BGPP TS 29198-3 VV9.0.0 (2009-12)

Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;
Open Service Access (OSA);

Application Programming Interface (API);
Part 3. Framework

(Release 9)

™M

S

GLOBAL SYSTEM FOR S
MOBILE COMMUNICATIONS oo

The present document has been developed within the 3™ Generation Partnership Project (3GPP ') and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partnersand shall not be implemented.

This Specification isprovided for future development work within 3GPP only. The Organizational Partners accept no liability for any use ofthis Specification.
Specifications and reports for implementation of the 3GPP ™ system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Release 9 2 3GPP TS 29.198-3 V9.0.0 (2009-12)

Keywords
UMTS, API, OSA

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 493 65 47 16

Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

©2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.

3GPP

Release 9 3 3GPP TS 29.198-3 V9.0.0 (2009-12)

Contents

0] €= 1Yo (o TP UP RS OPPRPP 13
L0018 To3 § o] o PP PR TUPPPPRPPPPRP 13
1 RS0t 0] o= PRSP EPTTRR 15
2 L C (=] (=] o PO UPPRRSPPRRR 15
3 Definitions, symbols and abbreViationS.............oooiuuirio it 16
3.1) o 3T 16
3.2 N 0] 23V LT P STSTTRR 16
4 OVErvieW Of the FIAMBWOIKvvveiiiiiic ettt e e e et e et e e e s e ennaee s 16
5 The Base Interface SPeCIfiCatiONcviiiiiiiiiiiiii e 17
51 Interface SPECITICAtION FOIMALcccoieericice et s bbbt n st n s s bbb s s 17
511 INTEITACE CIASSeeeeeei bbb bbb bbb bbbt
5.1.2 Method descriptions

5.1.3 Parameter AESCIIPTIONSvcueuricieissice ettt s et s et ns et s s st et s e s 18
514 SEALE IMIOTEN ... s bbb bbb 18
5.2 Base Interface

521 INterface Class IPINTEITACE ...ttt es e st 18
5.3 SEIVICE INTEITACES ...vvviiieeeier ettt ettt R et R bbb ae et ns et 18
531 Overview

5.4 GENEIIC SEIVICE INTEITACE ...t ettt b e
54.1 Interface Class IpService

5411 Method setCallback()

5412 Method setCalloaCkWithSESSIONTD() ..ot 19
6 Framework ACCESS SESSION APciiiiiiieiiiiie et e sttt e e et e e e st e e e e e sbaaeeenrreeeeeeans
6.1 SEOUENCE DIAGTAIIScevieeteeeieeer ettt sese et s st
6.1.1 Trust and Security Management Sequence Diagramsc.coeevenes

6.1.1.1 INitial ACCESS ..o

6.1.1.2 Framework Terminates Access

6.1.1.3 Application Terminates Access

6.1.1.4 Non-API level Authentication............

6.1.1.5 API Level Authentication....................

6.2 Class Diagramsccccccevveeeinenseeeseeeesenens

6.3 INterface ClaSSes.......ciriricirieree e

6.3.1 Trust and Security Management Interface Classes......

6.3.1.1 Interface Class IpClientAPlLevelAuthentication...

6.3.1.1.1 Method abortAuthentication()ccccceeeevevernnnen.

6.3.1.1.2 Method authenticationSucceeded().....c.cccvuevnne.

6.3.1.1.3 Method challenge().......cocoevvereerenrsieeereeeee

6.3.1.2 Interface Class IpClientAccess

6.3.1.2.1 Method terminateAccess()

6.3.1.3 Interface Class IpInitial........c.cccocoevviiiiceniicceinenns

6.3.1.3.1 Method initiateAuthenticationWith\Version()c.cceeeeverennas

6.3.1.4 Interface Class IpAuthentication..........ccccceveevirenae

6.3.1.4.1 Method reqUEStACCESS() .uvrrrrrererrreereeeererereeeeneens

6.3.1.5 Interface Class IpAPILevelAuthentication..............

6.3.1.5.1 Method abortAuthentication()cccccevrerveerrnnnn.

6.3.1.5.2 Method authenticationSucceeded().........c.cconeee.

6.3.1.5.3 Method selectAuthenticationMechanism()

6.3.1.5.4 Method challenge().....ccoveeervevernernnerniereesersnns

6.3.1.6 Interface Class IpACCESS.........ccvevenee.

6.3.1.6.1 Method obtainInterface()

6.3.1.6.2 Method obtainInterfaceWithCallback()

6.3.1.6.3 Method listInterfaces().......ccovvvervrerrcrnncrnenns

6.3.1.6.4 Method selectSigniINGAIGOITENM() ..o

3GPP

Release 9

4 3GPP TS 29.198-3 vV9.0.0 (2009-12)

6.3.1.6.5 Method tEMMINALEACCESS() cvvvreereerriireeriresisreess sttt ee et et ss e s s s e s b s s e s st s s n st ess e seseseas
6.3.1.6.6 Method relinquishinterface()

6.4 State Transition DIagramS.......cccccereerrniieeenessss s ssseseseses

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitialccocoevvvvvvcccnrnnicnnnn,

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

6.4.1.2.1 IAIE SEALE ...

6.4.1.2.2 Authenticating Framework State..........cccocvveveneincnienns

6.4.1.2.3 Framework Authenticated State...........ccccecvrenneee

6.4.1.2.4 Authenticating Client Stateccoeovvencrnennn

6.4.1.2.5 Client Authenticated State.............

6.4.1.2.6 Idle SEAte ...

6.4.1.2.7 Authenticating Framework State

6.4.1.2.8 Framework Authenticated State...........cccoeovnennee

6.4.1.2.9 Authenticating Client State

6.4.1.2.10 Client Authenticated State.........cccocovvevnerneinenes

6.4.1.3 State Transition Diagrams for IpAccess

6.4.1.3.1 ALCEIVE SEALE....e. ettt bbb bbb bbb E bbbt
7 Framework-to- APPHCALION AP L. ..o e e anraee e e e
7.1 SEOUBNCE DIAGTAIMSvueiceeteereeieteire ettt e e s et b se b b s s e e s b b £se st £t s b e b e £ £ R b b £ ee R e b e R b b e s st e s e st es bbb
7.11 Event Notification SEQUENCE DIAGIAIMScccceuririiieiririeieieisese ettt ae bbbt
7111 Enable Event Notificationccovnennncncnnn.

7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification fromapplicationcccccevvvveinccceissesie s 45
7.1.2.2 Load Management: Framework queries load statistics

7.1.2.3 Load Management: Framework callback registration and Application load controlccccccceeevirnneeen. 47
7.1.24 Load Management: Application reports current load CONditionccocvvecnveiccccsscsee s
7.1.2.5 Load Management: Application queries load statistiCs............couevvvvrreveinrerinenas

7.1.2.6 Load Management: Application callback registration and load control

7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the applicationc.cccceevrnnnee. 51
7.1.2.8 Fault Management: Framework detects a Service failure

7.1.2.9 Fault Management: Application requests a Framework activity test.......c.cccoeeervereeinsvireecsneeeeseeens 53
7.1.3 Service Discovery Sequence Diagrams

7.1.3.1 SEIVICE DISCOVEINY ...vviicieirirecieinrisrses st sssnesesesesen

7.14 Service Agreement Management SEQUENCE DIAGIAIMSc..ccieeireriirmiinsesei e 56
7.1.4.1 Service Selection

7.2 Class Diagramsccovereeerneeernerseeeenneeennesseens

7.3 INEEITACE ClASSES ... vttt ettt e E b e bbbt e et ene b bt nnnas
7.3.1 Service DiISCOVErY INEITACE CIASSES ...
7.3.11 Interface Class IpService Discovery

7.3.1.11 MELNOd lISTSEIVICETYPES () ..vuvueereeerieerrieeieise ittt
7.3.1.1.2 Method desCriDESENVICETYPE() vttt
7.3.1.1.3 Method disCOVErService()ooveernernerernenns

7.3.1.1.4 Method listSUDSCHINEASENVICES (). ...vverieerieeiriiri et
7.3.2 Service Agreement Management INterface CIASSES ...t
7.3.2.1 Interface Class IpAppServiceAgreementManagement

7.3.2.1.1 Method SIgNSErVICEAGIEEMENT() c...vuiveveirieieieiieeiete ettt bbb b bbb
7.3.21.2 Method terminateServiCEAGIEEIMENT()oceurreeereeiri ettt ettt
7.3.2.2 Interface Class IpServiceAgree mentManagement

7.3.2.2.1 Method SIgNSErVICEAGIEEMENT() c..vvriveveiricicieiieeeete et b bbb b st n s
7.3.2.2.2 Method terminateServiCE AGrEEIMENT() ..o.iviceieeceriire ettt a s
7.3.2.2.3 Method selectService()

7.3.2.2.4 Method initiateSignSerViCEAGIEEMENT() .uvvueiieecreiriiree st s e
7.3.3 Integrity Management INTErfACE CIASSES........ccvicrricicisre sttt b st b s
7.3.3.1 Interface Class IpAppFaultManager

7.3.3.1.1 MEthod ACLIVIEY TESTRES() .evevereerreiriircertsisiseetes sttt ss ettt s e s a bt s s sn st s s seseseas
7.3.3.1.2 Method apPACEHVIEY TESTREF() vvevevrvererririrreieireseereistsise sttt s et s st snns
7.3.3.1.3 Method <<deprecated>> fwFaultReportind()

7.3.3.14 Method <<deprecated>> fWFaAURRECOVEIYING()cooveririirieiricrcr s
7.3.3.1.5 Method <<deprecated>> fwUnavailab leInd() ...
7.3.3.1.6 MELNOT ACTIVIEY TESTEIT() ...vuvevieciriecrrieei it bbb

3GPP

Release 9

7.3.3.1.7
7.3.3.1.8
7.3.3.1.9
7.3.3.1.10
7.3.3.111
7.3.3.1.12
7.3.3.2
7.3.3.2.1
7.3.3.2.2
7.3.3.2.3
7.3.3.2.4
7.3.3.2.5
7.3.3.2.6
7.3.3.2.7
7.3.3.2.8
7.3.3.3
7.3.3.31
7.3.3.3.2
7.3.3.3.3
7.3.3.4
7.3.34.1
7.3.3.5
7.3.35.1
7.3.3.5.2
7.3.3.5.3
7.3.3.6
7.3.3.6.1
7.3.3.7
7.3.3.7.1
7.3.3.7.2
7.3.3.7.3
7.3.3.7.4
7.3.3.7.5
7.3.3.7.6
7.3.3.7.7
7.3.3.7.8
7.3.3.8
7.3.3.8.1
7.3.3.8.2
7.3.3.8.3
7.3.3.8.4
7.3.3.8.5
7.3.3.8.6
7.3.3.8.7
7.3.3.8.8
7.3.3.9
7.3.39.1
7.3.3.10
7.3.3.10.1
7.3.4
7.3.4.1
7.34.1.1
7.3.4.1.2
7.3.4.2
7.3.4.2.1
7.3.4.2.2
7.4

7.4.1
7.4.1.1
74111
7.4.2
7.4.3

Service Agreement Management State Transition Diagrams
Integrity Management State TranSition DIAgIaMSccoiureirrieiriieeieeee e

5 3GPP TS 29.198-3 V9.0.0 (2009-12)

Method appUnavailabIEING()cevvvvrierisicerreece s
Method svcAvailStatusind()
Method generateFaultStatisticsRecordRes()
Method generateFaultStatisticsRecordErr()
Method generateFaultStatisticsRecordReq()
Method fwAvailStatusIind()c.ccevervrerrirernenen
Interface Class IpFaultManager
Method activity TestReq()..............
Method appActivity TestRes()
Method svcUnavailableInd()
Method appActivity TestErr()
Method appAvailStatusInd().........ccccoevverrernenen
Method generateFaultStatisticsRecordReq()
Method generateFaultStatisticsRecordRes ()
Method generateFaultStatisticsRecordErr()
Interface Class IpAppHeartBeatMgmt.....................
Method enableAppHeartBeat()cccoocveeeeunene.
Method disableAppHeartBeat()cccccoeevvevnne.
Method changelnterval()cccccoovvveerrecrerennen,
Interface Class IpAppHeartBeat
Method PUISE()ccveverriceerece e
Interface Class IpHeartBeatMgmtcccccoeeeeveneae
Method enableHeartBeat()
Method disableHeartBeat()
Method changelnterval()
Interface Class IpHeartBeat
Method PUISE()vveeerrrrcerrecer e
Interface Class IpAPPLOAdMaNAQEr......ccovverreereeniresreeenereeenens
Method loadLevelNotification()cccvvervevrereennsereenireenns
Method resumeNotification()
Method suspendNotification()
Method createLoadLevelNotification()
Method destroyLoadLevelNotification()
Method queryAppLoadStatsReq()cccoeeeevrene.
Method queryLoadStatsRes()
Method queryLoadStatsErr()
Interface Class IpLoadManager
Method reportLoad()cccoveeerrerernerrenernerersicrnenns
Method createLoadLevelNotification()
Method destroyLoadLevelNotification()
Method resumeNotification()
Method suspendNotification()
Method queryLoadStatsReq()
Method queryAppLoadStatsRes().....c.cccouevevnnne.
Method queryAppLoadStatsErr()......cccevvevernne.
Interface Class IDOAMcccooevviiecesireceeeineeas
Method systemDateTime QUery().....cccoeveeverrnne.
Interface Class IDAPPOAMccoovvveevineicenisiienns
Method systemDateTime Query()

Event Notification Interface CIasSes.........cccovvvvrvevenenne.

Interface Class IpAppEventNotification...................
Method reportNotification()c.cccoveeerrereerrrinn.
Method notificationTerminated()........cccourvrrrene.

Interface Class IpEventNotificationccccoevnue.
Method createNotification()..........cccvevvrerrerernenen
Method destroyNotification()

State Transition Diagrams........cccvererneneeneneeneeeeenns
Service Discovery State Transition Diagramscc.cccoenenieneeenn.

State Transition Diagrams for IpServiceDiSCOVery ...
ACHIVE SEALE......iieceeeeecc e

3GPP

Release 9 6 3GPP TS 29.198-3 V9.0.0 (2009-12)

7.4.3.1 State Transition Diagrams for Ip LOAAMAaNAGET.........cccvviieirrinieeer s

7.4.3.1.1 Idle State ..o

7.4.3.1.2 Notification Suspended State

7.4.3.1.3 ACHIVE SEALE....oicceeecce e

7.4.3.2 State Transition Diagrams for LoadManagerinternal...................

7.4.3.2.1 NOrmal [0ad Stateccooveerreeerrsee e

7.4.3.2.2 Application Overload State

7.4.3.2.3 Internal overload Statecccoovovvvvieerrerenenn,

7.4.3.2.4 Internal and Application Overload State............

7.4.3.3 State Transition Diagrams for IDOAMcccee....

7.4.3.3.1 ACHIVE SEAte....c.ooceeeeeeer e

7.4.3.4 State Transition Diagrams for IpFaultManager

7.4.3.4.1 Framework Active Statec.cooeevvnecninninenas

7.4.3.4.2 Framework Faulty State.................

7.4.3.4.3 Framework Activity Test State

7.4.3.4.4 Service Activity Test State........cccoeovveveeriecnnnnn,

7.4.4 Event Notification State Transition Diagramsccceveeeoereneneennns

7.4.4.1 State Transition Diagrams for Ip EventNOtIfiCation ...
8 Framework-t0-SEIVICE AP ... ittt et e e e e e s e e e e tb e e e e nnbaeeeeans
8.1 SEOUBNCE DIAGTAIMSvueiceeteereeieteire ettt e e s et b se b b s s e e s b b £se st £t s b e b e £ £ R b b £ ee R e b e R b b e s st e s e st es bbb
8.1.1 Service DiISCOVEry SEQUENCE DIAGIAITSc.cuiiiuiururiieeueirereseeets e sessisesesessssssesessbs s sssessbessesessb bt et besessesesssasssseses
8.1.2 Service Registration Sequence Diagrams

8.1.2.1 NEW SCF SUD TYPE REGISIIALIONcucveiiicciie ettt sttt bbb tee
8.1.2.2 NEW SCF REGISTIALION .ouviiiiii ettt bbb bbb bbb bbb bbb bbbt bbbt s rernnas
8.1.3 Service Instance Lifecycle Manager Sequence Diagrams

8.1.3.1 SIGN SEIVICE AQIBEIMENT ...ttt bbbt et s Rt s e bbb s st et s st et ns e st et e s
8.1.4 Integrity Management SEQUENCE DIAGIAMScccccuerieecreiniiseie e se st ss bbbt s s sesesnns
8.1.4.1 Load Management: Service callback registration and load controlcccccoeevveceirvccceisceceesees
8.1.4.2 Load Management: Framework callback registration and service load controlccccccovvvvevrvccnnnn,
8.1.4.3 Load Management: Client and Service Load BalanCing...........ccccevvieevirieenninseeseseesssssssesessssesesenns
8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service

8.1.4.5 Fault Management: Service requests Framework actiVity teStcccovvvvevneiensnees s
8.1.4.6 Fault Management: Service requests Application activity teSt.......ccccvveivrnireiensneee e
8.1.4.7 Fault Management: Application requests Service activity test

8.1.4.8 Fault Management: Application detects service is unavailable ..o
8.1.5 Event Notification Sequence Diagrams

8.2 Class DiIagramscccrrrrerriernerserees s

8.3 INEEITACE ClASSES.....vueiieeeeir ettt e s bbb e e Rttt et s e st e s
8.3.1 Service Registration INErface CIASSESocrierieieie bbb
8311 Interface Class IpFwService Registration

83111 MELNOU FEGISTEISEIVICE() ..vueereeririerierrier et
8.3.1.1.2 Method announceServiCe AVaIIADTIIEY ()covvereeeriirci e
8.3.1.1.3 Method unregisterService()

83114 Method deSCrDESENVICE() ...t
8.3.1.15 Method UNANNOUNCESEIVICE() ..v.vierirrierrierrier e
8.3.1.1.6 Method registerServiceSubType()

8.3.2 Service Instance Lifecycle Manager INterface CIaSSEScccviieniceiie et
8.3.21 Interface Class IpService InstanceLifeCyCIEMaNAger ..o
8.3.2.11 Method createServiceManager()

8.3.2.1.2 Method destroyServiCEMaNAGEI().......cceuirrreuerrieeereiit sttt s s nrenas
8.3.3 Service DiISCOVErY INTErTACE ClaSSES ...ttt r ettt
8.3.3.1 Interface Class IpFwService Discovery

8.3.3.1.1 Method lSTSEIVICETYPES() cvovereeererriircieirisieieisiss sttt ssse e ss st s st ss s s st et en b s s st e
8.3.3.1.2 Method desSCrDESENVICETYPE() «ivevvvrerrreiriisieieiseeietsis ettt ss s sae s s s nrenas
8.3.3.1.3 Method discoverService()

8.3.3.1.4 Method liStREQISTErEUSENVICES () ..vvvrerreririririririieieisis sttt snsns s e nrenas
8.3.4 Integrity Management INterface CIASSES ...t
8.3.4.1 Interface Class IpFwFaultManager

8.3.4.1.1 Method aCtIVIEY TESTRET (). .. vvveereeerierirerrieir et
8.3.4.1.2 Method SVCACHIVILY TESTRES () ..vevvrrererririieieirisesereesisisisssessessssse s sss s sassssssssa s s sasesessssssssssesssnsessns
8.3.4.1.3 Method appUnavailabIeINd() ..o

3GPP

Release 9

8.3.4.1.4
8.3.4.1.5
8.3.4.1.6
8.3.4.1.7
8.3.4.1.8
8.3.4.2
8.3.4.2.1
8.3.4.2.2
8.3.4.2.3
8.3.4.2.4
8.3.4.2.5
8.3.4.2.6
8.3.4.2.7
8.3.4.2.8
8.3.4.2.9
8.3.4.2.10
8.3.4.2.11
8.3.4.2.12
8.3.4.3
8.3.4.3.1
8.3.4.3.2
8.3.4.3.3
8.3.4.4
8.3.4.4.1
8.3.4.5
8.3.4.5.1
8.3.4.5.2
8.3.4.5.3
8.3.4.6
8.3.4.6.1
8.3.4.7
8.3.4.7.1
8.3.4.7.2
8.3.4.7.3
8.3.4.7.4
8.3.4.7.5
8.3.4.7.6
8.3.4.7.7
8.3.4.7.8
8.3.4.8
8.3.4.8.1
8.3.4.8.2
8.3.4.8.3
8.3.4.8.4
8.3.4.8.5
8.3.4.8.6
8.3.4.8.7
8.3.4.8.8
8.3.4.9
8.3.4.9.1
8.3.4.10
8.3.4.10.1
8.3.5
8.3.5.1
8.3.5.11
8.3.5.1.2
8.3.5.2
8.3.5.2.1
8.3.5.2.2
8.4
8.4.1
8411

7 3GPP TS 29.198-3 vV9.0.0 (2009-12)

Method SVCACTIVIEY TESEEIT() vuvveveviieceeisisseisisesesersis s ssae e ssss s ss s sssnsessns
Method svcAvailStatusind()
Method generateFaultStatisticsRecordReq().....
Method generateFaultStatisticsRecordRes().....
Method generateFaultStatisticsRecordErr()

Interface Class IpSvcFaultManager
Method activity TEStRES ()ccveverererrerrerricrrenes
Method svCACtiVity TEStREQ() ..vvvverrererrircrrinens
Method <<deprecated>> fwFaultReportind()
Method <<deprecated>> fwFaultRecoveryInd().......c..cconueuc.
Method <<deprecated>> fwUnavailablelnd()
Method svcUnavailable Ind()
Method activity TeStErr()
Method appAvailStatusindy()
Method generateFaultStatisticsRecordRes()
Method generateFaultStatisticsRecordErr()
Method generateFaultStatisticsRecordReq().....
Method fwAvailStatusInd()c.cccovveerrvecrernnnen,

Interface Class IpFwHeartBeatMgnt.........cccccevvneeee
Method enableHeartBeat()

Method disableHeartBeat()
Method changelnterval()

Interface Class IpFwHeartBeat...........

Method PUISE()vveevrrrecerrecer e

Interface Class IpSvcHeartBeatMgmt..........cccooe..e.
Method enableSvcHeartBeat()ccccovvvrverrnnne.
Method disableSvcHeartBeat()
Method changelnterval()

Interface Class IpSvcHeartBeat..........

Method PuUISE() ..o

Interface Class IpFwLoadManager.........cc.cocovvernenee.
Method reportLoad()
Method createLoadLevelNotification()
Method destroyLoadLevelNotification()
Method suspendNotification()
Method resumeNotification()
Method queryLoadStatsReq()
Method querySvcLoadStatsRes().....cccoveeeeurene.

Method querySvcLoadStatSErr()......ccooveeurunene.

Interface Class IpSvcLoadManager.......cooocceveccrernereeeseseenenns
Method loadLevelNotification()cccceveveeevirccenesenceeieenas
Method suspendNotification()
Method resumeNotification()
Method createLoadLevelNotification()
Method destroyLoadLevelNotification()
Method querySvcLoadStatsReq().....cccovvevernne.
Method queryLoadStatsRes()
Method queryLoadStatsErr()

Interface Class IpFWOAMccoovvvevninnceeininnns
Method systemDateTime QUEry()ccvveererrnnen.

Interface Class IpSVCOAMccovvvievvineiennirninnns
Method systemDateTime Query()

Event Notification Interface CIasSes........ccovuvniivnirnenes

Interface Class IpFwEventNotification....................
Method createNotification()..........cccvevvrerrerernenen
Method destroyNotification()

Interface Class IpSvcEventNotification...................
Method reportNotification()..........cccvevvrerrecrnenee
Method notificationTerminated()...........coorerneeee

State Transition Diagrams.......c.cccvevernernierneneeneenneeenns
Service Registration State Transition Diagrams
State Transition Diagrams for IpFwServiceRegistration

3GPP

Release 9 8 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.4.1.1.1 ST O o Ty (=] (0 IR - L T
8.4.11.2 SCF Announced State

8.4.2 Service Instance Lifecycle Manager State Transition Diagrams

8.4.3 Service Discovery State Transition Diagramscc.cccoenenienneenn.

8.4.4 Integrity Management State Transition Diagrams..........cccceeeeevirenneas

8.4.4.1 State Transition Diagrams for IpFwLoadManager

8.4.4.1.1 IAIE SEALE ...

8.4.4.1.2 Notification Suspended State

8.4.4.1.3 ACHIVE SEALE......iceeeeeeceer e

8.4.4.2 State Transition Diagrams for IpFwFaultManager

8.4.4.2.1 Framework Active State.................

8.4.4.2.2 Framework Activity Test State

8.4.4.2.3 Application Activity Test State........cccoveeerurenen.
8.4.4.2.4 Framework Faulty State

8.4.5 Event Notification State TranSition DIAGIAIMSccoerrirurrriieieieiririeieesesessie et b ettt seseseeas

8a Framework-to-Enterprise OPerator APoiiuiiieiiiiiie ittt e e enneeee e e
8a.1 SEOUEINCE DIAGIAITISvuviietiaereses s nes s seses s sese sttt s bbb bbbttt
8a.1.1 Event Notification SEQUENCE DIAGIAIMSccieeuieeriririrreseie i
8a.1.2 Service Subscription Sequence Diagrams...........ccoveee...

8a.1.2.1 Service Discovery and Subscription Scenario

8a.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram 152
8a.2 L0 LT BT Vo =Y SO RTRSRRN
8a.3 INTEITACE ClASSES ... eiieiieeiriee ettt bbb b bbb bbbttt
8a.3.1 Event NOtIfication INTErfACE CIASSES.......ci ittt bbb
8a.3.1.1 Interface Class IpClientEventNotification

8a.3.1.1.1 Method repOrtNOLIfICAtION() ...vcereiriicieiriree s
8a.3.1.1.2 Method notificationTermMINAted()coceriieeeieece e erenas
8a.3.1.2 Interface Class IpEventNotification

8a.3.1.2.1 Method createNOLIfICAtION() ...vverevriiciriririee st b st
8a.3.1.2.2 Method destroyNOLIFICALION()ccvvvicieiriicere et
8a.3.2 Service Subscription Interface Classes

8a.3.2.1 Interface Class IpClientAppManagement

8a.3.2.1.1 Method CreateCHENTAPD() . eovrererrrrriirrieirirreieieise e eest e sessae e sese e assssss s ss et se s s n st ssnsesesesnssnsessns

8a.3.2.1.2 Method modifyClientApp()
8a.3.2.1.3 Method deleteCHIENTAPP(). . vttt
8a.3.2.1.4 e Lo o =T 1 (= IS N T | PPN
8a.3.2.1.5 Method modifySA ()

8a.3.2.1.6 MELNOU TEIBLESAG() ...vvueereereeerriee sttt
8a.3.2.1.7 Method adAdSAGMEMDETS()euverrirrierrierrier et
8a.3.2.1.8 Method re moveSA GMembers()

8a.3.2.1.9 Method requestCONTIICTINTO()vvvrieicrcc e
8a.3.2.2 Interface Class IpCHENtAPPINTOQUENY ...
8a.3.2.2.1 Method describeClientApp()

8a.3.2.2.2 Method HSTCHENTADPPS() .veveereeerirrirerrier et
8a.3.2.2.3 MEthOd dESCHDESAG() ...ceveerieeieiirerrc e
8a.3.2.2.4 Method liStSAGS() ...cvvveeeeerereeenne

8a.3.2.2.5 Method listSA GMembers()

8a.3.2.2.6 Method listClientAPPMEMDErSHIP() ..ot
8a.3.2.3 Interface Class IpServiceProfileManagement

8a.3.2.3.1 Method CreateSErVICEPTOTIHIE() . ..cvi i
8a.3.2.3.2 Method modifyServiCePrOTiIE() ..ot
8a.3.2.3.3 Method deleteServiceProfile()

8a.3.2.3.4 = T I T To T PPN
8a.3.2.3.5 Y= LT I LT] o TR P RN
8a.3.2.3.6 Method requestConflictInfo()

8a.3.2.4 Interface Class IpServiceProfile INFOQUENY ...
8a.3.2.4.1 Method liIStSErVICEPIOTIIES () ..vveveiriicieirirrseri sttt
8a.3.2.4.2 Method describeServiceProfile()

8a.3.2.4.3 Method listAssignedMembers()

8a.3.2.5 Interface Class IpService ContraCtManagemeNTc.veeerrieeniecessisess s sssesssenns 168
8a.3.2.5.1 Method CreateService CONTIACT()......vuurierrierireerieiri et 168

3GPP

Release 9

9 3GPP TS 29.198-3 V9.0.0 (2009-12)

8a.3.2.5.2 Method mOodifyServiCECONTIACL()ceuevrrrrereriieerieri sttt sss e nrenas
8a.3.2.5.3 Method deleteService Contract()........cccovvrveerrnnen.

8a.3.2.6 Interface Class IpService ContractinfoQuery

8a.3.2.6.1 Method describeServiceContract()c.oceeeee.

8a.3.2.6.2 Method listService Contracts()

8a.3.2.6.3 Method listService Profiles()c.cccovevrenrcrnenen

8a.3.2.7 Interface Class IpEntOpAccountManagement

8a.3.2.7.1 Method modify EntOPACCOUNL()cvuveerieerieerrierrieerierneieeneeenne

8a.3.2.7.2 Method deleteEntOpAccount()cocveverveernenees

8a.3.2.8 Interface Class IpEntOpAccountinfoQuery............

8a.3.2.8.1 Method describeEntOpAccount()ccoeveerenee

8a.4 State Transition DIagrams.........cccvevernienierneneeneeeeenn:

8a.4.1 Event Notification State Transition Diagrams

8a.4.2 Service Subscription State Transition Diagrams

9 SEIVICE PTOPEITIES ...ttt ettt ettt ettt ekt e ekt e bt et e st e e nnb e e e enne e e
9.1 SEIVICE SUPET ANG SUD TYPES ...ttt
9.2 SEIVICE PTOPEITY TYPES oottt et sttt
9.3 GENETAl SEIVICE PIOPEITIEScvuievieeiieeirictriee sttt
931 Service Name

9.3.2 SEIVICE WEBISION ..ottt ettt b bbb £t £ s R b £ b b £t E e bbb et e ettt
9.3.3 SEIVICE ID ettt bbb £ b £ b £ R bR E £ RSttt
9.3.4 Service Description

9.35 PROOUCE INGITIE ..ottt bbbt bbb bbbt
9.3.6

9.3.7

9.3.8 (@] LT 10 -1 TSR
9.3.9 Compatible Service

9.3.10 Backward Compatibility Level

9.3.11 Y T = A ToT T {=To LU =To TR
9.3.12 1 1Y, o = TP
9.3.13 Migration Date And Time

9.3.14 Support for Regular Expressions in Address Range

10 Data DEFINIIONSccutiieitiie ittt
10.1 Common Framework Data Definitions

10.1.1 TpClientAPPID ...

10.1.2 TpClientAppIDList

10.1.3 TpDOMAINID ..o

10.1.4 TpDomainIDTYPE c.cvveevrveceeirreeeerereeeeeans

10.1.5 TPENLOPID ...

10.1.6 TpPropertyName

10.1.7 TpPropertyValue

10.1.8 TPPIOPEItY ..o

10.1.9 TpPropertyList

10.1.10 TpEntOpIDList

10.1.11 LI o2 T

10.1.12 TPSEIVICE ..ot

10.1.13 TpServiceList......ccovenerrnnee.

10.1.14 TpServiceDescription...........

10.1.15 TpServicelDcccveerninenes

10.1.16 TpServicelDList.......ccccce.e..

10.1.17 TpServicelnstancelD............

10.1.18 TpServiceTypeProperty

10.1.19 TpServiceTypePropertyListcccccoveeeeee.

10.1.20 TpServiceTypePropertyMode...................

10.1.21 TpServiceProperty TypeName....................

10.1.22 TpServicePropertyName..........cccecvvecenen,

10.1.23 TpServicePropertyNameList...........c..c......

10.1.24 TpServicePropertyValue..........cccccvvveeneee

10.1.25 TpServicePropertyValueList....................

10.1.26 TPSErVICEPIOPENY ...ccvvvvvcveverreeereeeas

3GPP

Release 9

10.1.27
10.1.28
10.1.29
10.1.30
10.1.31
10.1.32
10.1.33
10.1.34
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.3.12
10.3.13
10.3.14
10.4
104.1
10.4.2
10.4.3
10.4.4
1045
10.4.6
10.4.7
10.4.8
10.4.9
10.4.10
10.4.11
10.4.12
10.4.13
104.14
10.4.15
10.4.16
10.4.17
10.4.18
10.4.19
10.4.20
10.4.21
10.4.22
10.4.23
10.4.24
10.4.25
10.4.26
10.4.27
10.5
1051

Trust and Security Management Data Definitions

Integrity Management Data Definitions

Service Subscription Data Definitions

10 3GPP TS 29.198-3 V9.0.0 (2009-12)

QLI SIS Tc A A ToT= o 0] o T=T Y TP
TPSENVICESUPPLIEIID ...

TpServiceTypeDescription
TPServiceETYPENAME ...
TpService TypeNameLiSt.....c.cccovoervrersinireeenrereenennens
TPSUDJECETYPE. ..o
TpServiceTypeProperty Value....................
TpServiceTypeProperty Value List

Event Notification Data Definitions...............

TPFWEVENtNAME ..o
TpFwEventCriteria
TPFWEVENTINTO. ..o
TpFwMigrationServiceAvailable Info
TpMigrationAdditionalinfo............cc.....
TpMigrationAdditionallinfoType..............
TpMigrationAdditionalinfoSet
TPFWAQGrEeMeNtINTO ..o

TpAccessType
TPAUhTYPE ..o
WO .ot

TpAuthDomain........ccccevvenee
TpinterfaceName.................
TplinterfaceNameList
TPSErVICETOKEN ..o
TpSignatureAndServiceMgr
TpSigningAlgorithm
TpSigningAlgorithmCapability List
TPAUthMEChANISM ..o
TpAuthMechanismList

TPACLIVILY TESTRES ..o
TpFaultStatsRecord
TpFaultStatsccoocvvevrenee.
TpFaultStatisticsError
TpFaultStatsSet........cccoceenee.
TpActivityTestID.................

TpinterfaceFaultcccooveevvevccnciennen,

WO <ottt
TpFwWUNavailReason ...
TpLoadLevel......ceeseeeeeeenes
TpLoadThreshold.......c.ccccccoeivivecnnenennen,
TpLoadInitValccccvvnee.
TpLoadPolicy.....ccccceevevervinnes
TpLoadStatistic........ccccvvnnee
TpLoadStatisticList..............

TpLoadStatisticData
TpLoadStatisticENtity IDccccovevvirccsrceceereeeee
TpLoadStatistiCENtity TYPE...c.ovovevviccsv e
TpLoadStatisticINfocccovvvvverrce e
TpLoadStatisticINfOTYPEcvvvverrcce e
TpLoadStatiStiCEITOrovvevcerrece e
TPSVCAVAIIStatUSREASON......coveeicrece e
TPAPPAVaIIStatUSREASON.......vveeeeccc e
TPLOAATESEID........cvieereeereereerere e
TpFaultStatsErrorList..........

TpFaultRegID.cocccvvevnee.

TpFwAvailStatusReason

TPPIOPEITYINGIME ... e

3GPP

Release 9 11 3GPP TS 29.198-3 V9.0.0 (2009-12)
10.5.2 LI 01107 1= 1 02 Y (1= PP
1053 TPPIOPErtYcccovvvireriririrerer s

1054 TPPropertyLiSt......ccoeevveeerrieeerreeenns

1055 TPENtOPPIOPEertiescoooeveriericenenenn.

10.5.6 TPENTOP ottt

105.7 TPService CoNtractIDccveveerrenecninereneeeeienne

10.5.8 TpService ContraCtIDLIST.......ccvvvenereenerienrernerneienne

10.5.9 TPPEersonNaAmeoccevevreirerreererereeens

10.5.10 TPPOStalAAIESS. ...

105.11 TpTelephoneNumber.........ccooevenicneen.

10.5.12 TPEMAIT .o

10.5.13 TpHOMEPAGE. ...

10.5.14 TPPersonProperties........ccccovenenicerienn.

10.5.15 TPPEISON...oiiicce s

10.5.16 TpServiceStartDateccccevveneecereneeenene

10.5.17 TPSErVICEENADALE ..o e

10.5.18 TpServiceRequestor

10.5.19 TpBillingContact.......c.cccocoevevvivccnriennen,

10.5.20 TpServiceSubscriptionProperties

10.5.21 TpServiceContractcccocevvvevecnnrecnenen,

10.5.22 TpService ContractDescription..................

10.5.23 TpClieNtAPPPIOPErties.......ccoovvveererccssr e

10.5.24 TpClientAppDESCHPLION.....ccvvveverecee e

10.5.25 TPSAGID ..o

10.5.26 TPSagIDLISt.....cccvveeerrecer e

10.5.27 TpSagDescription......cccovveervereenrereneenns

10.5.28 TPSAG cvieiiierir et

10.5.29 TPServiCeProfileID ...

10.5.30 TpServiceProfile IDList

10.5.31 TpServiceProfile ...,

10.5.32 TpServiceProfile Descriptionc.......

10.5.33 TpSagProfilePair ...,

10.5.34 TpAddSagMembersConflictc........

10.5.35 TpAddSagMembersConflict Listcccocoeevreeerinenen.

10.5.36 TpAssignSagToServiceProfile Conflict

10.5.37 TpASSigNSagToServiceProfile CONTHCTLIST ..o

11 EXCEPLION CIASSES ... vtttk ekt ettt et e e e e neeas
Anrex A (normative): OMG IDL Description of FrameworkK.............ccccceeeviiieeeiiiiiine e 205
Annex B (informative): W3C WSDL Description of Frameworkccccvveeieeeiiiiiiiiieeee. 206
Annex C (informative): Java™ API Description of the Frameworkccccccoviniiiiennnn. 207
Annex D (informative): Description of the Framework for 3GPP2 cdma2000 networks............. 208
D.1 GENEIAl EXCEPLIONSiviiiiiieiiite ettt ettt ettt ettt bt e et ek e et e e e e nnne e
D.2 SPECIFIC EXCEPLIONSeiiviiitiie ittt ettt ettt ettt et e et e e bt e e bt e e e bt e s et e e anbeeennbeeen
D.2.1 ClAUSE L1 SCOPB. ...ttt bbb eSS bbb bbb bbb
D.2.2 Clause 2: References

D.2.3 Clause 3: Definitions and aDDreVIatioNSc.oveueriiienrees sttt
D.2.4 Clause 4: OVerview Of the FraMEWOIKcccoiiiiieesreees ettt
D.2.5 Clause 5: The Base Interface Specification

D.2.6 Clause 6: Framework Access Session API

D.2.7 Clause 7 Framework-to-Application Sequence Diagrams

D.2.8 Clause 8: Framework-to-Service API

D.2.9 Clause 9: SEIVICE PIOPEITIES ...vuvucvieerieerisetriei ettt
D.2.10 Clause 10: Data DETINIIONSc.c.iiieruririeieieireeieieis sttt b et b bbbt b bt b et et es
D.2.11 Clause 11: Exception Classes

D.2.12 AnnexA (normative): OMG IDL Description of the Framework ... 209
D.2.13 AnnexB (informative): W3C WSDL Description of the FramewWO Kccccvieeenneceeinece s 209

3GPP

Release 9

D.2.14

Annex E

12 3GPP TS 29.198-3 V9.0.0 (2009-12)
Annex C (informative): Java™ API Description of the Frame Workcocceevivennnissienenecsssssesesssseesenns 209
(informative): Change NISTONY........uoiiiiiii e 210

3GPP

Release 9 13 3GPP TS 29.198-3 V9.0.0 (2009-12)

Foreword

This Technical Specification has been produced by the 3" Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version Xx.y.z
where:
X the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 orgreater indicates TSGapproved document under change control.

y the second digit is incre mented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 3 of a multi-part TS covering the 3" Generation Partnership Project: Technical
Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as
identified below. The APIs pecification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";
Part 3: ""Framework"";

Part 4: "Call Control";

Sub-part 1: "Call Control Common Definitions™;
Sub-part 2: " Generic Call Control SCF";
Sub-part 3: "Multi-Party Call Control SCF";
Sub-part 4: "Multi-Media Call Control SCF";

Sub-part 5: "Conference Call Control SCF"; (new in 3GPP Release 8)
Part 5: "User Interaction SCF";
Part 6: "Mobility SCF";
Part 7: "Terminal Capabilities SCF";
Part 8: "Data Session Control SCF";
Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 8)
Part 10: "Connectivity Manager SCF"; (new in 3GPP Release 8)
Part 11: "Account Management SCF";
Part 12: "Charging SCF".
Part 13: "Policy Management SCF";
Part 14: "Presence and Availability Management SCF";
Part 15: "Multi Media Messaging SCF";
Part 16: "Service Broker SCF".

The Mapping s pecification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.
A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

3GPP

Release 9

14

3GPP TS 29.198-3 V9.0.0 (2009-12)

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family

OSA API Mapping - 29.998-family

29.198-01 | Overview 29.998-01 Overview

29.198-02 | Common Data Definitions 29.998-02 Not Applicable

29.198-03 | Framework 29.998-03 Not Applicable

Call 29.198- 29.198- [29.198- [29.198- [29.198- | 29.998-04-1 Generic Call Control - CAP mapping

Control 04-1 04-2 04-3 04-4 04-5 29.998-04-2 Generic Call Control — INAP mapping

(Co) Common | Generic | Multi- M ulti- Conf 29.998-04-3 Generic Call Control — Megaco mapping

SCF CC data CC SCF | Party media CC SCF [29.998-04-4 Multiparty Call Control — ISC mapping

definitions CC SCF | CCSCF

29.198-05 | User Interaction SCF 29.998-05-1 User Interaction — CAP mapping
29.998-05-2 User Interaction — INAP mapping
29.998-05-3 User Interaction — Megaco mapping
29.998-05-4 User Interaction — SM 'S mapping

29.198-06 | Mobility SCF 29.998-06-1 User Status and User Location — MAP

mapping

29.998-06-2 User Status and User Location — SIP mapping

29.198-07 | Terminal Capabilities SCF 29.998-07 Not Applicable

29.198-08 | Data Session Control SCF 29.998-08 Data Session Control — CAP mapping

29.198-09 | Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 | Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 | Account Management SCF 29.998-11 Not Applicable

29.198-12 | Charging SCF 29.998-12 Not Applicable

29.198-13 | Policy Management SCF 29.998-13 Not Applicable

29.198-14 | Presence & Availability Management SCF 29.998-14 Not Applicable

29.198-15 | Mulki-media Messaging SCF 29.998-15 Not Applicable

29.198-16 | Service Broker SCF 29.998-16 Not Applicable

3GPP

Release 9 15 3GPP TS 29.198-3 V9.0.0 (2009-12)

1 Scope

The present document is Part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open
Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality
through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA
are contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127[2].

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the
present document, these being:

e Sequence Diagrams;

e Class Diagrams;

¢ Interface specification plus detailed method descriptions;
e State Transition diagrams;

e Data definitions;

o IDL Description of the interfaces.

e WSDL Description of the interfaces

e Reference to the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the
Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT W G5, ETSI TISPAN and The Parlay Group, in co -
operation with a number of JAIN™ Community member companies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

o References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

e Foraspecific reference, subsequent revisions do not apply.

o Foranon-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including
a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same
Release as the present document.

[1] 3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1:
Overview".

[2] 3GPP TS 22.127: "Service Requirement for the Open Services Access (OSA); Stage 1.

[3] 3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4] IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,
August1996].

3GPP

Release 9 16 3GPP TS 29.198-3 V9.0.0 (2009-12)

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1[1] apply.

4 Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating
applications.

The Framework API contains interfaces between the Application Server and the Framework, between Network Service
Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these interfaces
are represented by the yellow circles in the figure below). The description of the Framework in the present document
separates the interfaces into three distinct sets: Framework to Application interfaces, Framework to Enterprise Operator
interfaces and Framework to Service interfaces.

Enterprise Operator

[

Some of the mechanis ms are applied only once (e.g. establishment of service agreement), others are applied each time a
user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanis ms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication
interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be
mutual. The application must be authenticated before it is allowed to use any other OSA interface. It is a policy
decision for the application whether it must authenticate the framework or not. It is a policy decision for the
framework whether it allows an application to authenticate it before it has completed its authentication of the
application.

3GPP

Release 9 17 3GPP TS 29.198-3 V9.0.0 (2009-12)

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication shall precede
authorisation. Once authenticated, an application is authorised to access certain SCFs.

- Discowery of Framework and network SCFs: After successful authentication, applications can obtain available
Framework interfaces and use the discovery interface to obtain information on authorised network SCFs.
The Discovery interface can be used at any time after successful authentication.

- Bstablishment of service agreement: Before any application can interact with a network SCF, a service
agreement shall be established. A service agreement may consist of an off-line (e.g. by physically exchanging
documents) and an on-line part. The application has to sign the on-line part of the service agreement before it is
allowed to access any network SCF.

- Access to network SCFs: The Framework shall provide access control functions to authorise the access to SCFs
or service data for any APl method froman application, with the specified security level, context, domain, etc.

Basic mechanis m between Framework and Service Capability Server (SCS):

- Registering of network SCFs:. SCFs offered by a SCS can be registered at the Framework. In this way the
Framework can informthe Applications upon request about available SCFs (Discovery). For example, this
mechanis m is applied when installing or upgrading an SCS.

Basic mechanis m between Framework and Enterprise Operator:

- Service Subscription function: This function represents a contractual agreement between the Enterprise
Operator and the Framework. In this subscription business model, the enterprise operators act in the role of
subscriber/customer of services and the client applications act in the role of users or consumers of services.
The framework itself acts in the role of retailer of services.

The following clauses describe each aspect of the Framework in the following order:

e The sequence diagrams give the reader a practical idea of how the Framework is imp lemented.

e The class diagrams clause shows how each of the interfaces applicable to the Framework relate to one another.
e The interface specification clause describes in detail each of the interfaces shown within the class diagram part.

e The State Transition Diagrams (STD) show the transition between states in the Framework. The states and
transitions are well-defined; either methods specified in the Interface specification or events occurring in the
underlying networks cause state transitions.

e The data definitions clause shows a detailed expansion of each of the data types associated with the methods within
the classes. Note that some data types are used in other methods and classes and are therefore defined within the
common data types part of the present document (29.198-2).

An implementation of this APl which supports or implements a method described in the present document, shall
support or implement the functionality described for that method, for at least one valid set of values for the parameters
of that method. Where a method is not supported by an implementation of a Framework or Service interface, the
exception P_METHOD_NOT_SUPPORTED shall be returned to any call of that method. Where a method is not
supported by an implementation of an Application interface, a call to that method shall be possible, and no exception
shall be returned.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that forma part of the API specification. The Unified
Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is
described below.

3GPP

Release 9 18 3GPP TS 29.198-3 V9.0.0 (2009-12)

51.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters
and types. The Service and Framework interfaces for client applications are denoted by classes with name Ip<name>.
The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces
between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>,
while the Framework interfaces are denoted by classes with name IpFw<name>.

5.1.2 Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the APL
Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by
asynchronous methods identified by eithera 'Res'or 'Err'suffix for method results and errors, respectively. To handle
responses and reports, the application or service developer must implement the relevant IpApp<name> or
IpSvc<name> interfaces to provide the callback mechanism.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have

a value when the method is called. Those described as 'out’ are those that contain the return result of the method when
the method returns.

514 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class Iplnterface

All application, framework and service interfaces inherit fromthe following interface. This APl Base Interface does not
provide any additional methods.

<<Interface>>

Ipinterface

5.3 Service Interfaces

531 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user
interaction, messaging, mobility and connectivity manage ment.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that
must be imp lemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

3GPP

Release 9 19 3GPP TS 29.198-3 V9.0.0 (2009-12)

54 Generic Service Interface

54.1 Interface Class IpService
Inherits from: Ip Interface

All service interfaces inherit fromthe following interface.

<<Interface>>

IpService

setCallback (applInterface : in IpinterfaceRef) : void

setCallbackWithSessionID (appinterface : in Ipinterface Ref, sessionID : in TpSessionID) : void

54.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the
application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this
method on an interface shall result in multiple callback references being specified. The SCS shall use the most recent
callback interface provided by the application using this method. In the event that a callback reference fails or is no
longer available, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef
Specifies a reference to the application interface, which is used for callbacks.

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

54.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions
associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an
interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple
callback references being specified. The SCS shall use the most recent callback interface provided by the application
using this method. In the event that a callback reference fails or is no longer available, the next most recent callback
reference available shall be used.

Parameters
appInterface : in IpInterfaceRef
Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID
Specifies the session for which the service can invoke the application's callback interface.

3GPP

Release 9 20 3GPP TS 29.198-3 V9.0.0 (2009-12)

Raises
TpCommonExceptions, P_INVALID SESSION ID, P _INVALID INTERFACE TYPE

6 Framework Access Session API

6.1 Sequence Diagrams
6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access
The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For
this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained
through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,
the client has no guarantee that this is a Framework interface reference, but it is to initiate the authentication process
with the Framework. The Initial Contact interface supports the initiateAuthenticationWithVersion method to allow the
authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs.
This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Frame work, before deciding to continue using the interfaces
provided by the Framework.

3GPP

Release 9 21 3GPP TS 29.198-3 V9.0.0 (2009-12)
o Client

IpClientAPILevelAuthentication

‘ - Iplnitial ‘ ‘ _._IuAElI.ﬂﬂAu.thgmmﬂ_Qu‘ ‘ : IpAccess

‘ Framework ‘

1 initiateAuthenticaﬁionWithVersion(cIientDomain, authType, frameworkVersion)

U

]

2: selectAuthenticationMechanism()

3: challenge(

)

4: authenticationSuc

eeded()

(&2

: challenge()

6: authenti

cationSucceeded()

7: requestAcces

s()

8: sele

ctSigningAlgorithm()

©

obtaininterface()

1: Initiate Authentication

The client invokes initiate AuthenticationWithVersion on the Framework's "public" (initial contact) interface to initiate
the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a
reference to its authentication interface.

2: Select Authentication Mechanism

The client invokes selectAuthenticationMechanism on the Framework's API Level Authentication interface, identifying
the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be
used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithmas the minimum to be
supported. Note however that the framework need not accept this algorithm.

3: The client authenticates the Framework, issuing a challenge in the challenge() method.
4: The client provides an indication if authentication succeeded.

5: The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations
of'the challenge method on the client's API Level Authentication interface. In each invocation, the Framework supplies
a challenge and the client returns the correct response. The Framework could authenticate the client before the client
authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the
client shall respond immediately to any challenge issued by the Framework, as the Frame work might not respond to any
challenge issued by the client until the Framework has successfully authenticated the client.

6: The Framework provides an indication if authentication succeeded.
7: Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the
Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The

3GPP

Release 9 22 3GPP TS 29.198-3 V9.0.0 (2009-12)

Framework returns a reference to a framework Access interface that is unique for this client. The success or failure of
the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8: The client and framework negotiate the signing algorithmto be used for any signed exchanges.

9: The client invokes obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used
to obtain a reference to a framework interface that supports the required framework functionality, such as service
discovery, integrity management, service subscription etc.

6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of all service
instances. This type of termination is unusual, but possible with the terminateAccess method. Note that if at any point
the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication
failing, the framework should terminate all outstanding service agreements for that client, and should take steps to
terminate the client's access session WITHOUT invoking terminateA ccess() on the client. This follows a generally
accepted security model where the framework has decided that it can no longer trust the client and will therefore sever
ALL contact with it.

AppLogic & ‘ Y J IpAccess ‘ N ‘ IpMultiPartyCallControlManag{ IpUserocationCamel
IpClientAccess I i | |lpServic |
|
1] signServiceAgreement() i
|

2; signSenviceAgreement()

3: createNotification()

4 ocatio a()

5: terminateAccess()

1: Following successful authentication and service discovery, the client initiates the service agreement signing process
(not shown). This is comp leted when the client invokes signServiceAgreement on the Frame work's
IpService A greementManagement interface, and a reference to an instance of a service manager interface is returned.

2: The client (application) had initiated service agreement signing process for a second service agreement (not shown),
and when the client signs this second service agreement, a reference to an instance of another service manager, for
another service type, is returned.

3: The application starts to use the new service manager interface.
4: The application starts to use the other new service manager interface.

5: The framework decides to terminate the application's access session, and to terminate all its service agreements.
This is an unusual and drastic step, but could be e.g. due to violation or expiry ofthe application's service agreements,
or some problem within the framework itself. The framework will also destroy each of the service managers the
application was using (not shown). The application is now no longer authenticated with the framework, and all
Framework and service interfaces it was using are destroyed.

3GPP

Release 9 23 3GPP TS 29.198-3 V9.0.0 (2009-12)

6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of all service instances. This
type of termination is unusual, but possible with the terminateAccess method.

App Logic . IpAccess

IQCIienFAccess IpMulti PartyCam:ontroI Manager IQUserLoc;tionCamel

1: destroyNotification()

2: triggeredLocationReportingStop()

3: terminateAccess()

1: The application terminates its use of the multi-party call control service manager in a controlled manner.
2: The application ceases to use the user location camel SCF.

3: The application decides to terminate its access session and all its service agreements in one go. The framework will
also destroy each of the service managers the application was using (notshown). The application is now no longer
authenticated with the framework, and all Framework and service interfaces it was using are destroyed. The
application could have terminated its service agreements one by one, by invoking terminate ServiceAgreement on the
Framework's IpServiceAgreementManager interface, and then invoked terminateAccess on the Framework's IpAccess
interface, which would have been a more controlled shutdown.

6.1.1.4 Non-API level Authentication

The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have
mutually authenticated one another using an underlying distribution technology mechanism, or the client and the
framework recognise each other as a trusted party, not requiring authentication.

3GPP

Release 9 24 3GPP TS 29.198-3 V9.0.0 (2009-12)

Client . IpInitial Eramework . IpAuthentication : IpAccess

initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)

I
H Underlying Distribution Technology Mechanism is used for application AN
identification and authentication, or both the client and the Framework
recognise each other as trusted parties not requiring API level
authentication. There is no requirement as to when authentication should
take place using the Underlying Distribution Technology Mechanism:
before initiateAuthenticationWithVersion is invoked, after requestAccess is
invoked, or between the two.

2: requestAccess()

w

selectSigningAlgorithm(')

4: obtaininterfacel

~

1: The client calls initiate Authentication WithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. In this case, the client selects to use the underlying dis tribution technology
mechanis m for identification and authentication. What that mechanism is, if it even exists, is outside the scope of the
APL

2: The client invokes the requestAccess method on the Framework's Authentication interface. This returns a re ference
to the framework Access interface that is unique for the client.

3: Ifthe authentication was successful, the client and the framework can negotiate, on the framework's Access
interface, the signing algorithm to be used for any signed exchanges.

4: The client can now invoke obtainInterface or obtainInterfaceWith Callback on the framework's Access interface.
This is used to obtain a reference to a framework interface such as service discovery, integrity manage ment, service
subscription etc.

6.1.15 APl Level Authentication

This sequence diagram illustrates the two-way mechanismby which the client and the framework mutually authenticate
one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it
may be necessary to define the minimum encryption key length that can be used to ensure a high degree of
confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the
Framework. Invocations on other interfaces will fail until authentication has been successfully comp leted.

3GPP

Release 9 25 3GPP TS 29.198-3 V9.0.0 (2009-12)

1) The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to
specify the type of authentication process. This authentication process may be specific to the provider, or the
implementation technology used. The initiateAuthentication With Version method can be used to specify the specific
process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can
be used to perform the authentication process. The initiateAuthentication With Version method allows the client to pass a
reference to its own authentication interface to the Framework, and receive a reference to the authentication interface
preferred by the client, in return. In this case the API Level Authentication interface.

2) The client invokes the selectAuthenticationMechanism on the Framework's API Level Authentication interface. This
includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the
capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the
Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication
mechanis mof the client may not fulfil the demands of the Framework, in which case, the authentication will fail, for
example CHAP prescribes the MDS5 hashing algorithmas the minimumto be supported, however the framework ne ed
not accept this algorithm.

3) The application and Framework interact to authenticate each other by using the challenge method. For an
authentication method of P OSA AUTHENTICATION, this procedure consists of a number of challenge/ response
exchanges. This authentication protocol is performed using the challenge method on the API Level Authentication
interface. P OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There are in fact
two authentication processes: authentication of the client performed by the Framework , and authentication of the
Framework performed by the client. Mutual authentication is achieved by both these processes terminating
successfully. Mutual authentication may not necessarily be required, i.e. it could be that a client may not need to
authenticate the Framework. There is also no required order for the execution of these two authentication processes,
however, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not
respond to any challenge issued by the client until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

3GPP

Release 9 26 3GPP TS 29.198-3 V9.0.0 (2009-12)

: IpClientAPIL evelAuthentication Client - Ipinitial Framework . IpAPILevelAuthentication

1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)
IpClientAPILevel Authentication
reference is passed to framework

and IpAPILevelAuthentication
reference isreturned.

2: selectAuthenticationMechanism()

3: challenge() u
1 Thisisan example of the AN

sequence of

authentication

operations. Different

authentication protocols

may have different

U requirements on the
order of operations.

4: challenge()

5: challenge()

6: authenticationSucceeded()

7: challenge()

8: authenticationSucceeded()

[
gl

9: requestAccess()

IpClientAccess reference is
LJ passed to Framework, and
IpAccess reference is
retumed.

6.2 Class Diagrams

3GPP

Release 9 27 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>> <<Interface>>
IpClientAccess IpClientAPILevel Authentication
(from Client interfaces) (from Client interfaces)
“terminateAccess() %abortAuthentication()
7 %authenticationSucceeded()
‘ %challenge()

<<yuses>> ;
: <<uses>> |
<<Interface>> <<Interface>>
<<Interface>> IpAccess IpAPILevelAuthentication
IpInitial ffrom Framework interfaces) {from Frameworkinterfaces)
(from Frameworkinterfaces)
$obtaininterface() %abortAuthentication()
“initiate AuthenticationWithVersion() %obtaininterfaceWithCallback() %authentication Succeeded()
%istinterfaces() “%selectAuthenticationMechanism ()
%selectSigningAlgorithm () %challenge()
SterminateAccess()
%relinquishinterface()

<<Interface>>

IpAuthentication
(from Frameworkinterfaces)

“requestAccess()

Figure: Trust and Security Management Package Overview

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes

The Trust and Security Management Interfaces provide:

- the first point of contact for a client to access a Framework provider;

- the authentication methods for the client and Framework provider to perform an authentication protocol;
- the client with the ability to select a service capability feature to make use of;

- the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a
different Framework interface:

1) Initial Contact with the Framework;
2) Authentication;

3) Access to Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAP ILevelAuthentication
Inherits from: Ip Interface.

If the Ip ClientAPILevelAuthentication interface is implemented by a client, challenge(), abortAuthentication() and
authenticationSucceeded() methods shall be implemented.

3GPP

Release 9 28 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpClientAPILevelAuthentication

abortAuthentication () : void
authenticationSucceeded () : void

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.1 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework.
This method is invoked if the framework wishes to abort the authentication process before it has been authenticated by
the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client
should occur.) Calls to this method after the Framework has been authenticated by the client shall not result in an
immed iate removal of the Framework's authentication (the client may wish to authenticate the Framework again,
however).

Parameters
No Parameters were identified for this method.

6.3.1.1.2 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may
invoke requestAccess on the Framework's APILevelAuthentication interface following invocation of this method.

Parameters
No Parameters were identified for this method.

6.3.1.1.3 Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to
the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The
authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the
Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevelAuthentication
interface. The client shall respond immed iately to authentication challenges fromthe Framework, and not wait until the
Framework has responded to any challenge the client may issue.

Returns <response>: This is the response of the client application to the challenge of the framework in the current
sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A comp lete
CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the
designated hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an
octet set consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value.
The Name field of the CHAP Response packet must be present and contain a valid value in order for the CHAP
Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Value fields fromthe CHAP Challenge packet passed in the challenge() method's
challenge parameter

3GPP

Release 9 29 3GPP TS 29.198-3 V9.0.0 (2009-12)
2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret”, and the Value from the CHAP
Challenge

3. Compute the hash of the octet set resulting fromthe previous step using the designated hashing algorithm

4. Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value
Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret”, and the original
challenge value

3. Compute the hash of the resulting octet set fromthe previous step using the designated hashing algorithm

4. Verify the octet set resulting fromthe previous step matches the octet set contained in the Value field of the CHAP
Response. A match indicates successful authentication.
Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

Steps for constructing the challenge octet set:
1. Create a randomchallenge value (octet set). Per RFC 1994, this value must between 1and 255 octets in length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set fromthe previous step passed in
the Value field within the CHAP Challenge.

Returns
TpOctetSet

6.3.1.2 Interface Class IpClientAccess
Inherits from: Ip Interface.

IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access
session. This interface and the terminateAccess() method shall be implemented by a client.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :
in TpOctetSet) : wid

3GPP

Release 9 30 3GPP TS 29.198-3 V9.0.0 (2009-12)

6.3.1.2.1 Method terminate Access()
The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be
able to use the references to any of the framework interfaces gained during the access session. Any calls to these
interfaces will fail. The framework shall also identify and terminate all remaining service instances that apply as a
result of the client access termination. Ifat any point the framework's level of confidence in the identity of the client
becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service
agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking
terminateAccess() on the client. This follows a generally accepted security model where the framework has decided
that it can no longer trust the client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString
This is the termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to IpAccess selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown
to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as
specified in the TpSigningAlgorithmtable. The identifier used in this parameter must correspond to the digestAlgorithm
and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signe d-data.
The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The
"external signature™ construct shall not be used (i.e. the eContent field in the EncapsulatedContentinfo field shall be
present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630,
shall also be used to provide replay prevention. The framework uses this to confirm its identity to the client. The client
can check that the terminationText has been signed by the framework. I1fa match is made, the access session is
terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SIGNING ALGORITHM, P_INVALID SIGNATURE

6.3.1.3 Interface Class IpInitial
Inherits from: Ip Interface.

The Initial Framework interface is used by the client to initiate the authentication with the Framework. This interface
and the initiateAuthenticationWithVersion() method shall be implemented by a Framework.

3GPP

Release 9 31 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IplInitial

initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType,
frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1 Method initiate AuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a
specific authentication method using the new method with support for backward compatibility in the framework. The
returned fwDo main authinterface will be selected to match the proposed version from the Client in the Framework
response. If the Framework cannot work with the proposed framework version the framework returns an error code
(P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication
interface of the framework.
structure TpAuthDomain {

domainID: TpDomainlD;
authinterface: IpinterfaceRef;
b

The domain ID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the
client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for each
requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to
authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the
authentication interface may not be shared amongst multip le clients.

Parameters

clientDomain : in TpAuthDomain
This identifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {

domainID: TpDomainlD;
authinterface: IpinterfaceRef;
¥

The domain ID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator
(i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.
TpServicelnstancelD), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the
framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the
framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework
by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to
associate themtogether as independent sessions under the same TpClientApplID.

The authinterface parameter is a reference to call the authentication interface of the client. The type of this interface is
defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error
code (P_INVALID_INTERFACE_TYPE).

3GPP

Release 9 32 3GPP TS 29.198-3 V9.0.0 (2009-12)

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the
opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific
authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific
Authentication interfaces. OSA API level Authentication is the default authentication mechanism
(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDo main
authinterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If
P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type
IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion : in TpVersion

This identifies the version of the Framework imp lemented in the client. The TpVersion is a String containing the
version number. Valid version numbers are defined in the respective framework specification.

Returns
TpAuthDomain

Raises

TpCommonExceptions, P_INVALID DOMAIN ID, P_INVALID INTERFACE TYPE,
P_INVALID AUTH TYPE, P_INVALID VERSION

6.3.1.4 Interface Class IpAuthentication
Inherits from: Ip Interface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the
Framework. The authentication process should in this case be done with some underlying distribution technology
authentication mechanism, e.g. CORBA Security.

At least one of IpAuthentication or IpAPILevelAuthentication interfaces shall be implemented by a Framework as a
minimum requirement. The requestAccess() method shall be imple mented in each.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccesslinterface : in IpinterfaceRef) : IpInterfaceRef

6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the
IpAuthentication or IpAPILevelAuthentication interface. This allows the client to request the type of access they
require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Operators can define
their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code
(P_ACCESS_DENIED) is returned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not
being used, since there is no indication to the client at API level that it is authenticated with the Framework.

3GPP

Release 9 33 3GPP TS 29.198-3 vV9.0.0 (2009-12)

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework.
The access reference provided is unique to the requesting client.

Parameters
accessType : in TpAccessType

This identifies the type of access interface requested by the client. If the framework does not provide the type of access
identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.

clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not
of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns
IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID ACCESS_TYPE,
P_INVALID INTERFACE TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication
Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used
to initiate the authentication process.

If the IpAPILevelAuthentication interface is implemented by a Framework, then selectAuthenticationMechanism(),
challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented. IpAPILevelAuthentication
inherits the requirements of IpAuthentication, therefore requestAccess() shall be implemented.

<<Interface>>

IpAP ILevelAuthentication

abortAuthentication () : void
authenticationSucceeded () : void
selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.1 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This
method is invoked if the client no longer wishes to continue the authentication process, (unless the framework
responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this
method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess
operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been
properly authenticated. If this method is invoked after the client has been authenticated by the Framework, it shall not
result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client
again, however).

3GPP

Release 9 34 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.2 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method
have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful
authentication of the client.

Parameters
No Parameters were identified for this method.

Raises
TpCommonExceptions, P_ACCESS DENIED

6.3.1.5.3 Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of
API level Authentication. The Framework will select one of the suggested authentication mechanisms and that
mechanis mshall be used for authentication by both Framework and Client. The authentication mechanismchosen as a
result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is
re-invoked by the client. If a mechanis mthat is acceptable to the framework within the capability of the client cannot be
found, the framework throws the P_NO_ACCEPTABLE _AUTHENTICATION_MECHANISM exception.

Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism
shall be taken fromthe list of mechanisms proposed by the Client.

Parameters
authMechanismList : in TpAuthMechanismList

The list of authentication mechanis ms supported by the client.

Returns
TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS DENIED,
P_NO ACCEPTABLE AUTHENTICATION MECHANISM

6.3.1.5.4 Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct
responses to the challenges presented by the client. The domainID received in the initiateAuthenticationWithVersion()
can be used by the framework to reference the correct public key for the client (the key management systemis currently
outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The
authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the
client.

3GPP

Release 9 35 3GPP TS 29.198-3 V9.0.0 (2009-12)

The invocation of this method may be interleaved with challenge() calls by the framework on the client's
APILevelAuthentication interface.

Returns <response>: This is the response of the framework to the challenge of the client in the current sequence. The
formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP
Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated
hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an octet set
consisting of the concatenation of the CHAP Identifier, the shared "secret"”, and the supplied challenge value. The Name
field of the CHAP Response packet must be present and contain a valid value in order for the CHAP Response to be
valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Value fields fromthe CHAP Challenge packet passed in the challenge() method's
challenge parameter

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP
Challenge

3. Compute the hash of the octet set resulting fromthe previous step using the designated hashing algorithm
4. Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value
Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP
Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret”, and the original
challenge value

3. Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4. Verify the octet set resulting fromthe previous step matches the octet set contained in the Value field of the CHAP
Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in
accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A
complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet
must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not
used in the authentication process.

Steps for constructing the challenge octet set:
1. Create a random challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set fromthe previous step passed in
the Value field within the CHAP Challenge.

Returns
TpOctetSet

Raises
TpCommonExceptions, P_ACCESS DENIED

3GPP

Release 9 36 3GPP TS 29.198-3 V9.0.0 (2009-12)

6.3.1.6 Interface Class IpAccess
Inherits from: Ip Interface.

This interface shall be implemented by a Framework. As a minimum requirement the obtainInterface() and
obtainInterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

<<Interface>>

IpAccess

obtaininterface (interfaceName : in TpinterfaceName) : Ipinterface Ref

obtainInterfaceWithCallback (interfaceName : in TpinterfaceName, clientinterface : in IpInterfaceRef) :
IpInterfaceRef

listinterfaces () : TpInterfaceNameList
selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithm CapabilityList) : TpSigningAlgorithm
terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : wvoid

relinquishinterface (interfaceName : in TpinterfaceName, terminationText : in TpString, digitalSignature : in
TpOctetSet) : wid

6.3.1.6.1 Method obtaininterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply
a callback interface to the framework.)

Returns <fwinterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns
IpInterfaceRef

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID INTERFACE NAME

6.3.1.6.2 Method obtaininterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to
other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface
method should be used when no callback interface needs to be supplied.)

Returns <fwinterface> : This is the reference to the interface requested.

3GPP

Release 9 37 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interface Name is invalid,
the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this
method should not be used. (The obtainInterface method should be used when no callback interface needs to be
supplied.) Ifthe interface reference is not of the correct type, the framework returns an error code
(P_INVALID_INTERFACE _TYPE).

Returns
IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS DENIED, P _INVALID INTERFACE NAME,
P_INVALID INTERFACE TYPE

6.3.1.6.3 Method listinterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the
interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkinterfaces> : The frameworkinterfaces parameter contains a list of interfaces that the framework
makes available.

Parameters
No Parameters were identified for this method.

Returns

TpInterfaceNameList

Raises
TpCommonExceptions, P_ACCESS DENIED

6.3.1.6.4 Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for use in all cases
where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall

be the first method invoked by the client on IpAccess. The algorithmchosen as a result of the response to this method

remains valid for an instance of IpAccess and until this method is re-invoked by the client.

Subsequent invocations of selectSigningAlgorithm() may change the signing algorithm used during the access session.
However, once signServiceAgreement() has been called on the client by the framework, the signing algorithm currently
selected must be used for the client's invocation of signServiceAgreement() on the Framework as well as for subsequent
calls to terminateServiceAgreement(). Other operations requiring digital signatures will use the latest algorithm
specified by selectSigningAlgorithm().

If an algorithmthat is acceptable to the framework within the capability of the client cannot be found, the framework
throws the P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

3GPP

Release 9 38 3GPP TS 29.198-3 V9.0.0 (2009-12)

Returns: selectedAlgorithm. This is the signing algorithm chosen by the Framework. The chosen algorithm shall be
taken fromthe list proposed by the Client.

Parameters
signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList
The list of signing algorithms supported by the client.

Returns
TpSigningAlgorithm

Raises
TpCommonExceptions, P_ACCESS DENIED, P NO ACCEPTABLE SIGNING ALGORITHM

6.3.1.6.5 Method terminate Access()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After
it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the
references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.
Also, all remaining service instances created by the framework either directly in this access session or on behalf of the
client during this access session shall be terminated.

Parameters
terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed -data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature™ construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm its identity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SIGNATURE

6.3.1.6.6 Method relinquishlinterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters
interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interface Name is invalid, the framework
throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this
access session, then the P_TASK_REFUSED exception will be thrown.

3GPP

Release 9 39 3GPP TS 29.198-3 vV9.0.0 (2009-12)

terminationText : in TpString

This is the termination text describes the reason for the release of the interface. This text is required simply because the
digitalSignature parameter requires a terminationText to sign.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed -data.
The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with
selectSigningAlgorithm(). The content is made of the termination text. The "external signature™ construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The client uses this to confirm its identity to the framework. The framework can check that the
terminationText has been signed by the client. If a match is made, the interface is released, otherwise the
P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SIGNATURE, P_INVALID INTERFACE NAME

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart fromthe methods that can be invoked by the client also events internal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitial

initiateAuthenticationWithVersion / return new

IpAuthentication
L Active J

Figure : State Transition Diagram for Iplnitial

6.4.1.2 State Transition Diagrams for IpAP ILevelAuthentication

3GPP

Release 9 40 3GPP TS 29.198-3 V9.0.0 (2009-12)

IpInitial.initiateAuthenticationWithVersion

[Idle
-

selectAuthenticationMechanism

selectAuthenticationMechanism challenge / Client
challenges FW

[’V Authenticating
’ Framework

authenticationSucceeded / Client

satisfied with FW| response FW Aborts

NpClientAPILewelAuthentication.
abortAuthentication

challenge|/ Client
re-challenges| Framework

selectAuthenticationMechanism

(Framework
\ Authenticated

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.1 Idle State

When the client has invoked the Ipinitial initiateAuthenticationWithVersion method, an object imp le menting the
IpAPILevelAuthentication interface is created. The client now has to select the authentication mechanismto be used
using selectAuthenticationMechanism.

6.4.1.2.2 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge
method on the Framework. The Framework may either buffer the requests and respond when the client has been
authenticated, or respond immed ately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. Ifthe response is valid and
the authentication process has been completed, then a transition to the state Framework Authenticated is made and the
Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the

3GPP

Release 9 41 3GPP TS 29.198-3 V9.0.0 (2009-12)

authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may
also call selectAuthenticationMechanismto choose another hash algorithm.

6.4.1.2.3 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request
re-authentication of the Framework by calling the challenge method, resulting in a transition back to Authenticating
Framework state. The client may also call selectAuthenticationMechanismto choose another hash algorithm.

6.4.1.2.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge
method on the client. When the Framework has processed the response fromthe authenticate request or challenge on
the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then
another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has
been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by
invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies
that the client has to re-initiate the authentication by calling once more the initiateAuthentication WithVersion method
on the Iplnitial interface. At any time the client may abort the authentication process by calling abortAuthentication on
the Framework's IpAPILevelAuthentication interface. The client may also call selectAuthenticationMechanismto
choose another hash algorithm.

6.4.1.2.5 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the
framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the
AuthenticatingClient state occurs. The client may also call selectAuthenticationMechanismto choose another hash
algorithm.

3GPP

Release 9 42 3GPP TS 29.198-3 V9.0.0 (2009-12)

Ipinitial.initiateAuthenticationWithVersion

requestAccess
"P_ACCESS_DENIEDf

de _

Invalid Client Response

selectAuthenticationMechanism

requestAccess
"P_ACCESS_DENIED FW challenges Client
selectAuthenticationMechanism "pClientAPILewvelAuthentication.challenge
J Authenticating
7 Client

|

abortAuthentication
FW satisfied with Client response / Client Aborts

NpClientAPILewelAuthentication.authenticationSucceede

requestAccess / new IpAccess
. selectAuthenticationMechanism
FW re-challenges Client)
ANpClientAPILelelAuthentication.challenge ‘/ Client
‘ Authenticated

\

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.6 Idle State

When the client has invoked the Ipinitial initiateAuthenticationWithVersion method, an object implementing the
IpAPILevelAuthentication interface is created. The client now has to select the authentication mechanismto be used
using selectAuthenticationMechanism.

6.4.1.2.7 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge
method on the Framework. The Framework may either buffer the requests and respond when the client has been
authenticated, or respond immed iately, depending on policy. When the client has processed the response from the
authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process
is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and
the authentication process has been completed, then a transition to the state Framework Authenticated is made and the
Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the
authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may
also call selectAuthenticationMechanismto choose another hash algorithm.

6.4.1.2.8 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling
authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request

3GPP

Release 9 43 3GPP TS 29.198-3 V9.0.0 (2009-12)

re-authentication of the Framework by calling the challenge method, resulting in a transition back to Authenticating
Framework state. The client may also call selectAuthenticationMechanismto choose another hash algorithm.

6.4.1.2.9 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge
method on the client. When the Framework has processed the response fromthe authenticate request or challenge on
the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then
another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has
been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by
invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies
that the client has to re-initiate the authentication by calling once more the initiateAuthenticationWithVersion method
on the Iplnitial interface. At any time the client may abort the authentication process by calling abortAuthentication on
the Framework's IpAPILevelAuthentication interface. The client may also call selectAuthenticationMechanismto
choose another hash algorithm.

6.4.1.2.10 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the
framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the
AuthenticatingClient state occurs. The client may also call selectAuthenticationMechanismto choose another hash
algorithm.

6.4.1.3 State Transition Diagrams for IpAccess

IpAuthentication.requestAccess

obtaininterface / return requested FW interface
obtaininterfaceWithCallback / return requested FW interface

listinterfaces
. selectSigningAlgorithm
relinquishinterface

{ ~ Active

network operator initiated access termination
/ destroy all interface objects used by the client
ApClientAccess.terminateAccess

application initiated access termination
terminateAccess / destroy all interface objects used by the client

3GPP

Release 9 44 3GPP TS 29.198-3 V9.0.0 (2009-12)

Figure : State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the IpAuthentication (IpAPILevelAuthentication) interface, an
object implementing the IpAccess interface is created. The client can now request other Framework interfaces,
including Service Discovery, Integrity Management, Service Subscription etc., and if at any point these framework
interfaces are no longer required, to relinquish these. In addition the client can select the signing algorithm that shall be
used during the access session in cases where a digital signature is required. When the client is no longer interested in
using the interfaces it calls the terminate Access method. This results in the destruction of all interface objects used by
the client. In case the network operator decides that the client has no longer access to the interfaces the same will
happen.

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7111 Enable Event Notification

AppLogic : IpAppEventNotification : IpAccess : IpEventNotification
1: new()
L 2: obtainInterfaceWithCallback()
W 3: new()
4: createNotification()

5: reportNotification()

1: This message is used to create an object imp lementing the IpAppEventNotification interface.

3GPP

Release 9 45 3GPP TS 29.198-3 V9.0.0 (2009-12)
2: This message is used to receive a reference to the object implementing the Ip EventNotification interface and set the
callback interface for the framework.

3: Ifthere is currently no object implementing the Ip EventNotification interface, then one is created using this
message.

4. createNotification(eventCriteria : in TpFwEventCriteria) : TpAssignmentID.

This message is used to enable the notification mechanis mso that subsequent framework events can be sent to the
application. The framework event the application requests to be informed of is the availability of new SCFs.

Newly installed SCFs become available after the invocation of registerService and announceServiceAvailability on the
Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wants to
be notified: those specified in ServiceTypeNameList.

The result of this invocation has many similarities with the result of invoking listServiceTypes: in both cases the
application is informed of the availability of a list of SCFs. The differences are:

in the case of invoking listServiceTypes, the application has to take the initiative, but it is informed of ALL SCFs
available

in the case of using the event notification mechanis m, the application needs not take the initiative to ask about the
availability of SCFs, but it is only informed of'the ones that are newly available.

Alternatively, or additionally, the application can request to be informed of SCFs becoming unavailable.

5: The application is notified of the availability of new SCFs of the requested type(s).

7.1.2 Integrity Management Sequence Diagrams
7121 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications fromthe application based on the
evaluation of the load balancing policy as a result of the detection of a change in load level of the framework.

3GPP

Release 9

. IpAppLoadManager

46

3GPP TS 29.198-3 V9.0.0 (2009-12)

. IpLoadManager

1: load change detection and policy evaluation

Load balancing senvice
makes a decision based
on pre-defined policy

2: suspendNotification() Thkkis i
implementation
detail

3: load change detection and policy evaluation

H@

4: resumeNotification()

5: reportLoad()

|

Application provides U
initial load report on
notification

resumption

7122 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

3GPP

Release 9 47 3GPP TS 29.198-3 V9.0.0 (2009-12)

. IpLoadManager . IpApplLoadManager

1: queryAppLoadStatsReq()

2: get load information
1
3: queryAppLoadStatsRes() .

] | This is the
implementation
detail

7.1.2.3 Load Management: Framework callback registration and Application load
control

This sequence diagram shows how the framework registers itself and the application invokes load management function
to informthe framework of application load.

3GPP

Release 9 48

IpAppLozﬁManager

3GPP TS 29.198-3 V9.0.0 (2009-12)

IpLoadManager

1: createLoadLewelNotification()

|

2: reportLoad()

This is implementation H
detail. The Application

lma()j’ tak::- alpprct).priate ' 3: load change detection
oad control action. —

4: reportLoad()

m Application reports its

initial load condition on
notification creation

This is implementation
detail. The Application -
may take appropriate
load control action.

5: load change detection

<]

6: reportLoad()

u Application detects a load AN

condition change and
reports to Framework.
The Framework may take
appropriate load control
action - implementation
detail.

7: destroyLoadLewelNotification()

7.1.2.4 Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the framework load manager.

3GPP

Release 9

. IpApplLoadManager

49

3GPP TS 29.198-3 V9.0.0 (2009-12)

. IpLoadManager

1: reportLoad()

2: evaluate policy

< |

This is the implementation
detail

7125 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

3GPP

Release 9 50 3GPP TS 29.198-3 V9.0.0 (2009-12)

. IpApplLoadManager . IpLoadManager

1: queryLoadStatsReq()

]

2: get load information

B

3: queryLoadStatsRes()

U | This is the
implementation
o detail

7.1.26 Load Management: Application callback registration and load control

This sequence diagram shows how an application registers itself and the framework invokes load management function
based on policy.

3GPP

Release 9

51

3GPP TS 29.198-3 V9.0.0 (2009-12)

: IpAppLoadManager

: IpLoadManager

Framework detects a load ™
condition change

and notifies the
application. The
application may take
appropriate load control
action - implementation
detail.

7.1.2.7
application

1: createLoadLevelNotification()

2: loadLevelNotification()

-

Framework reports its
initial load condition on
notification creation

3: load change detection & policy evaluation

4: loadLevelNotification()

;

This is Framework
implementation detail.
The Framework may take
appropriate load control
action.

5: load change detection & policy evaluation

6:loadLevelNotification()

7: destroyLoadLevelNotification()

This is Framework
implementation detail. The
Framework may take
appropriate load control
action.

Heartbeat Management: Start/perform/end heartbeat supervision of the

In this sequence diagram, the framework has decided that it wishes to monitor the application, and has therefore
requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the
specified interval. The framework then decides that it is satisfied with the application's health and disables the heartbeat
mechanism. If the heartbeat was not received fromthe application within the specified interval, the framework can
decide that the application has failed the heartbeat and can then perform some recovery action.

3GPP

Release 9 52 3GPP TS 29.198-3 V9.0.0 (2009-12)

Framework . IpHeartBeat . IpAppHeartBeatMamt

1: enableAppHeartBeat()

2: pulse()

3: pulse()

7 |At a certain point of
time the framework
decides to stop
heartbeat supenision

4. disableAppHeartBeat()

7.1.2.8 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The
framework informs the client application.

3GPP

Release 9 53 3GPP TS 29.198-3 V9.0.0 (2009-12)

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect if a senice instance
fails, for example via an unreturned heartbeat. The
framework should inform the application that is
using that senice instance, with the reason:
SVC_UNAVAILABLE_NO_RESPONSE.

1: swAvailStatusind()

The application may wait until
it receives SVC_AVAILABLE

1: The framework informs the client application that is using the service instance that the service is unavailable. The
client application may wait to receive a new call to the svcAvailStatusInd with the reason SVC_A VAILA BLE when the
Service has become available again. The different Unavailability reasons used by the Framework
(TpSvcAvailStatusReason) guides the client application developers to make the decision.

7129 Fault Management: Application requests a Framework activity test

3GPP

Release 9 54 3GPP TS 29.198-3 V9.0.0 (2009-12)

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to
carry out an activty test. The
framework is denoted as the target by
an empty string value for swcid
parameter value.

1: activityTestReq()

Framework carries out test and
returns result to client application.

2: activityTestRes()

1: The client application asks the framework to do an activity test. The client identifies that it would like the activity
test done for the framework, rather then a service, by supplying an empty string value for the svcld parameter.

2: The framework does the requested activity test and sends the result to the client application.

7.1.3 Service Discovery Sequence Diagrams

7.1.3.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even
applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;
this is why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery
interface; this is done via an invocation the method obtainInterface on the Framework's Access interface.

3GPP

Release 9 55 3GPP TS 29.198-3 V9.0.0 (2009-12)

Discovery can be a three-step process. The first two steps have to be performed initially, but can subsequently be
skipped (if the service type and its properties are already known, the application can invoke discoverService () without
having to re-invoke the list/discoverServiceType methods).

Application . IpAccess . IpSeniceDiscovery

1: obtaininterface()

2: listSenviceTypes()

3: describeSeniceType()

4: discowerSenice()

2: Discovery: first step - list service types.

In this first step the application asks the Frame work what service types that are available fromthis network. Service
types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what
SCFs are supported by the network.

The following output is the result of this first discovery step:
out listTypes.

This is a list of service type names, i.e., a list of strings, each of them the name ofa SCF or a SCF specialization (e.g.
"P_MPCC").

3: Discovery: second step - describe service type.

In this second step the application requests what are the properties that describe a certain service type that it is interested
in, among those listed in the first step.

The following input is necessary:
in name.

This is a service type name: a string that contains the name of the SCF whose description the Application is interested in
(e.g."P_MPCC").

And the output is:
out serviceTypeDescription.

The description of the specified SCF type. The description provides information about:
the property names associated with the SCF;

the corresponding property value types;

3GPP

Release 9 56 3GPP TS 29.198-3 V9.0.0 (2009-12)

the corresponding property mode (mandatory or read only) associated with each SCF property;
the names of the super types of this type; and
whether the type is currently enabled or disabled.

4: Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i.e.
assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the servicelD that is the
identifier this network operator has assigned to the SCF version described in terms of those service properties. This is
the moment where the servicelD identifier is shared with the application that is interested on the corresponding service.

This is done for either one service or more (the application specifies the maximum number of responses it wishes to
accept).

Input parameters are:
in serviceTypeName.

This is a string that contains the name of the SCF whose description the Application is interested in (e.g. "P_MPCC").
in desiredPropertyList.

This is again a list like the one used for service registration, but where the value of the service properties have been fine
", "maximum", etc. by the Framework).

tuned by the Application to (they will be logically interpreted as "minimum",
The following parameter is necessary as input:

in max.
This parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result.
And the output is:

out serviceList.

This is a list of duplets: (servicelD, servicePropertyList). It provides a list of SCFs matching the requirements fromthe
Application, and about each: the identifier that has been assigned to it in this network (servicelD), and once again the
service property list.

7.14 Service Agreement Management Sequence Diagrams

7.14.1 Service Selection
The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs
to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

3GPP

Release 9 57 3GPP TS 29.198-3 V9.0.0 (2009-12)

Application = Framework
IpSeniceAgreementManagement

IpAppSeniceAgreementManagement

1: selectSenvice()

2: initiateSignSeniceAgreement()

J I

3: signSeniceAgreement()

4: signSeniceAgreement()

]

|

1: Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means ofthe
servicelD, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to
the Application an identifier for the service chosen: a service token, that is a private identifier for this service between
this Application and this network, and is used for the process of signing the service agreement.

Input is:

in servicelD.
This identifies the SCF required.
And output:

out serviceToken.

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It
contains operator specific information relating to the service level agreement. An application (identifiable by a given
TpClientAppID) may select the same service on more than one occasion in which case the same serviceToken, that
identifies the relationship between the Application and the network, and the service agreement that applies, shall be
returned.

2: Service Selection: second step - signServiceA greement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once these
contractual details have been agreed, then the Application can be given the means to actually use it. The means are a
reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By
calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns
it to the Application. The service properties suitable for this application are also fed to the SCF (via the lifecycle
manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling
initiateSignServiceA greement, and where the framework calls signServiceA greement on the application's
IpAppServiceA greementManagement interface before the application calls signService A greement on the frameworks's
IpServiceAgreementManagement, is the only sequence permitted.

3GPP

Release 9 58 3GPP TS 29.198-3 V9.0.0 (2009-12)

Input:
in serviceToken.
This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.
in agreementText.
This is the agreement text that is to be signed by the Framework using the private key of the Framework.
in signingAlgorithm.
This is the algorithmused to compute the digital signature.
Output:
out signatureAndServiceMgr.

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a
reference to the manager interface ofthe SCF.

There must be only one service instance per client application. Therefore, in case an application (identifiable by a given
TpClientAppID) attempts to select a service for which it has already signed a service agreement and this service
agreement has not been terminated, the Frame work may return a reference to the already existing service, or may raise
an exception to the client indicating that this request is denied.

7.2 Class Diagrams

<<|nterface>>
IpAppEventNotification
(from App Interfaces)

“reportNotification()
®notificationTerminated()

<<uses>> |

<<Interface>>

IpEventNotification
(from Framework Interfaces)

¥createNotification()
@destroy Notification()

Figure: Event Notification Class Diagram

3GPP

Release 9 59 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpAppFaultManager
<<Interface>> activityTestRes()
IpAppLoadManager appActivity TestReq()
<<deprecated>> fwFaultReportind()
. . <<deprecated>> fwFaultRecoveryInd()
IoadLeve;Il\:(_thlﬁcratlonO <<deprecated>> fwUnavailableInd()
resume d’\? 't!;a |tc?n0 activity TestErr()
suspencdiotilical |onQ . appUnavailablelnd()
<<Interface>> createLoadLewelNotification() sweAwilStatusind()
IpAppHeartBeatMgmt I<;Im§:grctg>e; destrc';L)\/LoEdL:;Ir;lo;ﬁcatlono generateFaultStatisticsRecordRes()
| PApp querprpdgtat Ras eq() generateFaultStatisticsRecordErr() <<Interface>>
enableAppHeartBeat() o. GUALCET . atsRes() generateFaultStatisticsRecordReq() IPAPpOAM
d:qsable.;\ppHelanBeat() bulseq queryLoadStatsErr() fwAwailStatusind()
CHENEEERE) systemDateTimeQuery()
N
ccuses>> ccuses>> <<uses>> <<uses>> <<uses>>
<<Interface>>
IPOAM
| :{<|”;‘;rfaiiﬂ>> . Pm— <<Interface>> <<Interface>>
pHeartBeatMgm nterface:
IpHeartBeat IpLoadManager IpFaultManager systemDateTimeQuery()
e_nabIeHeartBeat() 0..n reportLoad() activity TestReq()
disableHeartBeat() pulse() createLoadLevelNotification() appActivity TestRes()
changeintenal() destroyLoadLewelNotification() svcUnavailablelnd()
resumeNotification() appActivity TestErr()
suspendNotification() appAwailStatusind()
queryLoadStatsReq() generateFaultStatisticsRecordReq()
queryAppLoadStatsRes() generateFaultStatisticsRecordRes()
queryAppLoadStatsErr() generateFaultStatisticsRecordErr()

Figure: Integrity Management Package Overview

<<Interface>>

IpSeniceDiscovery
(from Frameworkinterfaces)

YlistSeniceTypes()
®describeSeniceType()
%discoverSenice()
¥listSubscribedSenices()

Figure: Service Discovery Package Overview

3GPP

Release 9

60

<<Interface>>
IpClientAccess
(from Client interfaces)

%terminateAccess()

=<Zses>>

3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>
IpClientAPILevelAuthentication

(from Client interf aces)

%abortAuthentication()
%®authentication Succeeded ()
%challenge()

<<Usaes=>

<<Interface>>
Iplnitial
(from Framework interf aces)

<<Interface>>
IpAccess
{from Framework interf aces)

<<Interface>>
IpAPILevelAuthentication
(from Framewiork interfaces)

%initiate AuthenticationWithVersion()

%obtaininterface()
%obtainInterfaceWithCallback()
%listinterfaces()
%selectSigningAlgorithm ()
%terminateAccess()
%relinquishinterface()

%abortAuthentication()
%authentication Succeeded()
%selectAuthenticationMechanism()

%challenge()

<<Interface>>
IpAuthentication
(from Framework interf aces)

%requestAccess()

Figure: Trust and Security Management Package Overview

3GPP

Release 9 61 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpAppSeniceAgreementManagement
(from App Interfaces)

®signSeniceAgreement()
®terminateSeniceAgreement()

<<uses>>

<<Interface>>

IpSeniceAgreementManagement
(from Framework Interfaces)

¥signSeniceAgreement()
®terminateSeniceAgreement()
¥selectService()
¥initiateSignSeniceAgreement()

Figure: Service Agreement Management Package Overview

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

73.1.1 Interface Class IpServiceDiscovery

Inherits from: Ip Interface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the
enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and
what service "properties™ are applicable to each service type. The listServiceTypes() method returns a list of al | "service
types" that are currently supported by the framework and the "describeServiceType()" returns a description of each
service type. The description of service type includes the "service-specific properties” that are applicable to each service
type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both
belong to a given type and possess the desired “property values”, by using the "discoverService() method. Once the
enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these
services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out
the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service
discovery APIs are invoked by the enterprise operators or client applications. They are described below.

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

3GPP

Release 9 62 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNamelList
describeServiceType (name : in TpServiceTypeName) : TpService TypeD escription

discoverService (senviceTypeName : in TpService TypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServicelList

7.3.1.1.1 Method listServiceTypes()

This operation returns the names of all service super and sub types that are in the repository. The details of the service
types can then be obtained using the describeServiceType() method. If a sub type of a service is registered, this method
returns, besides the sub type, also the super type.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns
TpServiceTypeNamelist

Raises
TpCommonExceptions, P_ACCESS DENIED

7.3.1.1.2 Method describeServiceType()
This operation lets the caller obtain the details for a particu lar service type.

Returns <serviceTypeDescription>: The description of the specified service type. The description provides information
about:
- the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples;
- the names of the super types of this service type; and
- whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName
The name of the service type to be described.

- Ifthe "name" is malformed, then the P_ILLEGAL_SERVICE_TYPEexception is raised.

- If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is rais ed.

3GPP

Release 9 63 3GPP TS 29.198-3 V9.0.0 (2009-12)

Returns
TpServiceTypeDescription

Raises

TpCommonExceptions, P_ACCESS DENIED, P ILLEGAL_ SERVICE TYPE,
P_UNKNOWN_SERVICE TYPE

7.3.1.1.3 Method discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services
that meet its requirements. The client application passes in a list of desired service properties to describe the service it is
looking for, in the form of attribute/value pairs for the service properties. The client application also specifies the
maximum number of matched responses it is willing to accept. The framework must not return more matches than the
specified maximum, but it is up to the discretion of the Framework imp lementation to choose to return less than the
specified maximum. The discoverService() operation returns a servicelD/Property pair list for those services that match
the desired service property list that the client application provided. The service properties returned form a complete
view of what the client application can do with the service, as per the service level agreement. If the framework
supports service subscription, the service level agreement will be encapsulated in the subscription properties contained
in the contract/profile for the client application, which will be a restriction of the registered properties.

Returns <serviceList>: This parameter gives a list of matching services. Each service is characterised by its service ID
and a list of service properties {name and value list} associated with the service.

Parameters
serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service
trading™. It is the basis for type safe interactions between the service exporters (via registerService) and service
importers (via discoverService). By stating a service type, the importer implies the service type and a domain of
discourse for talking about properties of service.

- If the string representation of the "type" does not obey the rules for service type identifiers, then the
P_ILLEGAL_SERVICE _TYPE exception is raised.

- If the "type™ is correct syntactically but is not recognised as a service type within the Framework, then the
P_UNKNOWN_SERVICE_TYPEexception is raised.

The framework may return a service of a subtype of the "type" requested. The requestor may also request for a service
of a specific subtype. The framework will not return the corresponding supertype(s) in this case.

desiredPropertylList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service property {name, mode and value list} tuples that the discovered
set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the
desired service. The property values in the desired property list must be logically interpreted as "minimum",
"maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the
service criterion). It is suggested that, at the time of service registration, each property value be specified as an
appropriate range of values, so that desired property values can specify an "enclosing” range of values to help in the
selection of desired services.

The desiredPropertyList only contains service properties that are relevant for the application. If an application is not
interested in the value of a certain service property, this service property shall not be included in the
desiredPropertyList.

P_INVALID_PROPERTY is raised when an application includes an unknown service property name or invalid service
property value.

3GPP

Release 9 64 3GPP TS 29.198-3 V9.0.0 (2009-12)

max : in TpInt32
The "max' parameter states the maximum number of services that are to be returned in the "serviceList" result.

Returns

TpServicelist

Raises

TpCommonExceptions, P_ACCESS DENIED, P ILLEGAL SERVICE TYPE,
P_UNKNOWN_ SERVICE TYPE, P_INVALID PROPERTY

7.3.1.1.4 Method listSubscribedServices()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the client applications
in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Returns <serviceList>: The "serviceList" parameter returns a list of subscribed services. Each service is characterised
by its service ID and a list of service properties {name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns
TpServicelist

Raises
TpCommonExceptions, P_ACCESS DENIED

7.3.2 Service Agreement Management Interface Classes

7321 Interface Class IpAppServiceAgreementManagement
Inherits from: Ip Interface.

This interface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an
application.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : wid

3GPP

Release 9 65 3GPP TS 29.198-3 vV9.0.0 (2009-12)

7.3.2.1.1 Method signService Agreement()

Upon receipt of the initiateSignServiceAgrement() method fromthe client application, this method is used by the
framework to request that the client application sign an agreement on the service. The framework provides the service
agreement text for the client application to sign. The service manager returned will be configured as per the service
level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the
subscription properties contained in the contract/profile for the client application, which will be a restriction of the
registered properties. If the client application agrees, it signs the service agreement, returning its digital signature to the
framework.

Returns <digitalSignature>: This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630)
with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the
agreement text given by the framework. The "external signature” construct shall not be used (i.e. the e Content field in
the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the
serviceToken will be expired immediately.

Parameters
serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService () method. This token is used to identify the
service instance to which this service agreement corresponds. (If the client application selects many services, it can
determine which selected service corresponds to the service agreement by matching the service token). If the
serviceToken is invalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is
thrown.

agreementText : in TpString

This is the agreement text that is to be signed by the client application using the private key of the client application. If
the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in
response to IpAccess selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown
to the client application, the P_INVALID_SIGNING_ALGORITHM exception is thrown. The list of possible
algorithms is as specified in the TpSigningAlgorithmtable. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the Signerinfo field in the digitalSignature (see below).

Returns
TpOctetSet

Raises

TpCommonExceptions, P_INVALID AGREEMENT TEXT, P_INVALID_ SERVICE_ TOKEN,
P_INVALID SIGNING ALGORITHM

7.3.2.1.2 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters
serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, the
P_INVALID_SERVICE TOKEN exception will be thrown.

3GPP

Release 9 66 3GPP TS 29.198-3 V9.0.0 (2009-12)

terminationText : in TpString
This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed -data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature™ construct shall not be
used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The
client application can check that the terminationText has been signed by the framework. If a match is made, the service
agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises
TpCommonExceptions, P_INVALID SERVICE TOKEN, P_INVALID SIGNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement
Inherits from: Ip Interface.

This interface and the signServiceAgreement(), terminateService Agreement(), selectService() and
initiateSignServiceAgreement() methods shall be implemented by a Framework.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndS erviceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : wid

selectService (servicelD : in TpServicelD) : TpServiceToken

initiateSignS erviceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's IpAppServiceAgree mentManagement
interface, this method is used by the client application to request that the framework sign the service agreement, which
allows the client application to use the service. A reference to the service manager interface of the service is returned to
the client application. The service manager returned will be configured as per the service level agreement. If the
framework uses service subscription, the service level agreement will be encapsulated in the subscription properties
contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the
client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is
returned. If the client application invokes this method before the processing (i.e. digital signature verification) of the
response of signServiceAgreement() on the application's IpAppServiceAgree mentManagement interface has completed,
a TpCommon Exceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is
currently unable to complete the method due to a race condition. In this case, the TpCommon Exceptions with
ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount
of time has passed.

3GPP

Release 9 67 3GPP TS 29.198-3 V9.0.0 (2009-12)

There must be only one service instance per client application. Therefore, in case the client attempts to select a service
for which it has already signed a service agreement and this service agreement has not been terminated, a reference to
the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agree ment,
and a reference to the service manager interface of the service.
structure TpSignatureAndServiceMgr {
digitalSignature: TpOctetSet;
serviceMgrinterface: IpServiceRef;

¥

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing -time attribute, as

defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrinterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService () method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the
agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one used by the framework when
invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, is invalid, or unknown to
the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms is
as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the
digestAlgorithm and signatureAlgorithm fields in the Signerinfo field in the digitalSignature (see below).

Returns
TpSignatureAndServiceMgr

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID AGREEMENT TEXT,
P_INVALID SERVICE_TOKEN, P_INVALID SIGNING ALGORITHM,
P_SERVICE_ACCESS DENIED

7.3.2.2.2 Method terminateServiceAgreement()

This method is used by the client application to terminate an agree ment for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to
identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code
(P_INVALID_SERVICE_TOKEN) is returned.

3GPP

Release 9 68 3GPP TS 29.198-3 V9.0.0 (2009-12)

terminationText : in TpString
This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed -data.
The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to
initially sign the service agreement. The content is the termination text. The "external signature™ construct shall not be
used (i.e. the eContent field in the EncapsulatedContentinfo field shall be present and contain the termination text
string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay
prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was
signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by
the client application. If a match is made, the service agreement is terminated, otherwise an error code
(P_INVALID_SIGNATURE) is returned.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE TOKEN,
P_INVALID SIGNATURE

7.3.2.2.3 Method selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client
application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown.

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a
service agreement. This will contain operator specific information relating to the service level agreement. The
serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken
will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client
application or framework invokes the terminate Access method on the other's corresponding access interface.

Parameters
servicelID : in TpServiceID

This identifies the service required. If the servicel D is not recognised by the framework, an error code
(P_INVALID_SERVICE_ID) is returned.

Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS DENIED, P _INVALID SERVICE ID,
P_SERVICE_ACCESS_ DENIED

7.3.2.2.4 Method initiateSignService Agreement()

This method is used by the client application to initiate the sign service agreement process. This method shall be
invoked following the application's call to selectService(), and before the signing of the service agreement can take
place. If the client application is not allowed to initiate the sign service agreement process, the exception
(P_SERVICE_ACCESS_DENIED) is thrown.

3GPP

Release 9 69 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService () method. This token is used to identify the
service instance requested by the client application. If the serviceToken is invalid, or has expired, the exception
(P_INVALID_SERVICE_TOKEN) is thrown.

Raises

TpCommonExceptions, P_INVALID SERVICE TOKEN, P SERVICE ACCESS_ DENIED

7.3.3 Integrity Management Interface Classes

7.33.1 Interface Class IpAppFaultManager
Inherits from: Ip Interface.

This interface is used to informthe application of events that affect the integrity of the Framework, Service or Client
Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface
that is specified when the client application obtains the Fault Management interface: i.e. by use of the
obtainInterfaceWithCallback operation on the IpAccess interface

<<Interface>>

IpAppFaultManager

activity TestRes (activity TestID : in TpActivity TestID, activityTestResult : in TpActivityTestRes) : wvoid
appActivity TestReq (activity TestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportind (fault : in TpinterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpinterfaceFault) : void

<<deprecated>> fwUnavailablelnd (reason : in TpFwUnavailReason) : void

activity TestErr (activity TestID : in TpActivity TestID) : void

appUnavailablelnd (servicelD : in TpServicelD) : woid

swcAvailStatusind (servicelD : in TpSenvicelD, reason : in TpSwcAvailStatusReason) : wid

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, senvicelDs : in TpSenvcelDList) : wid

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsErrorList, servicelDs : in TpServicelDList) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimelnterval) :
void

fwAvailStatusind (reason : in TpFwAvailStatusReason) : wid

7.3.3.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

3GPP

Release 9 70 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

activityTestID : in TpActivityTestID
Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

7.3.3.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the
application must carry out a test on itself, to check that it is operating correctly. The application reports the test result
by invoking the appActivity TestRes method on the IpFaultManager interface.

Parameters
activityTestID : in TpActivityTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

7.3.3.1.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in a later release. It is strongly recommended not to imp lement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of a failure within the framework. The client
application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecovery Ind).

Parameters
fault : in TpInterfaceFault
Specifies the fault that has been detected by the framework.

7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryind()

This method is deprecated and will be removed in a later release. It is strongly recommended not to imp lement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified.
The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault
Specifies the fault from which the framework has recovered.

7.3.3.1.5 Method <<deprecated>> fwUnavailableIind()
This method is deprecated and will be removed in a later release. It is strongly recommended not to imp lement this

method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and also when the Framework becomes available again.

3GPP

Release 9 71 3GPP TS 29.198-3 vV9.0.0 (2009-12)

The framework invokes this method to informthe client application that it is no longer available.

Parameters
reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.

7.3.3.1.6 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application -initiated activity test.

Parameters
activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.

7.3.3.1.7 Method appUnavailableind()

The framework invokes this method to indicate to the application that the service instance has detected that it is not
responding.

Parameters
servicelID : in TpServicelD

Specifies the service for which the indication of unavailability was received.

7.3.3.1.8 Method svcAvailStatus Ind()

The framework invokes this method to informthe client application about the Service instance availability status, i.e.
that it can no longer use its instance of the indicated service according to the reason parameter but as well information
when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset
its use of the specified service (using the normal mechanis ms, such as the discovery and authentication interfaces, to
stop use of this service instance and begin use of a different service instance). The client application can also wait for
the problemto be solved and just stop the usage of the service instance until the svcAvailStatusInd() is called again with
the reason SVC_AVAILABLE.

Parameters

servicelID : in TpServicelD
Identifies the affected service.

reason : in TpSvcAvailStatusReason
Identifies the reason why the service is no longer available or that it has become available again.
7.3.3.1.9 Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a
generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the client application to correlate this response (when it arrives) with the original request.

3GPP

Release 9 72 3GPP TS 29.198-3 V9.0.0 (2009-12)

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

servicelDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the servicelDs parameter is
an empty list, then the fault statistics are for the framework.

In the case where a list of services is present, this is an ordered list in which the location of the service in this list
corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.

7.3.3.1.10 Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters
faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this error (when it arrives) with the original request.

faultStatistics : in TpFaultStatsErrorList

The list of fault statistics errors returned.

servicelIDs : in TpServiceIlDList

Specifies the framework or services that are included in the list of fault statistics errors returned. If the servicelDs
parameter is an empty list, then the fault statistics error relates to the framework.

In the case where a list of services is present, this is an ordered list in which the location of the service in this list
corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.

7.3.3.1.11 Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the
framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation
on the IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics
record, for the application during the specified time interval, which is returned to the framework using the
generateFaultStatisticsRecordRes operation on the IpFaultManager interface.

Parameters
faultStatsReqID : in TpFaultReqID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the client application.

7.3.3.1.12 Method fwAvailStatusind()

The framework invokes this method to informthe client application about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The client application may wait for the problem to be solved and just stop the usage of the Framework until the
fwAvailStatusind() is called again with the reason FRAMEWORK_AVAILABLE.

3GPP

Release 9 73 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

reason : in TpFwAvailStatusReason
Identifies the reason why the framework is no longer available or that it has become available again.

7.3.3.2 Interface Class IpFaultManager
Inherits from: Ip Interface.

This interface is used by the application to informthe framework of events that affect the integrity of the framework
and services, and to request information about the integrity of the system. The fault manager operations do not
exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface
at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation
on the IpAccess interface.

If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be
implemented. Ifthe Framework is capable of invoking the IpAppFaultManager.appActivity TestReq() method, it shall
implement appActivity TestRes() and appActivity TestErr() in this interface. If the Framework is capable of invoking
IpAppFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStatisticsRecordErr() in this interface.

<<Interface>>

IpFaultManager

activity TestReq (activityTestID : in TpActivity TestID, swcID : in TpServicelD) : void

appActivity TestRes (activityTestID : in TpActivity TestID, activityTestResult : in TpActivity TestRes) : woid
swcUnavailablelnd (servicelD : in TpServicelD) : wid

appActivity TestErr (activityTestID : in TpActivity TestID) : woid

appAvailStatusInd (reason : in TpAppAvailStatusReason) : woid

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimelnterval,
servicelDs : in TpSenvcelDList) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : woid

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

7.3.3.2.1 Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of
this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check
that it is operating correctly. The framework reports the test result by invoking the activity TestRes method on the
IpAppFaultManager interface. Ifthe application does not have access to a service instance with the specified servicel D,
the P_UNAUTHORISED_PARAMETER_VA LUE exception shall be thrown. The extralnformation field of the
exception shall contain the corresponding servicelD.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as
there is a one to one relationship between the client application and a service, i.e. there is only one service instance of
the specified service per client application, it is the obligation of the framework to determine the service instance ID
fromthe service ID.

3GPP

Release 9 74 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the client application to correlate the response (when it arrives) with this request.

svcID : in TpServicelD
Identifies either the framework or a service for testing. The framework is designated by an empty string.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P_UNAUTHORISED PARAMETER VALUE

7.3.3.2.2 Method appActivityTestRes()
The client application uses this method to return the result of a framework-requested activity test.
Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.2.3 Method svcUnavailableind()
This method is used by the client application to inform the framework that it can no longer use its instance of the

indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this
request, the framework should take the appropriate corrective action.

Parameters
servicelID : in TpServicelD

Identifies the service that the application can no longer use.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P_UNAUTHORISED PARAMETER VALUE

7.3.3.2.4 Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

3GPP

Release 9 75 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

7.3.3.25 Method appAvailStatusind()

This method is used by the application to inform the framework of its availability status. If the Application has detected
a failure it uses one of the APP_UNA VAILABLE reason types to indicate the problem and that it is ceasing its use of
all of its subscribed service instances. When the Application is working again it shall call this method again with the
APP_AVAILABLE reason to informthe Framework that it is working properly again. The Framework shall also
attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.

Parameters
reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to informthe Framework
and the Service that the Application is available again.

Raises

TpCommonExceptions

7.3.3.2.6 Method generateFaultStatisticsRecordReq()

This method is used by the application to solicit fau lt statistics fromthe framework. On receipt of this request the
framework must produce a fault statistics record, for either the framework or for the client's instances of the specified
services during the specified time interval, which is returned to the client application using the
generateFaultStatisticsRecordRes operation on the IpAppFaultManager interface. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED_PARAMETER_VA LUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters
faultStatsReqID : in TpFaultReqID
The identifier provided by the application to correlate the response (when it arrives) with this request.

timePeriod : in TpTimelInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

servicelDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fau lt statistics record. If this parameter is not an
empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault
statistics record of the framework is returned.

3GPP

Release 9 76 3GPP TS 29.198-3 V9.0.0 (2009-12)

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P_UNAUTHORISED PARAMETER VALUE

7.3.3.2.7 Method generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a
generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters
faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

Raises

TpCommonExceptions

7.3.3.2.8 Method generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in
response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultMan ager interface.

Parameters
faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

7.3.3.3 Interface Class IpAppHeartBeatMgmt
Inherits from: Ip Interface.

This interface allows the initialisation of a heartbeat supervision of the client application by the framework.

3GPP

Release 9 77 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwinterface : in IpHeartBeatRef) : void
disableAppHeartBeat () : void

changelnterval (interval : in TpInt32) : void

7.3.3.3.1 Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.

fwInterface : in IpHeartBeatRef
This parameter refers to the callback interface the heartbeat is calling.

7.3.3.3.2 Method disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

7.3.3.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters
interval : in TpInt32
The time interval in milliseconds between the heartbeats.

7.3.3.4 Interface Class IpAppHeartBeat
Inherits from: Ip Interface.

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

3GPP

Release 9 78 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpAppHeartBeat

pulse () : void

7.3.3.4.1 Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expecting a pulse
at the end of every interval specified in the parameter to the IpHeartBeatMgmt.enableHeartbeat() method. If the pulse()
is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

7.3.35 Interface Class IpHeartBeatMgmt
Inherits from: Ip Interface.

This interface allows the initialisation of a heartbeat supervision of the framework by a client application. Ifthe
IpHeart BeatMgmt interface is implemented by a Framework, as a minimum enable Heart Beat() and disableHeartBeat()
shall be implemented.

<<Interface>>

IpHeartBeatM gmt

enableHeartBeat (interval : in TpInt32, appinterface : in IpAppHeartBeatRef) : void
disableHeartBeat () : woid

changelnterval (interval : in TpInt32) : void

7.3.3.5.1 Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface
at the specified interval.

Parameters
interval : in TpInt32
The time interval in milliseconds between the heartbeats.

appInterface : in IpAppHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

3GPP

Release 9 79

Raises

TpCommonExceptions

7.3.3.5.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

7.3.3.6 Interface Class IpHeartBeat

Inherits from: Ip Interface.

3GPP TS 29.198-3 V9.0.0 (2009-12)

The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of
invoking IpAppHeartBeatMgmt.enableHeartBeat(), it shall implement IpHeartBeat and the pulse() method.

<<Interface>>

IpHeartBeat

pulse () : void

7.3.3.6.1 Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the IpAppHeartBeatMgmt.enableAppHeartbeat() method. If

3GPP

Release 9 80 3GPP TS 29.198-3 V9.0.0 (2009-12)

the pulse() is not received within the specified interval, then the client application can be deemed to have failed the
heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.7 Interface Class IpAppLoadManager
Inherits from: Ip Interface.

The client application developer supplies the load manager application interface to handle requests, reports and other
responses fromthe framework load manager function. The application supplies the identity of this callback interface at
the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the
IpAccess interface.

<<Interface>>

IpAppLoadManager

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : woid

suspendNotification () : woid

createLoadLevelNotification () : woid

destroyLoadLevelNotification () : void

queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timelnterval : in TpTimelnterval) : woid
gueryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void
queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

7.3.3.7.1 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0 to 2, 1to 0, for the SCFs or framework
which have been registered for load level notifications) this method is invoked on the application. In addition this
method shall be invoked on the application in order to provide a notification of current load status, when load
notifications are first requested, or resumed after suspension.

Parameters
loadStatistics : in TpLloadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).

7.3.3.7.2 Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the

3GPP

Release 9 81 3GPP TS 29.198-3 V9.0.0 (2009-12)

client application shall inform the framework of the current load using the reportLoad method on the corresponding
IpLoadManager.

Parameters
No Parameters were identified for this method.

7.3.3.7.3 Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

7.3.3.7.4 Method createLoadLevelNotification()
The framework uses this method to register to receive notifications of load level changes associated with the

application. Upon receipt of this method the client application shall inform the framework of the current load using the
reportLoad method on the corresponding IpLoadManager.

Parameters
No Parameters were identified for this method.

7.3.3.7.5 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters
No Parameters were identified for this method.

7.3.3.7.6 Method queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

loadStatsReqID : in TpLoadTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

7.3.3.7.7 Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e.
in response to an invocation of the queryLoadStatsReq method on the IpLoadManager interface.

Parameters
loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this response (when it arrives) with the original request.

loadStatistics : in TploadStatisticList

Specifies the framework-supplied load statistics.

3GPP

Release 9 82 3GPP TS 29.198-3 V9.0.0 (2009-12)

7.3.3.7.8 Method queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load
statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadStatsReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TplLoadTestID
Used by the client application to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TploadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics .

7.3.3.8 Interface Class IpLoadManager
Inherits from: Ip Interface.

The framework API should allow the load to be distributed across multiple machines and across multip le component
processes, according to a load management policy. The separation of the load manage ment mechanism and load
management policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific client application. It might specify what
action the framework should take as the congestion level changes. Forexample, some real-time critical applications will
want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services
will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management
policy is related to the QoS level to which the application is subscribed. The framework load management function is
represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into
waiting whilst a transaction performs. To handle responses and reports, the client application developer must
implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity
of this callback interface at the time it obtains the framework's load manager interface, by use of the
obtainlInterfaceWithCallback operation on the IpAccess interface.

If the IpLoadManager interface is imp lemented by a Framework, at least one of the methods shall be implemented
as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and
destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then
resumeNotification() shall be implemented also. If a Framework is capable of invoking the
IpAppLoadManager.queryAppLoadStatsReq() method, then it shall implement query AppLoadStatsRes() and
queryAppLoadsStatsErr() methods in this interface.

3GPP

Release 9 83 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void
createLoadLevelNotification (servicelDs : in TpServicelDList) : void
destroyLoadLevelNotification (servicelDs : in TpServicelDList) : void
resumeNotification (servicelDs : in TpServicelDList) : void
suspendNoatification (servicelDs : in TpServicelDList) : void

gueryLoadStatsReq (loadStatsReqID : in TpLoadTestID, servicelDs : in TpServicelDList, timelnterval : in
TpTimelnterval) : void

gueryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : wid

queryAppLoadStatskErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) :
void

7.3.3.8.1 Method reportLoad()

The client application uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At
level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded. In addition this
method shall be called by the application in order to report current load status, when load notifications are first
requested, or resumed after suspension.

Parameters

loadLevel : in TploadLevel
Specifies the application’s load level.

Raises

TpCommonExceptions

7.3.3.8.2 Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either
the framework or with its instances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED_PARAMETER_VA LUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD. Upon receipt
of this method the framework shall inform the client application of the current framework or service instance load using
the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFs to be registered for load control. To register for framework load control, the
servicelDs parameter must be an empty list.

3GPP

Release 9 84 3GPP TS 29.198-3 V9.0.0 (2009-12)

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P _UNAUTHORISED PARAMETER VALUE

7.3.3.8.3 Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the
framework or with its instances of the individual services used by the application. If the application does not have
access to a service instance with the specified servicel D, the P_UNAUTHORISED _PARAMETER_VA LUE exception
shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.

Parameters
servicelIDs : in TpServiceIlDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for
framework load control, the servicelDs parameter must be an empty list.

Raises
TpCommonExceptions, P_INVALID SERVICE ID, P _UNAUTHORISED PARAMETER VALUE

7.3.3.8.4 Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. after a
period of suspension during which the application handled a temporary overload condition. If the application does not
have access to a service instance with the specified servicel D, the P_ UNAUTHORISED_PARAMETER_VALUE
exception shall be thrown. The extralnformation field of the exception shall contain the corresponding servicelD.
Upon receipt of this method the framework shall inform the client application of the current framework or service
instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

servicelIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework
should be resumed. To resume notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P_SERVICE NOT ENABLED,
P_UNAUTHORISED PARAMETER VALUE

7.3.3.8.5 Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load manage ment notifications
associated with either the framework or with its instances of the individual services used by the application; e.g. while
the application handles a temporary overload condition. If the application does not have access to a service instance
with the specified servicel D, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

3GPP

Release 9 85 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

servicelIDs : in TpServicelDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended.
To suspend notifications for the framework, the servicel Ds parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P SERVICE NOT ENABLED,
P_UNAUTHORISED PARAMETER VALUE

7.3.3.8.6 Method queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or
for its instances of the individual services. [f the application does not have access to a service instance with the
specified servicelD, the P_UNAUTHORISED_PARAMETER_VA LUE exception shall be thrown. The
extralnformation field of the exception shall contain the corresponding servicelD.

Parameters
loadStatsReqID : in TpLoadTestID
The identifier provided by the application to correlate the response (when it arrives) with this request.

servicelDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an
empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load
statistics record of the framework is returned.

timeInterval : in TpTimelInterval

Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions, P_INVALID SERVICE ID, P_SERVICE NOT_ ENABLED,
P_UNAUTHORISED PARAMETER VALUE

7.3.3.8.7 Method queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager
interface.

Parameters
loadStatsReqID : in TpLoadTestID
Used by the framework to correlate this response (when it arrives) with the original request.

loadStatistics : in TploadStatisticList
Specifies the application-supplied load statistics.

3GPP

Release 9 86 3GPP TS 29.198-3 V9.0.0 (2009-12)

Raises

TpCommonExceptions

7.3.3.8.8 Method queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application’s load
statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.

Parameters
loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TploadStatisticError
Specifies the error code associated with the failed attempt to retrieve the application's load statistics.

Raises

TpCommonExceptions

7.3.3.9 Interface Class IpOAM
Inherits from: Ip Interface.

The OAM interface is used to query the systemdate and time. The application and the framework can synchronise the
date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. This interface
and the systemDateTimeQuery() method are optional.

<<Interface>>

IpOAM

systemDate TimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.9.1 Method systemDateTimeQuery()

This method is used to query the systemdate and time. The client application passes in its own date and time to the
framework. The framework responds with the systemdate and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.
Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (application). The error code P_INVALID_DATE_TIME_FORMAT is returned if
the format of the parameter is invalid.

3GPP

Release 9 87 3GPP TS 29.198-3 V9.0.0 (2009-12)

Returns
TpDateAndTime

Raises
TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

7.3.3.10 Interface Class IpAppOAM
Inherits from: Ip Interface.

The OAM client application interface is used by the Framework to query the application date and time, for
synchronisation purposes. This method is invoked by the Framework to interchange the framework and client
application date and time.

<<Interface>>

IpPAppOAM

systemDate TimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.10.1 Method systemDateTimeQuery()

This method is used to query the systemdate and time. The framework passes in its own date and time to the
application. The application responds with its own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (application).

Parameters

systemDateAndTime : in TpDateAndTime
This is the systemdate and time of the framework.

Returns
TpDateAndTime

7.34 Event Notification Interface Classes

734.1 Interface Class IpAppEventNotification
Inherits from: Ip Interface.

This interface is used by the framework to inform the application of a generic service-related event. The Event
Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the
Event Notification interface is obtained.

3GPP

Release 9 88 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpAp pE ventNotification

reportNotification (eventinfo : in TpFwE ventlnfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : woid

7.3.4.1.1 Method reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters
eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The
application can use assignment id to associate events with event specific criteria and to act accordingly.

7.3.4.1.2 Method notificationTerminated()
This method indicates to the application that all generic event notifications have been terminated (for example, due to

faults detected).

Parameters
No Parameters were identified for this method.

7.3.4.2 Interface Class IpEventNotification

Inherits from: Ip Interface.

The event notification mechanism is used to notify the application of generic service related events that have occurred.
If Event Notifications are supported by a Framework, this interface and the createNotification() and
destroyNotification() methods shall be supported.

<<Interface>>

IpE ventNotification

createNotification (eventCriteria : in TpFwWEventCriteria) : TpAssignmentiD

destroyNotification (assignmentID : in TpAssignmentID) : void

3GPP

Release 9 89 3GPP TS 29.198-3 V9.0.0 (2009-12)

7.3.4.2.1 Method createNotification()
This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed notification.

Parameters
eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the application to define the event required.

Returns
TpAssignmentID

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID CRITERIA,
P_INVALID EVENT TYPE

7.3.4.2.2 Method destroyNotification()

This method is used by the application to delete generic notifications fromthe framework.

Parameters
assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment 1D does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENTID.

Raises
TpCommonExceptions, P_ACCESS DENIED, P _INVALID ASSIGNMENT ID

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will
return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway
or related to network events are shown together with the resulting event or action performed by the gateway. These
internal events are shown between quotation marks.

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

3GPP

Release 9

90 3GPP TS 29.198-3 V9.0.0 (2009-12)

obtainFramework|
obtaininterfaceWi

listServ

nterface(discowerySeniice)
thCallback(discoverySenivce)

ceTypes
describeSeniceType

listSubscribedSenvices
discoverSenice

~ Actiwe J

IpAcces

Figure : State Transit

7.4.1.1.1 Active State

°

s.endAccess

ion Diagram for IpServiceDiscovery

When the application requests Service Discovery by invoking the obtainInterface or the obtaininterfaceWithCallback
methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the application is
allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Man

There are no State Transition Diagrams defined for

agement State Transition Diagrams

Service Agreement Management

7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

3GPP

Release 9 91 3GPP TS 29.198-3 V9.0.0 (2009-12)

reportLoad
"load change" MloadLevelNotification queryAppLoadStatsRes| load statistics requested by LoadManager]
m/ queryAppLoadStatsErr| load statistics requested by LoadManager]
createLoadLevelNotification NloadLevelNotification ‘/ Active } queryLoadStatsReq

destroyLoadLevelNotification

IpAccess\obtainl
IpAccessqbtaininterfaceWithCallback

-

Idle

\

resumeNotification
MNoadLevelNotification

reportLoad
queryAppLoadStatsRes[load statistics requested by LoadManager]
queryAppLoadStatsErr| load statistics requested by LoadManager]

Notification queryLoadStatsReq
Suspended

destroyLoadLevelNotification ‘

suspendNotification[all notifications
Al States suspended]

-

-

IpAccess.terminateAccess

®

Figure : State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Due to e.g. atemporary load condition, the application has requested the LoadManager to suspend sending the load
level notification information.

7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a create LoadLeve INotification()
invocation on the IpLoadManager. The load manager can now request the application to supply load statistics
information (by invoking queryAppLoadStatsReq()). Furthermore the LoadManager can request the application to
control its load (by invoking loadLeveINotification(), resume Notification() or suspendNotification() on the application
side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the
method reportLoad().

7.4.3.2 State Transition Diagrams for LoadManagerinternal

3GPP

Release 9 92 3GPP TS 29.198-3 V9.0.0 (2009-12)

A necessary action can
be suspending the load
notifictions to the
application or enabling
load control mechanisms
on certain senices.

registerLoadController
reportLoad[loadlevel != 0]
‘ Normal load @/ Application Overload)

reportLoad[loadlevel = 0]

"internal logd change detection”

"internal load change tp non owerlpaded" internial load change detection

"internal load change/to non qwerload"

reportLoad[loadlewvel 1= 0]

C/ Internal and Application Overload

reportLoad| loadlevel = 0]

Internal overload

A necessary action can be AN
suspending the load
notifictions from the

application by invoking —_—
suspendNotification or ALL
enabling load control STATES

mechanisms on the
application by invoking
enableLoadControl.

unregistefLoadControler

-

\

o

Figure : State Transition Diagram for LoadManagerinternal

7.4.3.2.1 Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs
is overloaded.

7.4.3.2.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the
appropriate actions are taken by the LoadManager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this
state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load
policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

3GPP

Release 9 93 3GPP TS 29.198-3 V9.0.0 (2009-12)

7.4.3.3 State Transition Diagrams for IpOAM

IpAccess.obtaininterface
IpAccess.obtaininterfaceWithCallback

systemDateTimeQuery

Active

IpAccess.terminateAccess

Figure : State Transition Diagram for IpOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IDOAM interface. The application is now able to request the
date / time of the Framework.

7.4.3.4 State Transition Diagrams for IpFaultManager

3GPP

Release 9 94 3GPP TS 29.198-3 V9.0.0 (2009-12)

IpAccess.obtaininterfaceWithCallback("FaultManagement") /
add application to fault management
‘change in framework availabililty (non fault)' ~fwAvailStatusind to all applications with callback

. ‘change in service availability' ~svcAvailStatusind to all applications using the service

svcUnavailablelnd / test the service, inform service that application isnot using it
generateFaultStatisticsRecordReq “app.generateFaultStatisticsRecordRes / Err
service fault ~svcAvailStatusind to all applications using the service f Framework
no fault detected
\ y

Active

activityTestReq[scflD activityTestReq[
empty string |

no fault detec

fault|resolved Framework Activity Test

Service Activity Test

IpAccess.telinateAccess | €Ntry/ test activity of framework
exit/ "lpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErr

entry/ test activity of service
exit/ "lpAppFaultManager.activityTestRes
exit/ "lpAppFaultManager.activityTestErr

IpAccess.termingteAccess /

fault detected in fw Abort pending/test request

IpAccess.terminateAccess / remove
application from load management

fault detected in fw

Framework Faulty ‘

entry/ “MfwAvailStatusind to all applications with callback
exit/ MfwAvailStatusind to all applications with callback J

Figure : State Transition Diagram for IpFaultManager

7.4.3.4.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications
and services capability features.

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability
features cannot communicate with it any more; attempts to invoke any methods that belong to any SCFs of the
framework return an error. If the framework ever recovers, applications with fault manage ment callbacks will be
notified via a fwAvailStatusind message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault
manage ment callbacks are notified through a fwAvailStatusInd message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with
fault management callbacks are notified accordingly through a svcAvailStatusInd message.

7.4.4 Event Notification State Transition Diagrams

7441 State Transition Diagrams for IpEventNotification

3GPP

Release 9 95 3GPP TS 29.198-3 V9.0.0 (2009-12)

createNotification

IpAccess.obtaininterface destroyNotification

IpAccess.obtaiginterfaceWithCallback

createNaotification

Notification
Active

s

destroyNotification] no more notificationg’ installed]

IpAccess:terminateAccess

IpAccess.terminateAccess

&
L)

Figure : State Transition Diagram for IpEventNotification

8 Framework-to-Service API

8.1 Seguence Diagrams

8.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Service Discovery

8.1.2 Service Registration Sequence Diagrams
8.1.2.1 New SCF Sub Type Registration

The following figure shows the process of registering a new proprietary Service Capability Feature in the Framework.
This SCF is a sub type of the standard SCF.

3GPP

Release 9 96 3GPP TS 29.198-3 V9.0.0 (2009-12)

IpFwSeniceReqistration

1: registerSeniceSubType()

2: announceSeniceAvailability()

1: Registration: first step - register service sub type. For sub type registration, besides the values for the standard
service properties, the modes, types, and values for the additional service properties must be provided by the SCF.

2: Registration: second step - announce service availability. This is identical to announcing availability of super types.

8.1.2.2 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service
Registration is a two step process:

3GPP

Release 9 97 3GPP TS 29.198-3 vV9.0.0 (2009-12)

%]
0]

IpFWServicJ?egistration

1: registerSenvice()

2: announceSenviceAvailability()

1: Registration: first step - register service.

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a
newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come from
different vendors. The goal is to make an association between the new SCF version, as characterized by a list of
properties, and an identifier called servicelD.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),
whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, or
for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:
in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").
in serviceProperty List

This is a list of types TpServiceProperty; each TpServiceProperty is a pair of (Service PropertyName,
ServiceProperty ValueList).

ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the
SCF data definition).

ServiceProperty ValueList is a numbered set of types TpServiceProperty Value; TpServicePro perty Value is a string
that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definition).

The following output parameter results from service registration:
out servicelD
This is a string, automatically generated by the Framework and unique within the Framework.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be
identified internally in this network.

2: Registration: second step - announce service availability.

3GPP

Release 9 98 3GPP TS 29.198-3 V9.0.0 (2009-12)

At this point the network's Frame work is aware of the existence of a new SCF, and could let applications know - but
they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF available.
In order to make the SCF available an "entry point", called lifecycle manager, is used. The role of the lifecycle manager
is to control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary
to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface
reference to a lifecycle manager ofthe desired SCF.

A Network Operator, upon completion of the first registration phase, and once it has an identifier to the new SCF
version, will instantiate a lifecycle manager for it that will allow client to use it. Then it will inform the Framework of
the value of the interface associated to the new SCF. After the receipt of this information, the Framewo rk makes the
new SCF (identified by the pair [serviceID, servicelnstanceLifecycleManagerRef]) discoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:
in servicelD.

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to
include the servicelD, to know which SCF it is.

in servicelnstanceLifecycleManagerRef.

This is the interface reference at which the lifecycle manager of the new SCF is available. Note that the Frame work will
have to invoke the method createServiceManager() in this interface when a client application signs an agreement to use
the SCF so that it can get the service manager interface necessary for applications as an entry point to any SCF.

8.1.3 Service Instance Lifecycle Manager Sequence Diagrams

8.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the
signing ofthe service agreement and the corresponding actions towards the service. For more information on accessing
the framework, authentication and discovery of services, see the corresponding clauses.

ApplLogic Y IpAppCallControlManager - Ipinitial = GenericCallControlService : IpCallControlManager
i 1p! IpSer ifec
| | | | ‘ i
We assume that the application is already authenticated and discov ered the service it wants to use ﬁ
I
|
|
} 1: selectService()
U 2: signServiceAgreement()
|
|
|
|

3: signServiceAgreement()

4: createServiceManager() 5: new()

6] new()

7: setCallback()

ﬁ
-

1: The application selects the service, using a servicelD for the generic call control service. The servicelD could have
been obtained via the discovery interface. A ServiceToken is returned to the application.

2: The client application signs the service agreement.

3: The framework signs the service agreement. As a result a service manager interface reference (in this case of type
IpCallControlManager) is returned to the application.

3GPP

Release 9 99 3GPP TS 29.198-3 V9.0.0 (2009-12)

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request the
service identified by the servicelD to return a service manager interface reference. The service manager is the initial
point of contact to the service.

5: The lifecycle manager creates a new manager interface instance (a call control manager) for the specified
application. It should be noted that this is an imp lementation detail. The service implementation may use other
mechanismto get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the
application client results. This service instance is assigned a servicelnstancelD by the Framework, which is provided to
the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Frame work
Integrity Management functionality and operations are to be supported between the Framework and the service instance
identified by the defined servicelnstancelD, it is then necessary for the new service instance to establish an access
session with the Framework. This provides the Framework with the ability to manage and monitor the operation of the
service instance that relates to a particular application client. The steps required to establish a Framework access
session are outlined in clause 6 of the present document.

6: The application creates a new IpAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

An application (identifiable by a given TpClientAppID may carry out the sequence, as exemplified above, multiple
times.

8.14 Integrity Management Sequence Diagrams

8.14.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the framework invokes load management function
based on policy.

3GPP

Release 9 100 3GPP TS 29.198-3 V9.0.0 (2009-12)

: IpSvclLoadManager . IpFwlLoadManager

1: createLoadLevelNotification()

initial load condition on

U U Framework reports its
2: loadLevelNotification() gy

L -

3: load change detection & policy evaluation

4: loadLevelNotification() | This is Framework

D ‘ implementation detail. The
Framework may take

L appropriate load control action.

Framework detects a load

condition change and notifies
the senice. The senice may
take appropriate load control

5: load change detection & policy evaluation

action - implementation <]
detail.
6: loadLevelNotification() This is Framework
implementation detail. The
D L Framework may take
appropriate load control action.

7: destroyLoadLewelNotification()

8.1.4.2 Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework registers itself and the service invokes load management function to
inform the framework of service load.

3GPP

Release 9 101 3GPP TS 29.198-3 V9.0.0 (2009-12)

IQSchanManager IQFWLanManager
1: createLoadLewelNotification()
Seniice reports its U H
initial load condition on
notification creation 2: reportLoad()
3: load change detection
o
This is Senice implementation L 4: reportLoad()
detail. The Senice may take i Senice detects a load condition
appropriate load control action. change and reports to
LJ Framework. The Framework
may take appropriate load
5: load Change detection control action - implementation
v detail.
This is Senice implementation T 6: reportLoad()
detail. The Senice may take
appropriate load control action. U

7: destroyLoadLewelNotification()

8.1.4.3 Load Management: Client and Service Load Balancing

3GPP

Release 9 102 3GPP TS 29.198-3 V9.0.0 (2009-12)

Application : Eramework : = Service :
IpAppLoadManager IpLoadManager IpFwlLoadManager IpSvcLoadManager

Framework checks
application load.

I queryAppLoadStatsReq()

2: queryAppLoadStatsRes()

H m Depending on the load, the

framework may choose to stop
sending notifications to the
application, to allow its load to
reduce.

3: querySvcLoadStatsReq()

D I

The framework may then check
the load on the service, and take
action if (according to the load
balancing policy) if required.

4: querySvcLoadStatsRes()

| |

8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested
the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.
The framework then decides that it is satisfied with the service's health and dis ables the heartbeat mechanism. If the
heartbeat was not received fromthe service within the specified interval, the framework can decide that the service has

failed the heartbeat and can then perform some recovery action.

3GPP

Release 9

Framework

103

IpFwHeartBeat

3GPP TS 29.198-3 V9.0.0 (2009-12)

1: enable

IpSvcHeart_BeatM amt

SvcHeartBeat()

4: disable

2: pulse()
3: pulse()
2SvcHeartBeat()

At a certain point of
time the framework
decides to stop
heartbeat supenision

8.145

Framework :
IpFwFaultManager

Senvice :
IpSvcFaultManager

Fault Management: Service requests Framework activity test

1: activityTestReq()

2: activityTestRes()

1: The service asks the framework to carry out its activity test. The service denotes that it requires the activity test done

The Senice requests that the
Framework does an activity test.

for the framework, rather than an application, by supplying an appropriate parameter.

2: The framework carries out the test and returns the result to the service.

3GPP

Release 9 104 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.1.4.6 Fault Management: Service requests Application activity test

Senice : 8 Eramework :_ Application :
IpSvcFaultManager IpFwFaultManager IpFaultManager IpAppFaultManager

The Framework identifies the senice
instance to conclude which
u Application the test is directed at, and
comunicates internally to Framework
interface to the Application.

1: activityTestReq()

2: appActivityTestReq()

u The application

H carries out the
actiuty test and

returns the result to

3: appActivity TestRes() the Framework.

[]

|

Communications.

Internal Framework ﬁ

4: activity TestRes()

|

1: The service instance asks the framework to invoke an activity test on the client application.

2: The framework asks the application to do the activity test. It is assumed that there is internal communication
between the service facing part of the framework (i.e. IpFwFaultManager interface) and the part that faces the client
application.

3: The application does the activity test and returns the result to the frame work.

4: The framework internally passes the result from its application facing interface (IpFaultManager) to its service
facing side, and sends the result to the service.

8.1.4.7 Fault Management: Application requests Service activity test

3GPP

Release 9 105 3GPP TS 29.198-3 V9.0.0 (2009-12)

Client Application : Framework : o Senvice :
IpAppFaultManager IpFaultManager IpFwFaultManager IpSwvcFaultManager

The client application asks the
framework to carry out the
activity test on a senice.

1: activityTestReq()

The Framework identifies which
senice the test is directed at by the
swvclD parameter, and
communicates internally with the
appropriate framework interface.
Which invokes the call on the
senice.

2: swcActivityTestReq()

H I

Senvice does test and ﬁ

returns the result.

Framework passes result
internally from senice facing
part to application facing part, U H
and sends the result to the

application.

3: swcActivityTestRes()

4: activityTestRes()

1: The client application asks the framework to invoke an activity test on a service, the service is identified by the
svcld parameter.

2: The framework asks the service to do the activity test. It is assumed that there is internal communication between
the application facing part of the framework (i.e. IpFaultManager interface) and the part that faces the service.

3: The service does the activity test and returns the result to the framework.

4: The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application
facing side, and sends the result to the client application.

3GPP

Release 9 106 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.1.4.8 Fault Management: Application detects service is unavailable

Client Application : Framework : o Senvice :
IpAppFaultManager IpFaultManager | | IpFwFaultManager IpSvcFaultManager

The application detects that
the senice is not responding,
so it informs the framework via
the sweUnavailablelnd method.

1: sweUnavailablelnd()

H The framework informs
the senice.

2: sweUnavailablelnd()

1: The client application detects that the service instance is currently not available, i.e. the service instance is not
responding to the client application in the normal way, so it informs the framework.

2: The framework informs the service instance that the client application was unable to get a response from it and can
no longer use the service instance. The service or framework may then decide to carry out an activity test to see whether
there is a general problem with the service instance that requires further action.

8.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

8.2 Class Diagrams

3GPP

Release 9 107 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpFwServiceDiscovery
(from Frameworkinterfaces)

¥listSeniceTypes()
¥describeSeniceType()
®discoverSenice()
¥listRegisteredSenices()

Figure: Service Discovery Package Overview

<<|nterface>>

IpFwSenviceRegistration
(from Framework interfaces)

¥registerSenice()
®announceSeniceAvailability ()
®unregisterSenvice()
®describeSenice()
“unannounceService()
YregisterSeniceSubType()

Figure: Service Registration Package Overview

3GPP

Release 9 108 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>
IpClientAPILevelAuthentication
<<Interface>> (from Client interfaces)
IpClientAccess
(from Client interfaces) “abortAuthentication()
®authenticationSucceeded()
%terminateAccess() %challenge()
i)
=< Seg>> cuUses==>
<<Interface>> <<Interface>>
<< ==
ITtTnIT:ii;IE IpAccess IPAP ILevelAuthentication
P (from Frarmeworkinterfaces) (from Framework interfaces)
(fram Framework interfaces)
- - . . %obtaininterface() %abortAuthentication()
%initiateAuthenticationWithVersion ° A
0 %obtaininterfaceWithCallback() %authenticationSucceeded()
%listinterfaces() ¥selectAuthenticationMechanism()
%selectSigningAlgorithm() %challenge()
%terminateAccess()
%relinquishlinterface()

<<Interface>>
IpAuthentication

(from Framework interfaces)

%requestAccess()

Figure: Trust and Security Management Package Overview

<<Interface>>

IpSenicelnstancelLifecycleManager
(from Service Interfaces)

%createSeniceManager()
®destroySeniceManager()

Figure: Service Instance Lifecycle Manager Package Overview

3GPP

Release 9

109

<<Interface>>
IpSvcLoadManager

loadLewelNotification()
suspendNotification()

resumeNotification()
<<Interface>> createLoadLevelNotification()
IpSwcHeartBeatMgmt <<Interface>> destroyLoadLevelNotification()
IpSvcHeartBeat querySwvcLoadStatsReq()
enableSvcHeartBeat() |1 o.n queryLoadStatsRes()
disableSvcHeartBeat() pulse() queryLoadStatsErr()
changelnterval() N N
A |]
<<uses>> |

<<uses>> | <<uses>> |

<<Interface>>

IpFwHeartBeatMgmt <<Interface>>
IpFwHeartBeat

enableHeartBeat() 0.n

disableHeartBeat() pulse()

changelnterval()

<<Interface>>
IpFwLoadManager

reportLoad()
createLoadLevelNotification()
destroyLoadLevelNotification()
suspendNotification()
resumeNotification()
queryLoadStatsReq|()
querySwvcLoadStatsRes()
querySwvcLoadStatsErr()

3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>
IpSvcFaultManager

activity TestRes()

sweActivity TestReq()
<<deprecated>> fwFaultReportind()
<<deprecated>> fwFaultRecoveryInd()
<<deprecated>> fwUnavailablelnd()
sveUnavailablelnd()

activity TestErr()

appAvailStatusind()
generateFaultStatisticsRecordRes()
generateFaultStatisticsRecordErr()
generateFaultStatisticsRecordReq|()

<<Interface>>

fwAvailStatusind() IpS\cOAM
A
| systemDateTimeQuery()
N
<<uses>> | <<uses>> |

<<Interface>>
IpPFWOAM

<<Interface>>
IpFwFaultManager

activity TestReq|()

sweActivity TestRes()
appUnavailablelnd()

svcActivity TestErr()
sveAvailStatusind()
generateFaultStatisticsRecordReq()
generateFaultStatisticsRecordRes()
generateFaultStatisticsRecordErr()

Figure: Integrity Management Package Overview

<<Interface>>

IpSveEventNotification

systemDateTimeQuery()

(from Service Interfaces)

®reportNotification()
®notificationTerminated()

<<Lses>>

<<Interface>>

IpFwWE ventNotification
(from Framework Interfaces)

¥createNotification()
“destroy Notification()

Figure: Event Notification Package Overview

3GPP

Release 9 110 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.3 Interface Classes

8.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with
the Framework. Services are registered against a particular service type. Therefore service types are created first, and
then services corresponding to those types are accepted from the Service Suppliers for registration in the framework.
The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property
values" for the service. The service discovery functionality described in the previous clause enables the service supplier
to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's ad ministrative
applications. They are described below. Note that these methods cannot be invoked until the authentication methods
have been invoked successfully.

8.3.1.1 Interface Class IpFwServiceRegistration
Inherits from: Ip Interface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.
This interface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and
unannounceService() shall be implemented by a Framework.

<<Interface>>

IpFwSenviceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpSenvicelD

announceServiceAvailability (servicelD : in TpServicelD, servicelnstanceLifecycleManagerRef : in
senvice_lifecycle::IpServicelnstanceLifecycleManagerRef) : void

unregisterService (servicelD : in TpServicelD) : void
describeService (servicelD : in TpServicelD) : TpServiceDescription
unannounceService (servicelD : in TpServicelD) : void

registerServiceSubType (serviceTypeName : in TpSeniceTypeName, servicePropertyList : in
TpServicePropertyList, extendedServicePropertyList : in TpService Ty pePropertyValueList) : TpServicelD

8.3.1.1.1 Method registerService()

The registerService () operation is the means by which a service is registered in the Framework, for subsequent
discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known
to the Framework (ServiceType is ‘available’). A service-ID is returned to the service supplier when a service is
registered in the Framework. When the service is not registered because the ServiceType is ‘unavailable’, a
P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can
identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context
of the Framework that generated it.

3GPP

Release 9 111 3GPP TS 29.198-3 V9.0.0 (2009-12)

This method should be used for registration of service super types only. For registering service sub types, the
registerServiceSubType() method should be used.

Returns <servicelD> : This is the unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to access it via other operations
such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of this type.

If aservice is registered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyList, then the
Framework shall notify all applications using instances of services identified by this property, using the
P_EVENT_FW_MIGRATION_SERVICE _AVAILABLE event, if they have registered for such a notification. If an
incorrect combination of properties is included in conjunction with P_COMPATIBLE_WITH_SERVICE, a
P_MISSING_MANDATORY_PROPERTY exception is raised.

Parameters
serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey
the rules for identifiers, then aP_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertylList : in TpServicePropertylist

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being
registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.
Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when
registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may
not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified.
Examples of such properties are those which form part of a service agreement and hence cannot be modified by service
suppliers during the life time of service.

If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in
the service type), then aP_PROPERTY_TYPE_MISMATCH exception is raised. Ifthe "servicePropertyList"
parameter o mits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised. Iftwo or more properties with the same property name
are included in this parameter, the P_ DUPLICATE_PROPERTY_NAME exception is raised.

Returns
TpServicelD

Raises

TpCommonExceptions, P_PROPERTY TYPE MISMATCH, P_DUPLICATE PROPERTY NAME,
P_ILLEGAL SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,
P_MISSING MANDATORY PROPERTY, P_SERVICE TYPE UNAVAILABLE

8.3.1.1.2 Method announceServiceAvailability()

The registerService () method described previously does not make the service discoverable. The
announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle
manager is instantiated at a particular interface. This method informs the framework of the availability of "service
instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After
the receipt of this method, the framework makes the corresponding service discoverable.

3GPP

Release 9 112 3GPP TS 29.198-3 V9.0.0 (2009-12)

There exists a "service manager" instance per service instance. Each service implements the

IpService InstanceLifecycleManager interface. The Ip Service InstanceLifecycleManager interface supports a method
called the createServiceManager(application: in TpClientApplID, serviceProperties : in TpServiceProperty List,
servicelnstancelD : in TpServicelnstancelD) : IpService Ref. When the service agreement is signed for some servicelD
(using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a
serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "servicelD" does not obey the
rules for service identifiers, then a P_ILLEGA L _SERVICE_ID exception is raised. If the "servicelD" is legal but there
is no service offer within the Framework with that ID, then a P_ UNKNOWN_SERVICE_ID exception is raised.

serviceInstancelifecycleManagerRef : in
service lifecycle::IpServicelnstancelLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.

Raises

TpCommonExceptions, P_ILLEGAL SERVICE ID, P UNKNOWN_ SERVICE ID,
P_INVALID INTERFACE TYPE

8.3.1.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service fromthe Framework.
The service is identified by the "service-ID" which was originally returned by the Framework in response to the
registerService() operation. The service must be in the SCF Registered state. All instances of the service will be
deleted.

Parameters

servicelID : in TpServicelID

The service to be withdrawn is identified by the "servicelD" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicelD" does not obey the rules for service identifiers,
then a P_ILLEGAL_SERVICE_ID exception is raised. If the "servicelD" is legal but there is no service o ffer within the
Framework with that ID, then aP_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpCommonExceptions, P _ILLEGAL SERVICE ID, P UNKNOWN SERVICE ID

8.3.1.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises,
the "type" of the service , and the "properties” that describe this service. The service is identified by the "service-1D"
parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for
example), and each getting a different servicelD assigned.

3GPP

Release 9 113 3GPP TS 29.198-3 V9.0.0 (2009-12)

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework.
It comprises the "type" of the service , and the properties that describe this service.

Parameters
servicelID : in TpServicelD

The service to be described is identified by the "servicelD™" parameter which was originally returned by the
registerService() operation. If the string representation of the "servicelD" does not obey the rules for object identifiers,
then an P_ILLEGAL_SERVICE_ID exception is raised. If the "servicelD" is legal but there is no service offer within
the Framework with that ID, then a P_UNKNOW N_SERVICE_ID exception is raised.

Returns

TpServiceDescription

Raises
TpCommonExceptions, P_ILLEGAL SERVICE ID, P _UNKNOWN_ SERVICE ID

8.3.1.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the
service ID is still associated with it. Applications currently using the service can continue to use the service but no new
applications should be able to start using the service. Also, all unused service tokens relating to the service will be
expired. This will prevent anyone who has already performed a selectService() but not yet performed the
signServiceAgreement() frombeing able to obtain a new instance of the service.

Parameters

servicelID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "servicelD" does not obey
the rules for service identifiers, then a P_ILLEGAL_SERVICE_ID exception is raised. Ifthe "servicelD" is legal but
there is no service offer within the Framework with that 1D, then aP_UNKNOWN_SERVICE_ID exception is raised.

Raises
TpCommonExceptions, P_ILLEGAL SERVICE ID, P _UNKNOWN_ SERVICE ID

8.3.1.1.6 Method registerServiceSubType()

The registerServiceSubType() operation is the means by which an extended service is registered in the Framework, for
subsequent discovery by the enterprise applications. Registration only succeeds if the service type is known to the
Framework (ServiceType is ‘available'). A service-1D is returned to the service supplier when a service is registered in
the Framework. When the service is not registered because the ServiceType is 'unavailable', a

P_SERVICE_TYPE _UNAVAILABLE exception is raised. The service-ID is the handle with which the service
supplier can identify the registered service when needed (e.g. for withdrawing it). The service-1D is only meaningful in
the context of the Framework that generated it.

This method should be used for registration of service sub types only. For registering service super types, the
registerService () method should be used.

Returns <servicelD> : This is the unique handle that is returned as a result of the successful completion of this
operation. The Service Supplier can identify the registered service when attempting to access it via other operations

3GPP

Release 9 114 3GPP TS 29.198-3 V9.0.0 (2009-12)

such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to
discover a service of this type.

Parameters
serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type™ does not obey
the rules for identifiers, then a P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type™ is correct syntactically
but the Framework is able to unambiguously determine that it is not a recognised service type, then a
P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertylList : in TpServicePropertylist

The "servicePropertyList" parameter is a list of property name and property value pairs corresponding to the service
properties applicable to the standard service. They describe the service being registered.

If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the
service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised.

If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a
P_MISSING_MANDATORY_PROPERTY exception is raised.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

extendedServicePropertylList : in TpServiceTypePropertyValuelList

The "extendedServicePropertyList" parameter is a list of property name, mode, type, and property value tuples
corresponding to the service properties applicable to the extended standard service. They describe the service being
registered.

If two or more properties with the same property name are included in this parameter, the
P_DUPLICATE_PROPERTY_NAME exception is raised.

Returns
TpServiceID

Raises

TpCommonExceptions, P_PROPERTY TYPE MISMATCH, P DUPLICATE_PROPERTY_ NAME,
P_ILLEGAL_ SERVICE TYPE, P_UNKNOWN_SERVICE_TYPE,
P_MISSING MANDATORY PROPERTY, P_SERVICE TYPE UNAVAILABLE

8.3.2 Service Instance Lifecycle Manager Interface Classes

The IpService InstanceLifecycleManager interface allows the framework to get access to a service manager interface of
a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the
application. Each service has a service manager interface that is the initial point of contact for the service. E.g. the
generic call control service uses the IpCallControlManager interface.

8.3.2.1 Interface Class IpServicelnstanceLifecycleManager
Inherits from: Ip Interface.
The IpService InstanceLifecycleManager interface allows the Framework to create and destroy Service Manager

Instances. This interface and the createServiceManager() and destroyServiceManager() methods shall be implemented
by a Service.

3GPP

Release 9 115 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpServicelnstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,
senvicelnstancelD : in TpSenvcelnstancelD) : IpServiceRef

destroyServiceManager (servicelnstance : in TpServicelnstancelD) : wvoid

8.3.2.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will
be configured for the client application using the properties agreed in the service level agree ment.

In case there is already a service manager available for the specified application and servicelnstancelD this reference is
returned and no new service manager is created.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters
application : in TpClientAppID
Specifies the application for which the service manager interface is requested.

serviceProperties : in TpServicePropertylist

Specifies the service properties and their values that are to be used to configure the service instance. These properties
forma part of the service level agreement. An example of these properties is a list of methods that the client application
is allowed to invoke on the service interfaces.

servicelInstancelID : in TpServicelnstanceID
Specifies the Service Instance ID that the new Service Manager is to be identified by.

Returns
IpServiceRef

Raises
TpCommonExceptions, P_INVALID PROPERTY

8.3.2.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being
unable to use the service manager any more.

3GPP

Release 9 116 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

servicelInstance : in TpServicelnstanceID
Identifies the Service Instance to be destroyed.

Raises

TpCommonExceptions

8.3.3 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of services the
Framework supports and what service "properties™ are applicable to each service type. The "listServiceType()" method
returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()"
method returns a description of each service type. The description of service type includes the "service -specific
properties" that are applicable to each service type. Then the service supplier can retrieve a specific set of registered
services that both belong to a given type and possess a specific set of "property values”, by using the
"discoverService()" method.

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values,
by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework
implementation; e.g. a service supplier may only be permitted to retrieve a list o f services that the service supplier has
previously registered.

8.3.3.1 Interface Class IpFwServiceDiscovery
Inherits from: Ip Interface.

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),
describeServiceType() and discoverService() methods.

<<Interface>>

IpFwSenviceDiscovery

listServiceTypes () : TpServiceTypeNameList
describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

8.3.3.1.1 Method listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then
be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

3GPP

Release 9 117 3GPP TS 29.198-3 vV9.0.0 (2009-12)

Parameters
No Parameters were identified for this method.

Returns
TpServiceTypeNameList

Raises

TpCommonExceptions

8.3.3.1.2 Method describeServiceType()
This operation lets the caller obtain the details for a particular service type.

Returns <serviceTypeDescription>: The description of the specified service type. The description provides information
about: the service properties associated with this service type: i.e. a list of service property {name, mode and type}
tuples, the names of the super types of this service type, and whether the service type is currently available or
unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL _SERVICE_TYPE
exception is raised. Ifthe "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_T YPE exception
is raised.

Returns
TpServiceTypeDescription

Raises
TpCommonExceptions, P_ILLEGAL SERVICE TYPE, P_UNKNOWN_ SERVICE TYPE

8.3.3.1.3 Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of reg istered
services that both belong to a given type and possess a specific set of "property values”. The service supplier passes in
a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the
service properties. The service supplier also specifies the maximum number of matched responses it is willing to accept.
The framework must not return more matches than the specified maximum, but it is up to the discretion of the
Framework implementation to choose to return less than the specified maximum. The discoverService() operation
returns a servicelD/Property pair list for those services that match the desired service property list that the service
supplier provided.

Returns <serviceList>: This parameter gives a list of matching services. Each service is characterised by its service ID
and a list of service properties {name and value list} associated with the service.

3GPP

Release 9 118 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type
identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but is not
recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised. The
framework may return a service of a subtype of the "type" requested. A service sub-type can be described by the
properties of its supertypes.

desiredPropertylList : in TpServicePropertylist

The "desiredPropertyList" parameter is a list of service properties {name and value list} that the required services
should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The

"on

property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the
framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is
suggested that, at the time of service registration, each property value be specified as an appropriate range of values, so
that desired property values can specify an “enclosing” range of values to help in the selection of desired services.

max : in TpInt32
The "max' parameter states the maximum number of services that are to be returned in the "serviceList" result.

Returns
TpServicelist

Raises

TpCommonExceptions, P_ILLEGAL SERVICE TYPE, P _UNKNOWN SERVICE TYPE,
P_INVALID PROPERTY

8.3.3.1.4 Method listRegisteredServices()
Returns a list of services so far registered in the framework.

Returns <serviceList>: The "serviceList" parameter returns a list of registered services. Each service is characterised
by its service ID and a list of service properties {name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServicelist

Raises

TpCommonExceptions

8.34 Integrity Management Interface Classes

8.34.1 Interface Class IpFwFaultManager

Inherits from: Ip Interface.

3GPP

Release 9 119 3GPP TS 29.198-3 V9.0.0 (2009-12)

This interface is used by the service instance to informthe framework of events which affect the integrity of the API,
and request fault management status information fromthe framework. The fault manager operations do not exchange
callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the
time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on
the IpAccess interface.

If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be
implemented. Ifthe Framework is capable of invoking the IpSvcFaultManager.svcActivity TestReq() method, it shall
implement svcActivityTestRes() and svcActivity TestErr() in this interface. If the Framework is capable of invoking
IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStatisticsRecordErr() in this interface. If the Framework is capable of invoking
IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStatisticsRecordErr() in this interface.

<<Interface>>

IpFwFaultManager

activity TestReq (activityTestID : in TpActivity TestID, testSubject : in TpSubjectType) : void
swcActivityTestRes (activity TestID : in TpActivityTestID, activity TestResult : in TpActivity TestRes) : void
appUnavailablelnd () : woid

swcActivityTestErr (activityTestID : in TpActivityTestID) : void

swcAvailStatusind (reason : in TpSwcAvailStatus Reason) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimelnterval,
recordSubject : in TpSubject Type) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : woid

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError) : void

8.3.4.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of
this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly.
The framework reports the test result by invoking the activity TestRes method on the IpSvcFaultManager interface.

Parameters
activityTestID : in TpActivityTestID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

testSubject : in TpSubjectType

Identifies the subject for testing (framework or client application).

Raises

TpCommonExceptions

3GPP

Release 9 120 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.3.4.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of a framework -requested activity test.

Parameters
activityTestID : in TpActivityTestID
Used by the framework to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

8.3.4.1.3 Method appUnavailableind()

This method is used by the service instance to informthe framework that the client application is not responding. On
receipt of this indication, the framework must act to inform the client application.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.1.4 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework -requested activity test.

Parameters
activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

3GPP

Release 9 121 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.3.4.1.5 Method svcAvailStatusInd()

This method is used by the service instance to informthe framework that it is about to become unavailable for use
according to the provided reason and as well to inform the Framework when the Service instance becomes available
again. The framework should inform the client applications that are currently using this service instance that it is
unavailable and as well when it becomes available again for use (via the svcAvailStatusind method on the
IpAppFaultManager interface).

Parameters
reason : in TpSvcAvailStatusReason

Identifies the reason for the service instance’s unavailability and also the reason SERVICE_AVAILABLE to be used to
inform the Framework when the Service instance becomes available again.

Raises

TpCommonExceptions

8.3.4.1.6 Method generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics fromthe framework. On receipt of this request, the
framework must produce a fault statistics record, for the framework or for the application during the specified time
interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the
IpSvcFaultManager interface.

Parameters
faultStatsReqID : in TpFaultReqID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the framework.

recordSubject : in TpSubjectType
Specifies the subject to be included in the general fault statistics record (framework or application).

Raises

TpCommonExceptions

8.3.4.1.7 Method generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a
generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the framework to correlate this response (when it arrives) with the original request.

3GPP

Release 9 122 3GPP TS 29.198-3 V9.0.0 (2009-12)

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

Raises

TpCommonExceptions

8.3.4.1.8 Method generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a
generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters
faultStatsReqID : in TpFaultReqID
Used by the framework to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

Raises

TpCommonExceptions

8.3.4.2 Interface Class IpSvcFaultManager
Inherits from: Ip Interface.

This interface is used to informthe service instance of events that affect the integrity of the Framework, Service or
Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified
when the service instance obtains the Fault Management Framework interface: i.e. by use of the
obtainiInterfaceWithCallback operation on the IpAccess interface.

If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented.
If the Service is capable of invoking the IpFwFaultManager.activity TestReq() method, it shall imp lement
activityTestRes() and activity TestErr() in this interface. Ifthe Service is capable of invoking
IpFwFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and
generateFaultStatisticsRecordErr() in this interface.

3GPP

Release 9 123 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpSwvc FaultManager

activity TestRes (activity TestID : in TpActivity TestID, activityTestResult : in TpActivityTestRes) : wvoid
swcActivityTestReq (activity TestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportind (fault : in TpinterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpinterfaceFault) : void

<<deprecated>> fwUnavailablelnd (reason : in TpFwUnavailReason) : void

swcUnavailablelnd () : wid

activity TestErr (activity TestID : in TpActivity TestID) : void

appAvailStatusind (reason : in TpAppAvailStatusReason) : wid

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, recordSubject : in TpSubject Type) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimelnterval) :
void

fwAvailStatusind (reason : in TpFwAvailStatusReason) : wid

8.3.4.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the service to correlate this response (when it arrives) with the orig inal request.

activityTestResult : in TpActivityTestRes
The result of the activity test.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

8.3.4.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service
instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result
by invoking the svcActivity TestRes method on the IpFwFaultManager interface.

3GPP

Release 9 124 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

activityTestID : in TpActivityTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

Raises

TpCommonExceptions

8.3.4.2.3 Method <<deprecated>> fwFaultReportind()

This method is deprecated and will be removed in a later release. It is strongly recommended not to imp lement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of a failure within the framework. The service
instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryind).

Parameters
fault : in TpInterfaceFault
Specifies the fault that has been detected by the framework.

Raises

TpCommonExceptions

8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryind()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified.
The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault
Specifies the fault from which the framework has recovered.

Raises

TpCommonExceptions

3GPP

Release 9 125 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.3.4.25 Method <<deprecated>> fwUnavailablelnd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to imp lement this
method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the
Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to informthe service instance that it is no longer available.

Parameters
reason : in TpFwUnavailReason
Identifies the reason why the framework is no longer available.

Raises

TpCommonExceptions

8.3.4.2.6 Method svcUnavailablelnd()

The framework invokes this method to informthe service instance that the client application has reported that it can no
longer use the service instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.2.7 Method activityTestErr()
The framework uses this method to indicate that an error occurred during a service -requested activity test.

Parameters

activityTestID : in TpActivityTestID
Used by the service instance to correlate this response (when it arrives) with the original request.

Raises
TpCommonExceptions, P_INVALID ACTIVITY TEST ID

8.3.4.2.8 Method appAvailStatusind()
The framework invokes this method to informthe service instance that the client application is no longer available

using different reasons for the unavailability. This may be a result of the application reporting a failure. Alternatively,
the framework may have detected that the application has failed: e.g. non-response froman activity test, failure to return

3GPP

Release 9 126 3GPP TS 29.198-3 V9.0.0 (2009-12)

heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again
the reason APP_AVAILABLE shall be used to informthe Service about that.

Parameters
reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to informthe Service that
the Application is available again.

Raises

TpCommonExceptions

8.3.4.2.9 Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a
generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the service instance to correlate this response (when it arrives) with the original request.

faultStatistics : in TpFaultStatsRecord
The fault statistics record.

recordSubject : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises

TpCommonExceptions

8.3.4.2.10 Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to
a generateFaultStatisticsRecordReq method invocation on the IpFwFau ltManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
Used by the service instance to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError
The fault statistics error.

recordSubject : in TpSubjectType
Specifies the entity (framework or application) whose fault statistics record was requested.

3GPP

Release 9 127 3GPP TS 29.198-3 V9.0.0 (2009-12)

Raises

TpCommonExceptions

8.3.4.2.11 Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for examp le when the
framework was asked for these statistics by the client application using the generateFaultStatisticsRecordReq operation
on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record
during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes
operation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings
leaves the time period to the discretion of the service.

Raises

TpCommonExceptions

8.3.4.2.12 Method fwAvailStatusind()

The framework invokes this method to informthe service instance about the Framework availability status, i.e. that it
can no longer use the Framework according to the reason parameter or that the Framework has become available again.
The service instance may wait for the problemto be solved and just stop the usage of the Framework until the
fwAvailStatusind() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason
Identifies the reason why the framework is no longer available or that it has become availab le again.

8.3.4.3 Interface Class IpFwHeartBeatMgmt
Inherits from: Ip Interface.

This interface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the
IpFwHeartBeatMgmt interface is implemented by a Framework, as a minimum enable Heart Beat() and
disableHeartBeat() shall be imp lemented.

3GPP

Release 9 128 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpFwHeartBeatM gmt

enableHeartBeat (interval : in TpInt32, swcinterface : in IpSvcHeartBeatRef) : void
disableHeartBeat () : wid

changelnterval (interval : in TpInt32) : void

8.3.4.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at
the specified interval.

Parameters
interval : in TpInt32
The time interval in milliseconds between the heartbeats.

svcInterface : in IpSvcHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

8.3.4.3.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.3.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

3GPP

Release 9 129 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.3.4.4 Interface Class IpFwHeartBeat
Inherits from: Ip Interface.

The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. Ifa
Framework is capable of invoking IpSvcHeart BeatMgmt.enable Heart Beat(), it shall implement IpFwHeartBeat and the
pulse() method.

<<Interface>>

IpFwHeartBeat

pulse () : void

8.3.4.41 Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse
at the end of every interval specified in the parameter to the IpSvcHeartBeatMgmt.enableSvcHeartbeat() method. If the
pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.34.5 Interface Class IpSvcHeartBeatMgmt
Inherits from: Ip Interface.

This interface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the
IpSvcHeartBeatMgmt interface is imp lemented by a Service, as a minimum enableHeartBeat() and dis ableHeart Beat()
shall be implemented.

3GPP

Release 9 130

3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpSvc HeartBeatMgmt

enableSwcHeartBeat (interval : in TpInt32, fwinterface : in IpFwHeartBeatRef) : woid

disableSvcHeartBeat () : woid

changelnterval (interval : in TpInt32) : void

8.3.4.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at

the specified interval.

Parameters
interval : in TpInt32
The time interval in milliseconds between the heartbeats.

fwInterface : in IpFwHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Raises
TpCommonExceptions, P_INVALID INTERFACE TYPE

8.3.4.5.2 Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.5.3 Method changelnterval()

Allows the administrative change of the heartbeat interval.

3GPP

Release 9 131 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

interval : in TpInt32
The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.3.4.6 Interface Class IpSvcHeartBeat
Inherits from: Ip Interface.

The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Service is
capable of invoking IpFwHeartBeatMgmt.enable Heart Beat(), it shall implement IpSvcHeartBeat and the pulse()
method.

<<Interface>>

IpSwvc HeartBeat

pulse () : void

8.3.4.6.1 Method pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expecting a pulse at
the end of every interval specified in the parameter to the IpFwHeartBeatMgmt.enableHeartbeat() method. If the
pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.7 Interface Class IpFwLoadManager
Inherits from: Ip Interface.

The framework API should allow the load to be distributed across multiple machines and across multiple component
processes, according to a load management policy. The separation of the load management mechanism and load

manage ment policy ensures the flexibility of the load management services. The load management policy identifies
what load management rules the framework should follow for the specific service. It might specify what action the
framework should take as the congestion level changes. For example, some real-time critical applications will want to
make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be
satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is
related to the QoS level to which the application is subscribed. The framework load management function is represented
by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the

3GPP

Release 9 132 3GPP TS 29.198-3 V9.0.0 (2009-12)

IpSvcLoadManager interface to provide the callback mechanism.

If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be
implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification()
and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then
resumeNotification() shall be implemented also. Ifa Framework is capable of invoking the
IpSvcLoadManager.querySvcLoadStatsReq() method, then it shall imple ment querySvcLoadStatsRes() and
querySvclLoadStatsErr() methods in this interface.

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

createLoadLevelNotification (notificationSubject : in TpSubjectTy pe) : void
destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : woid
suspendNoatification (notificationSubject : in TpSubjectType) : wid
resumeNoatification (notificationSubject : in TpSubjectType) : woid

gueryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubiject : in TpSubjectType, timelnterval : in
TpTimelnterval) : void

guerySwvclLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

guerySwvclLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in TpLo adStatisticError) :
void

8.3.4.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load
level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).
At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In
addition this method shall be called by the service instance in order to report current load status, when load notifications
are first requested, or resumed after suspension.

Parameters
loadLevel : in TpLoadLevel
Specifies the service instance’s load level.

Raises

TpCommonExceptions

3GPP

Release 9 133 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.3.4.7.2 Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the
framework or with the application that uses the service instance. Upon receipt of this method the fra mework shall
inform the service instance of the current framework or application load using the loadLevelNotification method on the
corresponding IpSvcLoadManager.

Parameters
notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.

Raises

TpCommonExceptions

8.3.4.7.3 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the
framework or with the application that uses the service instance.

Parameters
notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises

TpCommonExceptions

8.3.4.7.4 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the
framework or with the application that uses the service instance; e.g. while the service instance handles a temporary
overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be
suspended.

Raises

TpCommonExceptions

3GPP

Release 9 134 3GPP TS 29.198-3 vV9.0.0 (2009-12)

8.3.4.7.5 Method resumeNoatification()

The service instance uses this method to request the framework to resume sending it notifications associated with the
framework or with the application that uses the service instance; e.g. after a period of suspension during which the
service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the
service instance of the current framework or application load using the loadLevelNotification method on the
corresponding IpSvcLoadManager.

Parameters
notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the
framework should be resumed.

Raises

TpCommonExceptions

8.3.4.7.6 Method queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or
for the application that uses the service instance.

Parameters

loadStatsReqID : in TpLoadTestID
The identifier provided by the service instance to correlate the response (when it arrives) with this request.

querySubject : in TpSubjectType
Specifies the entity (framework or application) for which load statistics records should be reported.

timeInterval : in TpTimeInterval
Specifies the time interval for which load statistics records should be reported.

Raises

TpCommonExceptions

8.3.4.7.7 Method querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the
information; i.e. in response to an invocation of the querySvclLoadStatsReq method on the IpSvcLoadManager
interface.

Parameters
loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.

loadStatistics : in TploadStatisticList

Specifies the service-supplied load statistics.

3GPP

Release 9 135 3GPP TS 29.198-3 V9.0.0 (2009-12)

Raises

TpCommonExceptions

8.3.4.7.8 Method querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's
load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in
response to an invocation of the querySvclLoadStatsReq method on the IpSvcLoadManager interface.

Parameters

loadStatsReqID : in TploadTestID
Used by the framework to correlate this error (when it arrives) with the original request.

loadStatisticError : in TpLoadStatisticError
Specifies the error code associated with the failed attempt to retrieve the service instance'’s load statistics.

Raises

TpCommonExceptions

8.3.4.8 Interface Class IpSvcLoadManager
Inherits from: Ip Interface.

The service developer supplies the load manager service interface to handle requests, reports and other responses from
the framework load manager function. The service instance supplies the identity of its callback interface at the time it
obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess
interface.

If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as
a minimum requirement. If load level notifications are supported, then loadLevelNotification() shall be implemented. If
a Service is capable of invoking the IpFwLoadManager.queryLoadStatsReq() method, then it shall implement
queryLoadStatsRes() and queryLoadStatsErr() methods in this interface.

<<Interface>>

IpSwcLoadManager

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : woid

suspendNatification () : void

resumeNotification () : woid

createLoadLevelNotification () : wid

destroyL oadLevelNotification () : woid

guerySwvclLoadStatsReq (loadStatsReqID : in TpLoadTestID, timelnterval : in TpTimelnterval) : void
gueryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : woid
gueryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

3GPP

Release 9 136 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.3.4.8.1 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from0to 1, 0 to 2, 1to 0, for the application or
framework which has been registered for load level notifications) this method is invoked on the SCF. In addition this
method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are
first requested, or resumed after suspension.

Parameters
loadStatistics : in TploadStatisticList
Specifies the framework-supplied load statistics, which include the load level change(s).

Raises

TpCommonExceptions

8.3.4.8.2 Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the
framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.3 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of
suspension during which the framework handled a temporary overload condition. Upon receipt of this method the
service instance shall informthe framework of the current load using the reportLoad method on the corresponding
IpFwLoadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

3GPP

Release 9 137 3GPP TS 29.198-3 v9.0.0 (2009-12)

8.3.4.8.4 Method createLoadLevelNotification()
The framework uses this method to register to receive notifications of load level changes associated with the service

instance. Upon receipt of this method the service instance shall inform the framework of the current load using the
reportLoad method on the corresponding IpFwLoadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.5 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service
instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.6 Method querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters
loadStatsReqID : in TpLoadTestID
The identifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

Raises

TpCommonExceptions

8.3.4.8.7 Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the service instance that requested the
information; i.e. in response to an invocation of the queryLoadStatsReq method on the IpFwLoadManager interface.

3GPP

Release 9 138 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

loadStatsReqID : in TpLoadTestID
Used by the service instance to correlate this response (when it arrives) with the original request.

loadStatistics : in TploadStatisticList
Specifies the framework-supplied load statistics.

Raises

TpCommonExceptions

8.3.4.8.8 Method queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework’s load statistics
information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an
invocation of the queryLoadStatsReq method on the IpFwLoadManager interface.

Parameters
loadStatsReqID : in TpLoadTestID
Used by the service instance to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TploadStatisticError
Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

8.3.49 Interface Class IpFWOAM

Inherits from: Ip Interface.

The OAM interface is used to query the systemdate and time. The service and the framework can synchronise the date
and time to a certain extent. Accurate time synchronisation is outside the scope of this API. This interface and the
systemDateTime Query() method are optional.

<<Interface>>
IpFWOAM

systemDate TimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.9.1 Method systemDateTimeQuery()

This method is used to query the systemdate and time. The client (service) passes in its own date and time to the
framework. The framework responds with the systemdate and time.

3GPP

Release 9 139 3GPP TS 29.198-3 V9.0.0 (2009-12)
Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters
clientDateAndTime : in TpDateAndTime

This is the date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT is returned if the
format of the parameter is invalid.

Returns
TpDateAndTime

Raises
TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

8.3.4.10 Interface Class IpSvcOAM
Inherits from: Ip Interface.

This interface and the systemDateTimeQuery() method are optional.

<<Interface>>

IpSwc OAM

systemDate TimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its
own date and time.

Returns <clientDateAndTime> : This is the date and time of the client (service).

Parameters

systemDateAndTime : in TpDateAndTime

This is the systemdate and time of the framework. The error code P_INVALID_DATE TIME_FORMAT is returned
if the format of the parameter is invalid.

3GPP

Release 9 140 3GPP TS 29.198-3 V9.0.0 (2009-12)

Returns
TpDateAndTime

Raises
TpCommonExceptions, P_INVALID TIME AND DATE FORMAT

8.3.5 Event Notification Interface Classes

8.35.1 Interface Class IpFwE ventNotification
Inherits from: Ip Interface.

The event notification mechanism is used to notify the service of generic events that have occurred. If Event
Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification()
methods shall be supported.

<<Interface>>

IpFwWE vent Notification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8.3.5.1.1 Method createNotification()
This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters
eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the service to define the event required.

Returns
TpAssignmentID

Raises
TpCommonExceptions, P_INVALID EVENT TYPE, P INVALID CRITERIA

8.3.5.1.2 Method destroyNotification()

This method is used by the service to delete generic notifications from the framework.

3GPP

Release 9 141 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment 1D does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT_ID.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

8.3.5.2 Interface Class IpSvcE ventNotification
Inherits from: Ip Interface.

This interface is used by the framework to inform the service of a generic event. The Event Notification Framework
will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface
is obtained. If Event Notifications are supported by a Service, this interface and the reportNotification() and
notificationTerminated() methods shall be supported.

<<Interface>>

IpSwcE ventNotification

reportNotification (eventinfo : in TpFwE ventinfo, assignmentID : in TpAssignmentID) : woid

notificationTerminated () : woid

8.3.5.2.1 Method reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters
eventInfo : in TpFwEventInfo
Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The service
can use the assignment id to associate events with event specific criteria and to act accordingly.

Raises
TpCommonExceptions, P_INVALID ASSIGNMENT ID

3GPP

Release 9 142 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.3.5.2.2 Method notificationTerminated()

This method indicates to the service that all generic event notifications have been terminated (for example, due to faults
detected).

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart fromthe methods that can be invoked by the client also events internal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

8.4.1 Service Registration State Transition Diagrams

8.4.1.1 State Transition Diagrams for IpFwServiceRegistration

3GPP

Release 9 143 3GPP TS 29.198-3 V9.0.0 (2009-12)

registerService

SCF]

Registered

unannounceSenice announceServiceAvailability

describeService

" SCF \
‘ Announced

unregisterService

°

Figure : State Transition Diagram for IpFw ServiceRegistration

8.4.1.1.1 SCF Registered State

This is the state entered when a Service Capability Server (SCS) registers its SCF in the Framework, by informing it of
the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework
associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

84.1.1.2 SCF Announced State

This is the state entered when the existence of the SCF has been announced, thus making it available for discovery by
applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it is no
longer available for discovery.

8.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager

8.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery

3GPP

Release 9 144 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.4.4 Integrity Management State Transition Diagrams

8.44.1 State Transition Diagrams for IpFwLoadManager

reportLoad

“load change” oadLevelNotification gyerySwcLoadStatsRes| load statistics requested by LoadManager]
uerySvclLoadStatsEr load statistics requested by LoadManager]

createLoadLeelNotification NoadLewelNotification J Active ™ queryLoadStatsReq

destroyLoadLewelNotification

IpAccess\obtainl
IpAccess\gbtaininterfaceWithCallback

(dle

resumeNotification
~NoadLevelNotification

reportLoad
querySvcLoadStatsRes| load statistics requested by LoadManager]
querySwcLoadStatsEr| load statistics requested by LoadManager]

Notification queryLoadStatsReq
Suspended
destroyLoadLewelNotification
suspendNotification

[all notifications suspended]
"’ All States

—

IpAccess.terminateAccess

®

Figure : State Transition Diagram for IpFwLoadManager

8.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager fromthe IpAccess interface.

8.4.4.1.2 Notification Suspended State

Due to e.g. a temporary load condition, the service has requested the LoadManager to suspend sending the load level
notification information.

8.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createLoad LevelNotification()
invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics
information (by invoking querySvcLoadStatsReq()). Furthermore the LoadManager can request the service to control
its load (by invoking loadLevelNotification(), resume Notification() or suspendNotification() on the service side of
interface). In case the service detects a change in load level, it reports this to the Load Manager by calling the method
reportLoad().

3GPP

Release 9 145 3GPP TS 29.198-3 V9.0.0 (2009-12)

8.44.2 State Transition Diagrams for IpFwFaultManager

IpAccess.obtaininterfaceWithCallback("FaultManagement")
/ add service to fault management

‘change in framework availability (non fault)' “fwAvailStatusind to all services with callback
‘change in application availability' ~appAvailStatusind to all services used by application

appUnavailablelnd / test the application, inform application that service is not using it
generateFaultStatisticsRecordReq “svc.generateFaultStatisticsRecordRes / Err

application fault ~appAvailStatusind to all
services used by the application J Framework
Active

no fault detected

A f activityTestReq[framework]
activityTestRegfClient]

fault|resolved
no fault detected

o = Framework Activity Test
Application Activity Test
IpAccessterminateAccess

entry/ test activity of framework
exit/ "lpSvcFaultManager.activityTestRes
exit/ "lpSvcFaultManager.activityTestErm

entry/ test activity of application
exit/ MlpSvcFaultManager.activityTestRes
exit/ MpSvcFaultManager.activityTestErr

IpAcce inateAccess/

Abort pending IpAccess.termiffateAccess /

Abort pendifg test request

fault detected in

IpAccess.terminateAccess / remove
service from load management
fault detected in fw

Framework Faulty

entry/ MwAuvailStatusind to all services with callback
exit/ MwAvailStatusind to all serviceswith callback

Figure : State Transition Diagram for IpFwFaultManager

8.4.4.2.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications
and service capability features.

8.4.4.2.2 Framework Activity Test State

In this state, the framework is performing a self-diagnostic test. If a problem is diagnosed, all services with fau lt
manage ment callbacks are notified through an fwAvailStatusind message.

8.4.4.2.3 Application Activity Test State

In this state, the framework is performing a test on one client application. If the application is faulty, services that are
used by the application and that have provided fault management callbacks are notified accordingly through an
appAvailStatusind message.

8.4.4.2.4 Framework Faulty State
In this state, the framework has detected an internal problem with itself such that application and service capability
features cannot communicate with it any more; atte mpts to invoke any methods that belong to any SCFs of the

framework return an error. If the framework ever recovers, services with fault management callbacks will be notified
via a fwAvailStatusIind message.

8.4.5 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification

3GPP

Release 9 146 3GPP TS 29.198-3 V9.0.0 (2009-12)

8a Framework-to-Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of thes e applications) must explicitly
subscribe to the services before the client applications can access those services. To accomplish this, they use the
service subscription function of the Framework for subscribing or un-subscribing to services. Subscription represents a
contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the
role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of
the service.

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in
the role of users or consumers of services. The framework itself acts in the role of retailer of services. The following
examples illustrate these roles:

. Service (to be subscribed): Call Centre Service, Mobility Service, etc.
. Framework Operator: AT&T, BT, etc.

. Enterprise Operator: A Financial institution such as a Bank or Insurance Company, or possibly an Application
Service Provider (Such an enterprise has a conformant Subscription Application in its domain which "talks" to
its peer in the Framework).

. User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call
Centre Service or the Mobility Service.

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before
a client application of the enterprise can use the new service. In general, the service subscription is performed after an
off-line negotiation of a set of services and the associated price between the framework operator and the enterprise
operator. The service subscription is performed online by the enterprise operator in the frame of an existing off-line
negotiated contract between the framework operator and the enterprise. The on-line service subscription function is used
for subscriber, client application, and service contract management. The following clause describes aservice
subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service
subscription process. The subscription process involves the enterprise operator (which acts in the role of service
subscriber) and the Framework (which acts in the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through a retailer, such
as the Framework. An enterprise operator represents an organisation or a company which will be hosting client
applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to
the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about
the service usage with the Framework, using an on-line subscription interface provided by the Framework. The
Framework provides the service according to the service contract. The Enterprise Operator authorises the client
application in his/her domain for the service usage. Finally a subscribed service can be used by a particular client
application.

3GPP

Release 9 147 3GPP TS 29.198-3 V9.0.0 (2009-12)

Enterprise Operator (In the role
of Service Subscriber)

Signs contract about service usage

Framework (In the role
of Service Retailer)

Authorises

o~ Uses service

Client Application (In the role of
User or Consumer of Services)

Figure: Subscription Business Model

The interfaces between an enterprise operator and the client applications in its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of
services each of themshould be allowed access to, using the subscription interfaces offered by the Framework. The
Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service
contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the
framework domain, the client applications and service contracts belonging to its domain.

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object is identified by a
unique ID and contains the enterprise operator properties. The EntOp ID is a unique identifier of an enterprise operator
in the Framework domain. It is created by the Framework Operator during the pre-subscription off-line negotiation of
services (and their price, etc.) phase. The enterprise operator properties contain information such as the name and
address of the enterprise operator (individual or organisation), service charge payment information, etc. The enterprise
operator domain has one or more client applications associated with it. The enterprise operator may group a sub-set of
client applications in its domain in order to assign the same set of service features to the group. Such a group is called a
Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGs in its domain. A SAG relates a
client application to the features of a service. A client application may be a member of multiple SAGs, one for each
service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each
service. Each service subscription is described by a service contract which defines the conditions for the service
provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or
more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service
parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the
SAGs needs. A service profile is therefore a restriction of the service contract in order to provide restricted service
features to a SAG. It is identified by a unique 1D (within the framework domain) and contains a set of service
properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

3GPP

Release 9 148 3GPP TS 29.198-3 V9.0.0 (2009-12)

Client Applications and SAGs in the Enterprise Domain

Service Contracts for Individual Services
Subscribed by Enterprise Opera

Service Profiles in a Service Contract

Figure: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application is related to the enterprise operator for the usage of a service. The client application is
represented in the Framework domain as a clientApp object. The clientApp object is identified by a unique 1D and
contains a set of client application properties describing the client application relevant information for subscription.
Each client application is part of at least one SAG, which can contain one or more client applications. Each SA G has
one service profile per service that defines the preferences of the SAG members for the usage of thatservice. A SAG
can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on
behalf of the SAG members. The figure above shows the relationship between client application objects, SAGs, service
contracts and service profiles.

An enterprise operator may not want to grant all client applications in its domain the same service characteristics and
usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service
Profile to each group. A client application can be assigned to more than one service profile for a given service, as long
as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to
two SAGs. One of these SAGs uses ServiceProfilel to control access to service 1. The other uses ServiceProfile3 to
control access to service 1. If the dates in the two service profiles overlap, as is the case here, then it cannot be
determined when the client signs the service agreement which service profile should be used. Forexample, if the client
application signed the service agreement on February the 8" then it could not be determined which of service profile 1
or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of
the service profiles to use. A SAG may have multiple service profiles, one for each subscribed s ervice, associated with
it.

3GPP

Release 9

149

Client
App.1

erviceProfile
Start: 02, Feb
End: 10, Feb

ServicelD: 1

Figure:

SAG

App.2

Client

Start: 02, Feb
End: 10, Feb
ServicelD: 2

Enterprise
Operator 1

3GPP TS 29.198-3 V9.0.0 (2009-12)

SAG
Client Client

App.1 App.3

erviceProfile
Start: 08, Feb
End: 30, Feb

ServicelD: 1

Overlapping date fields in service profiles

Enterprise
Operator 2

Enterprise
Operator 3

CIe

Figure: Multiple Enterprise Operators

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise
operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator
(if the services offered through the framework belong to a single network — it is even possible that the network operator
will be the only enterprise operator). It is possible, however, that each service registered with the framework could
actually be in a different network. The client application 1Ds have to be unique within the framework. The framework
operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the
enterprise operators to provide a set of client application 1Ds that are meaningful to them.

Service subscription and subscription manage ment requires a careful delineation of subscription-related functions. The
service subscription interfaces are classified in the following categories:

. Enterprise Operator Account Management.

. Enterprise Operator Account Query.

. Service Contract Management.

3GPP

Release 9 150 3GPP TS 29.198-3 V9.0.0 (2009-12)

. Service Contract Query.

. Service Profile Management.

. Service Profile Query.

. Client Application Management.
. Client Application Query.

Only the enterprise operator, which is registered and later on authenticated, is allowed to use these interfaces.

8a.1 Sequence Diagrams

8a.1.1 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

8a.1.2 Service Subscription Sequence Diagrams

8a.l.2.1 Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behalf
of'the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must
have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services
provided by the framework using the IpService Discovery interface. Initially, the enterprise operator obtains a list of
service types supported by the framework by invoking listServiceTypes() on IpService Discovery interface. Then it
obtains the description of a service type using describeServiceType() to find out the set of properties applicable to a
particular service type. Subsequently it invokes discoverService() to discover the services of a given type which
supports the desired set of property values. The discoverService() method returns a list of "servicelDs" and their
associated property values. The service discovery phase is followed by the service subscription phase. The enterprise
operator uses the IpService ContractManagement and IpServiceProfileManagement interfaces to performservice
subscription.

The enterprise operator invokes the createServiceContract() on IpService ContractManagement interface to subscribe to
a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by
their "serviceID" or by their service type. In the former case only the specific service can be used by the enterprise
operator and its client applications. In the latter case, all registered services of the given type can be used. The enterprise
operator may create multiple service profiles (each of which are a restriction of the service contract) by invoking
createServiceProfile() on Ip Service ProfileManagement interface and assign each service profile to a different
Subscription Assignment Group (SA G), using assign() method. This allows an enterprise operator to assign different
service privileges to different client application groups. During the life time ofa service contract, the enterprise operator
may perform service contract and service profile management functions, such as modifying the service profiles
(modifyServiceProfile()) and service contract (modifyService Contract()), re -assigning the service profiles to a SAG
(assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles
(deleteServiceProfile()), etc. These methods may be interleaved in any logical order. The enterprise operator or the
client applications, can at any time obtain a list of currently subscribed services by invoking listSubscribedServices()
method on the IpServiceDiscovery interface. This method returns a list of serviceIDs of the set of subscribed services.
The service contract ceases to exist after the specified end date. The deleteServiceContract deletes the service contract
object held in the framework. It is up to the discretion of the Framework operator to allow the enterprise operator to
delete a service contract before its specified end date.

3GPP

Release 9 151 3GPP TS 29.198-3 V9.0.0 (2009-12)

After the service subscription is performed the client applications can access and use the set of subscribed services in
addition to the set of freely available services. In order to start a service, the interface reference of the service is
required. The discoverService() method or the listSubscribedServices() method, described above, return the
"serviceID". The interface reference of the service is obtained in the service access phase. The service access phase
begins with the client applications selecting the service, via the selectService() method, and signing a service
agreement, via the signService A greement() method. The selectService() method is used by the client application to
identify the service that it wants to initiate. The input to the selectService() is the "serviceID" returned by the
discoverService() or the listSubscribedServices() and the output is a "serviceToken". The serviceToken is free format
text token returned by the framework, which can be used as part of a service agreement. If the service is not subscribed
by the enterprise operator, then a "service not subscribed" exception is raised. The signServiceAgreement() is invoked
by the client application on the framework to sign an agreement on the service. The input to this method is the s ervice
token returned by the selectService() method. The sign service agreement is used as a way of non -repudiation of the
intention to use the service by the client application. The successful completion of the signServiceAgreement() returns
the interface reference to the service (or to its service manager). The client application can then use this interface
reference to start the service.

L L _IpAccess _ IpServiceDiscovery - IpSenviceContractManagement + IpServiceContractinfoQuery - IpSen IpServiceP) Quer
EnterpriseOperator | | ClientApplication
| ‘Auth. phase
followed by

1: obtaininterface()

L

2 listServiceTypes(

S s N s N

|

| : describeServiceType() 1

U Find desired [

| Services

| 4: discoverService() T
g

5: obtaininterface()

L

Subscribe I
the Services
6: createServiceContract(in TpServiceContractDe prercs

—

L

create more
SPsinSC

| 7: createSenviceProfile(

8 assign()

9: modifyServiceProfile(

10: assign()

11: describeServiceProfile()

12: deleteSenviceProfile(

13: modifyServiceContract(in TpServiceContract)

14: listSubscribedServices()

15} listSubscribedServices()

16: describeServiceContract()

17: createServiceContract(in TpServiceContrac{Description)

-\

3GPP

Release 9 152 3GPP TS 29.198-3 V9.0.0 (2009-12)

8a.1.2.2 Enterprise Operator and Client Application Subscription Management
Sequence Diagram

The first step in the service subscription process is the creation of an account for the enterprise operator. The creation of
enterprise operator accounts is performed by the Framework Operator via interfaces outside of the present document.
When the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator
(acting in the role of service subscriber) can then create accounts within the framework for all of the client applications
in its domain. The enterprise operator obtains the reference to the IpEntOpManagement interface by invoking
obtainInterface() on the IpAccess interface. The enterprise operator at any time may inspect its subscription account by
invoking describeEntOpAccount on the IpEntOpAccountInfoQuery interface and mo dify the subscriber-related
information contained in its subscription account by invoking modify EntOpAccount() on IpEntOpAccountManagement
interface.

An enterprise operator usually has many client applications in its enterprise domain. These client applic ations must be
registered within the framework so that the set of services subscribed to by the enterprise operator (through
createService Contract()) can be assigned to these client applications by associating a service profile (a restriction of
service contracts) with a group of client applications, called a Subscription Assignment Group (SA G). In order to create
an account for individual client applications, the enterprise operator invokes createClientApp() on
IpClientAppManagement interface. The enterprise operator groups a related set of client applications in a SA G so that
the same service profile can be assigned to them. The enterprise operator may create an empty SA Gby invoking
createSA 5() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly
created SA Gby invoking addSAGMembers() on Ip ClientAppManagement interface. The enterprise operator also
performs other client application / SA G management functions such as modify ClientApp(), deleteClientApp(),
modifySA G(), listSA Gs(), listSA GMembers(), addSA Gmembers(), removeSA Gmembers()etc. These methods can be
interleaved in any logical order. Finally, the enterprise operator (or the framework operator) can delete its subscription
account by invoking deleteEntOpAccount() on IpEntOpAccountManagement interface.

3GPP

Release 9 153 3GPP TS 29.198-3 V9.0.0 (2009-12)

Enterprise Eramework : IpAccess = - - -
Operator IpEntOpAccountManagement IpEntOpAccountinfoQuery | | IpClientAppManagement | | IpClientAppinfoQuery

Operator

| The Enterprise Operator
account has already been created.
Auth. Phase followed by:

1: obtaininterface()

7

| 2: describeEntOpAccount()

3: modifyEntOpAccount()

4: obtaininterface()

5: createClientApp()

Create more client ﬁ U

apps

6: createSAG()

7: addSAGMembers()

8: modifyClientApp()

9: modifySAG()

—1

10: deleteClientApp()

11: removeSAGMembers()

12: modifySAG()

13: obtain|nterface()

14: listSAGS()

15: listSAGMembers()

16: deleteEntOpAccount()

8a.2 Class Diagrams

3GPP

Release 9 154 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<|nterface>>
IpClientE ventNotification
(from Client Interfaces)

“®reportNotification()
“notificationTerminated()

<<Lses>>

<<|Interface>>
IpEventNotification
(from Framework Interfaces)

®createNotification()
“destroyNotification()

Figure: Event Notification Package Overview

<<Interface>>
<<Interface>> IpClientAPILevelAuthentication

IpClientAccess (from Client interf aces)
(from Client interfaces)

%abortAuthentication()

#terminateAccess() %authentication Succeeded()
T %challenge()
? A
<<uses>> <<sag>>
<<Interface>> <<Interface>>
IpAccess IpAPILevelAuthentication
<<Interface>> (from Framewirk interf aces) {from Framewiork interfaces)
IpInitial
(from Framenerik interfaces) %obtaininterface() %abortAuthentication()
O L . %obtaininterfaceWithCallback() %authentication Succeeded()
initiate Authentication\WithVersion() %listinterfaces() %selectAuthenticationMechanism ()
%selectSigningAlgorithm() %challenge()
*‘terminateAccess()
%relinquishinterface() %7

<<Interface>>
IpAuthentication
(from Framework interf aces)

%requestAccess()

Figure: Trust and Security Management Package Overview

3GPP

Release 9 155 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<|nterface>>
IpClientAppManagement
(from Framework interfaces)
<<Interface>>
IpClientApplnfoQuery @c reateClientApp()
(from Frameworkinterfaces) *modifycnentApp()
%deleteClientApp()
%describeClientApp() %createSAG()
%listClientApps() $modifySAG()
®describeSAG() ®deleteSAG()
istSAGs() ®addSAGMembers()
®listSAGMembers) #removeSAGMembers)
%listClientAppMembership() @requestConflictinfo()
<<Interface>> <<Interface>>
<<Interface>> IPEntOpAccountManagement IpServiceContractinfoQuery

(from Frameworkinterfaces) (from Framework interfaces)

IpEntOpAccountinfoQuery

(from Framework interfaces)

“modify EntOpAccount() %describeSeniceContract()
$deleteEntOpAccount() %istServiceContracts()

¥listServiceProfiles()

%describeEntOpAccount()

<<|nterface>>

<<Interface>> IpSeniceProfileManagement
IpSenviceProfilelnfoQuery (from Framework interfaces)
(from Framewotk interfaces)

<<Interface>>
IpServiceContractManagement
(from Framework interfaces)

%createServiceProfile()

i i %createSeniceContract
et Sy | | Aedesmiescoest
describeServiceProfile() %deleteSeniceProfile() SdeloteSoniceC
®listAssignedMembers () ®assign() eleteSeniceContract()
®deassign()

%requestConflictinfo()

Figure: Service Subscription Package Overview

8a.3 Interface Classes

8a.3.1 Event Notification Interface Classes

8a.3.1.1 Interface Class IpClientEventNotification
Inherits from: Ip Interface.

This interface is used by the framework to inform the client of a generic event. The Event Notification Framework will
invoke methods on the Event Notification Client Interface that is specified when the Event Notification interface is
obtained.

3GPP

Release 9 156 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpClientE ventNotification

reportNotification (eventinfo : in TpFwE ventlnfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : wid

8a.3.1.1.1 Method reportNotification()

This method notifies the client of the arrival of a generic event.

Parameters
eventInfo:in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID:in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotification() method. The client
can use assignment id to associate events with event specific criteria and to act accordingly.

8a.3.1.1.2 Method notificationTerminated()
This method indicates to the client that all generic event notifications have been terminated (for example, due to faults

detected).

Parameters
No Parameters were identified for this method.

8a.3.1.2 Interface Class IpEventNotification

Inherits from: Ip Interface.

The event notification mechanism is used to notify the client of generic events that have occurred. If Event Notifications
are supported by a Framework, this interface and the createNotification() and destroyNotification() methods shall be

supported.

<<Interface>>

IpE ventNotification

createNotification (eventCriteria : in TpFwE ventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8a.3.1.2.1 Method createNotification()
This method is used to enable generic notifications so that events can be sent to the client.

Returns <assignmentID>: Specifies the ID assigned by the framework for this newly installed notification.

3GPP

Release 9 157 3GPP TS 29.198-3 vV9.0.0 (2009-12)

Parameters
eventCriteria:in TpFwEventCriteria

Specifies the event specific criteria used by the client to define the event required.

Returns
TpAssignmentID

Raises

TpCommonExceptions, P_ACCESS DENIED, P _INVALID CRITERIA,
P_INVALID_ EVENT TYPE

8a.3.1.2.2 Method destroyNotification()

This method is used by the client to delete generic notifications fromthe framework.

Parameters
assignmentID:in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the
assignment 1D does not correspond to one of the valid assignment IDs, the framework will return the error code
P_INVALID_ASSIGNMENT_ID.

Raises
TpCommonExceptions, P _ACCESS DENIED, P INVALID ASSIGNMENT ID

8a.3.2 Service Subscription Interface Classes

8a.3.2.1 Interface Class IpClientAppManagement
Inherits from: Ip Interface.

If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the
enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator
must use the client application management interface, to which (s)he can subscribe as a privileged user. The client
application management interface is intended for cases where an organisation wants to allow several client applications
to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client
applications and SAGs, delete themand to modify subscription related information concerning the client applications
and the SAGs. Client applications use the subscribed services in the enterprise operator's name. The main task of client
application management is to register, modify and delete client applications (Client Application Management), and
manage groups of client applications, called Subscription Assignment Groups (SA G Management).

3GPP

Release 9 158 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpClientAppManagement

createClientApp (clientAppDescription : in TpClientAppDescription) : void
modifyClientApp (clientAppDescription : in TpClientAppDescription) : void
deleteClientApp (clientAppID : in TpClientApplID) : woid

createSAG (sag : in TpSag, clientAppIDs : in TpClientApplIDList) : void

modifySAG (sag : in TpSag) : wid

deleteSAG (saglID : in TpSagID) : woid

addSAGMembers (sagID : in TpSaglD, clientAppIDs : in TpClientApplDList) : void
removeSAGMembers (saglID : in TpSagID, clientAppIDList : in TpClientAppIDList) : void
requestConflictinfo () : TpAddSagMembersConflictList

8a.3.2.1.1 Method createClientApp()

A client application is represented in the Framework domain as a "clientApp object”. This method creates a new
clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other
subscription related client application's properties stored in it.

Parameters
clientAppDescription:in TpClientAppDescription

The "clientAppDescription™ parameter contains the clientApp ID that is to be associated with the newly created
clientApp object and the subscription-related "client application properties”. The clientApp ID must be a unique ID
across frameworrk, if the ID already exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client
application properties are a list of name/value pairs. The client application properties are an item for bi-lateral
agreement between the enterprise operator and the framework operator.

Raises
TpCommonExceptions, P_ACCESS DENIED, P_INVALID CLIENT APP_ID
8a.3.2.1.2 Method modifyClientApp()

Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

clientAppDescription:in TpClientAppDescription

The "clientAppDescription” parameter contains the modified client application information. If the clientApp ID does
not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

3GPP

Release 9 159 3GPP TS 29.198-3 V9.0.0 (2009-12)

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP_ID

8a.3.2.1.3 Method deleteClientApp()

Delete the specified client application associated with the enterprise operator. If the client application currently has an
access session with the framework then this will be terminated, along with any service instances it may have created.
An exception of "P_TASK_REFUSED" will be raised if a non-associated enterprise operator invokes this method.

Parameters
clientAppID:in TpClientAppID

The "clientAppID" parameter identifies the client application that is to be deleted. If the clientAppID does not exist, a
"P_INVALID_CLIENT_APP_ID" exception will be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P_INVALID CLIENT APP_ID

8a.3.2.1.4 Method createSAG()

Create a new SA G associated with the enterprise operator. The SAGobject is identified by a SAG - ID and contains
SAG - specific description.

Parameters
sag:in TpSag

The "sag" parameter contains the SAG-ID and SA G-specific description. This sagID is particular to the SAG, and must
be unique across framework. If the sagID supplied already exists, an exception of type "P_INVALID_SAG_ID" would
be raised.

clientAppIDs:in TpClientAppIDList

The "clientApplIDs" parameter contains the list of client application IDs that are to be associated with the newly created
SAG.
Raises

TpCommonExceptions, P_ACCESS DENIED, P _INVALID CLIENT APP ID,
P_INVALID_SAG_ID

8a.3.2.15 Method modifySAG()

Modify the description of an existing SA G associated with the enterprise operator. An exception of
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

sag:in TpSag

The "sag" parameter contains the modified SA G-specific description. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" would be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SAG ID

8a.3.2.1.6 Method deleteSAG()

Delete an existing SAG. Only the enterprise operator associated with the SAG is allowed to delete it, an exception
"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

3GPP

Release 9 160 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters
sagID:in TpSagID

The "sagID" parameter identifies the SAGthat is to be deleted. If the SAG ID does not exist, an exception
"P_INVALID_SAG_ID" is raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P_INVALID_ SAG_ID

8a.3.2.1.7 Method addSAGMembers()

Add the specified client applications to the specified SA G associated with the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to assign members to it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method. Each client application may be assigned to a service
only through asingle service profile at a particular moment in time. If this condition is violated, a
"P_INVALID_ADDITION_TO_SAG" would be raised. In this case, no partial execution of this method is performed.
The enterprise operator can query further information about this invalid addition using the method
requestConflictinfo().

Parameters
sagID:in TpSagID

The "sagID" parameter identifies the SA G object to which the client applications are to be added. If the SAGID does
not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientBAppIDs:in TpClientAppIDList

The "clientAppIDs™ parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The
clientApp objects are first created using the createClientApp() method. If one or all of the client application IDs in the
list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P _INVALID CLIENT APP ID,
P_INVALID SAG ID, P_INVALID ADDITION TO SAG

8a.3.2.1.8 Method removeS AGMembers()

Delete specified client applications from the specified SA G object of the enterprise operator. Only the enterprise
operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be
raised if a non-associated enterprise operator invokes this method.

Parameters
sagID:in TpSagID

The "sagID" parameter identifies the SA G from which the client applications are to be removed. If the SAG ID does not
exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDList:in TpClientAppIDList

The "clientAppIDList™" parameter contains the list of the clientApp IDs that are to be removed fromthe specified SAG.
If one or all of the client application IDs in the list does not exist, an exception "P_INVALID_CLIENT_APP_ID"
would be raised.

3GPP

Release 9 161 3GPP TS 29.198-3 V9.0.0 (2009-12)

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID CLIENT APP_ID,
P_INVALID SAG_ID

8a.3.2.1.9 Method requestConflictinfo()

Requests details about the latest conflict that occurred during performing the method addSagMembers() on this
interface (i.e. Information about the invocation of addSagMembers() that raised a
P_INVALID_ADDITION_TO_SAG). Each client application may be assigned to a service only through a single
service profile at a particular moment in time. The enterprise operator might try to add a client application to a SAG,
where both, the client application and the SAG are already assigned to the same service through different service
profiles. As this may happen in one method call for multiple client applications, a conflict list is generated.

It is only possible to retrieve information about the last conflicting addSagMembers() method call; information about
previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAddSagMembersConflictList>: The list of conflicts of the last invocation of addSagMembers() that raised
aP_INVALID_ADDITION_TO_SAG. Each conflict contains the following elements:

a. The conflict generating client application.
b. The SAGand the service profile through which the conflict generating client application is already assigned to
the conflict generating service. It includes the current service profile.

c. The SAG, to which the conflict generating client application should be added. However, this SAG is already
assigned to a concurrent service profile concerning the conflict generating service. This creates a conflict, as each client
application may be assigned to a service only through a single service profile at a particular moment in time.

d. The conflict generating service.

Parameters
No Parameters were identified for this method.

Returns
TpAddSagMembersConflictList

Raises
TpCommonExceptions, P_ACCESS DENIED

8a.3.2.2 Interface Class IpClientAppInfoQuery
Inherits from: Ip Interface.

This interface is used by the enterprise operator to list the client applications and the SAGs in its domain and to obtain
information about them.

3GPP

Release 9 162 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpClientAppInfoQuery

describeClientApp (clientAppID : in TpClientAppID) : TpClientAppDescription
listClientApps () : TpClientAppIDList

describeSAG (saglD : in TpSagID) : TpSagDescription

listSAGs () : TpSagIDList

listSAGMembers (sagID : in TpSagID) : TpClientAppIDList
listClientAppMembership (clientAppID : in TpClientAppID) : TpSaglDList

8a.3.2.2.1 Method describeClientApp()

Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription>: The "clientAppDescription” parameter contains the clientApp description.

Parameters
clientAppID:in TpClientAppID

The "clientApplID" parameter identifies the clientApp object whose description is requested.

Returns
TpClientAppDescription

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP_ID

8a.3.2.2.2 Method listClientApps()
Get a list of all client applications belonging to an enterprise operator.

Returns <clientApplIDs>: The "clientApplDs" parameter identifies the list of client applications in the enterprise
operator domain.

Parameters
No Parameters were identified for this method.

Returns
TpClientAppIDList

Raises
TpCommonExceptions, P_ACCESS DENIED

8a.3.2.2.3 Method describeSAG()

Query information about the specified SA G associated with the enterprise operator.

Returns <SagDescription>: The "sagDescription" parameter returns the SAG-specific description.

3GPP

Release 9 163 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters
sagID:in TpSagID

The "sagID" parameter identifies the SA G whose description is required.

Returns
TpSagDescription

Raises

TpCommonExceptions, P_ACCESS DENIED, P INVALID SAG ID
8a.3.2.2.4 Method listSAGs()

Get a list of all SAGs associated with an enterprise operator.

Returns <SaglIDList>: The "sagIDList" parameter returns the list of the identifiers of the SA Gs associated with the
enterprise operator.

Parameters
No Parameters were identified for this method.

Returns
TpSagIDList

Raises

TpCommonExceptions, P_ACCESS DENIED
8a.3.2.25 Method listSAGMembers()

Get a list of all client applications associated with the specified SAG.

Returns <clientAppIDList>: The "clientApplIDList™ parameter returns the list of the client applications associated with
the SAG.

Parameters
sagID:in TpSagID
The "sagID" parameter identifies the SA G whose clientApplD list is required.

Returns
TpClientAppIDList

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SAG ID

8a.3.2.2.6 Method listClientAppMembership()
Obtain a list of the SAGs of which the specified client application is a member.

Returns <sags>: The SAGs of which the client application is a member.

Parameters
clientAppID:in TpClientAppID
The "clientAppID" parameter identifies the clientApp object whose membership details are requested.

3GPP

Release 9 164 3GPP TS 29.198-3 V9.0.0 (2009-12)

Returns
TpSagIDList

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID CLIENT APP_ID
8a.3.2.3 Interface Class IpServiceProfileManagement

Inherits from: Ip Interface.

This interface is used by the enterprise operator for the management of Service Profiles, which are defined for every
subscribed service, and to assign/de - assign the Service Profiles to SAGs.

<<Interface>>

IpServiceProfileManagement

createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfilelD
modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfileID : in TpServiceProfilelD) : woid

assign (saglID : in TpSaglID, serviceProfilelD : in TpServiceProfileID) : void

deassign (saglID : in TpSagID, serviceProfilelD : in TpServiceProfilelD) : woid

requestConflictinfo () : TpAssignSagToServiceP rofileConflictList

8a.3.2.3.1 Method createServiceProfile()

Creates a new Service Profile for the specified service contract. The service properties within the service profile restrict
the service to meet the client application requirements. A Service Profile is a restriction of the corresponding service
contract. When the description has been verified, a service profile ID will be generated.

Returns <serviceProfilelD>: The service profile 1D, generated by the framework, will be used to uniquely identify the
service profile within the framework.

Parameters
serviceProfileDescription:in TpServiceProfileDescription

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract
information and which may further restrict the value ranges of the service subscription properties.

Returns
TpServiceProfileID

Raises
TpCommonExceptions, P_ACCESS DENIED

8a.3.2.3.2 Method modifyServiceProfile()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated
with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a
non-associated enterprise operator invokes this method.

3GPP

Release 9 165 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

serviceProfile:in TpServiceProfile

The modified Service Profile. If the serviceProfilel D specified in the serviceProfile parameter does not exist, an
exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P_INVALID SERVICE PROFILE_ID

8a.3.2.3.3 Method deleteServiceProfile()

Deletes the specified Service Profile. If there are any service instances running that are governed by this profile then
they will be terminated. Only the enterprise operator associated with the particular service profile is allowed to delete it,
a"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.

Parameters

serviceProfileID:in TpServiceProfilelID

The "serviceProfilel D" parameter identifies the Service Profile that is to be deleted. If the serviceProfilelD does not
exist,a "P_INVALID_SERVICE_PROFILE_ID" exception will be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE PROFILE ID

8a.3.2.34 Method assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfile ID is
allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise
operator invokes this method. Each client application may be assigned to a service only through asingle service profile
at a particular moment in time. If this condition is violated, a

"P_INVALID_SAG TO_SERVICE_PROFILE_ASSIGNMENT" would be raised. In this case, no partial e xecution of
this method is performed. The enterprise operator can query further information about this invalid assignment using the
method requestConflictinfo().

Parameters
sagID:in TpSagID

The "sagID" parameter identifies the SAGto which Service Profile is to be assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfilelID:in TpServiceProfilelID

The "serviceProfilelD" parameter identifies the Service Profile that is to be assigned to the SAG. If the serviceProfilelD
does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SAG_ID,
P_INVALID SERVICE PROFILE ID, P_INVALID SAG TO_SERVICE PROFILE ASSIGNMENT

8a.3.2.3.5 Method deassign()
De-assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the

serviceProfile ID is allowed to deassign it froma SAG, an exception "P_TASK_REFUSED" would be raised if a
non-associated enterprise operator invokes this method.

3GPP

Release 9 166 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters
sagID:in TpSagID

The "sagID" parameter identifies the SA G whose Service Profile is to be de-assigned. If the SAG ID does not exist, an
exception "P_INVALID_SAG_ID" would be raised.

serviceProfilelID:in TpServiceProfilelD

The "serviceProfilel D" parameter identifies the Service Profile that is to be de-assigned. If the serviceProfilelD does not
exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID SAG_ID,
P_INVALID SERVICE PROFILE ID

8a.3.2.3.6 Method requestConflictinfo()

Requests details about the latest conflict that occurred during performing the method assign() on this interface (i.e.
Information about the invocation of assign () that threw a

P_INVALID_SAG TO_SERVICE_PROFILE_ASSIGNMENT). Each client application may be assigned to aservice
only through asingle service profile at a particular moment in time. The enterprise operator could try to assign a SAG
to a service profile of a given service. If one or more client applications in this SAGare already assigned to service
profiles belonging to the given service, the client applications would have two concurrent service profiles at a particular
moment in time. As this is prohibited, a conflict list is generated.

It is only possible to retrieve information about the last conflicting assign() method call; information about previous
conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAssignSagToServiceProfile Conflict List>: The description of the conflicts occurring at the latest invocation
of assign() that raised a P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT. Each conflict contains the
following elements:

a. The conflict generating client application.
b. The SAGand the service profile through which the conflict generating client application is already assigned to
the conflict generating service. It includes the current service profile.
c. The conflict generating service.

The conflict generating SA G and service profile are supposed to be well known, because they are input parameters of
the assign() method. Therefore, they do not appear in the returned conflict list.

Parameters
No Parameters were identified for this method.

Returns
TpAssignSagToServiceProfileConflictList

Raises

TpCommonExceptions, P_ACCESS DENIED

8a.3.2.4 Interface Class IpServiceProfileInfoQuery
Inherits from: Ip Interface.

This interface is used by the enterprise operator to obtain information about individual Service Profiles, to find out
which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given
client application or SAG.

3GPP

Release 9 167 3GPP TS 29.198-3 V9.0.0 (2009-12)

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles () : TpServiceProfileIDList
describeServiceProfile (serviceProfilelD : in TpServiceProfileID) : TpServiceProfileDescription

listAssignedMembers (serviceProfilelD : in TpSenvceProfilelD) : TpSagIDList

8a.3.24.1 Method listServiceProfiles()
Get a list of all service profiles created by the enterprise operator.

Returns <serviceProfileIDList>: The "serviceProfileI DList" is a list of the service profiles associated with the enterprise
operator.

Parameters
No Parameters were identified for this method.

Returns
TpServiceProfileIDList

Raises

TpCommonExceptions, P_ACCESS DENIED
8a.3.2.4.2 Method describeServiceProfile()
Query information about a single service profile.

Returns <serviceProfileDescription>: The "serviceProfileDescription™ parameter is a structured data type which
contains a description for the specified service profile.

Parameters
serviceProfilelID:in TpServiceProfileID
The "serviceProfileI D" parameter identifies the Service Profile whose description is being requested.

Returns
TpServiceProfileDescription

Raises
TpCommonExceptions, P_ACCESS DENIED, P _INVALID SERVICE PROFILE_ID

8a.3.2.4.3 Method listAssignedMembers()
Get a list of SAGs assigned to the specified service profile.

Returns <sagIDList>: The "saglDs" parameter is the list of the SA G IDs that are assigned to the specified service
profile.

3GPP

Release 9 168 3GPP TS 29.198-3 V9.0.0 (2009-12)

Parameters

serviceProfilelID:in TpServiceProfilelD

The "serviceProfileI D" parameter identifies the Service Profile. If the serviceProfilelD is not recognised by the
framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns
TpSagIDList

Raises

TpCommonExceptions, P_ACCESS DENIED, P_INVALID_ SERVICE PROFILE ID
8a.3.2.5 Interface Class IpServiceContractManagement

Inherits from: Ip Interface.

The enterprise operator uses this interface for service contract management, such as create, modify, and delete service
contracts.

<<Interface>>

IpServiceContractManagement

createServiceContract (serviceContractDescription : in TpServiceContractDescription) :
TpServiceContractID

modifyServiceContract (serviceContract : in TpServiceContract) : wid

deleteServiceContract (serviceContractID : in TpServiceContractID) : woid

8a.3.2.5.1 Method createServiceContract()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract
description. This contract should conform to the previously negotiated high - level agreement (regard ing the services,
their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the
appropriate exception is raised by the framework. When the description has been validated, a service contract ID will be
generated.

Returns <serviceContractID>: The service contract ID will be used to uniquely identify the service contract within the
framework.

Parameters
serviceContractDescription:in TpServiceContractDescription

The "serviceContractDescription" parameter provides the information contained in the service contract. The service
contract is a structured data type, which contains the following information:

a. information about the service requestor, i.e. the enterprise operator;

b. information about the billing contact (person);

C. service start date;

d. service end date;

e. service type (e.g. obtained from listServiceType() method);

f. service ID (e.g. obtained fromdiscoverService() method). For certain services, service type information is
sufficient and service ID may not be required. This implies that any service of the type specified above is subscribed
and hence accessible to the enterprise operator or to its client applications;

g. list of service subscription properties and their value ranges (service profiles further restrict these value ranges).

3GPP

Release 9 169 3GPP TS 29.198-3 V9.0.0 (2009-12)

Returns

TpServiceContractID

Raises
TpCommonExceptions, P_ACCESS DENIED, P _INVALID SERVICE ID

8a.3.2.5.2 Method modifyServiceContract()

Modify an existing service contract. The service contract can be modified only within the context of a pre -existing
off-line negotiated high-level agreement between the enterprise operator and the framework operator. Only the
enterprise operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED"
would be raised if a non-associated enterprise operator invokes this method.

Parameters
serviceContract:in TpServiceContract

The "serviceContract™ parameter provides the modified service contract. If the serviceContractlD does not exist, an
exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS DENIED, P _INVALID_ SERVICE ID,
P_INVALID SERVICE CONTRACT_ ID

8a.3.2.5.3 Method deleteServiceContract()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. If there
are any service instances running that are governed by this contract, or any of the profiles associated with it, then they
will be terminated. Only the enterprise operator associated with the serviceContract is allowed to delete it, a
"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.
Parameters

serviceContractID:in TpServiceContractID

The "serviceContractID" parameter identifies the service contract that the enterprise operator wishes to delete. If the
serviceContractlD does not exist, a "P_INVALID_SERVICE_CONTRACT_ID" exception will be raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P INVALID SERVICE CONTRACT ID

8a.3.2.6 Interface Class IpServiceContractinfoQuery
Inherits from: Ip Interface.

The enterprise operator uses this interface to query information about a given service contract.

<<Interface>>

IpServiceContractinfoQuery

describeServiceContract (serviceContractID : in TpServiceContractID) : TpService ContractDescription
listServiceContracts () : TpServiceContractIDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfileIDList

3GPP

Release 9 170 3GPP TS 29.198-3 V9.0.0 (2009-12)

8a.3.2.6.1 Method describeServiceContract()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain
information that is stored in the specified service contract. The enterprise operator can only obtain information about the
service contracts that it has created.

Returns <serviceContractDescription>: The "serviceContract" parameter contains the description for the specified
service contract.

Parameters
serviceContractID:in TpServiceContractID
The "serviceContractID" parameter identifies the service whose description is being requested.

Returns

TpServiceContractDescription

Raises
TpCommonExceptions, P_ACCESS DENIED, P _INVALID SERVICE CONTRACT ID

8a.3.2.6.2 Method listServiceContracts()
Returns a list of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractIDs>: The "serviceContractIDs" parameter will contain a list of IDs for service contracts that
the enterprise operator has created.

Parameters
No Parameters were identified for this method.

Returns
TpServiceContractIDList

Raises
TpCommonExceptions, P_ACCESS DENIED

8a.3.2.6.3 Method listServiceProfiles()

The enterprise operator invokes this operation to obtain a list of service profiles that are associated with a particular
service contract.

Returns <serviceProfilelDs>: This contains the service profiles associated with a particular service contract.
Parameters

serviceContractID:in TpServiceContractID

The "serviceContractID" parameter identifies the service contract. If the service ContractID is not recognised by the
framework, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

3GPP

Release 9 171 3GPP TS 29.198-3 V9.0.0 (2009-12)

Returns
TpServiceProfileIDList

Raises
TpCommonExceptions, P_ACCESS DENIED, P _INVALID SERVICE CONTRACT_ ID

8a.3.2.7 Interface Class IpEntOpAccountManagement
Inherits from: Ip Interface.

The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise
operator subscription accounts, such as modify and delete enterprise operator accounts. The EntOpID will be decided in
an off-line agreement between the FW operator and the EntOp, as the EntOp may require the 1D to be something more
meaningful than a random number. The EntOp account, consisting of the EntOpID, along with the list of valid
properties and their modes and prescribed ranges, will be entered via a FW operator interface that is currently outside
the scope of the API.

<<Interface>>

IpEntOpAccountManagement

modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : woid
deleteEntOpAccount () : wid

8a.3.2.7.1 Method modifyEntOpAccount()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters
enterpriseOperatorProperties:in TpEntOpProperties

The "enterprise operator properties” parameter conveys the modified/populated information about the enterprise
operator. The values of the "enterprise operator properties"” can only be modified within the prescribed range, as
negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise a
P_INVALID_PROPERTY exception is raised.

Raises
TpCommonExceptions, P_ACCESS DENIED, P_INVALID PROPERTY

8a.3.2.7.2 Method deleteEntOpAccount()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the
enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete
the enterprise operator account will result in a P_TASK_REFUSED exception if there are outstanding service contracts
(and service profiles).

Parameters
No Parameters were identified for this method.

3GPP

Release 9 172 3GPP TS 29.198-3 V9.0.0 (2009-12)

Raises
TpCommonExceptions, P_ACCESS DENIED
8a.3.2.8 Interface Class IpEntOpAccountinfoQuery

Inherits from: Ip Interface.

This interface is used by the enterprise operator to query information related to its own subscription account as held
within the framework.

<<Interface>>

IpEntOpAccountinfoQuery

describeEntOpAccount () : TpEntOp

8a.3.2.8.1 Method describeEntOpAccount()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what
information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator>: The "enterpriseOperator” parameter conveys the information stored in the EntOp object
about the enterprise operator. It contains the unique "enterprise operator ID" followed by a list of "enterprise operator
properties". The enterprise operator properties is a list of name/value pairs which provide enterprise operator related
information such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account),
etc. to the framework.

Parameters
No Parameters were identified for this method.

Returns
TpEntOp

Raises
TpCommonExceptions, P_ACCESS DENIED

8a.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the
gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can
be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return
an exception. Apart fromthe methods that can be invoked by the client also events internal to the gateway or related to
network events are shown together with the resulting event or action performed by the gateway. These internal events
are shown between quotation marks.

8a.4.1 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.

8a.4.2 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.

3GPP

Release 9 173 3GPP TS 29.198-3 V9.0.0 (2009-12)

9 Service Properties

9.1 Service Super and Sub Types

Service Properties are used at service registration to indicate the capabilities of an SCF. They are normally used as an
indication for limitations an SCF has. These limitations can come fromthe way an SCF is implemented or from
limitations in the network. The service type of an SCF defines which properties the supplier shall provide at
registration of the SCF.

An application uses Service Properties at service discovery to find services that have the required capabilities. The
Framework validates the requested properties with the registered properties and provides the application with a list of
SCFs that comply to the application’s request.

The capabilities of an SCF can be extended by providing service properties in addition to the ones defined in this
standard. For this extended SCF, a dedicated sub-type of a service is defined. A sub-type of an SCF shall be fully
compatible with the standard SCF, that is, an application shall be able to use the sub type as if it was the standard type.
This implies that the interface to the SCF remains unchanged. Also SCF sub types can be further extended. This way a
hierarchy of service types can be built with the standard type being the root.

An example of a sub type is a Multy Party Call Control service that allows the application to request a certain quality -
of-service level. An additional service property is added for this.

9.2 Service Property Types

At Service Registration the properties of a type shall be interpreted as the set of values that can be supported by the
service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property value
of {"true", "false"}.This means thatthe SCS is able to support Service instances where this property is used or
allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the
property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agree ment.
The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a
sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection
procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE: This is achieved through the createServiceManager() operation in the Service Instance Lifecycle Manager
interface.

All property values are represented by an array of strings. The following table shows all supported service property
types.

3GPP

Release 9

174 3GPP TS 29.198-3 vV9.0.0 (2009-12)

Service Property type
name

Description

Example value (array of
strings)

Interpretation of example
value

BOOLEAN_SET

set of Booleans

{"FALSE"}

The set of Booleans consisting
of the Boolean "false".

INTEGER_SET set of integers {"1","2", "5", "7} The set of integers consisting
ofthe integers 1,2,5and 7.
STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of

the string “Sophia" and the
string "Rijen"

INTEGER_INTERVAL

interval of integers

{"5","100"}

The integers that are between
or equal to 5 and 100.

STRING_INTERVAL

interval of strings

{"Rijen", "Sophia"}

The strings that are between
or equal to the strings "Rijen"
and "Sophia", in
lexicographical order.

INTEGER_INTEGER_MAP

map from integers to

{"1","10", "2", "20","3",

The map that maps 1 to 10, 2

integers "30"} to 20 and 3 to 30.
XML_ADDRESS_RANGE_ | setofvalues of {"<AddressRangeSet> In case
SET TpAddressRange. <AddressRange> P_REGEX_SUPPORT_FOR_
Values of <Plan>P_ADDRESS P | ADDRESS RANGE is TRUE:

TpAddressRange are
described using XML.
An XML schema is
provided below for this
purpose.

LAN_E164</Plan>
<AddrString>123*</Add

rString>

</AddressRange>

<AddressRange>
<Plan>P_ADDRESS P

LAN_E164</Plan>
<AddrString>456*</Add

rString>

</AddressRange>

</AddressRangeSet>"}

Any addresses containing 123
or containing 456 in the E.164
Address Plan.

In case
P_REGEX_SUPPORT_FOR_
ADDRESS_RANGE is FALSE:
Any addresses starting with
123 or starting with 456 in the
E.164 Address Plan.

FLOAT_SET

set of values of
TpFloat.

{"0.1",“.2”,“0.1e+3}

The set of floats containing
floating point numbers 0.1, 0.2
and 100

FLOAT_INTERVAL

interval of TpFloat
values

{*-1.1”, 5.0}

The floating point numbers
that are between or equal to —
1.1and 5.0

The bounds of the string interval, integer interval and float interval types may hold the reserved value

"UNBOUNDED?". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is
the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper
bound of the interval is the largest value supported by the type.

When an SCF is registerd by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an
empty set. When a service is discovered by an application, this application shall specify either {TRUE} or {FALSE} as
value for service properties of type BOOLEAN_SET.

The value of XML_ADDRESS_RANGE_SET should comply with the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema x mins:xs="http://www w3.0rg/2001/XMLSchema" elementFor mDefault="qualified"

attribute FormDefault="unqualified">
<xs:element name="AddressRangeSet">

<xs:complexType>

<Xs.sequence>

<xs:element name="AddressRange" maxOccurs="unbounded">
<xs:complexType>

<Xs:.sequence>

<xs:element name="Plan" type="xs:string" default="P_ADDRESS_PLAN_ANY"/>
<xs:element name="AddrString" type="xs:string"/>
<xs:element name="Name" type="xs:string" minOccurs="0"/>

<xs:element name="SubAddressString" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>

3GPP

Release 9 175 3GPP TS 29.198-3 V9.0.0 (2009-12)

</xs:complexType>
</xs:element>
</xs:schema>

An example usage could be:

{ "<?xml version="1.0" encoding="UTF-8"?>
<AddressRangeSet x mins:xsi="http://www w 3.0rg/2001/XML Schema-instance"
xsi:noNamespace Schemalocation="xml_address_range_set.xsd">
<AddressRange>
<Plan>P_ADDRESS_PLAN_E164</Plan>
<AddrString>789*</AddrString>
</Address Range>
<AddressRange>
<Plan>P_ADDRESS_PLAN_ANY</Plan>
<AddrString>123*</AddrString>
</Address Range>
<AddressRange>
<Plan>P_ADDRESS PLAN SIP</Plan>
<AddrString><sip:* @par lay .org > </Addr String>
<Name/>
</Address Range>
</Address RangeSet>"}

Note that the final address range corresponds to any sip address @parlay.org, i.e. <sip:*@parlay.org>.

9.3 General Service Properties
Each service instance has the following general properties:

e Service Name

e Service Version

e Service ID

e Service Description

e Product Name
e Product Version

e Operation Set

e Compatible Service

e Backward Compatibility Level
e Migration Required

e Data Migrated

e Migration Date and Time

e Support for Regular Expressions in Address Range

The following sections describe these general service properties in more detail. The values for the mode are defined in
the type TpServiceTypePropertyMode.

3GPP

Release 9 176 3GPP TS 29.198-3 V9.0.0 (2009-12)
9.3.1 Service Name
Property Type Mode Description
P_SERVICE_NAME STRING_SET MANDATORY_ | This property contains the name of the
READONLY service, e.g. “UserLocation”,
“UserLocationCamel”,
“UserLocationEmergency”’ or “UserStatus”.
9.3.2 Service Version
Property Type Mode Description
P_SERVICE_VERSION STRING_SET MANDATORY This property contains the version of the
APIs, to which the service is compliant. Itis
a set of strings as specified in the TpVersion
type.
9.3.3 Service ID
Property Type Mode Description
P_SERVICE_ID STRING_INTERVAL | READONLY This property uniquely identifies a specific
service. Note that the Framework generates
this property value when the Service
Supplier registers the service. This property
should not be confused with the
servicelnstancelD generated by the
Framework when a Client Application signs
a Service Agreement to obtain the Service
Manager
9.3.4 Service Description
Property Type Mode Description
P_SERVICE_DESCRIPTION | STRING_SET MANDATORY_ | This property contains a textual description
READONLY of the service. It should not be interpreted
as a description of a Service Instance (as
identified by a servicelnstancelD generated
by the Framework when a Client Application
signs a Service Agreement to obtain the
Service Manager).
9.3.5 Product Name
Property Type Mode Description
P_PRODUCT_NAME STRING_SET READONLY This property contains the name of the
product that provides the service, e.g. “Find
It”, “Locate.com”.
9.3.6 Product Version
Property Type Mode Description
P_PRODUCT_VERSION STRING_SET READONLY This property contains the version of the

product that provides the service, e.g.
“3.1.117.

3GPP

Release 9 177 3GPP TS 29.198-3 V9.0.0 (2009-12)
9.3.7 Void
9.3.8 Operation Set
Property Type Mode Description
P_OPERATION_SET STRING_SET MANDATORY Specifies set of the operations the SCS
supports.
The notation to be used is :
{“Interface1.operation1”,”Interface1.operation
27, “Interface2.operation1”}, e.g.:
{“IpCall.createCall”,”IpCall.routeReq”}.
9.3.9 Compatible Service
Property Type Mode Description
P_COMPATIBLE_WITH_SERVICE | STRING_SET | READONLY Specifies the Set of Services, identified by

their ServicelDs, with which this new service
is compatible.

This property should at least be
accompanied with the properties
P_BACKWARD_COMPATIBILITY_LEVEL,
P_MIGRATION_REQUIRED.

Note that the new Service can be compatible
with more than one Service thatis currently
registered to the Framework. Therefore this
Propertyis a SET, as well as all related
properties like Migration Required, Data

Migrated, etc.
For all these properties the order of the

Services shall be identical.

3GPP

Release 9

178

9.3.10 Backward Compatibility Level

3GPP TS 29.198-3 V9.0.0 (2009-12)

Property

Type

Mode

Description

P_BACKWARD_COMPATIBILITY_

LEVEL

BOOLEAN_SET

READONLY

Specifies if the new service is completely
backwards compatible with each service
identified in the
P_COMPATIBLE_WITH_SERVICE
property:

Value = TRUE: Service is completely
backwards compatible

Value = FALSE: SCS is not completely
backwards compatible.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE

property.

Note that the new Service can be compatible
with more than one Service thatis currently
registered to the Framework. Therefore this
Propertyis a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be presentin the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

3GPP

Release 9

9.3.11 Migration Required

179

3GPP TS 29.198-3 V9.0.0 (2009-12)

Property Type

Mode

Description

P_MIGRATION_REQUIRED

BOOLEAN_SET

READONLY

Specifies if the new service is replacing the
service identified in the
P_COMPATIBLE_WITH_SERVICE property:
Value = TRUE: new service is replacing the
existing one —migration is required before
the date/time indicated in
P_MIGRATION_DATE_AND_TIME property.
Value = FALSE: new service is not replacing
the existing one —migration not required, the
existing service is retained.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property.
If the value set of
P_MIGRATION_REQUIRED contains
TRUE, P_DATA_MIGRATED and
P_MIGRATION_DATE_AND_TIME
properties shall also to be present.

Note that the new Service can be compatible
with more than one Service thatis currently
registered to the Framework. Therefore this
Propertyis a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be presentin the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

9.3.12 Data Migrated

Property Type

Mode

Description

P_DATA MIGRATED

BOOLEAN_SET

READONLY

Indicates if the data (e.g. notifications) from
the existing service identified in the
P_COMPATIBLE_WITH_SERVICE property
is also available in this Service.

Value = TRUE: all data is migrated

Value = FALSE: no data is migrated

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE and the
P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible
with more than one Service thatis currently
registered to the Framework. Therefore this
Propertyis a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be presentin the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical.

3GPP

Release 9 180 3GPP TS 29.198-3 V9.0.0 (2009-12)

9.3.13 Migration Date And Time

Property Type Mode Description

P_MIGRATION_DATE_AND_TIME | STRING_SET READONLY | This property contains the date and time, in
the format described in TpDateAndTime, by
which point applications shall have migrated
from existing services to this new service.
Migration to the new service requires the
application to terminate the existing service
agreement, and sign a new one.

Failure to do this by the migration date and
time indicated in this property may resultin
the service agreement being terminated by
the Framework, since the service supplier
may choose to unregister the service
following this date and time.

Only one value of TpDateAndTime is
pemitted to be presentin this property at
service registration.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE,
P_MIGRATION_REQUIRED and
P_DATA MIGRATED properties.

Note that the new Service can be compatible
with more than one Service thatis currently
registered to the Framework. Therefore this
Propertyis a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be presentin the
value set of this property at service
registration.

For all these properties the order of the
Services shall be identical. For those
services for which migration is not required
(P_MIGRATION_REQUIRED setto FALSE),
the corresponding value of this property shall
be ignored.

9.3.14 Support for Regular Expressions in Address Range

Property | Type | Mode | Description
P_REGEX SUPPORT FOR_ADDRE | BOOLEAN SET | READONLY | Indicates if the AddrString and
SS_RANGE SubAddressString fields of

TpAddressRange are expressed as
regular expressions (TRUE) or not
(FALSE)

10 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.
The general format of a data definition specification is the following:
— Data type, that shows the name of the data type;

— Description, that describes the data type;

3GPP

Release 9 181 3GPP TS 29.198-3 V9.0.0 (2009-12)

— Tabular specification, that specifies the data types and values of the data type;

— Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in
3GPP TS 29.198-2.

10.1 Common Framework Data Definitions

10.1.1 TpClientAppID

This is an identifier for the client application. It is used to identify the client to the Framework. This data type is
identical to TpString and is defined as a string of characters that uniquely identifies the application. The co ntent of this
string shall be unique for each OSA API imp lementation (or unique for a network operator’s domain). This unique
identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

10.1.2 TpClientApplIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

10.1.3 TpDomainiD

Defines the Tagged Choice of Data Elements thatspecify either the Framework or the type of entity
attempting to access the Framework.

Tag Element Type

TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name
P_FW TpFwID FwID
P_CLIENT_APPLICATION TpClientAppID ClientAppID
P_ENT_OP TpEntOpID EntOpID
P_SERVICE INSTANCE TpServiceInstancelD ServiceID (See Note)
P_SERVICE_SUPPLIER TpServiceSupplierID ServiceSupplierID

Note: The Choice Element Name ServicelD of TpDomainID refers to a service instance.

10.1.4 TpDomainiDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description
P_FW 0 The Framework
P _CLIENT APPLICATION 1 A client application
P_ENT OP 2 An enterprise operator
P_SERVICE INSTANCE 3 A service instance
P _SERVICE SUPPLIER 4 A service supplier

10.1.5 TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise operator.
In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service
Capability Feature (SCF).

3GPP

Release 9 182 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.1.6 TpPropertyName

This data type is identical to ToString. It is the name ofa generic “property”.

10.1.7 TpPropertyValue

This data type is identical to ToString. Itis the value (or the list of values) associated with a generic “property”.

10.1.8 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data
type consisting of the following {name,value} pair:

Sequence Element Sequence Element
Name Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

10.1.9 TpPropertyList

This data type defines a Numbered List of Data Elements oftype TpProperty.

10.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

10.1.11 TpFwID

This data type is identical to TpString and identifies the Framework.

10.1.12 TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists
of:

Sequence Element Sequence Element Documentation
Name Type
ServicelID TpServicelD
ServiceDescription TpServiceDescription Thisfield contains the description ofthe service

10.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

10.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes a registered SCF. It is a structured data type which
consists of:

Sequence Element Sequence Element Documentation
Name Type
ServiceTypeName TpServiceTypeName
ServicePropertyList TpServicePropertyList

3GPP

Release 9 183 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.1.15 TpServicelD

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF
interface. The string is automatically generated by the Framework.

10.1.16 TpServicelDList

This data type defines a Numbered Set of Data Elements of type TpServicelD.

10.1.17 TpServicelnstancelD

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a
registered SCF interface. The string is automatically generated by the Framework.

10.1.18 TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service
type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.
It is similar to, but distinct from, TpServiceProperty. The latter is associated with an actual service: it defines the
service property’s name and mode, but also defines the list of values assigned to it.

Sequence Element Sequence Element Documentation
Name Type
ServicePropertyName TpServicePropertyName
ServiceTypePropertyMode TpServiceTypePropertyMode
ServicePropertyTypeName TpServicePropertyTypeName

10.1.19 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

10.1.20 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation
NORMAL 0 The value of the corresponding SCF property type may optionally be provided
MANDATORY 1 The value of the corresponding SCF property type shall be providedat service registrationtime
READONLY 2 The value of the corresponding SCF property type is optional, but once given avalue it can not be

modified/restricted by a service level agreement

MANDATORY READONLY 3 The value of the corresponding SCF property type shall be provided but can not subsequently be
modified/restricted by a srvice level agreement.

10.1.21 TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property type name. Valid service property typ e names
are detailed in 10.1.

10.1.22 TpServicePropertyName
This data type is identical to TpString. It defines a valid SCF property name. The valid service property names are

detailed in 10.3 and in the SCF data definitions. Additionally, service property names for proprietary service properties
(used for service sub types) are possible.

3GPP

Release 9 184 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.1.23 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

10.1.24 TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property.

10.1.25 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty Value.

10.1.26 TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which
consists of:

Sequence Element Sequence Element Documentation
Name Type
ServicePropertyName TpServicePropertyName
ServicePropertyValuelList TpServicePropertyValueList

10.1.27 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

10.1.28 TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the Framework. This data type is
identical to TpString.

10.1.29 TpServiceTypeDescription

This data type is a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element Sequence Element Documentation
Name Type
ServiceTypePropertylList TpServiceTypePropertyL ist a sequence of property name and property mode tuples associated with the
SCF type
ServiceTypeNameList TpServiceTypeNameL ist the names ofthe super types ofthe associated SCF type
AvailableOrUnavailable TpBoolean an indication whether the SCF type is available (true) or unavailable (false)

3GPP

Release 9 185 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.1.30 TpServiceTypeName

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an
SCF interface. Other Network operator specific capabilities may also be used, but should be preceded by the string

"Sp_". The following values are defined.

Character String Value

Description

NULL

Anempty (NULL) gring indicatesno SCF name

P _GENERIC CALL CONTROL

The name of the Generic Call Control SCF

P MULTI PARTY CALL CONTROL

The name of the MultiParty Call Control SCF

P MULTI MEDIA CALL CONTROL

The name of the MultiMedia Call Control SCF

P CONFERENCE CALL CONTROL

The name of the Conference Call Control SCF

P _USER_INTERACTION

The name of the User Interaction SCFs

P USER INTERACTION_ ADMIN

The name of the User Interaction Adminigtration SCF

P _TERMINAL CAPABILITIES

The name of the T erminal Capabilities SCF

P USER BINDING

The name of the User Binding SCF

P USER LOCATION

The name of the User Location SCF

P _USER_LOCATION CAMEL

The name of the Network User Location SCF

P USER LOCATION EMERGENCY

The name of the User Location Emergency SCF

P USER STATUS

The name of the User Status SCF

P_EXTENDED USER STATUS

The name of Extended User Status SCF

P DATA SESSION CONTROL

The name of the Data Session Control SCF

P_GENERIC MESSAGING

The name of the Generic Messaging SCF

P _CONNECTIVITY MANAGER

The name of the Connectivity Manager SCF

P CHARGING

The name of the Charging SCF

P ACCOUNT MANAGEMENT

The name of the Account Management SCF

P _POLICY PROVISIONING

The name of thePolicy Management provisioning SCF

P_POLICY_ EVALUATION

The name of thePolicy Management policy evaluation SCF

P_PAM ACCESS

The name of PAM presentity SCF

P PAM EVENT MANAGEMENT

The name of PAM watcher SCF

P_PAM PROVISIONING

The name of PAM provisioning SCF

P MULTI MEDIA MESSAGING

The name of the Multimedia Messaging SCF

P SERVICE BROKER

The name of the Service Broker SCF

10.1.31 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

10.1.32 TpSubjectType

Defines the subject of a query/notification request/result.

Name Value Description
P_SUBJECT UNDEFINED 0 The subject is neither the framework northe
client application
P _SUBJECT CLIENT APP 1 The subject isthe client application
P _SUBJECT FW 2 The subject is the framework

3GPP

Release 9

186

10.1.33 TpServiceTypePropertyValue

This datatype is a Sequence of Data Elements which describes a service property associated with a service. It
defines the name and mode of the service property, the service property type (e.g. Boolean, integer), and also value. It

3GPP TS 29.198-3 V9.0.0 (2009-12)

is similar to, but distinct from, TpServiceProperty. The latter does not define the modes and types and is used to
register values for known service properties only.

Sequence ElementName

Sequence ElementType

Documentation

ServicePropertyName

TpServicePropertyName

The name of the service property.

ServiceTypePropertyMode

TpServiceTypePropertyMode

The mode ofthe service property.

ServicePropertyTypeName

TpServicePropertyTypeName

Thetype of the srvice property.

ServicePropertyValuelList

TpServicePropertyValueList

The Value-lig of the service property.

10.1.34 TpServiceTypePropertyValuelList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty Value.

10.2 Event Notification Data Definitions

10.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description
P EVENT FW NAME UNDEFINED 0 Undefined
P _EVENT FW_SERVICE AVAILABLE 1 Notification of SCS(s) available
P EVENT FW SERVICE UNAVAILABLE 2 Notification of SCS(s) becoming unavailable
P_EVENT FW MIGRATION SERVICE_ AVAILABLE 3 Notification of a backwards compatible SCS
becomingavailable, to which the application
can migrate.
P EVENT FW APP SESSION CREATED 4 Notification of an application<->FW access
session created. (See note 1)
P EVENT FW APP SESSION TERMINATED 5 Notification of an application<->FW access
session terminated. (See note 1)
P _EVENT FW APP AGREEMENT SIGNED 6 Notificationthat aservice agreement has been
signed. (See note 1)
P EVENT FW APP AGREEMENT ENDED 7 Notificationthat a service agreement has been
endedterminated. (See note 1)

NOTE: These events can only be requested by enterprise operators.
the method will throw the P_INVALID_CRITERIA exception.

If requested by any other entity then

3GPP

Release 9 187 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.2.2 TpFwEventCriteria

Defines the Tagged Choice of Data Elements thatspecifies the criteria for an event notification to be
generated.

Tag Element Type
TpFwEventName
Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUnde fined
P_EVENT_FW_ SERVICE_AVAILABLE TpServiceTypeNameL ist ServiceTypeNameL.ist
P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceTypeNameList UnavailableServiceTypeNameL.ist
E_EEVENT_FW_M IGRAT ION_SERVICE_AVAILAB TpServiceTypeNamelL ist CompatibleServiceTypeNameL.ist
P_EVENT_FW_APP_SESSION_CREATED TpClientAppIDList SessionCreatedL ist
P_EVENT_FW_APP_SESSION_TERMINATED TpClientAppIDList SessionT erminatedList
P_EVENT_PW_APP_AGREEMENT_ SIGNED TpClient AppIDL st Agreement SignedList
P_EVENT_FW_APP_AGREEMENT_ENDED TpClient AppIDList AgreementEndedList

10.2.3 TpFwEventinfo

Defines the Tagged Choice of Data Elements thatspecifies the information returned to the client in an event
notification.

Tag Element Type
TpFwEventName

Tag Element Value Choice Element Type Choice Element Name
P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined
P_EVENT_FW_ SERVICE_AVAILABLE TpServiceIDList ServiceIDList
P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceIDList UnavailableServiceIDList
ETEEVEM_FW_M IGRAT ION_SERVICE_AVAILAB TpPWMuigrationServiceAvailablelnfo MigrationServiceAvailable
P_EVENT_FW_APP_SESSION_CREATED TpClientAppID AppSessionCreated
P_EVENT_FW_APP_SESSION_TERMINATED TpClientAppID AppSessionTerminated
P_EVENT_FW_APP_AGREEMENT_SIGNED TpFwAgreementInfo AppAgreementSigned
P_EVENT_FW_APP_AGREEMENT_ENDED TpFwAgreementinfo AppAgreementEnded

10.2.4 TpFwMigrationServiceAvailablelnfo

Defines the information to be supplied when an SCS becomes available.

3GPP

Release 9 188 3GPP TS 29.198-3 V9.0.0 (2009-12)

Sequence ElementName Sequence ElementType Documentation
ServiceType TpServiceTypeName Type of SCSthat has become available
ServicelID TpServicelD ID ofthe SCS that has become available
CompatibleServiceID TpServicelD ID ofthe SCS with which this new SCS is compatible with.
BackwardCompatibilityLevel TpBoolean Specifies if the new SCS is completely backwards compatible

with the currently used SCS.
Value = TRUE: SCS is completely backwards compatible

Value = FALSE: SCSis not completely backwards compatible.
Contact the Framework operator for more information.on how
to migrate.

MigrationRequired TpBoolean Specifies if the new SCS is replacing the existing SCS

Value = TRUE: new SCSis replacing the existing one -
migration is required before the datetime indicated in
MigrationDate AndT ime field

Value = FALSE: new SCSis not replacing the existing one, but
is provided in addition.

All migrationtothe new SCS, whether required or not, shall
involve the applicationterminating the existing service
agreement and signing anewone.

DataMigrated TpBoolean Indicates whether all the data the application set in the previous
SCS (e.g. notifications) isalso available in the new SCS.

Value = FALSE : the new SCS has not ohtained all data (e.g.
notifications) related tothe old SCS and the application needs
to reset all the previous data.

Value = TRUE:the new SCS has obtained data (e.qg.

notifications) related tothe old SCS, the application can use the
new SCS without resetting data

MigrationDataAndTime TpDateAndT ime Indicates the date and time before which applications shall have
migrated from existingthe existing SCStothisnew SCS.

Migrationtothe new SCS requires the application to terminate
the existing service agreement, and sign a new one.

Failure to dothis by the migration date andtime indicated in
this field may result in the service agreement being terminated
by the Framework, sincethe service supplier may choos to
unregigterthe service following this date and time.

The value of this parameter, if present, shall be ignored if
MigrationRequired is set to FALSE

MigrationAdditionalInfo TpMigrationAdditionallnfoSet Contains additional migration information. This is initially
provided to permit addition of information in later releases
without impacting backwards compatibility.

10.2.5 TpMigrationAdditionallnfo

Defines the Tagged Choice of Data Elements thatspecify additional migration-related information.

Tag Element Type
TpMigrationAdditionalinfoType

Tag Element Value Choice Element Type Choice Element Name
P_MIGRATION_ INFO_UNDEFINED NULL Undefined

10.2.6 TpMigrationAdditionallnfoType

Defines the type of migration-related additional information.

Name Value Description
P MIGRATION INFO UNDEFINED 0 Undefined

3GPP

Release 9 189 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.2.7 TpMigrationAdditionallnfoSet

Defines a Numbered Set of Data Elements of TpMigrationAdditionalinfo.

10.2.8 TpFwAgreementinfo

Defines the Sequence of Data Elements thatspecifies the information returned to the enterprise operator
application in an event notification.

Sequence Element Name Sequence Element Type Description
ClientApplicationID TpClientAppID The ID of the client application
ServiceID TpServicelD The ID of the service for whom the agreement was

signed/terminated

ServiceContractID TpServiceContractlD The ID of the service contract related to the
agreement if available, an empty string otherwise.

ServiceProfileID TpServiceProfilelD The ID of the service profile related to the
agreement if available, an empty string otherwise.

10.3 Trust and Security Management Data Definitions

10.3.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application.
If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define
their own access interfaces to satisfy client requirements for different types of access. These can be selected using the
TpAccessType, butshould be preceded by the string " SP_". The following value is defined:

String Value Description

P_OSA_ACCESS Access usingthe OSA Access Interfaces: IpAccess and IpClient Access

10.3.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It
provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication
interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a
proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default
authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the
string “SP_”. The following values are defined:

String Value Description
P_OSA_AUTHENTICATION Authenticate usingthe OSA AP Level Authentication Interfaces: IpAPILevelAuthentication and
IpClient APl Level Authentication
P AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

3GPP

Release 9 190
10.3.3 Vo

10.3.4 Void

10.3.5 Vo

10.3.6 TpAuthDomain

3GPP TS 29.198-3 V9.0.0 (2009-12)

This is Sequence of Data Elements containing all the data necessary to identify a domain: the do main

identifier, and a reference to the authentication interface of the domain.

Sequence Element | Sequence Element Description
Name Type
DomainID TpDomainID Identifies the domain for authentication. This identifier is assigned to the domain during
the initial contractual agreements, and is valid during the lifetime of the contract.
AuthInterface IpInterfaceRef Identifies the authentication interface of the specific entity. This data element has the same

lifetime asthe domain authentication process, i.e. in principle a new interface reference

can be provided each time a domain intends to access another.

10.3.7 TplnterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the

Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,

but should be preceded by thestring "sP_". The following values are defined.

Character String Value

Description

P DISCOVERY

The name for the Discovery interface.

P_EVENT NOTIFICATION

The name for the Event Notification interface.

P_OAM

The name for the OA&M interface.

P LOAD MANAGER

The name for the Load Manager interface.

P _FAULT MANAGER

The name for the Fault Manager interface.

P HEARTBEAT MANAGEMENT

The name for the Heartbeat Management interface.

P_SERVICE AGREEMENT MANAGEMENT

The name of the Service Agreement Management interface.

P_REGISTRATION

The name for the Service Registration interface.

P ENT OP ACCOUNT MANAGEMENT

The name for the Service Subscription: Enterprise Operator Account Management
interface.

P _ENT OP ACCOUNT INFO QUERY

The name for the Service Subscription: Enterprise Operator Account Information Query
interface.

P SVC CONTRACT MANAGEMENT

The name for the Service Subscription: Service Contract Management interface.

P_SVC_CONTRACT_ INFO QUERY

The name for the Service Subscription: Service Contract Information Query interface.

P _CLIENT APP MANAGEMENT

The name for the Service Subscription: Client Application Management interface.

P CLIENT APP INFO QUERY

The name for the Service Subscription: Client Application Information Query interface.

P _SVC PROFILE MANAGEMENT

The name for the Service Subscription: Service Profile Management interface.

P_SVC PROFILE INFO QUERY

The name for the Service Subscription: Service Profile Information Query interface.

10.3.8 TplnterfaceNameList

This data type defines a Numbered Set of Data Elements of type TpInterfaceName.

10.3.9 TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the
Framework, which can be signed as part of a service agreement. This will contain Network operator specific
information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the
lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any

3GPP

Release 9 191 3GPP TS 29.198-3 V9.0.0 (2009-12)

method accepting the serviceToken will return an error code (P_ INVALID SERVICE TOKEN). Service Tokens will

automatically expire if the client or Framework invokes the terminateAccess method on the other's corresponding
access interface.

10.3.10 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a
reference to the SCF manager interface of the SCF.

Sequence Element Sequence Element
Name Type
DigitalSignature TpOctetSet
ServiceMgrInterface IpServiceRef

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content
type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement
text given by the client application. The "external signature” construct shall not be used (i.e. the eContent field in the
EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as
defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The ServiceMgrinterface is a reference to the SCF manager interface for the selected SCF.

10.3.11 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that
shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string
"SPp_".The following values are defined.

String Value Description
NULL An empty (NULL) string indicates no signing algorithm is required
P_MD5_RSA 512 MD5takes an input message of arbitrary length and produces as output a 128-bit message digest ofthe

input. This isthen encrypted with the private key underthe RSA public-key cryptography system

using a 512-bit modulus. T he signature generation follows the process and format defined in RFC
2313 (PKCS#1 v1.5). The use ofthis signing method is deprecated.

P_MD5_RSA 1024 MD5takes an input message of arbitrary length and produces as output a 128-bit message digest ofthe
input. This is then encrypted with the private key underthe RSA public- key cryptography system

using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC
2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

P_RSASSA PKCS1 vl 5 SH | SHA-1 is used to produce a 160-hit message digest based on the input message to be signed. RSA is

Al 1024 then usedto generate the signature value, following the process defined in section 8 of RFC 2437 and
format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024 -bit
modulus.

P_SHAl DSA SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is

then used to generate the signature value. The signature generation follows the process and format
defined in section 7.2.2 of RFC 2459.

10.3.12 TpSigningAlgorithmCapabilityList

This data type is identical to a TpString. It is a string of multiple TpSigningAlgorithm concatenated using a comma (,)
as the separation character.

3GPP

Release 9 192 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.3.13 TpAuthMechanism

This data type is identical to a TpString. It identifies an authentication mechanismto be used for API Level
Authentication. The following values are defined:

String Value Description

P_OSA_MD5 Authentication is based onthe use of MD5 (RFC 1321) hashing algorithm to generate a response basedon a
shared secret and a challenge received via challenge() method. The capability to use this algorithm is required
to be supported when using CHAP (RFC 1994) but its use is not recommended.

P_OSA_HMAC SHA1 9% Authentication is based onthe use of HMAC-SHAL (RFC 2404) hashing algorithmto generate a response
based on a shared secret and a challenge received via challenge() method.
P_OSA_HMAC _MD5_96 Authentication is based onthe use of HMAC-MD5 (RFC 2403) hashing algorithm to generate a response

based on a shared secret and a challenge received via challenge() method.

10.3.14 TpAuthMechanismList

This data type is identical to a TpString. It is a string of multiple TpAuthMechanism concatenated using a comma (,) as
the separation character.

10.4 Integrity Management Data Definitions

104.1 TpActivityTestRes

This type is identical to TpString and is an imp lementation specific result. The values in this data type are “Available”
or “Unavailable”.

104.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element Sequence Element
Name Type
Period TpTimeInterval

FaultStatsSet TpFaultStatsSet

104.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element Sequence Element Description
Name Type
Fault TpInterfaceFault
Occurrences TpInt32 The nunber of separate insances of this fault
MaxDuration TpInt32 The number of seconds duration ofthe longest fault
TotalDuration TpInt32 The cumulative duration (all occurrences)
NumberOfClientsAffected TpInt32 The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the
number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClients Affected is
the number of clients informed of the fault by the Framework.

3GPP

Release 9 193 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.4.4 TpFaultStatisticsError

Defines the error code associated with a failed attempt to retrieve any fault
statistics information.

Name Value Description
P _FAULT INFO ERROR UNDEFINED 0 Undefinederror
P _FAULT INFO UNAVAILABLE 1 Fault gatistics unavailable

104.5 TpFaultStatsSet

This data type defines a Numbered Set of Data Elements oftype TpFaultStats

104.6 TpActivityTestiD

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

10.4.7 TplnterfaceFault

Defines the cause of the interface fault detected.

Name Value Description

INTERFACE FAULT UNDEFINED 0 Undefined

INTERFACE FAULT LOCAL_FAILURE A fault in the local AP software or hardware has been detected

1
INTERFACE FAULT GATEWAY FAILURE 2 A fault in the gateway AP software or hardware has been detected
3

INTERFACE FAULT PROTOCOL ERROR An error in the protocol used on the client-gateway link has been detected

104.8 Void

104.9 TpFwUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description

FW_UNAVAILABLE UNDEFINED 0 Undefined

FW_UNAVAILABLE LOCAL FAILURE The Local API software or hardware has failed

FW_UNAVAILABLE GATEWAY FAILURE The gateway AP | software or hardware has failed

FW_UNAVAILABLE CLOSED The Framework has closed itself (e.g. to protect from fraud or malicious attack)

1
2
FW_UNAVAILABLE OVERLOADED 3 The Framework is fully overloaded
4
5

The protocol used on the client-gateway link has failed

FW UNAVAILABLE PROTOCOL FAILURE

104.10 TpLoadlLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description
LOAD LEVEL NORMAL 0 Normal load
LOAD LEVEL OVERLOAD 1 Overload
LOAD LEVEL SEVERE OVERLOAD 2 Severe Overload

3GPP

Release 9

10.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is

194 3GPP TS 29.198-3 vV9.0.0 (2009-12)

application and SCF dependent, so is their relationship with load level.

Sequence Element
Name

Sequence Element
Type

LoadThreshold

TpFloat

104.12 TpLoadlnitval

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element Sequence Element
Name Type
LoadLevel TpLoadLevel
LoadThreshold TpLoadThreshold

10.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name

Sequence Element Type

LoadPolicy

TpString

104.14 TplLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e.

Framework, service or application) at a specific date and time.

Sequence Element Name

Sequence Element Type

LoadStatisticEntityID

TpLoadStatisticEntityID

TimeStamp

TpDateAndTime

LoadStatisticInfo

TpLoadStatisticInfo

10.4.15 TplLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

10.4.16 TplLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information.

Sequence Element Name

Sequence Element Type

LoadValue (see Note)

TpFloat

LoadLevel

TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

3GPP

Release 9 195 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.4.17 TpLoadStatisticEntitylD

Defines the Tagged Choice of Data Elements thatspecify the type of entity (i.e. service, application or
Framework) providing load statistics.

Tag Element Type

TpLoadStatisticEntityType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD_STATISTICS_FW_TYPE TpFwID Framewor kID
P_LOAD_STATISTICS SVC_TYPE TpServicelD ServicelD
P_LOAD STATISTICS_APP_TYPE TpClientAppID ClientAppID

10.4.18 TplLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

Name Value Description
P_LOAD STATISTICS_FW TYPE 0 Framework-type load statistics
P LOAD STATISTICS SVC TYPE 1 Service-type load dtatistics
P_LOAD_STATISTICS APP_TYPE 2 Application-type load satistics

10.4.19 TplLoadStatisticlnfo

Defines the Tagged Choice of Data Elements thatspecify the type of load statistic information (i.e. valid or
invalid).

Tag Element Type

TpLoadStatisticinfoType

Tag Element Value Choice Element Type Choice Element Name
P_LOAD STATISTICS_VALID TpLoadStatisticData LoadStatisticData
P_LOAD_STATISTICS_INVALID TpLoadStatisticError LoadStatisticError

10.4.20 TpLoadStatisticinfoType

Defines the type of load statistic information (i.e. valid or invalid).

Name Value Description
P _LOAD_ STATISTICS VALID 0 Valid load statigtics
P _LOAD STATISTICS INVALID 1 Invalid load statistics

104.21 TplLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load statistics information.

Name Value Description
P _LOAD INFO ERROR UNDEFINED 0 Undefined error
P LOAD INFO UNAVAILABLE 1 Load statistics unavailable

3GPP

Release 9

10.4.22 TpSvcAvailStatusReason

196 3GPP TS 29.198-3 V9.0.0 (2009-12)

Defines the reason detailing the change in status of Service Instance availability.

Name Value Description
SVC_UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See Note 1.
SVC_UNAVAILABLE LOCAL FAILURE 1 The Local API software or hardware has failed. A permanent failure. See Note
1.
SVC_ UNAVAILABLE GATEWAY FAILURE 2 The gateway AP | software or hardware has failed. A permanent failure. See
Note 1.
SVC UNAVAILABLE OVERLOADED 3 The Service Ingtance is fully overloaded. A temporary problem. See Note 2.
SVC UNAVAILABLE CLOSED 4 The Service Ingance has closed itself (e.g. to protect from fraud or malicious
attack). A permanent failure. See Note 1.
SVC UNAVAILABLE NO RESPONSE 5 The Framework has detected that a Service Instance has failed: e.g. non-
response from an activity teg, failure to retum heartbeats. A permanent failure.
See Note 1.
SVC_ UNAVAILABLE SW _UPGRADE 6 The Service Ingtance is unavailable due to software upgrade or other similar
maintenance. A permanent failure. See Note 1.
SVC_AVAILABLE 7 The Service has become available again
Note 1: The client application must actto resetits use of the specified service instance (using the nomal
mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and
begin use of a differentservice instance).
Note 2: The "expected" recoverytime could be defined within the SLA.

10.4.23 TpAppAvailStatusReason

Defines the reason detailing the change in status of Application availability.

Name Value Description

APP UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See Note 1.

APP UNAVAILABLE LOCAL FAILURE 1 A local failure inthe Application has been detected. A permanent failure. See Note 1.

APP_UNAVAILABLE REMOTE FAILURE 2 A remote failureto the application has been detected, e.g. a database is not working. A
permanent failure. See Note 1.

APP_UNAVAILABLE OVERLOADED The Application is fully overloaded. A temporary problem. See Note 2.

APP UNAVAILABLE CLOSED 4 The Application has closed itself (e.g. to protect from fraud or malicious attack) . A
permanent failure. See Note 1.

APP UNAVAILABLE NO RESPONSE 5 The Framework has detected that the application has failed: e.g. non-response from an

activity test, failureto return heartbeats. A permanent failure. See Note 1.

APP UNAVAILABLE SW UPGRADE 6 The Application is unavailable due to SW upgrade or other similar maintenance. A
permanent failure. See Note 1.

APP_AVAILABLE 7 The Application has become available

Note 1:
Note 2:

The client application is unable (or does not wish) to continue using the service instance.
The "expected" recoverytime could be defined within the SLA.

10.4.24 TpLoadTestiD

This data type is identical to a TpInt32, and is used as a token to match load statistics requests with their results.

104.25 TpFaultStatsErrorList

Defines a Numbered List of Data Elements oftype TpFaultStatisticsError.

104.26 TpFaultReqlD

This data type is identical to a TpInt32, and is used as a token to match fault statistics requests with their results.

3GPP

Release 9 197 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.4.27 TpFwAvailStatusReason

Defines the reason detailing the change in status of Framework availability.

Name Value Description
FRAMEWORK_UNAVAILABLE UNDEFINED 0 Undefined. A permanent failure. See Note 1.
FRAMEWORK UNAVAILABLE LOCAL FAILURE 1 A local failure inthe Framework has been detected. A permanent failure. See
Note 1.
FRAMEWORK UNAVAILABLE REMOTE FAILURE 2 A remote failureto the Framework has been detected, e.g. a database is not
working. A permanent failure. See Note 1.
FRAMEWORK UNAVAILABLE OVERLOADED 3 The Framework is fully overloaded. A temporary problem. See Note 2.
FRAMEWORK UNAVAILABLE CLOSED 4 The Framework has closed itself (e.g. to protect from fraud or malicious attack) .

A permanent failure. See Note 1.

FRAMEWORK UNAVAILABLE PROTOCOL FAILURE 5 The Framework has detected that the protocol used between client and
framework has failed. A permanent failure. See Note 1.

FRAMEWORK UNAVAILABLE SW UPGRADE 6 The Framework is unavailable due to SW upgrade or other similar maintenance.
A permanent failure. See Note 1.

FRAMEWORK AVAILABLE 7 The Framework has become available

Note 1: The Framework is unable (or does not wish) to continue using the client or service instance.
Note 2: The 'expected' recoverytime could be part of the Framework's local policies.

10.5 Service Subscription Data Definitions

105.1 TpPropertyName

This data type is identical to TpString. It is the name ofa generic “property”.

105.2 TpPropertyValue

This data type is identical to TpString. Itis the value (or the list of values) associated with a generic “property”.

105.3 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data
type consisting of the following {name value} pair:

Sequence Element Sequence Element
Name Type
PropertyName TpPropertyName
PropertyValue TpPropertyValue

105.4 TpPropertyList

This data type defines a Numbered List of Data Elements oftype TpProperty.

105.5 TpEntOpProperties

This data type is of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.
name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

3GPP

Release 9 198 3GPP TS 29.198-3 V9.0.0 (2009-12)

105.6 TpENtOp

This datatype is a Sequence of Data Elements which describes an enterprise operator. It is a structured data
type, consisting of a unique “enterprise operator ID” and a list of “enterprise operator properties”, as follows:

Sequence Element Sequence Element
Name Type
EntOpID TpENtOpID
EntOpProperties TpEntOpProperties

105.7 TpServiceContractlD

This data type is identical to ToString. It uniquely identifies the contract, between an enterprise operator and the
Framework, for the use of an OSAservice by the enterprise.

105.8 TpServiceContractIDList

This data type defines a Numbered List of Data Elements oftype TpServiceContractID.

10.5.9 TpPersonName

This data type is identical to ToString. It is the name ofa generic “person”.

10.5.10 TpPostalAddress

This data type is identical to ToString. It is the mailing address of a generic “person”.

10.5.11 TpTelephoneNumber

This data type is identical to TpoString. It is the telephone number of a generic “person”.

10.5.12 TpEmail

This data type is identical to ToString. It is the email address of a generic “person”.

105.13 TpHomePage

This data type is identical to TpString. It is the web address of a generic “person”.

10.5.14 TpPersonProperties

This data type is of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that
can be associated with a generic “person”.

3GPP

Release 9 199 3GPP TS 29.198-3 V9.0.0 (2009-12)

105.15 TpPerson

This data type is a Sequence of Data Elements which describes a generic “person™: e.g. a billing contact, a
service requestor. It is a structured data type which consists of:

Sequence Element Sequence Element
Name Type

PersonName TpPersonName
PostalAddress TpPogalAddress
TelephoneNumber TpTelephoneNumber
Email TpEmail
HomePage TpHomePage
PersonProperties TpPersonProperties

10.5.16 TpServiceStartDate

This is of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

105.17 TpServiceEndDate

This is of type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an
enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.18 TpServiceRequestor

This is of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise
operator.

10.5.19 TpBilingContact

This is of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’s
use of an OSA service.

10.5.20 TpServiceSubscriptionProperties

This is of type TpServicePropertyList. It specifies a subset of all available service properties and service property
values that apply to an enterprise’s use of an OSA service.

10.5.21 TpServiceContract

This data type is a Sequence of Data Elements which represents a service contract. It is a structured data type
which consists of:

Sequence Element Sequence Element
Name Type
ServiceContractID TpServiceContractlD
ServiceContractDescription TpServiceContractDescription

3GPP

Release 9 200 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.5.22 TpServiceContractDescription

This datatype is a Sequence of Data Elements which describes a service contract. This contract should
conform to a previously negotiated high-level agree ment (regarding OSA services, their usage and the price, etc.), if
any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element Sequence Element
Name Type

ServiceRequestor TpServiceRequestor
BillingContact TpBillingContact
ServiceStartDate TpServiceStart Date
ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName
ServicelD TpServicelD
ServiceSubscriptionProperties TpServiceSubscriptionProperties
InUse TpBoolean (See note)
Note: The InUse flag indicates if the contract, or one of its associated profiles, is currently in use by a service

instance and will be retumed in describeServiceContract(). This flag will be ignored ifitis passed in to
createServiceContract().

10.5.23 TpClientAppProperties

This is of type TpPropertyList. The client application properties is a list of {name,value} pairs, for bilateral agree ment
between the enterprise operator and the Framework.

10.5.24 TpClientAppDescription

This datatype is a Sequence of Data Elements which describes an enterprise client application. It is a
structured data type, consisting of a unique “client application ID”, password and a list of “client application properties:

Sequence Element Sequence Element
Name Type
ClientAppID TpClientAppID
ClientAppProperties TpClientAppProperties
HasAccessSession TpBoolean (See note 1)
HasServicelInstances TpBoolean(See note 2)

Note 1: The HasAccessSession flag indicates if the client application currently has an access session active with the
framework and will be returned in describeClientApp(). This flag will be ignored ifitis passed in to
createClientApp().

Note 2: The HasServicelnstances flag indicates if the client application currently has service instances active and will
be returned in describeClientApp(). This flag will be ignored if itis passed in to createClientApp(). This flag
must be false if has AccessSession is false.

10.5.25 TpSaglD

This data type is identical to ToString. It uniquely identifies a Subscription Assignment Group (SAG) of client
applications within an enterprise.

105.26 TpSaglDList

This data type defines a Numbered List of Data Elements oftype TpSagID.

10.5.27 TpSagDescription

This data type is identical to ToString. It describes a SAG: e.g. a list of identifiers of the constituent client
applications, the purpose of the “grouping”.

3GPP

Release 9 201 3GPP TS 29.198-3 V9.0.0 (2009-12)

105.28 TpSag

This datatype is a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of
client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element Sequence Element
Name Type
SagID TpSaglD
SagDescription TpSagDescription

10.5.29 TpServiceProfilelD

This data type is identical to ToString. It uniquely identifies the service profile, which further constrains how an
enterprise SAGuses an OSA service.

10.5.30 TpServiceProfileIDList

This data type defines a Numbered List of Data Elements oftype TpServiceProfilelD.

10.5.31 TpServiceProfile

This datatype is a Sequence of Data Elements which represents a Service Profile. It is a structured data type
which consists of:

Sequence Element Sequence Element
Name Type
ServiceProfilelID TpServiceProfilel D
ServiceProfileDescription TpServiceProfileDescription

3GPP

Release 9 202 3GPP TS 29.198-3 V9.0.0 (2009-12)

10.5.32 TpServiceProfileDescription

This datatype is a Sequence of Data Elements which describes a Service Profile. A service contract contains
one or more Service Profiles, one for each SA G in the enterprise operator domain. A service profile is a restriction of
the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists

of:

Sequence Element

Sequence Element

Name Type
ServiceContractID TpServiceContractlD
ServiceStartDate TpServiceStartDate
ServiceEndDate TpServiceEndDate
ServiceTypeName TpSenviceTypeName (See note 1)

ServiceSubscriptionProperti

TpServiceSubscriptionProperties

eSS

InUse TpBoolean (See note 2)

ServicelD TpServicelD (See note 3)

Note 1: When the Framework retums a TpServiceProfileDescription to the enterprise operator, it should
setthe ServiceTypeName field to the same value as the corresponding field of the service
contract; When the enterprise operator passes a TpServiceProfileDescription to the
Framework, the Framework should ignore the value sentin the ServiceTypeNam e field to
ensure interoperability; The enterprise operator should be required to set the
ServiceTypeName field to the correct value when passing a TpServiceProfileDescription to the
Framework.

Note 2: The InUse flag indicates if the profile is currently in use by a service instance and will be
returned in describeServiceProfile(). This flag will be ignored ifitis passed in to
createServiceProfile().

Note 3: The ServicelD field is used to restrict a service type-based service contract to a specific
service. When the TpServiceProfileDescription is passed to the Framework by an enterprise
operator, the Framework should ensure that the ServicelD field, if not empty, contains a service
which is of the service type specified in the service contract. If the corresponding contract is for
a service ID then the Framework should ignore this field.

When a TpServiceProfileDescription is returned to the enterprise operator, the contents of this
field will depend on the associated service contract. If the contractis for a service ID, then this
field should be populated with the correct value. If the contractis for a service type, and the
profile is restricted to a specific service ID then this field should be populated with the correct
value. Otherwise, it should contain an empty string.

10.5.33 TpSagProfilePair

This data type is a Sequence of Data Elements which describes a pair of aSAGand a Service Profile. It is a structured
data type which consists of:

Sequence Element Name

Sequence Element Type

Sag

TpSaglD

ServiceProfile

TpServiceProfilelD

10.5.34 TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applications are
added to a SAG - see method addSagMembers(). This happens, when a client application is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAGand the service profile through which the client application is
already assigned to the service. It includes the current service profile. The Conflict GeneratingSagProfile Pair describes
another SAG, to which the client application should be added, and the corresponding service profile, through which the
client application is also connected to this service. This creates a conflict, as there may exist only a single service profile
for each service.

The TpAddSagMembersConflict is a structured data type which consists of:

3GPP

Release 9 203 3GPP TS 29.198-3 V9.0.0 (2009-12)

Sequence Element Name Sequence Element Type
ClientApplication TpClientAppID
ConflictGeneratingSagProfilePair TpSagProfilePair
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

10.5.35 TpAddSagMembersConflictList

This data type defines a Numbered List of Data Elements oftype TpAddSagMembersConflict.

10.5.36 TpAssignSagToServiceProfileConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when a SAG is assigned to a
Service Profile - see method assign().

The AlreadyAssignedSagProfilePair describes the SAGand the service profile through which the client application is
already assigned to the service.

The TpAssignSagToServiceProfile Conflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type
ClientApplication TpClientAppID
AlreadyAssignedSagProfilePair TpSagProfilePair
Service TpServicelD

10.5.37 TpAssignSagToServiceProfileConflictList

This data type defines a Numbered List of Data Elements oftype TpAssignSagToServiceProfile Conflict.

3GPP

Release 9

204 3GPP TS 29.198-3 V9.0.0 (2009-12)

11 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name

Description

P ACCESS DENIED

The client isnot currently authenticated with the framework

P _DUPLICATE PROPERTY NAME

A duplicate property name has been received

P ILLEGAL SERVICE ID

Illegal Service ID

P _TLLEGAL SERVICE TYPE

Illegal Service Type

P INVALID ACCESS TYPE

The framework does not support the type of access interface requested by the
client.

P INVALID ACTIVITY TEST ID

ID does not correspondto a valid activity test request

P _INVALID ADDITION TO SAG

A client application cannot be added to the SAG because this would imply that the
client application hastwo concurrent service profilesat a particular moment in
time for a particular service.

P_INVALID AGREEMENT TEXT

Invalid agreement text

P _INVALID ENCRYPTION CAPABILITY

Invalid encryption capability

P INVALID AUTH TYPE

Invalid type of authentication mechanism

P INVALID CLIENT APP ID

Invalid Client Application ID

P _INVALID DOMAIN ID

Invalid client ID

P INVALID ENT OP ID

Invalid Enterprise Operator ID

P _INVALID PROPERTY

The framework does not recognise the property supplied by the client

P INVALID SAG ID

Invalid Subscription Assignment Growp ID

P INVALID SAG TO SERVICE PROFILE ASSIGNMENT

A SAG cannot be assigned to the service profile because this would imply that a

client application hastwo concurrent service profilesat a particular moment in
time for a particular service.

P _INVALID SERVICE CONTRACT ID

Invalid Service Contract ID

P INVALID SERVICE ID

Invalid service ID

P INVALID SERVICE PROFILE ID

Invalid service profile ID

P INVALID SERVICE TOKEN

The service token has not been issued, or it hasexpired.

P INVALID SERVICE TYPE

Invalid Service Type

P _INVALID SIGNATURE

Invalid digital signature

P_INVALID SIGNING ALGORITHM

Invalid signing algorithm

P _MISSING MANDATORY PROPERTY

Mandatory Property Missing

P NO ACCEPTABLE ENCRYPTION CAPABILITY

No encryption mechanism, which is acceptable to the framework, is supported by
the client

P NO ACCEPTABLE AUTHENTICATION MECHANISM

No authentication mechanism, which is acceptable to the framework, is supported
by the client

P NO ACCEPTABLE SIGNING ALGORITHM

No signing algorithm, which is acceptable to the framework, is supported by the
client

P PROPERTY TYPE MISMATCH

Property Type Mismatch

P_SERVICE ACCESS_DENIED

The client application isnot allowed to access this service.

P SERVICE NOT ENABLED

The service ID does not correspondto a service that has been enabled

P _SERVICE TYPE UNAVAILABLE

The service type is not available accordingto the Framework.

P_UNKNOWN_ SERVICE ID

Unknown Service ID

P UNKNOWN SERVICE TYPE

Unknown Service Type

Each exception class contains the following structure:

Structure Element Name

Structure Element Type

Structure Element Description

ExtraInformation

TpString

Carries extra information to help identify the source of the
exception, e.g. a parameter name

3GPP

Release 9 205 3GPP TS 29.198-3 V9.0.0 (2009-12)

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,
fw_if_app.idl, fw_if_service.idl contained in archive 2919803V800IDL.ZIP) which accompany the present document.

3GPP

Release 9 206 3GPP TS 29.198-3 V9.0.0 (2009-12)

Annex B (informative):
W3C WSDL Description of Framework

The W3C WSDL representation of this interface specification is contained in zip file 2919803V800WSDL.ZIP, which
accompanies the present document.

3GPP

Release 9 207 3GPP TS 29.198-3 V9.0.0 (2009-12)

Annex C (informative):
Java™ AP| Description of the Framework

The Java™ API realisation of this interface specification is produced in accordance with the Java™ Realisation rules
defined in Part 1 of this specification series. These rules aimto deliver for Java™, a developer API, provided as a
realisation, supporting a Java™ API that represents the UML specifications. The rules support the production of both
J2SE™ and J2EE™ versions of the API fromthe common UML s pecifications.

The J2SE™ representation of this interface specification is provided as Java™, contained in archive
2919803V800J2SE.ZIP that accompanies the present document.

The J2EE™ representation of this interface specification is provided as Java™, contained in archive
2919803V800J2EE.ZIP that accompanies the present document.

3GPP

Release 9 208 3GPP TS 29.198-3 vV9.0.0 (2009-12)

Annex D (informative):
Description of the Framework for 3GPP2 cdma2000
networks

This annex is intended to define the OSA API Stage 3 interface definitions and it provides the complete OSA
specifications for cdma2000-based systems. It is an extension of OSA API specifications capabilities to enable
operation in cdma2000 systems environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2
architecture defined in

[1] 3GPP2 P.S0001-B: "Wireless IP Network Standard™, Version 1.0, September 2000;

[2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems™,
Version 2.0, May 14, 2002;

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Domain™, December 2003.

These requirements are expressed as additions to and/or exclusions fromthe 3GPP Release 8 specification. The
information given here is to be used by developers in 3GPP2 cdma2000 network architecture to interpret the 3GPP

OSA specifications.

D.1 General Exceptions

The termUMTS is not applicable for the cdma2000 family of standards. Nevertheless the term UMTS is used in 3GPP
TR 21.905 (Vocabulary for 3GPP Specifications) mostly in the broader sense of "3G Wireless System". If not stated
otherwise there are no additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope

There are no additions or exclusions.

D.2.2 Clause 2: References

Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 systems.

D.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

D.2.4 Clause 4: Overview of the Framework

There are no additions or exclusions.

D.2.5 Clause 5: The Base Interface Specification

There are no additions or exclusions.

3GPP

Release 9 209 3GPP TS 29.198-3 V9.0.0 (2009-12)

D.2.6 Clause 6: Framework Access Session API

There are no additions or exclusions.

D.2.7 Clause 7 Framework-to-Application Sequence Diagrams

There are no additions or exclusions.

D.2.8 Clause 8: Framework-to-Service API

There are no additions or exclusions.

D.2.9 Clause 9: Service Properties

Since CAMEL protocol is not applicable for cdma2000 systems, an SCS shall indicate support for the CAMEL feature
through service properties. For cdma2000 systems the CAMEL service properties shall be disabled (CAMEL shall be
turned always off in the case of the 3GPP2 networks; e.g.: UserLocationCamel shall be set to false).

D.2.10 Clause 10: Data Definitions

There are no additions. P_USER_LOCATION_CAMELvalue of TpServiceTypeName is not required to be supported
in the 3GPP2 networks.

D.2.11 Clause 11: Exception Classes

There are no additions or exclusions.

D.2.12 Annex A (normative): OMG IDL Description of the
Framework

There are no additions or exclusions.

D.2.13 Annex B (informative): W3C WSDL Description of the
Framework

There are no additions or exclusions.

D.2.14 Annex C (informative): Java™ API Description of the
Framework

There are no additions or exclusions.

3GPP

Release 9 210 3GPP TS 29.198-3 V9.0.0 (2009-12)

Annex E (informative):
Change history

Change history

Date TSG# |TSGDoc. |CR |Rev |Subject/Comment Old New

Jun 2006 ([CT-32 [CP-060205 [0133]-- Remove deprecated items from Trust and Security Management 6.6.1 [7.0.0
interfaces

Jun 2006 [CT-32 [CP-060205 (0134]-- Remove deprecated items from Integrity Management: Fault and 6.6.1 |7.0.0
Load Management

Sep 2006 -- Added missing code attachments J2EE and J2SE. 7.0.0 |7.0.1

Dec 2006 |[CT-34 [CP-060721 |[0136(1 Remove unintended limitation on the support of regular expressions |7.0.1 |7.1.0
within TpAddressRange

Dec 2006 (CT-34 [CP-060596 (0137]-- Add TpServiceTypeName to include name of Service Broker SCF 7.0.1 |7.1.0

May 2008 [CT-40 [CP-080254 (0138|-- Transfer of missing items from ETSI TISPAN OSA Framew ork 7.1.0 |8.0.0
specffication

2009-12 |- - - - Update to Rel-9 version (MCC) 8.0.0 |9.0.0

3GPP

	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService
	5.4.1.1 Method setCallback()
	5.4.1.2 Method setCallbackWithSessionID()

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access
	6.1.1.2 Framework Terminates Access
	6.1.1.3 Application Terminates Access
	6.1.1.4 Non-API level Authentication
	6.1.1.5 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.1.1 Method abortAuthentication()
	6.3.1.1.2 Method authenticationSucceeded()
	6.3.1.1.3 Method challenge()

	6.3.1.2 Interface Class IpClientAccess
	6.3.1.2.1 Method terminateAccess()

	6.3.1.3 Interface Class IpInitial
	6.3.1.3.1 Method initiateAuthenticationWithVersion()

	6.3.1.4 Interface Class IpAuthentication
	6.3.1.4.1 Method requestAccess()

	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.5.1 Method abortAuthentication()
	6.3.1.5.2 Method authenticationSucceeded()
	6.3.1.5.3 Method selectAuthenticationMechanism()
	6.3.1.5.4 Method challenge()

	6.3.1.6 Interface Class IpAccess
	6.3.1.6.1 Method obtainInterface()
	6.3.1.6.2 Method obtainInterfaceWithCallback()
	6.3.1.6.3 Method listInterfaces()
	6.3.1.6.4 Method selectSigningAlgorithm()
	6.3.1.6.5 Method terminateAccess()
	6.3.1.6.6 Method relinquishInterface()

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Authenticating Framework State
	6.4.1.2.3 Framework Authenticated State
	6.4.1.2.4 Authenticating Client State
	6.4.1.2.5 Client Authenticated State
	6.4.1.2.6 Idle State
	6.4.1.2.7 Authenticating Framework State
	6.4.1.2.8 Framework Authenticated State
	6.4.1.2.9 Authenticating Client State
	6.4.1.2.10 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Framework callback registration and Application load control
	7.1.2.4 Load Management: Application reports current load condition
	7.1.2.5 Load Management: Application queries load statistics
	7.1.2.6 Load Management: Application callback registration and load control
	7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.8 Fault Management: Framework detects a Service failure
	7.1.2.9 Fault Management: Application requests a Framework activity test

	7.1.3 Service Discovery Sequence Diagrams
	7.1.3.1 Service Discovery

	7.1.4 Service Agreement Management Sequence Diagrams
	7.1.4.1 Service Selection

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery
	7.3.1.1.1 Method listServiceTypes()
	7.3.1.1.2 Method describeServiceType()
	7.3.1.1.3 Method discoverService()
	7.3.1.1.4 Method listSubscribedServices()

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.1.1 Method signServiceAgreement()
	7.3.2.1.2 Method terminateServiceAgreement()

	7.3.2.2 Interface Class IpServiceAgreementManagement
	7.3.2.2.1 Method signServiceAgreement()
	7.3.2.2.2 Method terminateServiceAgreement()
	7.3.2.2.3 Method selectService()
	7.3.2.2.4 Method initiateSignServiceAgreement()

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.1.1 Method activityTestRes()
	7.3.3.1.2 Method appActivityTestReq()
	7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()
	7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()
	7.3.3.1.5 Method <<deprecated>> fwUnavailableInd()
	7.3.3.1.6 Method activityTestErr()
	7.3.3.1.7 Method appUnavailableInd()
	7.3.3.1.8 Method svcAvailStatusInd()
	7.3.3.1.9 Method generateFaultStatisticsRecordRes()
	7.3.3.1.10 Method generateFaultStatisticsRecordErr()
	7.3.3.1.11 Method generateFaultStatisticsRecordReq()
	7.3.3.1.12 Method fwAvailStatusInd()

	7.3.3.2 Interface Class IpFaultManager
	7.3.3.2.1 Method activityTestReq()
	7.3.3.2.2 Method appActivityTestRes()
	7.3.3.2.3 Method svcUnavailableInd()
	7.3.3.2.4 Method appActivityTestErr()
	7.3.3.2.5 Method appAvailStatusInd()
	7.3.3.2.6 Method generateFaultStatisticsRecordReq()
	7.3.3.2.7 Method generateFaultStatisticsRecordRes()
	7.3.3.2.8 Method generateFaultStatisticsRecordErr()

	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.3.1 Method enableAppHeartBeat()
	7.3.3.3.2 Method disableAppHeartBeat()
	7.3.3.3.3 Method changeInterval()

	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.4.1 Method pulse()

	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.5.1 Method enableHeartBeat()
	7.3.3.5.2 Method disableHeartBeat()
	7.3.3.5.3 Method changeInterval()

	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.6.1 Method pulse()

	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.7.1 Method loadLevelNotification()
	7.3.3.7.2 Method resumeNotification()
	7.3.3.7.3 Method suspendNotification()
	7.3.3.7.4 Method createLoadLevelNotification()
	7.3.3.7.5 Method destroyLoadLevelNotification()
	7.3.3.7.6 Method queryAppLoadStatsReq()
	7.3.3.7.7 Method queryLoadStatsRes()
	7.3.3.7.8 Method queryLoadStatsErr()

	7.3.3.8 Interface Class IpLoadManager
	7.3.3.8.1 Method reportLoad()
	7.3.3.8.2 Method createLoadLevelNotification()
	7.3.3.8.3 Method destroyLoadLevelNotification()
	7.3.3.8.4 Method resumeNotification()
	7.3.3.8.5 Method suspendNotification()
	7.3.3.8.6 Method queryLoadStatsReq()
	7.3.3.8.7 Method queryAppLoadStatsRes()
	7.3.3.8.8 Method queryAppLoadStatsErr()

	7.3.3.9 Interface Class IpOAM
	7.3.3.9.1 Method systemDateTimeQuery()

	7.3.3.10 Interface Class IpAppOAM
	7.3.3.10.1 Method systemDateTimeQuery()

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.1.1 Method reportNotification()
	7.3.4.1.2 Method notificationTerminated()

	7.3.4.2 Interface Class IpEventNotification
	7.3.4.2.1 Method createNotification()
	7.3.4.2.2 Method destroyNotification()

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification

	8 Framework-to-Service API
	8.1 Sequence Diagrams
	8.1.1 Service Discovery Sequence Diagrams
	8.1.2 Service Registration Sequence Diagrams
	8.1.2.1 New SCF Sub Type Registration
	8.1.2.2 New SCF Registration

	8.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	8.1.3.1 Sign Service Agreement

	8.1.4 Integrity Management Sequence Diagrams
	8.1.4.1 Load Management: Service callback registration and load control
	8.1.4.2 Load Management: Framework callback registration and service load control
	8.1.4.3 Load Management: Client and Service Load Balancing
	8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	8.1.4.5 Fault Management: Service requests Framework activity test
	8.1.4.6 Fault Management: Service requests Application activity test
	8.1.4.7 Fault Management: Application requests Service activity test
	8.1.4.8 Fault Management: Application detects service is unavailable

	8.1.5 Event Notification Sequence Diagrams

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Service Registration Interface Classes
	8.3.1.1 Interface Class IpFwServiceRegistration
	8.3.1.1.1 Method registerService()
	8.3.1.1.2 Method announceServiceAvailability()
	8.3.1.1.3 Method unregisterService()
	8.3.1.1.4 Method describeService()
	8.3.1.1.5 Method unannounceService()
	8.3.1.1.6 Method registerServiceSubType()

	8.3.2 Service Instance Lifecycle Manager Interface Classes
	8.3.2.1 Interface Class IpServiceInstanceLifecycleManager
	8.3.2.1.1 Method createServiceManager()
	8.3.2.1.2 Method destroyServiceManager()

	8.3.3 Service Discovery Interface Classes
	8.3.3.1 Interface Class IpFwServiceDiscovery
	8.3.3.1.1 Method listServiceTypes()
	8.3.3.1.2 Method describeServiceType()
	8.3.3.1.3 Method discoverService()
	8.3.3.1.4 Method listRegisteredServices()

	8.3.4 Integrity Management Interface Classes
	8.3.4.1 Interface Class IpFwFaultManager
	8.3.4.1.1 Method activityTestReq()
	8.3.4.1.2 Method svcActivityTestRes()
	8.3.4.1.3 Method appUnavailableInd()
	8.3.4.1.4 Method svcActivityTestErr()
	8.3.4.1.5 Method svcAvailStatusInd()
	8.3.4.1.6 Method generateFaultStatisticsRecordReq()
	8.3.4.1.7 Method generateFaultStatisticsRecordRes()
	8.3.4.1.8 Method generateFaultStatisticsRecordErr()

	8.3.4.2 Interface Class IpSvcFaultManager
	8.3.4.2.1 Method activityTestRes()
	8.3.4.2.2 Method svcActivityTestReq()
	8.3.4.2.3 Method <<deprecated>> fwFaultReportInd()
	8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()
	8.3.4.2.5 Method <<deprecated>> fwUnavailableInd()
	8.3.4.2.6 Method svcUnavailableInd()
	8.3.4.2.7 Method activityTestErr()
	8.3.4.2.8 Method appAvailStatusInd()
	8.3.4.2.9 Method generateFaultStatisticsRecordRes()
	8.3.4.2.10 Method generateFaultStatisticsRecordErr()
	8.3.4.2.11 Method generateFaultStatisticsRecordReq()
	8.3.4.2.12 Method fwAvailStatusInd()

	8.3.4.3 Interface Class IpFwHeartBeatMgmt
	8.3.4.3.1 Method enableHeartBeat()
	8.3.4.3.2 Method disableHeartBeat()
	8.3.4.3.3 Method changeInterval()

	8.3.4.4 Interface Class IpFwHeartBeat
	8.3.4.4.1 Method pulse()

	8.3.4.5 Interface Class IpSvcHeartBeatMgmt
	8.3.4.5.1 Method enableSvcHeartBeat()
	8.3.4.5.2 Method disableSvcHeartBeat()
	8.3.4.5.3 Method changeInterval()

	8.3.4.6 Interface Class IpSvcHeartBeat
	8.3.4.6.1 Method pulse()

	8.3.4.7 Interface Class IpFwLoadManager
	8.3.4.7.1 Method reportLoad()
	8.3.4.7.2 Method createLoadLevelNotification()
	8.3.4.7.3 Method destroyLoadLevelNotification()
	8.3.4.7.4 Method suspendNotification()
	8.3.4.7.5 Method resumeNotification()
	8.3.4.7.6 Method queryLoadStatsReq()
	8.3.4.7.7 Method querySvcLoadStatsRes()
	8.3.4.7.8 Method querySvcLoadStatsErr()

	8.3.4.8 Interface Class IpSvcLoadManager
	8.3.4.8.1 Method loadLevelNotification()
	8.3.4.8.2 Method suspendNotification()
	8.3.4.8.3 Method resumeNotification()
	8.3.4.8.4 Method createLoadLevelNotification()
	8.3.4.8.5 Method destroyLoadLevelNotification()
	8.3.4.8.6 Method querySvcLoadStatsReq()
	8.3.4.8.7 Method queryLoadStatsRes()
	8.3.4.8.8 Method queryLoadStatsErr()

	8.3.4.9 Interface Class IpFwOAM
	8.3.4.9.1 Method systemDateTimeQuery()

	8.3.4.10 Interface Class IpSvcOAM
	8.3.4.10.1 Method systemDateTimeQuery()

	8.3.5 Event Notification Interface Classes
	8.3.5.1 Interface Class IpFwEventNotification
	8.3.5.1.1 Method createNotification()
	8.3.5.1.2 Method destroyNotification()

	8.3.5.2 Interface Class IpSvcEventNotification
	8.3.5.2.1 Method reportNotification()
	8.3.5.2.2 Method notificationTerminated()

	8.4 State Transition Diagrams
	8.4.1 Service Registration State Transition Diagrams
	8.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	8.4.1.1.1 SCF Registered State
	8.4.1.1.2 SCF Announced State

	8.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	8.4.3 Service Discovery State Transition Diagrams
	8.4.4 Integrity Management State Transition Diagrams
	8.4.4.1 State Transition Diagrams for IpFwLoadManager
	8.4.4.1.1 Idle State
	8.4.4.1.2 Notification Suspended State
	8.4.4.1.3 Active State

	8.4.4.2 State Transition Diagrams for IpFwFaultManager
	8.4.4.2.1 Framework Active State
	8.4.4.2.2 Framework Activity Test State
	8.4.4.2.3 Application Activity Test State
	8.4.4.2.4 Framework Faulty State

	8.4.5 Event Notification State Transition Diagrams

	8a Framework-to-Enterprise Operator API
	8a.1 Sequence Diagrams
	8a.1.1 Event Notification Sequence Diagrams
	8a.1.2 Service Subscription Sequence Diagrams
	8a.1.2.1 Service Discovery and Subscription Scenario
	8a.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram

	8a.2 Class Diagrams
	8a.3 Interface Classes
	8a.3.1 Event Notification Interface Classes
	8a.3.1.1 Interface Class IpClientEventNotification
	8a.3.1.1.1 Method reportNotification()
	8a.3.1.1.2 Method notificationTerminated()

	8a.3.1.2 Interface Class IpEventNotification
	8a.3.1.2.1 Method createNotification()
	8a.3.1.2.2 Method destroyNotification()

	8a.3.2 Service Subscription Interface Classes
	8a.3.2.1 Interface Class IpClientAppManagement
	8a.3.2.1.1 Method createClientApp()
	8a.3.2.1.2 Method modifyClientApp()
	8a.3.2.1.3 Method deleteClientApp()
	8a.3.2.1.4 Method createSAG()
	8a.3.2.1.5 Method modifySAG()
	8a.3.2.1.6 Method deleteSAG()
	8a.3.2.1.7 Method addSAGMembers()
	8a.3.2.1.8 Method removeSAGMembers()
	8a.3.2.1.9 Method requestConflictInfo()

	8a.3.2.2 Interface Class IpClientAppInfoQuery
	8a.3.2.2.1 Method describeClientApp()
	8a.3.2.2.2 Method listClientApps()
	8a.3.2.2.3 Method describeSAG()
	8a.3.2.2.4 Method listSAGs()
	8a.3.2.2.5 Method listSAGMembers()
	8a.3.2.2.6 Method listClientAppMembership()

	8a.3.2.3 Interface Class IpServiceProfileManagement
	8a.3.2.3.1 Method createServiceProfile()
	8a.3.2.3.2 Method modifyServiceProfile()
	8a.3.2.3.3 Method deleteServiceProfile()
	8a.3.2.3.4 Method assign()
	8a.3.2.3.5 Method deassign()
	8a.3.2.3.6 Method requestConflictInfo()

	8a.3.2.4 Interface Class IpServiceProfileInfoQuery
	8a.3.2.4.1 Method listServiceProfiles()
	8a.3.2.4.2 Method describeServiceProfile()
	8a.3.2.4.3 Method listAssignedMembers()

	8a.3.2.5 Interface Class IpServiceContractManagement
	8a.3.2.5.1 Method createServiceContract()
	8a.3.2.5.2 Method modifyServiceContract()
	8a.3.2.5.3 Method deleteServiceContract()

	8a.3.2.6 Interface Class IpServiceContractInfoQuery
	8a.3.2.6.1 Method describeServiceContract()
	8a.3.2.6.2 Method listServiceContracts()
	8a.3.2.6.3 Method listServiceProfiles()

	8a.3.2.7 Interface Class IpEntOpAccountManagement
	8a.3.2.7.1 Method modifyEntOpAccount()
	8a.3.2.7.2 Method deleteEntOpAccount()

	8a.3.2.8 Interface Class IpEntOpAccountInfoQuery
	8a.3.2.8.1 Method describeEntOpAccount()

	8a.4 State Transition Diagrams
	8a.4.1 Event Notification State Transition Diagrams
	8a.4.2 Service Subscription State Transition Diagrams

	9 Service Properties
	9.1 Service Super and Sub Types
	9.2 Service Property Types
	9.3 General Service Properties
	9.3.1 Service Name
	9.3.2 Service Version
	9.3.3 Service ID
	9.3.4 Service Description
	9.3.5 Product Name
	9.3.6 Product Version
	9.3.7 Void
	9.3.8 Operation Set
	9.3.9 Compatible Service
	9.3.10 Backward Compatibility Level
	9.3.11 Migration Required
	9.3.12 Data Migrated
	9.3.13 Migration Date And Time
	9.3.14 Support for Regular Expressions in Address Range

	10 Data Definitions
	10.1 Common Framework Data Definitions
	10.1.1 TpClientAppID
	10.1.2 TpClientAppIDList
	10.1.3 TpDomainID
	10.1.4 TpDomainIDType
	10.1.5 TpEntOpID
	10.1.6 TpPropertyName
	10.1.7 TpPropertyValue
	10.1.8 TpProperty
	10.1.9 TpPropertyList
	10.1.10 TpEntOpIDList
	10.1.11 TpFwID
	10.1.12 TpService
	10.1.13 TpServiceList
	10.1.14 TpServiceDescription
	10.1.15 TpServiceID
	10.1.16 TpServiceIDList
	10.1.17 TpServiceInstanceID
	10.1.18 TpServiceTypeProperty
	10.1.19 TpServiceTypePropertyList
	10.1.20 TpServiceTypePropertyMode
	10.1.21 TpServicePropertyTypeName
	10.1.22 TpServicePropertyName
	10.1.23 TpServicePropertyNameList
	10.1.24 TpServicePropertyValue
	10.1.25 TpServicePropertyValueList
	10.1.26 TpServiceProperty
	10.1.27 TpServicePropertyList
	10.1.28 TpServiceSupplierID
	10.1.29 TpServiceTypeDescription
	10.1.30 TpServiceTypeName
	10.1.31 TpServiceTypeNameList
	10.1.32 TpSubjectType
	10.1.33 TpServiceTypePropertyValue
	10.1.34 TpServiceTypePropertyValueList

	10.2 Event Notification Data Definitions
	10.2.1 TpFwEventName
	10.2.2 TpFwEventCriteria
	10.2.3 TpFwEventInfo
	10.2.4 TpFwMigrationServiceAvailableInfo
	10.2.5 TpMigrationAdditionalInfo
	10.2.6 TpMigrationAdditionalInfoType
	10.2.7 TpMigrationAdditionalInfoSet
	10.2.8 TpFwAgreementInfo

	10.3 Trust and Security Management Data Definitions
	10.3.1 TpAccessType
	10.3.2 TpAuthType
	10.3.3 Void
	10.3.4 Void
	10.3.5 Void
	10.3.6 TpAuthDomain
	10.3.7 TpInterfaceName
	10.3.8 TpInterfaceNameList
	10.3.9 TpServiceToken
	10.3.10 TpSignatureAndServiceMgr
	10.3.11 TpSigningAlgorithm
	10.3.12 TpSigningAlgorithmCapabilityList
	10.3.13 TpAuthMechanism
	10.3.14 TpAuthMechanismList

	10.4 Integrity Management Data Definitions
	10.4.1 TpActivityTestRes
	10.4.2 TpFaultStatsRecord
	10.4.3 TpFaultStats
	10.4.4 TpFaultStatisticsError
	10.4.5 TpFaultStatsSet
	10.4.6 TpActivityTestID
	10.4.7 TpInterfaceFault
	10.4.8 Void
	10.4.9 TpFwUnavailReason
	10.4.10 TpLoadLevel
	10.4.11 TpLoadThreshold
	10.4.12 TpLoadInitVal
	10.4.13 TpLoadPolicy
	10.4.14 TpLoadStatistic
	10.4.15 TpLoadStatisticList
	10.4.16 TpLoadStatisticData
	10.4.17 TpLoadStatisticEntityID
	10.4.18 TpLoadStatisticEntityType
	10.4.19 TpLoadStatisticInfo
	10.4.20 TpLoadStatisticInfoType
	10.4.21 TpLoadStatisticError
	10.4.22 TpSvcAvailStatusReason
	10.4.23 TpAppAvailStatusReason
	10.4.24 TpLoadTestID
	10.4.25 TpFaultStatsErrorList
	10.4.26 TpFaultReqID
	10.4.27 TpFwAvailStatusReason

	10.5 Service Subscription Data Definitions
	10.5.1 TpPropertyName
	10.5.2 TpPropertyValue
	10.5.3 TpProperty
	10.5.4 TpPropertyList
	10.5.5 TpEntOpProperties
	10.5.6 TpEntOp
	10.5.7 TpServiceContractID
	10.5.8 TpServiceContractIDList
	10.5.9 TpPersonName
	10.5.10 TpPostalAddress
	10.5.11 TpTelephoneNumber
	10.5.12 TpEmail
	10.5.13 TpHomePage
	10.5.14 TpPersonProperties
	10.5.15 TpPerson
	10.5.16 TpServiceStartDate
	10.5.17 TpServiceEndDate
	10.5.18 TpServiceRequestor
	10.5.19 TpBillingContact
	10.5.20 TpServiceSubscriptionProperties
	10.5.21 TpServiceContract
	10.5.22 TpServiceContractDescription
	10.5.23 TpClientAppProperties
	10.5.24 TpClientAppDescription
	10.5.25 TpSagID
	10.5.26 TpSagIDList
	10.5.27 TpSagDescription
	10.5.28 TpSag
	10.5.29 TpServiceProfileID
	10.5.30 TpServiceProfileIDList
	10.5.31 TpServiceProfile
	10.5.32 TpServiceProfileDescription
	10.5.33 TpSagProfilePair
	10.5.34 TpAddSagMembersConflict
	10.5.35 TpAddSagMembersConflictList
	10.5.36 TpAssignSagToServiceProfileConflict
	10.5.37 TpAssignSagToServiceProfileConflictList

	11 Exception Classes
	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): W3C WSDL Description of Framework
	Annex C (informative): Java™ API Description of the Framework
	Annex D (informative): Description of the Framework for 3GPP2 cdma2000 networks

	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: Overview of the Framework
	D.2.5 Clause 5: The Base Interface Specification
	D.2.6 Clause 6: Framework Access Session API
	D.2.7 Clause 7 Framework-to-Application Sequence Diagrams
	D.2.8 Clause 8: Framework-to-Service API
	D.2.9 Clause 9: Service Properties
	D.2.10 Clause 10: Data Definitions
	D.2.11 Clause 11: Exception Classes
	D.2.12 Annex A (normative): OMG IDL Description of the Framework
	D.2.13 Annex B (informative): W3C WSDL Description of the Framework
	D.2.14 Annex C (informative): Java™ API Description of the Framework
	Annex E (informative): Change history

