed the gateway will

use as callback the callback that has been registered previously by setCallbackWithSessionID(). See example in clause

4.6

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new

call. If the applicat ion has previously explicit ly passed a reference to the IpAppCall interface using a

setCallbackW ithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided

during the setCallbackWithSessionID().

This parameter will be null if the notification is in NOTIFY mode and in case b).

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notificat ion is in NOTIFY mode, this

parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS

entity invoking callEventNotify may populate this parameter as it chooses.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 40 Release 9

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use

assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

6.2.3 Method callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due

to faults detected).

Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls

requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. Th is implies the address range for

within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any

load controls on calls requested to a particular address range or calls made to a particular destination within the call

control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. Th is implies the address range for

within which the overload has been ceased.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 41 Release 9

6.2.7 Method abortMultipleCalls()

The service may invoke this method on the IpAppCallControlManager interface to indicate that a number of ongoing

call sessions have aborted or terminated abnormally. No further communicat ion will be possible between th e

application and the calls. This may be used for example in the event of service failure and recovery in order to instruct

the application that a number of call sessions have failed. The service shall provide a set of call sessionIDs indicating to

the application the call sessions that have aborted. In the case that the service invokes this method and provides an

empty set of sessionIDs, this shall be used to indicate that all call sessions previously active on the

IpCallControlManager interface have been aborted.

Parameters

callReferenceSet : in TpSessionIDSet

Specifies the set of sessionIDs of calls that have aborted or terminated abnormally. The empty set shall be used to

indicate that all calls have aborted.

6.3 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request informat ion from the call, control the

charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs

directly and it does not allow control over the media. The first capability is provided by the mult i-party call and the

latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'fo llow-on'

calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating

party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.

 This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement, the routeReq (),

release() and deassignCall() methods shall be implemented.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 42 Release 9

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress

: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

continueProcessing (callSessionID : in TpSessionID) : void

6.3.1 Method routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure ' events at

invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e. the plan is set to

P_ADDRESS_PLAN_NOT_PRESENT), the in formation provided in corresponding addresses from the route is used,

otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this

method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

This operation continues processing of the call implicitly.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly

created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request

and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e .g. in the multi -party call

control service.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g. when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 43 Release 9

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service

identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS,

P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,

P_INVALID_EVENT_TYPE

6.3.2 Method release()

This method requests the release of the call object and associated objects. The call will also be terminated in the

network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) th ese

reports will still be sent to the application.

The application should always either release or deassign the call when it is fin ished with the call, unless a

callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.3.3 Method deassignCall()

This method requests that the relationship between the application and the call and associated objects be de -assigned. It

leaves the call in progress, however, it purges the specified call object so that the application has no further control of

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 44 Release 9

call processing. If a call is de-assigned that has event reports, call informat ion reports or call Leg in formation reports

requested, then these reports will be d isabled and any related information d iscarded.

The application should always either release or deassign the call when it is fin ished with the call, unless

callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.4 Method getCallInfoReq()

This asynchronous method requests informat ion associated with the call to be provided at the appropriate time (for

example, to calculate charg ing). Th is method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after

the call is ended if informat ion is required to be sent to the application at the end of the call. In case the orig inating party

is still available the applicat ion can still in itiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.5 Method setCallChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 45 Release 9

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.6 Method setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals tha t are capable of receiv ing this

informat ion.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.7 Method getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further dig its and return them to the application.

Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or

dialled only a few d igits. The applicat ion then gets a new call event which contains no digits or only the few dialled

digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of dig its to collect.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.8 Method superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If

an application calls this function before it calls a routeReq() or a user interaction function the time measurement will

start as soon as the call is answered by the B-party or the user interaction system.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 46 Release 9

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time exp ired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

6.3.9 Method continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing

was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE

will be raised.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

6.4 Interface Class IpAppCall

Inherits from: Ip Interface

The generic call application interface is implemented by the client application developer and is used to handle call

request responses and state reports.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 47 Release 9

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in

TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSes sionID : in
TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in

TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : voi d

6.4.1 Method routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the

response of the destination party (for example, the call was answered, not answered, refused due to busy , etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a

specified time period (the duration of which forms a part of the service level agreement), then the call in the network

shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer exp iry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and

time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can

be used to correlate the response with the request.

6.4.2 Method routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call

could not be routed to the destination party (for example, the network was unable to route the call, the parameters were

incorrect, the request was refused, etc.).

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 48 Release 9

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can

be used to correlate the error with the request.

6.4.3 Method getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as re lease cause

depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charg ing

purposes. The call in formation will possibly be sent after routeRes in all cases where the call or a leg of the call has

been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

6.4.4 Method getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.5 Method superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in this

kind of event.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 49 Release 9

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

6.4.6 Method superviseCallErr()

This asynchronous method reports a call supervision error to the applicat ion.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.7 Method callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have

been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be

forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

6.4.8 Method getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled d igits if the string length is greater than zero.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 50 Release 9

6.4.9 Method getMoreDialledDigitsErr()

This asynchronous method reports an error in co llect ing digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

6.4.10 Method callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still

receive some results (e.g. getCallInfoRes) related to the call. The application is expected to deassign the call object after

having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

7 Generic Call Control Service State Transition
Diagrams

7.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 51 Release 9

Active

Creation of

IpCallControlManager

by Service Instance

Lifecycle Manager

Notification terminated

"new"

enableCallNoti fication

disableCallNotification

"a cal l object has terminated abnormally" ^IpAppCallControlManager.callAborted

"arrival of call related event"[noti fication active for this call event] /

create a Call object ^IpAppCallControlManager.cal lEventNoti fy

disableCallNotification

"a cal l object has terminated abnormally"

^IpAppCallControlManager.cal lAborted

IpAccess.terminateServiceAgreement

"notifications possible again"

 ^IpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"

 IpAppCallControlManager.cal lNotificationInterrupted

createCall / create a Call object

Figure : Application view on the Call Control Manager

7.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state

allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control

Manager will create a Call object and inform the applicat ion by invoking the operation callEven tNotify() on the

IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related

events by calling disableCallNotification().

7.1.2 Notification terminated State

When the Call Control Manager is in the Not ification terminated state, events requested with enableCallNotification()

will not be forwarded to the application. There can be multip le reasons for this: for instance it might be that the

application receives more notificat ions from the network than defined in the Service Level Agreement. Another

example is that the Service has detected it receives no notificat ions from the network due to e.g. a link failure. In this

state no requests for new notifications will be accepted.

7.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 52 Release 9

Network Released

Finished

Application

Released

In state Finshed and No Parties, a timer

mechanism should prevent the object from

occupying resources. Upon the expiry of this timer,

callFaultDetected() shall be invoked as this is an

abnormal termination.

No Parties

setCallChargePlan

superviseCallReq
getCallInfoReq

setAdviceOfCharge

Active

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call
Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

"connection to called party unsuccessful"[monitor mode = interrupt] ^routeRes

"disconnect from called party"[monitor

mode = interrupt] ^routeRes,

getCallInfoRes, superviseCallRes

routeReq[only 1 outstanding routeReq]

getMoreDialledDigitsReq[no routeReq outstanding]

"connection to called party unsuccessful"[

monitor mode = interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"answer"

"Digits collected" ^getMoreDialledDigitsRes

"Error in collecting digits" ^getMoreDialledDigitsErr

"party released"

"party released"[no more outstanding

requests]

setAdviceOfCharge

getCallInfoReq

superviseCallReq

createCall

IpAppCallControlManager.callEventNotify

IpAppCallControlManager.callEvent

Notify(Answer from call party)

routeReq[number of routing requests < 2]

deassignCall

release

timeout ^callFaultDetected("timeout on release")

release

"call ends: call ing party abandoned" ^callEnded

"call ends : calling party disconnects" ^callEnded"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: call ing party disconnects"[no monitor for this event] ^callEnded

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

deassignCall

"answer from called party"

"requests fai led"[no more outstanding

routeReq operations] ^routeErr

"connection to called party unsuccessful"[no more

outstanding routeReq operations] ^routeRes

deassignCall

release

"fault in retrieval of information"

^getCallInfoErr, superviseCallErr

[no reports requested with getCallInfoReq AND superviseCallReq]

"requested information ready"

^getCallInfoRes, superviseCallRes

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

"requested information ready"

^getCallInfoRes, superviseCallRes

[no reports requested with getCallInfoReq AND superviseCallReq]

release

deassign

routeReqcontinueProcessing

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

Figure : Application view on the IpCall object for 3GPP

7.2.1 Network Released State

In this state the call has ended and the Gateway co llects the possible call in formation requested with getCallIn foReq()

and / or superviseCallReq(). The informat ion will be returned to the application by invoking the methods

getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are

used. In case the application has not requested additional call related informat ion immediately a transition is made to

state Finished.

7.2.2 Finished State

In this state the call has ended and no call related information is to be s end to the application. The application can only

release the call object. Calling the deassignCall() operat ion has the same effect. Note that the application has to release

the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is

also responsible for destroying it when the object is no longer needed.

7.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call

informat ion requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested

additional call related informat ion the Call object is destroyed immediately.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 53 Release 9

7.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application

can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge

informat ion by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the

P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application

invokes continueProcessing(), routeReq(), release() or deassignCall() method.

7.2.5 1 Party in Call State

In this state there is one party in the call.

In this state the application can also request the gateway for a certain type of charging of th e call by calling

setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The

setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a second party in the call

by means of routeReq().

Two cases apply: network initiated calls and application init iated calls.

In case the call originated from the network the application can now request for more d igits in case more dig its are

needed. When the calling party abandons the call before the application has invoked the routeReq() operation, the

application is informed with callEnded(). When the calling party abandons the call after the application has invoked

routeReq() but before the call has actually been established, the gateway informs the application by invoking

callEnded().

In case the call was setup by the application and the called party was reached by issuing a routeReq() the application

can request a connection to a second call party by calling the operation routeReq() again.

Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the

application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case t he

called party can disconnect before another party is reached. In this case depending on the actual configuration, the call

is ended or a transition is made back to the Routing to Destinations substate. When the second party answers the call, a

transition will be made to the 2 Part ies in Call state.

In this state user interaction is possible unless there is an outstanding routing request.

7.2.6 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the

application is informed with routeRes with indication that the called party has disconnected and all requested reports are

sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network

Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the

callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

7.2.7 No Parties State

In this state the Call object has been created. The application can request the gateway for a certain type of charging of

the call by calling setCallChargePlan(). The application can request for charging related informat ion by calling

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 54 Release 9

getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is

also allowed to request Advice of Charge informat ion to be sent by calling setAdviceOfCharge().

7.2.8 Routing to Destination(s) State

In this state there is at least one outstanding routeReq.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 55 Release 9

8 Generic Call Control Service Properties

8.1 List of Service Properties

The following table lists properties relevant for the GCC API.

Property Type Description / Interpretation
P_TRIGGERING_EVENT_TYPES INTEGER_SET Indicates the static event types supported by the SCS. Static events are the events by

which applications are initiated.

P_DYNAMIC_EVENT_TYPES INTEGER_SET Indicates the dynamic event types supported by the SCS. Dynamic events are the events
the application can request for during the context of a call.

P_ADDRESSPLAN INTEGER_SET Indicates the supported address plans (defined in TpAddressPlan.) e.g.

{P_ADDRESS_PLAN_E164, P_ADDRESS_PLAN_IP}). Note that more than one
address plan may be supported.

P_UI_CALL_BASED BOOLEAN_SET Value = TRUE : User interaction can be performed on call level and a reference to a Call
object can be used in the IpUIManager.createUICall() operation.

Value = FALSE: No User interaction on call level is supported.

P_UI_AT_ALL_STAGES BOOLEAN_SET Value = TRUE: User Interaction can be performed at any stage during a call.

Value = FALSE: User Interaction can be performed in case there is only one party in the
call.

P_MEDIA_TYPE INTEGER_SET Specifies the media type used by the Service. Values are defined by data-type
TpMediaType : P_AUDIO, P_VIDEO, P_DATA.

The previous table lists properties related to capabilities of the SCS itself. The following table lists properties that are

used in the context of the Service Level Agreement, e.g. to restrict the access of applications to the capabilit ies of the

SCS.

Property Type Description
P_NOTIFICATION_ADDRESS_RANGES XML_ADDRESS_RANGE_SET Indicates for which numbers notifications may be set. More than

one range may be present. For terminating notifications they
apply to the terminating number, for originating notifications
they apply only to the originating number.

P_NOTIFICATION_TYPES INTEGER_SET Indicates whether the application is allowed to set originating
and/or terminating triggers in the ECN. Set is:

P_ORIGINATING

P_TERMINATING

P_MONITOR_MODE INTEGER_SET Indicates whether the application is allowed to monitor in
interrupt and/or notify mode. Set is:

P_INTERRUPT

P_NOTIFY

P_NUMBERS_TO_BE_CHANGED INTEGER_SET Indicates which numbers the application is allowed to change or
fill for legs in an incoming call. Allowed value set:

{P_ORIGINAL_CALLED_PARTY_NUMBER,

P_REDIRECTING_NUMBER,

P_TARGET_NUMBER,

P_CALLING_PARTY_NUMBER}.

P_CHARGEPLAN_ALLOWED INTEGER_SET Indicates which charging is allowed in the setCallChargePlan
indicator. Allowed values:

{P_TRANSPARANT_CHARGING,

P_CHARGE_PLAN}

P_CHARGEPLAN_MAPPING INTEGER_INTEGER_MAP Indicates the mapping of chargeplans (we assume they can be
indicated with integers) to a logical network chargeplan indicator.
When the chargeplan supports indicates P_CHARGE_PLAN
then only chargeplans in this mapping are allowed.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 56 Release 9

8.2 Service Property values for the CAMEL Service

Environment.

Implementations of the Generic Call Control API rely ing on the CSE of CAMEL phase 4 shall have the Service

Properties outlined above set to the indicated values :

P_OPERATION_SET = {

“IpCallControlManager.createCall”,

“IpCallControlManager.enableCallNotification”,

“IpCallControlManager.disableCallNotification”,

“IpCallControlManager.changeCallNotification”,

“IpCallControlManager.getCriteria”,

“IpCallControlManager.setCallLoadControl”,

“IpCall.routeReq”,

“IpCall.release”,

“IpCall.deassignCall”,

“IpCall.getCallInfoReq”,

“IpCall.setCallChargePlan”,

“IpCall.setAdviceOfCharge”,

“IpCall.superviseCallReq”

}

P_TRIGGERING_EVENT_TYPES = {

P_CALL_REPORT_ALERTING,

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT,

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT,

P_EVENT_GCCS_CALLED_PARTY_BUSY,

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE,

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY,

P_EVENT_GCCS_ROUTE_SELECT_FAILURE

}

P_DYNAMIC_EVENT_TYPES = {

P_CALL_REPORT_ANSWER,

P_CALL_REPORT_BUSY,

P_CALL_REPORT_NO_ANSWER,

P_CALL_REPORT_DISCONNECT,

P_CALL_REPORT_SERVICE_CODE,

P_CALL_REPORT_ROUTING_FAILURE,

P_CALL_REPORT_NOT_REACHABLE

}

P_ADDRESS_PLAN = {

P_ADDRESS_PLAN_E164

}

P_UI_CALL_BASED = {

TRUE

}

P_UI_AT_ALL_STAGES = {

FALSE

}

P_MEDIA_TYPE = {

P_AUDIO

}

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 57 Release 9

9 Generic Call Control Data Definitions

This clause provides the GCC data definitions necessary to support the API specification.

The general format of a Data Definit ion specification is described below:

 Data Type

This shows the name of the data type.

 Description

This describes the data type.

 Tabular Specification

This specifies the data types and values of the data type.

 Example

If relevant, an example is shown to illustrate the data type.

All data types referenced in the present document but not defined in this clause are defined either in the common call

control data definitions in 3GPP TS 29.198-4-1 o r in the common data definitions which may be found in

3GPP TS 29.198-2.

9.1 Generic Call Control Event Notification Data Definitions

9.1.1 TpCallEventName

Defines the names of event being notified. The fo llowing events are supported. The values may be combined by a

logical 'OR' function when requesting the notifications. Additional events that can be requested / received during the

call process are found in the TpCallReportType data-type.

Name Value Description

P_EVENT_NAME_UNDEFINED 0 Undefined.

P_EVENT_GCCS_OFFHOOK_EVENT 1 GCCS – Offhook event
This can be used for hot-line features. In case this event is set

in the TpCallEventCriteria, only the originating address(es)
may be specified in the criteria.

P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT 2 GCCS – Address information collected

The network has collected the information from the A-party,
but not yet analysed the information. The number can still be
incomplete. Applications might set notifications for this event

when part of the number analysis needs to be done in the
application (see also the getMoreDialledDigitsReq method on
the call class).

P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT 4 GCCS – Address information is analysed

The dialled number is a valid and complete number in the
network.

P_EVENT_GCCS_CALLED_PARTY_BUSY 8 GCCS – Called party is busy.

P_EVENT_GCCS_CALLED_PARTY_UNREACHABLE 16 GCCS – Called party is unreachable (e.g. the called party has
a mobile telephone that is currently switched off).

P_EVENT_GCCS_NO_ANSWER_FROM_CALLED_PARTY 32 GCCS – No answer from called party.

P_EVENT_GCCS_ROUTE_SELECT_FAILURE 64 GCCS – Failure in routing the call.

P_EVENT_GCCS_ANSWER_FROM_CALL_PARTY 128 GCCS – Party answered call.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 58 Release 9

9.1.2 TpCallNotificationType

Defines the type of notification. Indicates whether it is related to the originating of the terminating user in the call.

Name Value Description

P_ORIGINATING 0 Indicates that the notification is related to the originating user in the call.

P_TERMINATING 1 Indicates that the notification is related to the terminating user in the call.

9.1.3 TpCallEventCriteria

Defines the Sequence of Data Elements that specify the criteria for a event notification.

Of the addresses only the Plan and the AddrString are used for the purpose of matching the notificat ions against the

criteria.

Sequence Element
Name

Sequence Element
Type

Description

DestinationAddress TpAddressRange Defines the destination address or address range for which the notification is
requested.

OriginatingAddress TpAddressRange Defines the origination address or a address range for which the notification is
requested.

CallEventName TpCallEventName Name of the event(s).

CallNotificationType TpCallNotificationType Indicates whether it is related to the originating or the terminating user in the
call.

MonitorMode TpCallMonitorMode Defines the mode that the call is in following the notification.

Monitor mode P_CALL_MONITOR_MODE_DO_NOT_MONITOR is not a
legal value here.

9.1.4 TpCallEventInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Call event

notification.

Sequence Element Name Sequence Element Type

DestinationAddress TpAddress

OriginatingAddress TpAddress

OriginalDestinationAddress TpAddress

RedirectingAddress TpAddress

CallAppInfo TpCallAppInfoSet

CallEventName TpCallEventName

CallNotificationType TpCallNotificationType

MonitorMode TpCallMonitorMode

9.2 Generic Call Control Data Definitions

9.2.1 IpCall

Defines the address of an IpCall Interface.

9.2.2 IpCallRef

Defines a Reference to type IpCall.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 59 Release 9

9.2.3 IpAppCall

Defines the address of an IpAppCall Interface.

9.2.4 IpAppCallRef

Defines a Reference to type IpAppCall

9.2.5 TpCallIdentifier

Defines the Sequence of Data Elements that unambiguously specify the Generic Call ob ject

Sequence Element
Name

Sequence Element
Type

Sequence Element Description

CallReference IpCallRef This element specifies the interface reference for the call object.

CallSessionID TpSessionID This element specifies the call session ID of the call.

9.2.6 IpAppCallControlManager

Defines the address of an IpAppCallControlManager Interface.

9.2.7 IpAppCallControlManagerRef

Defines a Reference to type IpAppCallControlManager.

9.2.8 IpCallControlManager

Defines the address of an IpCallControlManager Interface.

9.2.9 IpCallControlManagerRef

Defines a Reference to type IpCallControlManager.

9.2.10 TpCallAppInfo

Defines the Tagged Choice of Data Elements that specify application-related call informat ion.

 Tag Element Type

 TpCallAppInfoType

Tag Element
Value

Choice Element
Type

Choice Element Name

P_CALL_APP_ALERTING_MECHANISM TpCallAlertingMechanism CallAppAlertingMechanism

P_CALL_APP_NETWORK_ACCESS_TYPE TpCallNetworkAccessType CallAppNetworkAccessType

P_CALL_APP_TELE_SERVICE TpCallTeleService CallAppTeleService

P_CALL_APP_BEARER_SERVICE TpCallBearerService CallAppBearerService

P_CALL_APP_PARTY_CATEGORY TpCallPartyCategory CallAppPartyCategory

P_CALL_APP_PRESENTATION_ADDRESS TpAddress CallAppPresentationAddress

P_CALL_APP_GENERIC_INFO TpString CallAppGenericInfo

P_CALL_APP_ADDITIONAL_ADDRESS TpAddress CallAppAdditionalAddress

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 60 Release 9

9.2.11 TpCallAppInfoType

Defines the type of call applicat ion-related specific informat ion.

Name Value Description

P_CALL_APP_UNDEFINED 0 Undefined

P_CALL_APP_ALERTING_MECHANISM 1 The alerting mechanism or pattern to use

P_CALL_APP_NETWORK_ACCESS_TYPE 2 The network access type (e.g. ISDN)

P_CALL_APP_TELE_SERVICE 3 Indicates the tele-service (e.g. telephony)

P_CALL_APP_BEARER_SERVICE 4 Indicates the bearer service (e.g. 64kbit/s unrestricted data).

P_CALL_APP_PARTY_CATEGORY 5 The category of the calling party

P_CALL_APP_PRESENTATION_ADDRESS 6 The address to be presented to other call parties

P_CALL_APP_GENERIC_INFO 7 Carries unspecified service-service information

P_CALL_APP_ADDITIONAL_ADDRESS 8 Indicates an additional address

9.2.12 TpCallAppInfoSet

Defines a Numbered Set of Data Elements of TpCallAppInfo.

9.2.13 TpCallEndedReport

Defines the Sequence of Data Elements that specify the reason for the call ending.

Sequence Element
Name

Sequence Element
Type

Description

CallLegSessionID TpSessionID The leg that initiated the release of the call.
If the call release was not initiated by the leg, then this value is set to –1.

Cause TpCallReleaseCause The cause of the call ending.

9.2.14 TpCallFault

Defines the cause of the call fault detected.

Name Value Description

P_CALL_FAULT_UNDEFINED 0 Undefined

P_CALL_TIMEOUT_ON_RELEASE 1 This fault occurs when the final report has

been sent to the application, but the application
did not explicitly release or deassign the call

object, within a specified time.

The t imer value is operator specific.

P_CALL_TIMEOUT_ON_INTERRUPT 2 This fault occurs when the application did not

instruct the gateway how to handle the call
within a specified time, after the gateway

reported an event that was requested by the
application in interrupt mode.

The timer value is operator specific.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 61 Release 9

9.2.15 TpCallInfoReport

Defines the Sequence of Data Elements that specify the call information requested. Informat ion that was not

requested is invalid.

Sequence Element
Name

Sequence Element
Type

Description

CallInfoType TpCallInfoType The type of call report.

CallInitiationStartTime TpDateAndTime The time and date when the call, or follow-on call, was
started as a result of a routeReq.

CallConnectedToResourceTime TpDateAndTime The date and time when the call was connected to the
resource.

This data element is only valid when information on user
interaction is reported.

CallConnectedToDestinationTime TpDateAndTime The date and time when the call was connected to the

destination (i.e. when the destination answered the call).
If the destination did not answer, the time is set to an

empty string.
This data element is invalid when information on user

interaction is reported.

CallEndTime TpDateAndTime The date and time when the call or follow-on call or user
interaction was terminated.

Cause TpCallReleaseCause The cause of the termination.

A callInfoReport will be generated at the end of user interaction and at the end of the connection with the associated

address. This means that either the destination related information is present or the resource related informat ion, but not

both.

9.2.16 TpCallReleaseCause

Defines the Sequence of Data Elements that specify the cause of the release of a call.

Sequence Element
Name

Sequence Element
Type

Value TpInt32
Location TpInt32

NOTE: The Value and Location are specified as in ITU-T Recommendation Q.850.

The following example was taken from Q.850 to aid understanding.

Equivalent Call Report Cause Value Set by
Application

Cause Value from
Network

P_CALL_REPORT_BUSY 17 17

P_CALL_REPORT_NO_ANSWER 19 18,19,21

P_CALL_REPORT_DISCONNECT 16 16

P_CALL_REPORT_REDIRECTED 23 23

P_CALL_REPORT_SERVICE_CODE 31 NA

P_CALL_REPORT_NOT_REACHABLE 20 20

P_CALL_REPORT_ROUTING_FAILURE 3 Any other value

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 62 Release 9

9.2.17 TpCallReport

Defines the Sequence of Data Elements that specify the call report and call leg report specific information.

Sequence Element
Name

Sequence Element
Type

MonitorMode TpCallMonitorMode

CallEventTime TpDateAndTime

CallReportType TpCallReportType

AdditionalReportInfo TpCallAdditionalReportInfo

9.2.18 TpCallAdditionalReportInfo

Defines the Tagged Choice of Data Elements that specify additional call report information for certain types

of reports.

 Tag Element Type

 TpCallReportType

Tag Element Value Choice Element Type Choice Element Name

P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY TpCallReleaseCause Busy

P_CALL_REPORT_NO_ANSWER NULL Undefined

P_CALL_REPORT_DISCONNECT TpCallReleaseCause CallDisconnect

P_CALL_REPORT_REDIRECTED TpAddress ForwardAddress

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE TpCallReleaseCause RoutingFailure

P_CALL_REPORT_QUEUED TpString QueueStatus

P_CALL_REPORT_NOT_REACHABLE TpCallReleaseCause NotReachable

9.2.19 TpCallReportRequest

Defines the Sequence of Data Elements that specify the criteria relating to call report requests.

Sequence Element Name Sequence Element Type
MonitorMode TpCallMonitorMode

CallReportType TpCallReportType

AdditionalReportCriteria TpCallAdditionalReportCriteria

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 63 Release 9

9.2.20 TpCallAdditionalReportCriteria

Defines the Tagged Choice of Data Elements that specify specific criteria.

 Tag Element Type

 TpCallReportType

Tag Element
Value

Choice Element
Type

Choice Element
Name

P_CALL_REPORT_UNDEFINED NULL Undefined

P_CALL_REPORT_PROGRESS NULL Undefined

P_CALL_REPORT_ALERTING NULL Undefined

P_CALL_REPORT_ANSWER NULL Undefined

P_CALL_REPORT_BUSY NULL Undefined

P_CALL_REPORT_NO_ANSWER TpDuration NoAnswerDuration

P_CALL_REPORT_DISCONNECT NULL Undefined

P_CALL_REPORT_REDIRECTED NULL Undefined

P_CALL_REPORT_SERVICE_CODE TpCallServiceCode ServiceCode

P_CALL_REPORT_ROUTING_FAILURE NULL Undefined

P_CALL_REPORT_QUEUED NULL Undefined

P_CALL_REPORT_NOT_REACHABLE NULL Undefined

9.2.21 TpCallReportRequestSet

Defines a Numbered Set of Data Elements of TpCallReportRequest.

9.2.22 TpCallReportType

Defines a specific call event report type.

Name Value Description
P_CALL_REPORT_UNDEFINED 0 Undefined.

P_CALL_REPORT_PROGRESS 1 Call routing progress event: an indication from the network that progress has been made in
routing the call to the requested call party. This message may be sent more than once, or
may not be sent at all by the gateway with respect to routing a given call leg to a given

address.

P_CALL_REPORT_ALERTING 2 Call is alerting at the call party.

P_CALL_REPORT_ANSWER 3 Call answered at address.

P_CALL_REPORT_BUSY 4 Called address refused call due to busy.

P_CALL_REPORT_NO_ANSWER 5 No answer at called address.

P_CALL_REPORT_DISCONNECT 6 The media stream of the called party has disconnected. This does not imply that the call has
ended. When the call is ended, the callEnded method is called. This event can occur both

when the called party hangs up, or when the application explicitly releases the leg using
IpCallLeg.release() This cannot occur when the app explicitly releases the call leg and the

call.

P_CALL_REPORT_REDIRECTED 7 Call redirected to new address: an indication from the network that the call has been

redirected to a new address.

P_CALL_REPORT_SERVICE_CODE 8 Mid-call service code received.

P_CALL_REPORT_ROUTING_FAILURE 9 Call routing failed - re-routing is possible.

P_CALL_REPORT_QUEUED 10 The call is being held in a queue. This event may be sent more than once during the routing
of a call.

P_CALL_REPORT_NOT_REACHABLE 11 The called address is not reachable; e.g., the phone has been switched off or the phone is
outside the coverage area of the network.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 64 Release 9

9.2.23 TpCallTreatment

Defines the Sequence of Data Elements that specify the treatment for calls that will be handled only by the

network (for example, call which are not admitted by the call load control mechanis m).

Sequence Element
Name

Sequence Element
Type

CallTreatmentType TpCallTreatmentType

ReleaseCause TpCallReleaseCause

AdditionalTreatmentInfo TpCallAdditionalTreatmentInfo

9.2.24 TpCallEventCriteriaResultSet

Defines a set of TpCallEventCriteriaResult.

9.2.25 TpCallEventCriteriaResult

Defines a sequence of data elements that specify a requested call event notification criteria with the associated

assignmentID.

Sequence Element
Name

Sequence Element
Type

Sequence Element
Description

CallEventCriteria TpCallEventCriteria The event criteria that were specified by the application.

AssignmentID TpInt32 The associated assignmentID. This can be used to disable the notification.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 65 Release 9

Annex A (normative):
OMG IDL Description of Generic Call Control SCF

The OMG IDL representation of this specification is contained in text files gcc_data.idl and gcc_interfaces.idl

(contained in archive 291980402V800IDL.ZIP) which accompany the present document.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 66 Release 9

Annex B (informative):
W3C WSDL Description of Generic Call Control SCF

The W3C WSDL representation of this specification is contained in zip file 291980402V800WSDL.ZIP, which

accompanies the present document.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 67 Release 9

Annex C (informative):
Java™ API Description of the Call Control SCFs

The Java™ API realisation of this specification is produced in accordance with the Java™ Realisation rules defined in

Part 1 of this specificat ion series. These rules aim to deliver for Java™, a developer API, provided as a realisation,

supporting a Java™ API that represents the UML specifications. The rules support the production of both J2SE™ and

J2EE™ versions of the API from the common UML specifications.

The J2SE™ representation of this specification is provided as Java™ Code, contained in archive

291980402V800J2SE.ZIP that accompanies the present document.

The J2EE™ representation of this specification is provided as Java™ Code, contained in archive

291980402V800J2EE.ZIP that accompanies the present document.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 68 Release 9

Annex D (informative):
Description of Call Control Sub-part 2: Generic call control
SCF for 3GPP2 cdma2000 networks

This annex is intended to define the OSA API Stage 3 interface defin itions and it provides the complete OSA

specifications. It is an extension of OSA API specifications capabilit ies to enable operation in cdma2000 systems

environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2 architecture defined in:

[1] 3GPP2 P.S0001-B: "Wireless IP Network Standard", Version 1.0, September 2000.

[2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems",

Version 2.0, May 14, 2002.

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain", December 2003.

These requirements are expressed as additions to and/or exclusions from the 3GPP Release 8 specification.

The informat ion given here is to be used by developers in 3GPP2 cdma2000 network arch itecture to interpret the 3GPP

OSA specifications.

D.1 General Exceptions

The terms 3GPP and UMTS are not applicable for the cdma2000 family of standards. Nevertheless these terms are used

(3GPP TR 21.905) mostly in the broader sense of "3G Wireless System". If not stated otherwise there are no additions

or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope

There are no additions or exclusions.

D.2.2 Clause 2: References

Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 syst ems.

D.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

D.2.4 Clause 4: Generic Call Control Service Sequence Diagrams

There are no additions or exclusions. Nevertheless, CAMEL and CAP mappings are not applicable for cdma 2000

systems.

D.2.5 Clause 5: Class Diagrams

There are no additions or exclusions.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 69 Release 9

D.2.6 Clause 6: Generic Call Control Service Interface Classes

There are no additions or exclusions.

D.2.7 Clause 7: Generic Call Control Service State Transition

Diagrams

There are no additions or exclusions.

D.2.8 Clause 8: Generic Call Control Service Properties

There are no additions or exclusions. Nevertheless, for cdma2000 systems the CAMEL data types and service

properties are not applicable.

D.2.9 Clause 9: Generic Call Control Data Definitions

There are no additions or exclusions.

D.2.10 Annex A (normative): OMG IDL Description of Generic Call
Control SCF

There are no additions or exclusions.

D.2.11 Annex B (informative): W3C WSDL Description of Generic

Call Control SCF

There are no additions or exclusions.

D.2.12 Annex C (informative): Java™ API Description of the Call
Control SCFs

There are no additions or exclusions.

3GPP

3GPP TS 29.198-4-2 V9.0.0 (2009-12) 70 Release 9

Annex E (informative):
Change history

Change history

Date TSG # TSG Doc. CR Rev Subject/Comment Old New

Mar 2007 CT-35 CP-070047 0031 -- Update document for conversion to Release 7 6.4.1 7.0.0

May 2008 CT-40 CP-080254 0032 -- Transfer of missing items from ETSI TISPAN OSA for GCC Routing to
Destination(s)

7.0.0 8.0.0

2009-12 - - - - Update to Rel-9 version (MCC) 8.0.0 9.0.0

	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Generic Call Control Service Sequence Diagrams
	4.1 Additional Callbacks
	4.2 Alarm Call
	4.3 Application Initiated Call
	4.4 Call Barring 1
	4.5 Number Translation 1
	4.6 Number Translation 1 (with callbacks)
	4.7 Number Translation 2
	4.8 Number Translation 3
	4.9 Number Translation 4
	4.10 Number Translation 5
	4.11 Prepaid
	4.12 Pre-Paid with Advice of Charge (AoC)

	5 Class Diagrams
	6 Generic Call Control Service Interface Classes
	6.1 Interface Class IpCallControlManager
	6.1.1 Method createCall()
	6.1.2 Method enableCallNotification()
	6.1.3 Method disableCallNotification()
	6.1.4 Method setCallLoadControl()
	6.1.5 Method changeCallNotification()
	6.1.6 Method getCriteria()

	6.2 Interface Class IpAppCallControlManager
	6.2.1 Method callAborted()
	6.2.2 Method callEventNotify()
	6.2.3 Method callNotificationInterrupted()
	6.2.4 Method callNotificationContinued()
	6.2.5 Method callOverloadEncountered()
	6.2.6 Method callOverloadCeased()
	6.2.7 Method abortMultipleCalls()

	6.3 Interface Class IpCall
	6.3.1 Method routeReq()
	6.3.2 Method release()
	6.3.3 Method deassignCall()
	6.3.4 Method getCallInfoReq()
	6.3.5 Method setCallChargePlan()
	6.3.6 Method setAdviceOfCharge()
	6.3.7 Method getMoreDialledDigitsReq()
	6.3.8 Method superviseCallReq()
	6.3.9 Method continueProcessing()

	6.4 Interface Class IpAppCall
	6.4.1 Method routeRes()
	6.4.2 Method routeErr()
	6.4.3 Method getCallInfoRes()
	6.4.4 Method getCallInfoErr()
	6.4.5 Method superviseCallRes()
	6.4.6 Method superviseCallErr()
	6.4.7 Method callFaultDetected()
	6.4.8 Method getMoreDialledDigitsRes()
	6.4.9 Method getMoreDialledDigitsErr()
	6.4.10 Method callEnded()

	7 Generic Call Control Service State Transition Diagrams
	7.1 State Transition Diagrams for IpCallControlManager
	7.1.1 Active State
	7.1.2 Notification terminated State

	7.2 State Transition Diagrams for IpCall
	7.2.1 Network Released State
	7.2.2 Finished State
	7.2.3 Application Released State
	7.2.4 Active State
	7.2.5 1 Party in Call State
	7.2.6 2 Parties in Call State
	7.2.7 No Parties State
	7.2.8 Routing to Destination(s) State

	8 Generic Call Control Service Properties
	8.1 List of Service Properties
	8.2 Service Property values for the CAMEL Service Environment.

	9 Generic Call Control Data Definitions
	This shows the name of the data type.
	9.1 Generic Call Control Event Notification Data Definitions
	9.1.1 TpCallEventName
	9.1.2 TpCallNotificationType
	9.1.3 TpCallEventCriteria
	9.1.4 TpCallEventInfo

	9.2 Generic Call Control Data Definitions
	9.2.1 IpCall
	9.2.2 IpCallRef
	9.2.3 IpAppCall
	9.2.4 IpAppCallRef
	9.2.5 TpCallIdentifier
	9.2.6 IpAppCallControlManager
	9.2.7 IpAppCallControlManagerRef
	9.2.8 IpCallControlManager
	9.2.9 IpCallControlManagerRef
	9.2.10 TpCallAppInfo
	9.2.11 TpCallAppInfoType
	9.2.12 TpCallAppInfoSet
	9.2.13 TpCallEndedReport
	9.2.14 TpCallFault
	9.2.15 TpCallInfoReport
	9.2.16 TpCallReleaseCause
	9.2.17 TpCallReport
	9.2.18 TpCallAdditionalReportInfo
	9.2.19 TpCallReportRequest
	9.2.20 TpCallAdditionalReportCriteria
	9.2.21 TpCallReportRequestSet
	9.2.22 TpCallReportType
	9.2.23 TpCallTreatment
	9.2.24 TpCallEventCriteriaResultSet
	9.2.25 TpCallEventCriteriaResult
	Annex A (normative): OMG IDL Description of Generic Call Control SCF
	Annex B (informative): W3C WSDL Description of Generic Call Control SCF
	Annex C (informative): Java™ API Description of the Call Control SCFs
	Annex D (informative): Description of Call Control Sub-part 2: Generic call control SCF for 3GPP2 cdma2000 networks

	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: Generic Call Control Service Sequence Diagrams
	D.2.5 Clause 5: Class Diagrams
	D.2.6 Clause 6: Generic Call Control Service Interface Classes
	D.2.7 Clause 7: Generic Call Control Service State Transition Diagrams
	D.2.8 Clause 8: Generic Call Control Service Properties
	D.2.9 Clause 9: Generic Call Control Data Definitions
	D.2.10 Annex A (normative): OMG IDL Description of Generic Call Control SCF
	D.2.11 Annex B (informative): W3C WSDL Description of Generic Call Control SCF
	D.2.12 Annex C (informative): Java™ API Description of the Call Control SCFs
	Annex E (informative): Change history

