

3GPP TS 29.198-3 V9.0.0 (2009-12)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Core Network;

Open Service Access (OSA);
Application Programming Interface (API);

Part 3: Framework
(Release 9)

GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

The present document has been developed within the 3
rd

 Generation Partnership Project (3GPP
 TM

) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP
 TM

 system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 2 Release 9

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

©2009, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 3 Release 9

Contents

Foreword ..13

Introduction ..13

1 Scope ..15

2 References ...15

3 Definitions, symbols and abbreviations ..16
3.1 Definitions .. 16
3.2 Abbreviations ... 16

4 Overview of the Framework ...16

5 The Base Interface Specification ...17
5.1 Interface Specification Format .. 17
5.1.1 Interface Class ... 18
5.1.2 Method descriptions.. 18
5.1.3 Parameter descriptions ... 18
5.1.4 State Model .. 18
5.2 Base Interface ... 18
5.2.1 Interface Class IpInterface ... 18
5.3 Service Interfaces .. 18
5.3.1 Overview .. 18
5.4 Generic Serv ice Interface ... 19
5.4.1 Interface Class IpService ... 19
5.4.1.1 Method setCallback() ... 19
5.4.1.2 Method setCallbackWithSessionID() .. 19

6 Framework Access Session API ..20
6.1 Sequence Diagrams ... 20
6.1.1 Trust and Security Management Sequence Diagrams .. 20
6.1.1.1 Initial Access ... 20
6.1.1.2 Framework Terminates Access .. 22
6.1.1.3 Application Terminates Access .. 23
6.1.1.4 Non-API level Authentication .. 23
6.1.1.5 API Level Authentication.. 24
6.2 Class Diagrams .. 26
6.3 Interface Classes .. 27
6.3.1 Trust and Security Management Interface Classes ... 27
6.3.1.1 Interface Class IpClientAPILevelAuthentication.. 27
6.3.1.1.1 Method abortAuthentication() .. 28
6.3.1.1.2 Method authenticationSucceeded().. 28
6.3.1.1.3 Method challenge()... 28
6.3.1.2 Interface Class IpClientAccess ... 29
6.3.1.2.1 Method terminateAccess() .. 30
6.3.1.3 Interface Class IpInitial.. 30
6.3.1.3.1 Method initiateAuthenticationWithVersion() .. 31
6.3.1.4 Interface Class IpAuthentication .. 32
6.3.1.4.1 Method requestAccess() .. 32
6.3.1.5 Interface Class IpAPILevelAuthentication... 33
6.3.1.5.1 Method abortAuthentication() .. 33
6.3.1.5.2 Method authenticationSucceeded().. 34
6.3.1.5.3 Method selectAuthenticationMechanism() .. 34
6.3.1.5.4 Method challenge()... 34
6.3.1.6 Interface Class IpAccess.. 36
6.3.1.6.1 Method obtainInterface() ... 36
6.3.1.6.2 Method obtainInterfaceWithCallback() .. 36
6.3.1.6.3 Method listInterfaces()... 37
6.3.1.6.4 Method selectSigningAlgorithm() ... 37

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 4 Release 9

6.3.1.6.5 Method terminateAccess() .. 38
6.3.1.6.6 Method relinquishInterface() .. 38
6.4 State Transition Diagrams.. 39
6.4.1 Trust and Security Management State Transition Diagrams ... 39
6.4.1.1 State Transition Diagrams for IpInit ial ... 39
6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication .. 39
6.4.1.2.1 Idle State ... 40
6.4.1.2.2 Authenticating Framework State.. 40
6.4.1.2.3 Framework Authenticated State ... 41
6.4.1.2.4 Authenticating Client State ... 41
6.4.1.2.5 Client Authenticated State... 41
6.4.1.2.6 Idle State ... 42
6.4.1.2.7 Authenticating Framework State.. 42
6.4.1.2.8 Framework Authenticated State ... 42
6.4.1.2.9 Authenticating Client State ... 43
6.4.1.2.10 Client Authenticated State... 43
6.4.1.3 State Transition Diagrams for IpAccess ... 43
6.4.1.3.1 Active State.. 44

7 Framework-to-Application API ...44
7.1 Sequence Diagrams ... 44
7.1.1 Event Notificat ion Sequence Diagrams .. 44
7.1.1.1 Enable Event Not ification ... 44
7.1.2 Integrity Management Sequence Diagrams .. 45
7.1.2.1 Load Management: Suspend/resume notification from application .. 45
7.1.2.2 Load Management: Framework queries load statistics .. 46
7.1.2.3 Load Management: Framework callback reg istration and Application load control 47
7.1.2.4 Load Management: Application reports current load condition ... 48
7.1.2.5 Load Management: Application queries load statistics.. 49
7.1.2.6 Load Management: Application callback registration and load control.. 50
7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application 51
7.1.2.8 Fault Management: Framework detects a Service failure .. 52
7.1.2.9 Fault Management: Application requests a Framework activ ity test... 53
7.1.3 Service Discovery Sequence Diagrams... 54
7.1.3.1 Service Discovery ... 54
7.1.4 Service Agreement Management Sequence Diagrams ... 56
7.1.4.1 Service Select ion... 56
7.2 Class Diagrams .. 58
7.3 Interface Classes .. 61
7.3.1 Service Discovery Interface Classes .. 61
7.3.1.1 Interface Class IpServiceDiscovery... 61
7.3.1.1.1 Method listServiceTypes() .. 62
7.3.1.1.2 Method describeServiceType() .. 62
7.3.1.1.3 Method discoverService() ... 63
7.3.1.1.4 Method listSubscribedServices().. 64
7.3.2 Service Agreement Management Interface Classes .. 64
7.3.2.1 Interface Class IpAppServiceAgreementManagement .. 64
7.3.2.1.1 Method signServiceAgreement() ... 65
7.3.2.1.2 Method terminateServiceAgreement() .. 65
7.3.2.2 Interface Class IpServiceAgreementManagement .. 66
7.3.2.2.1 Method signServiceAgreement() ... 66
7.3.2.2.2 Method terminateServiceAgreement() .. 67
7.3.2.2.3 Method selectService() .. 68
7.3.2.2.4 Method initiateSignServiceAgreement() .. 68
7.3.3 Integrity Management Interface Classes ... 69
7.3.3.1 Interface Class IpAppFaultManager.. 69
7.3.3.1.1 Method activityTestRes() .. 69
7.3.3.1.2 Method appActivityTestReq() .. 70
7.3.3.1.3 Method <<deprecated>> fwFaultReportInd().. 70
7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()... 70
7.3.3.1.5 Method <<deprecated>> fwUnavailab leInd() ... 70
7.3.3.1.6 Method activityTestErr() ... 71

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 5 Release 9

7.3.3.1.7 Method appUnavailableInd() .. 71
7.3.3.1.8 Method svcAvailStatusInd() ... 71
7.3.3.1.9 Method generateFaultStatisticsRecordRes() .. 71
7.3.3.1.10 Method generateFaultStatisticsRecordErr() ... 72
7.3.3.1.11 Method generateFaultStatisticsRecordReq().. 72
7.3.3.1.12 Method fwAvailStatusInd() .. 72
7.3.3.2 Interface Class IpFaultManager ... 73
7.3.3.2.1 Method activityTestReq().. 73
7.3.3.2.2 Method appActivityTestRes() .. 74
7.3.3.2.3 Method svcUnavailableInd() .. 74
7.3.3.2.4 Method appActivityTestErr() ... 74
7.3.3.2.5 Method appAvailStatusInd()... 75
7.3.3.2.6 Method generateFaultStatisticsRecordReq().. 75
7.3.3.2.7 Method generateFaultStatisticsRecordRes() .. 76
7.3.3.2.8 Method generateFaultStatisticsRecordErr() ... 76
7.3.3.3 Interface Class IpAppHeartBeatMgmt .. 76
7.3.3.3.1 Method enableAppHeartBeat() .. 77
7.3.3.3.2 Method disableAppHeartBeat() ... 77
7.3.3.3.3 Method changeInterval() ... 77
7.3.3.4 Interface Class IpAppHeartBeat... 77
7.3.3.4.1 Method pulse() .. 78
7.3.3.5 Interface Class IpHeartBeatMgmt ... 78
7.3.3.5.1 Method enableHeartBeat() .. 78
7.3.3.5.2 Method disableHeartBeat() ... 79
7.3.3.5.3 Method changeInterval() ... 79
7.3.3.6 Interface Class IpHeartBeat .. 79
7.3.3.6.1 Method pulse() .. 79
7.3.3.7 Interface Class IpAppLoadManager.. 80
7.3.3.7.1 Method loadLevelNotification() .. 80
7.3.3.7.2 Method resumeNotification() ... 80
7.3.3.7.3 Method suspendNotification() .. 81
7.3.3.7.4 Method createLoadLevelNotificat ion() .. 81
7.3.3.7.5 Method destroyLoadLevelNotification() .. 81
7.3.3.7.6 Method queryAppLoadStatsReq() ... 81
7.3.3.7.7 Method queryLoadStatsRes() ... 81
7.3.3.7.8 Method queryLoadStatsErr() .. 82
7.3.3.8 Interface Class IpLoadManager ... 82
7.3.3.8.1 Method reportLoad() .. 83
7.3.3.8.2 Method createLoadLevelNotificat ion() .. 83
7.3.3.8.3 Method destroyLoadLevelNotification() .. 84
7.3.3.8.4 Method resumeNotification() ... 84
7.3.3.8.5 Method suspendNotification() .. 84
7.3.3.8.6 Method queryLoadStatsReq()... 85
7.3.3.8.7 Method queryAppLoadStatsRes().. 85
7.3.3.8.8 Method queryAppLoadStatsErr()... 86
7.3.3.9 Interface Class IpOAM .. 86
7.3.3.9.1 Method systemDateTimeQuery()... 86
7.3.3.10 Interface Class IpAppOAM .. 87
7.3.3.10.1 Method systemDateTimeQuery()... 87
7.3.4 Event Notificat ion Interface Classes.. 87
7.3.4.1 Interface Class IpAppEventNotification ... 87
7.3.4.1.1 Method reportNotification().. 88
7.3.4.1.2 Method notificationTerminated()... 88
7.3.4.2 Interface Class IpEventNotification .. 88
7.3.4.2.1 Method createNotification().. 89
7.3.4.2.2 Method destroyNotification() ... 89
7.4 State Transition Diagrams.. 89
7.4.1 Service Discovery State Transition Diagrams ... 89
7.4.1.1 State Transition Diagrams for IpServ iceDiscovery .. 89
7.4.1.1.1 Active State.. 90
7.4.2 Service Agreement Management State Transition Diagrams .. 90
7.4.3 Integrity Management State Transition Diagrams ... 90

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 6 Release 9

7.4.3.1 State Transition Diagrams for IpLoadManager ... 90
7.4.3.1.1 Idle State ... 91
7.4.3.1.2 Notification Suspended State.. 91
7.4.3.1.3 Active State.. 91
7.4.3.2 State Transition Diagrams for LoadManagerInternal... 91
7.4.3.2.1 Normal load State ... 92
7.4.3.2.2 Application Overload State ... 92
7.4.3.2.3 Internal overload State ... 92
7.4.3.2.4 Internal and Application Overload State... 92
7.4.3.3 State Transition Diagrams for IpOAM ... 93
7.4.3.3.1 Active State.. 93
7.4.3.4 State Transition Diagrams for IpFaultManager ... 93
7.4.3.4.1 Framework Active State .. 94
7.4.3.4.2 Framework Fau lty State... 94
7.4.3.4.3 Framework Activity Test State... 94
7.4.3.4.4 Service Activ ity Test State .. 94
7.4.4 Event Notificat ion State Transition Diagrams ... 94
7.4.4.1 State Transition Diagrams for IpEventNotificat ion .. 94

8 Framework-to-Service API ...95
8.1 Sequence Diagrams ... 95
8.1.1 Service Discovery Sequence Diagrams ... 95
8.1.2 Service Registration Sequence Diagrams ... 95
8.1.2.1 New SCF Sub Type Registration ... 95
8.1.2.2 New SCF Registration ... 96
8.1.3 Service Instance Lifecycle Manager Sequence Diagrams .. 98
8.1.3.1 Sign Service Agreement .. 98
8.1.4 Integrity Management Sequence Diagrams .. 99
8.1.4.1 Load Management: Serv ice callback registration and load control ... 99
8.1.4.2 Load Management: Framework callback reg istration and service load control100
8.1.4.3 Load Management: Client and Service Load Balancing..101
8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service102
8.1.4.5 Fault Management: Serv ice requests Framework activity test ...103
8.1.4.6 Fault Management: Serv ice requests Application activity test ...104
8.1.4.7 Fault Management: Application requests Service activ ity test ...104
8.1.4.8 Fault Management: Application detects service is unavailable ..106
8.1.5 Event Notificat ion Sequence Diagrams ..106
8.2 Class Diagrams ..106
8.3 Interface Classes ..110
8.3.1 Service Registration Interface Classes ..110
8.3.1.1 Interface Class IpFwServiceRegistration..110
8.3.1.1.1 Method registerService() ...110
8.3.1.1.2 Method announceServiceAvailability() ..111
8.3.1.1.3 Method unregisterService()...112
8.3.1.1.4 Method describeService()..112
8.3.1.1.5 Method unannounceService() ...113
8.3.1.1.6 Method registerServiceSubType() ...113
8.3.2 Service Instance Lifecycle Manager Interface Classes ...114
8.3.2.1 Interface Class IpServiceInstanceLifecycleManager..114
8.3.2.1.1 Method createServiceManager() ..115
8.3.2.1.2 Method destroyServiceManager()..115
8.3.3 Service Discovery Interface Classes ..116
8.3.3.1 Interface Class IpFwServiceDiscovery ...116
8.3.3.1.1 Method listServiceTypes() ..116
8.3.3.1.2 Method describeServiceType() ..117
8.3.3.1.3 Method discoverService() ...117
8.3.3.1.4 Method listRegisteredServices() ..118
8.3.4 Integrity Management Interface Classes ...118
8.3.4.1 Interface Class IpFwFaultManager..118
8.3.4.1.1 Method activityTestReq()..119
8.3.4.1.2 Method svcActivityTestRes() ...120
8.3.4.1.3 Method appUnavailableInd() ..120

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 7 Release 9

8.3.4.1.4 Method svcActivityTestErr() ..120
8.3.4.1.5 Method svcAvailStatusInd() ...121
8.3.4.1.6 Method generateFaultStatisticsRecordReq()..121
8.3.4.1.7 Method generateFaultStatisticsRecordRes() ..121
8.3.4.1.8 Method generateFaultStatisticsRecordErr() ...122
8.3.4.2 Interface Class IpSvcFaultManager...122
8.3.4.2.1 Method activityTestRes() ..123
8.3.4.2.2 Method svcActivityTestReq() ..123
8.3.4.2.3 Method <<deprecated>> fwFaultReportInd()..124
8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()...124
8.3.4.2.5 Method <<deprecated>> fwUnavailab leInd() ...125
8.3.4.2.6 Method svcUnavailableInd() ..125
8.3.4.2.7 Method activityTestErr() ...125
8.3.4.2.8 Method appAvailStatusInd()...125
8.3.4.2.9 Method generateFaultStatisticsRecordRes() ..126
8.3.4.2.10 Method generateFaultStatisticsRecordErr() ...126
8.3.4.2.11 Method generateFaultStatisticsRecordReq()..127
8.3.4.2.12 Method fwAvailStatusInd() ..127
8.3.4.3 Interface Class IpFwHeartBeatMgmt ..127
8.3.4.3.1 Method enableHeartBeat() ..128
8.3.4.3.2 Method disableHeartBeat() ...128
8.3.4.3.3 Method changeInterval() ...128
8.3.4.4 Interface Class IpFwHeartBeat...129
8.3.4.4.1 Method pulse() ..129
8.3.4.5 Interface Class IpSvcHeartBeatMgmt ...129
8.3.4.5.1 Method enableSvcHeartBeat() ...130
8.3.4.5.2 Method disableSvcHeartBeat() ..130
8.3.4.5.3 Method changeInterval() ...130
8.3.4.6 Interface Class IpSvcHeartBeat..131
8.3.4.6.1 Method pulse() ..131
8.3.4.7 Interface Class IpFwLoadManager..131
8.3.4.7.1 Method reportLoad() ..132
8.3.4.7.2 Method createLoadLevelNotificat ion() ..133
8.3.4.7.3 Method destroyLoadLevelNotification() ..133
8.3.4.7.4 Method suspendNotification() ..133
8.3.4.7.5 Method resumeNotification() ...134
8.3.4.7.6 Method queryLoadStatsReq()...134
8.3.4.7.7 Method querySvcLoadStatsRes()...134
8.3.4.7.8 Method querySvcLoadStatsErr()..135
8.3.4.8 Interface Class IpSvcLoadManager...135
8.3.4.8.1 Method loadLevelNotification() ..136
8.3.4.8.2 Method suspendNotification() ..136
8.3.4.8.3 Method resumeNotification() ...136
8.3.4.8.4 Method createLoadLevelNotificat ion() ..137
8.3.4.8.5 Method destroyLoadLevelNotification() ..137
8.3.4.8.6 Method querySvcLoadStatsReq() ..137
8.3.4.8.7 Method queryLoadStatsRes() ...137
8.3.4.8.8 Method queryLoadStatsErr() ..138
8.3.4.9 Interface Class IpFwOAM ..138
8.3.4.9.1 Method systemDateTimeQuery()...138
8.3.4.10 Interface Class IpSvcOAM ...139
8.3.4.10.1 Method systemDateTimeQuery()...139
8.3.5 Event Notificat ion Interface Classes..140
8.3.5.1 Interface Class IpFwEventNotification ...140
8.3.5.1.1 Method createNotification()..140
8.3.5.1.2 Method destroyNotification() ...140
8.3.5.2 Interface Class IpSvcEventNotification ..141
8.3.5.2.1 Method reportNotification()..141
8.3.5.2.2 Method notificationTerminated()...142
8.4 State Transition Diagrams..142
8.4.1 Service Registration State Transition Diagrams ..142
8.4.1.1 State Transition Diagrams for IpFwServ iceRegistration ...142

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 8 Release 9

8.4.1.1.1 SCF Registered State..143
8.4.1.1.2 SCF Announced State ..143
8.4.2 Service Instance Lifecycle Manager State Transition Diagrams ...143
8.4.3 Service Discovery State Transition Diagrams ...143
8.4.4 Integrity Management State Transition Diagrams...144
8.4.4.1 State Transition Diagrams for IpFwLoadManager ...144
8.4.4.1.1 Idle State ...144
8.4.4.1.2 Notification Suspended State..144
8.4.4.1.3 Active State..144
8.4.4.2 State Transition Diagrams for IpFwFaultManager ...145
8.4.4.2.1 Framework Active State ..145
8.4.4.2.2 Framework Activity Test State...145
8.4.4.2.3 Application Activity Test State ..145
8.4.4.2.4 Framework Fau lty State...145
8.4.5 Event Notificat ion State Transition Diagrams ...145

8a Framework-to-Enterprise Operator API ... 146
8a.1 Sequence Diagrams ...150
8a.1.1 Event Notificat ion Sequence Diagrams ..150
8a.1.2 Service Subscription Sequence Diagrams...150
8a.1.2.1 Service Discovery and Subscription Scenario ...150
8a.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram 152
8a.2 Class Diagrams ..153
8a.3 Interface Classes ..155
8a.3.1 Event Notificat ion Interface Classes..155
8a.3.1.1 Interface Class IpClientEventNotification..155
8a.3.1.1.1 Method reportNotification()..156
8a.3.1.1.2 Method notificationTerminated()...156
8a.3.1.2 Interface Class IpEventNotification ..156
8a.3.1.2.1 Method createNotification()..156
8a.3.1.2.2 Method destroyNotification() ...157
8a.3.2 Service Subscription Interface Classes..157
8a.3.2.1 Interface Class IpClientAppManagement...157
8a.3.2.1.1 Method createClientApp()...158
8a.3.2.1.2 Method modifyClientApp() ..158
8a.3.2.1.3 Method deleteClientApp()...159
8a.3.2.1.4 Method createSAG() ..159
8a.3.2.1.5 Method modifySAG() ..159
8a.3.2.1.6 Method deleteSAG() ..159
8a.3.2.1.7 Method addSAGMembers()..160
8a.3.2.1.8 Method removeSAGMembers()...160
8a.3.2.1.9 Method requestConflict Info() ...161
8a.3.2.2 Interface Class IpClientAppInfoQuery ...161
8a.3.2.2.1 Method describeClientApp() ..162
8a.3.2.2.2 Method listClientApps() ..162
8a.3.2.2.3 Method describeSAG() ..162
8a.3.2.2.4 Method listSAGs()..163
8a.3.2.2.5 Method listSAGMembers()...163
8a.3.2.2.6 Method listClientAppMembership() ...163
8a.3.2.3 Interface Class IpServiceProfileManagement..164
8a.3.2.3.1 Method createServiceProfile()..164
8a.3.2.3.2 Method modifyServ iceProfile() ...164
8a.3.2.3.3 Method deleteServiceProfile()..165
8a.3.2.3.4 Method assign()...165
8a.3.2.3.5 Method deassign() ..165
8a.3.2.3.6 Method requestConflict Info() ...166
8a.3.2.4 Interface Class IpServiceProfileInfoQuery ..166
8a.3.2.4.1 Method listServiceProfiles() ...167
8a.3.2.4.2 Method describeServiceProfile()..167
8a.3.2.4.3 Method listAssignedMembers() ...167
8a.3.2.5 Interface Class IpServiceContractManagement ..168
8a.3.2.5.1 Method createServiceContract()...168

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 9 Release 9

8a.3.2.5.2 Method modifyServ iceContract() ..169
8a.3.2.5.3 Method deleteServiceContract()...169
8a.3.2.6 Interface Class IpServiceContractInfoQuery ...169
8a.3.2.6.1 Method describeServiceContract() ..170
8a.3.2.6.2 Method listServiceContracts() ..170
8a.3.2.6.3 Method listServiceProfiles() ...170
8a.3.2.7 Interface Class IpEntOpAccountManagement ..171
8a.3.2.7.1 Method modifyEntOpAccount() ..171
8a.3.2.7.2 Method deleteEntOpAccount() ..171
8a.3.2.8 Interface Class IpEntOpAccountInfoQuery ...172
8a.3.2.8.1 Method describeEntOpAccount() ..172
8a.4 State Transition Diagrams..172
8a.4.1 Event Notificat ion State Transition Diagrams ...172
8a.4.2 Service Subscription State Transition Diagrams ...172

9 Service Properties .. 173
9.1 Service Super and Sub Types ..173
9.2 Service Property Types...173
9.3 General Serv ice Properties ...175
9.3.1 Service Name ...176
9.3.2 Service Version ...176
9.3.3 Service ID ...176
9.3.4 Service Description ...176
9.3.5 Product Name ..176
9.3.6 Product Version ...176
9.3.7 Void ...177
9.3.8 Operation Set ...177
9.3.9 Compatible Serv ice ...177
9.3.10 Backward Compatib ility Level ...178
9.3.11 Migration Required ...179
9.3.12 Data Migrated ..179
9.3.13 Migration Date And Time ...180
9.3.14 Support for Regular Expressions in Address Range ...180

10 Data Definitions ... 180
10.1 Common Framework Data Definit ions..181
10.1.1 TpClientAppID ..181
10.1.2 TpClientAppIDList ...181
10.1.3 TpDomainID ..181
10.1.4 TpDomainIDType ...181
10.1.5 TpEntOpID...181
10.1.6 TpPropertyName ...182
10.1.7 TpPropertyValue ...182
10.1.8 TpProperty..182
10.1.9 TpPropertyList...182
10.1.10 TpEntOpIDList ..182
10.1.11 TpFwID...182
10.1.12 TpService ..182
10.1.13 TpServiceList...182
10.1.14 TpServiceDescription ...182
10.1.15 TpServiceID ...183
10.1.16 TpServiceIDList ..183
10.1.17 TpServiceInstanceID ..183
10.1.18 TpServiceTypeProperty ...183
10.1.19 TpServiceTypePropertyList ..183
10.1.20 TpServiceTypePropertyMode ...183
10.1.21 TpServicePropertyTypeName ...183
10.1.22 TpServicePropertyName ..183
10.1.23 TpServicePropertyNameList ...184
10.1.24 TpServicePropertyValue ..184
10.1.25 TpServicePropertyValueList ...184
10.1.26 TpServiceProperty ..184

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 10 Release 9

10.1.27 TpServicePropertyList ...184
10.1.28 TpServiceSupplierID ..184
10.1.29 TpServiceTypeDescription ..184
10.1.30 TpServiceTypeName ..185
10.1.31 TpServiceTypeNameList ...185
10.1.32 TpSubjectType...185
10.1.33 TpServiceTypePropertyValue ...186
10.1.34 TpServiceTypePropertyValueList..186
10.2 Event Notificat ion Data Defin itions ...186
10.2.1 TpFwEventName ..186
10.2.2 TpFwEventCriteria ...187
10.2.3 TpFwEventInfo..187
10.2.4 TpFwMigrationServiceAvailableInfo..187
10.2.5 TpMigrationAdditionalInfo ...188
10.2.6 TpMigrationAdditionalInfoType..188
10.2.7 TpMigrationAdditionalInfoSet ...189
10.2.8 TpFwAgreementInfo ..189
10.3 Trust and Security Management Data Definit ions...189
10.3.1 TpAccessType ...189
10.3.2 TpAuthType ...189
10.3.3 Void ...190
10.3.4 Void ...190
10.3.5 Void ...190
10.3.6 TpAuthDomain ..190
10.3.7 TpInterfaceName...190
10.3.8 TpInterfaceNameList..190
10.3.9 TpServiceToken ..190
10.3.10 TpSignatureAndServiceMgr ...191
10.3.11 TpSigningAlgorithm...191
10.3.12 TpSigningAlgorithmCapabilityList ...191
10.3.13 TpAuthMechanism ...192
10.3.14 TpAuthMechanismList...192
10.4 Integrity Management Data Defin itions ..192
10.4.1 TpActivityTestRes ..192
10.4.2 TpFaultStatsRecord ..192
10.4.3 TpFaultStats ...192
10.4.4 TpFaultStatisticsError ..193
10.4.5 TpFaultStatsSet..193
10.4.6 TpActivityTestID ..193
10.4.7 TpInterfaceFault ..193
10.4.8 Void ...193
10.4.9 TpFwUnavailReason ..193
10.4.10 TpLoadLevel..193
10.4.11 TpLoadThreshold ..194
10.4.12 TpLoadInitVal ...194
10.4.13 TpLoadPolicy...194
10.4.14 TpLoadStatistic..194
10.4.15 TpLoadStatisticList...194
10.4.16 TpLoadStatisticData ...194
10.4.17 TpLoadStatisticEntityID ..195
10.4.18 TpLoadStatisticEntityType..195
10.4.19 TpLoadStatisticInfo ..195
10.4.20 TpLoadStatisticInfoType ...195
10.4.21 TpLoadStatisticError ..195
10.4.22 TpSvcAvailStatusReason...196
10.4.23 TpAppAvailStatusReason..196
10.4.24 TpLoadTestID..196
10.4.25 TpFaultStatsErrorList ...196
10.4.26 TpFaultReqID ..196
10.4.27 TpFwAvailStatusReason..197
10.5 Service Subscription Data Defin itions ...197
10.5.1 TpPropertyName ...197

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 11 Release 9

10.5.2 TpPropertyValue ...197
10.5.3 TpProperty..197
10.5.4 TpPropertyList...197
10.5.5 TpEntOpProperties ...197
10.5.6 TpEntOp ...198
10.5.7 TpServiceContractID..198
10.5.8 TpServiceContractIDList...198
10.5.9 TpPersonName ..198
10.5.10 TpPostalAddress..198
10.5.11 TpTelephoneNumber..198
10.5.12 TpEmail ..198
10.5.13 TpHomePage..198
10.5.14 TpPersonProperties ...198
10.5.15 TpPerson ...199
10.5.16 TpServiceStartDate ...199
10.5.17 TpServiceEndDate ..199
10.5.18 TpServiceRequestor..199
10.5.19 TpBillingContact ...199
10.5.20 TpServiceSubscriptionProperties ...199
10.5.21 TpServiceContract ..199
10.5.22 TpServiceContractDescription..200
10.5.23 TpClientAppProperties...200
10.5.24 TpClientAppDescription..200
10.5.25 TpSagID..200
10.5.26 TpSagIDList...200
10.5.27 TpSagDescription..200
10.5.28 TpSag ..201
10.5.29 TpServiceProfileID ...201
10.5.30 TpServiceProfileIDList ..201
10.5.31 TpServiceProfile ..201
10.5.32 TpServiceProfileDescription ...202
10.5.33 TpSagProfilePair ...202
10.5.34 TpAddSagMembersConflict ...202
10.5.35 TpAddSagMembersConflictList ..203
10.5.36 TpAssignSagToServiceProfileConflict ...203
10.5.37 TpAssignSagToServiceProfileConflictList ..203

11 Exception Classes .. 204

Annex A (normative): OMG IDL Description of Framework... 205

Annex B (informative): W3C WSDL Description of Framework ... 206

Annex C (informative): Java™ API Description of the Framework ... 207

Annex D (informative): Description of the Framework for 3GPP2 cdma2000 networks............. 208

D.1 General Exceptions .. 208

D.2 Specific Exceptions .. 208
D.2.1 Clause 1: Scope..208
D.2.2 Clause 2: References...208
D.2.3 Clause 3: Definit ions and abbreviations ..208
D.2.4 Clause 4: Overview of the Framework ..208
D.2.5 Clause 5: The Base Interface Specification ..208
D.2.6 Clause 6: Framework Access Session API ...209
D.2.7 Clause 7 Framework-to-Application Sequence Diagrams ...209
D.2.8 Clause 8: Framework-to-Service API ..209
D.2.9 Clause 9: Serv ice Properties ..209
D.2.10 Clause 10: Data Defin itions ...209
D.2.11 Clause 11: Exception Classes ..209
D.2.12 Annex A (normat ive): OMG IDL Description of the Framework ..209
D.2.13 Annex B (informative): W 3C WSDL Description of the Framework ...209

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 12 Release 9

D.2.14 Annex C (informative): Java™ API Description of the Framework ..209

Annex E (informative): Change history.. 210

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 13 Release 9

Foreword

This Technical Specification has been produced by the 3
rd

 Generat ion Partnership Pro ject (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal

TSG approval. Should the TSG modify the contents of the present document, it will be re -released by the TSG with an

identifying change of release date and an increase in version number as fo llows:

Version x.y.z

where:

x the first digit :

1 presented to TSG for information;

2 presented to TSG for approval;

3 or greater indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

updates, etc.

z the third digit is incremented when editorial on ly changes have been incorporated in the document.

Introduction

The present document is part 3 of a multi-part TS covering the 3
rd

 Generation Partnership Project : Technical

Specification Group Core Network; Open Serv ice Access (OSA); Application Programming Interface (API), as

identified below. The API s pecification (3GPP TS 29.198) is structured in the following Parts:

Part 1: "Overview";

Part 2: "Common Data Definitions";

Part 3: "Framework";

Part 4: "Call Control";

 Sub-part 1: "Call Control Common Definit ions";

 Sub-part 2: " Generic Call Control SCF";

 Sub-part 3: "Multi-Party Call Control SCF";

 Sub-part 4: "Multi-Media Call Control SCF";

 Sub-part 5: "Conference Call Control SCF"; (new in 3GPP Release 8)

Part 5: "User Interaction SCF";

Part 6: "Mobility SCF";

Part 7: "Terminal Capabilities SCF";

Part 8: "Data Session Control SCF";

Part 9: "Generic Messaging SCF"; (not part of 3GPP Release 8)

Part 10: "Connectivity Manager SCF"; (new in 3GPP Release 8)

Part 11: "Account Management SCF";

Part 12: "Charging SCF".

Part 13: "Policy Management SCF";

Part 14: "Presence and Availability Management SCF";

Part 15: "Multi Media Messaging SCF";

Part 16: "Service Broker SCF".

The Mapping s pecification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above.

A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.

Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 14 Release 9

Table: Overview of the OSA APIs & Protocol Mappings 29.198 & 29.998-family

OSA API specifications 29.198-family OSA API Mapping - 29.998-family

29.198-01 Overview 29.998-01 Overview

29.198-02 Common Data Definitions 29.998-02 Not Applicable

29.198-03 Framework 29.998-03 Not Applicable

Call

Control

(CC)

SCF

29.198-

04-1

Common

CC data
definitions

29.198-

04-2

Generic

CC SCF

29.198-

04-3

Multi-

Party
CC SCF

29.198-

04-4

Multi-

media
CC SCF

29.198-

04-5

Conf

CC SCF

29.998-04-1 Generic Call Control – CAP mapping

29.998-04-2 Generic Call Control – INAP mapping

29.998-04-3 Generic Call Control – Megaco mapping

29.998-04-4 Multiparty Call Control – ISC mapping

29.198-05 User Interaction SCF 29.998-05-1 User Interaction – CAP mapping

29.998-05-2 User Interaction – INAP mapping

29.998-05-3 User Interaction – Megaco mapping

29.998-05-4 User Interaction – SMS mapping

29.198-06 Mobility SCF 29.998-06-1 User Status and User Location – MAP
mapping

29.998-06-2 User Status and User Location – SIP mapping

29.198-07 Terminal Capabilities SCF 29.998-07 Not Applicable

29.198-08 Data Session Control SCF 29.998-08 Data Session Control – CAP mapping

29.198-09 Generic Messaging SCF 29.998-09 Not Applicable

29.198-10 Connectivity Manager SCF 29.998-10 Not Applicable

29.198-11 Account Management SCF 29.998-11 Not Applicable

29.198-12 Charging SCF 29.998-12 Not Applicable

29.198-13 Policy Management SCF 29.998-13 Not Applicable

29.198-14 Presence & Availability Management SCF 29.998-14 Not Applicable

29.198-15 Multi-media Messaging SCF 29.998-15 Not Applicable

29.198-16 Service Broker SCF 29.998-16 Not Applicable

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 15 Release 9

1 Scope

The present document is Part 3 of the Stage 3 specification for an Application Programming Interface (API) for Open

Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality

through an open standardised interface, i.e . the OSA APIs. The concepts and the functional architecture for the OSA

are contained in 3GPP TS 23.198 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Framework aspects of the interface. All aspects of the Framework are defined in the

present document, these being:

 Sequence Diagrams;

 Class Diagrams;

 Interface specificat ion plus detailed method descriptions;

 State Transition diagrams;

 Data defin itions;

 IDL Description of the interfaces.

 WSDL Description of the interfaces

 Reference to the Java™ API description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the

Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CT W G5, ETSI TISPAN and The Parlay Group, in co -

operation with a number of JAIN™ Community member companies.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present

document.

 References are either specific (identified by date of publication, edit ion number, version number, etc.) o r

non-specific.

 For a specific reference, subsequent revisions do not apply.

 For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including

a GSM document), a non-specific reference implicit ly refers to the latest version of that document in the same

Release as the present document.

[1] 3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1:

Overview".

[2] 3GPP TS 22.127: "Serv ice Requirement for the Open Services Access (OSA); Stage 1".

[3] 3GPP TS 23.198: "Open Service Access (OSA); Stage 2".

[4] IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994,

August1996].

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 16 Release 9

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198 -1 [1] apply.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Overview of the Framework

This clause exp lains which basic mechanisms are executed in the OSA Framework prior to offering and activating

applications.

The Framework API contains interfaces between the Application Server and the Framework, between Network Service

Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these interfaces

are represented by the yellow circles in the figure below). The description of the Framework in the present document

separates the interfaces into three distinct sets: Framework to Application interfaces, Framework to Enterprise Operator

interfaces and Framework to Service interfaces.

Registered Services

Client Application

Framework
Call

Control
Mobility UI

Enterprise Operator

Operator

Some of the mechanis ms are applied only once (e.g. establishment of service agreement), others are applied each time a

user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanis ms between Application and Framework:

- Authentication: Once an off-line service agreement exists, the application can access the authentication

interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be

mutual. The applicat ion must be authenticated before it is allowed to use any other OSA interface. It is a policy

decision for the application whether it must authenticate the framework or not. It is a policy decision for the

framework whether it allows an application to authenticate it before it has completed its authentication of the

application.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 17 Release 9

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of

determining what a prev iously authenticated application is allowed to do. Authentication shall precede

authorisation. Once authenticated, an application is authorised to access certain SCFs.

- Discovery of Framework and network SCFs: After successful authentication, applications can obtain available

Framework interfaces and use the discovery interface to obtain informat ion on authorised network SCFs.

The Discovery interface can be used at any time after successful authentication.

- Es tablishment of service agreement: Before any application can interact with a network SCF, a service

agreement shall be established. A service agreement may consist of an off-line (e.g. by physically exchanging

documents) and an on-line part. The applicat ion has to sign the on-line part of the service agreement before it is

allowed to access any network SCF.

- Access to network SCFs: The Framework shall provide access control functions to authorise the access to SCFs

or service data for any API method from an application, with the specified security level, context, domain , etc.

Basic mechanis m between Framework and Service Capability Server (SCS):

- Registering of network SCFs:. SCFs offered by a SCS can be registered at the Framework. In this way the

Framework can inform the Applicat ions upon request about available SCFs (Discovery). For example, this

mechanis m is applied when installing or upgrading an SCS.

Basic mechanis m between Framework and Enterprise Operator:

- Service Subscription function: Th is function represents a contractual agreement between the Enterprise

Operator and the Framework. In this subscription business model, the enterprise operators act in the role of

subscriber/customer of services and the client applications act in the role of users or consumers of services.

The framework itself acts in the role o f retailer of services.

The following clauses describe each aspect of the Framework in the following order:

 The sequence diagrams give the reader a practical idea of how the Framework is implemented.

 The class diagrams clause shows how each of the interfaces applicable to the Framework relate to one another.

 The interface specification clause describes in detail each of the interfaces shown within the class diagram part.

 The State Transition Diagrams (STD) show the transition between states in the Framework. The states and

transitions are well-defined; either methods specified in the Interface specificat ion or events occurring in the

underlying networks cause state transitions.

 The data definitions clause shows a detailed expansion of each of the data types associated with the methods within

the classes. Note that some data types are used in other methods and classes and are therefore defined within the

common data types part of the present document (29.198-2).

An implementation of this API which supports or implements a method described in the present document, shall

support or implement the functionality described for that method, for at least one valid set of values for the parameters

of that method. Where a method is not supported by an implementation of a Framework or Serv ice interface, the

exception P_METHOD_NOT_SUPPORTED shall be returned to any call of that method. Where a method is not

supported by an implementation of an Applicat ion interface, a call to that method shall be possible, and no exception

shall be returned.

5 The Base Interface Specification

5.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specificat ion. The Unified

Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is

described below.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 18 Release 9

5.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters

and types. The Service and Framework interfaces for client applications are denoted by classes with name Ip<name>.

The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces

between a Service and the Framework, the Serv ice interfaces are typically denoted by classes with name IpSvc<name>,

while the Framework interfaces are denoted by classes with name IpFw<name>.

5.1.2 Method descriptions

Each method (API method “call”) is described. Both synchronous and asynchronous methods are used in the API.

Asynchronous methods are identified by a 'Req ' suffix for a method request, and, if applicab le, are served by

asynchronous methods identified by either a 'Res' o r 'Err ' suffix for method results and errors, respectively. To handle

responses and reports, the application or service developer must implement the relevant IpApp<name> or

IpSvc<name> interfaces to provide the callback mechanis m.

5.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have

a value when the method is called. Those described as 'out' are those that contain the return result of the method when

the method returns.

5.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

5.2 Base Interface

5.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not

provide any additional methods.

<<Interface>>

IpInterface

5.3 Service Interfaces

5.3.1 Overview

The Service Interfaces provide the interfaces into the capabilit ies of the underlying network - such as call control, user

interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that

must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 19 Release 9

5.4 Generic Service Interface

5.4.1 Interface Class IpService

Inherits from: Ip Interface

All service interfaces inherit from the fo llowing interface.

<<Interface>>

IpService

setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

5.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the

application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multip le invocations of this

method on an interface shall result in multip le callback references being specified. The SCS shall use the most recent

callback interface provided by the application using this method. In the event that a callback reference fails or is no

longer availab le, the next most recent callback reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

5.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions

associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an

interface that does not use SessionIDs. Multip le invocations of this method on an interface shall result in multip le

callback references being specified. The SCS shall use the most recent callback interface provided by the application

using this method. In the event that a callback reference fails or is no longer available, the next most recent callback

reference available shall be used.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.

sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 20 Release 9

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

6 Framework Access Session API

6.1 Sequence Diagrams

6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For

this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained

through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage,

the client has no guarantee that this is a Framework interface reference, but it is to init iate the authentication process

with the Framework. The In itial Contact interface supports the initiateAuthenticationWithVersion method to allow the

authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs.

This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces

provided by the Framework.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 21 Release 9

Client : IpInitial : IpAPILevelAuthentication Framework : IpAccess :

IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)

2: selectAuthenticationMechanism()

3: challenge()

5: challenge()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

7: requestAccess()

1: Initiate Authentication

The client invokes initiateAuthenticationWithVersion on the Framework's "public" (in itial contact) interface to initiate

the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a

reference to its authentication interface.

2: Select Authentication Mechanism

The client invokes selectAuthenticationMechanism on the Framework's API Level Authentication interface, identifying

the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be

used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be

supported. Note however that the framework need not accept this algorithm.

3: The client authenticates the Framework, issuing a challenge in the challenge() method.

4: The client provides an indication if authentication succeeded.

5: The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations

of the challenge method on the client's API Level Authentication interface. In each invocation, the Framework supplies

a challenge and the client returns the correct response. The Framework could authenticate the client before the client

authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the

client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any

challenge issued by the client until the Framework has successfully authenticated the client.

6: The Framework provides an indication if authentication succeeded.

7: Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the

Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 22 Release 9

Framework returns a reference to a framework Access interface that is unique for this client. The success or failure of

the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8: The client and framework negotiate the signing algorithm to be used for any signed exchanges.

9: The client invokes obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used

to obtain a reference to a framework interface that supports the required framework functionality, such as service

discovery, integrity management, service subscription etc.

6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of all service

instances. This type of termination is unusual, but possible with the terminateAccess method. Note that if at any point

the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication

failing, the framework should terminate all outstanding service agreements for that client, and should take steps to

terminate the client's access session WITHOUT invoking terminateAccess() on the client. This fo llows a generally

accepted security model where the framework has decided that it can no longer trust the client and will therefore sever

ALL contact with it.

AppLogic :

IpClientAccess

 :

IpAppServiceAgreementManagement

 : IpAccess :

IpServiceAgreementManagement

 : IpMultiPartyCallControlManager : IpUserLocationCamel

1: signServiceAgreement()

2: signServiceAgreement()

3: createNotification()

4: triggeredLocationReportingStartReq()

5: terminateAccess()

1: Following successful authentication and service discovery, the client init iates the service agreement signing process

(not shown). Th is is completed when the client invokes signServiceAgreement on the Framework's

IpServiceAgreementManagement interface, and a reference to an instance of a service manager interface is returned.

2: The client (application) had init iated service agreement signing process for a second service agreement (not shown),

and when the client signs this second service agreement, a reference to an instance of another service manager, for

another service type, is returned.

3: The application starts to use the new service manager interface.

4: The application starts to use the other new service manager interface.

5: The framework decides to terminate the application's access session, and to terminate all its service agreements.

This is an unusual and drastic step, but could be e.g. due to violation or exp iry o f the application's service agreements,

or some problem within the framework itself. The framework will also destroy each of the service managers the

application was using (not shown). The application is now no longer authenticated with the framework, and all

Framework and service interfaces it was using are destroyed.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 23 Release 9

6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of all service instances. This

type of termination is unusual, but possible with the terminateAccess method.

App Logic :

IpClientAccess

 : IpAccess :

IpMultiPartyCallControlManager

 :

IpUserLocationCamel

1: destroyNotification()

2: triggeredLocationReportingStop()

3: terminateAccess()

1: The application terminates its use of the multi-party call control service manager in a controlled manner.

2: The application ceases to use the user location camel SCF.

3: The application decides to terminate its access session and all its service agreements in one go. The framework will

also destroy each of the service managers the application was using (not shown). The application is now no longer

authenticated with the framework, and all Framework and service interfaces it was using are destroyed. The

application could have terminated its service agreements one by one, by invoking terminateServ iceAgreement on the

Framework's IpServ iceAgreementManager interface, and then invoked terminateAccess on the Framework's IpAccess

interface, which would have been a more controlled shutdown.

6.1.1.4 Non-API level Authentication

The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have

mutually authenticated one another using an underlying distribution technology mechanism, or the client and the

framework recognise each other as a trusted party, not requiring authentication.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 24 Release 9

Client : IpInitial Framework : IpAuthentication : IpAccess

1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)

2: requestAccess()

4: obtainInterface()

Underlying Distribution Technology Mechanism is used for application

identification and authentication, or both the client and the Framework

recognise each other as trusted parties not requiring API level

authentication. There is no requirement as to when authentication should

take place using the Underlying Distribution Technology Mechanism:

before initiateAuthenticationWithVersion is invoked, after requestAccess is

invoked, or between the two.

3: selectSigningAlgorithm()

1: The client calls initiateAuthenticationWithVersion on the OSA Framework Init ial interface. Th is allows the client to

specify the type of authentication process. In this case, the client selects to use the underlying dis tribution technology

mechanis m for identification and authentication. What that mechanis m is, if it even exists, is outside the scope of the

API.

2: The client invokes the requestAccess method on the Framework's Authentication interface. This returns a re ference

to the framework Access interface that is unique for the client.

3: If the authentication was successful, the client and the framework can negotiate, on the framework's Access

interface, the signing algorithm to be used for any signed exchanges.

4: The client can now invoke obtainInterface or obtainInterfaceWithCallback on the framework's Access interface.

This is used to obtain a reference to a framework interface such as service discovery, integrity management, service

subscription etc.

6.1.1.5 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate

one another.

The OSA API supports mult iple authentication techniques. The procedure used to select an appropriate technique for a

given situation is described below. The authentication mechanisms may be supported by cryptographic processes to

provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and

digital signatures in the authentication procedure depends on the type of authentication technique selected. In some

cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it

may be necessary to define the minimum encryption key length that can be used to ensure a high degree of

confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the

Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 25 Release 9

1) The client calls initiateAuthenticationWithVersion on the OSA Framework Init ial interface. Th is allows the client to

specify the type of authentication process. This authentication process may be specific to the provider, or the

implementation technology used. The initiateAuthenticationWithVersion method can be used to specify the specific

process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can

be used to perform the authentication process. The initiateAuthenticationWithVersion method allows the client to pass a

reference to its own authentication interface to the Framework, and receive a reference to the authentication interface

preferred by the client, in return. In this case the API Level Authentication interface.

2) The client invokes the selectAuthenticationMechanism on the Framework's API Level Authentication interface. This

includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the

capabilit ies of the client and the Framework. If the client is capable of handling more than one mechanism, then the

Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication

mechanis m of the client may not fu lfil the demands of the Framework, in which case, the authentication will fail, for

example CHAP prescribes the MD5 hashing algorithm as the min imum to be supported, however the framework ne ed

not accept this algorithm.

3) The application and Framework interact to authenticate each other by using the challenge method. For an

authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response

exchanges. This authentication protocol is performed using the challenge method on the API Level Authentication

interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There are in fact

two authentication processes: authentication of the client performed by the Framework , and authentication of the

Framework performed by the client. Mutual authentication is achieved by both these processes terminating

successfully. Mutual authentication may not necessarily be required, i.e . it could be that a client may not need to

authenticate the Framework. There is also no required order for the execution of these two authentication processes,

however, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not

respond to any challenge issued by the client until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 26 Release 9

 : IpClientAPILevelAuthentication Client : IpInitial Framework : IpAPILevelAuthentication

1: initiateAuthenticationWithVersion(cl ientDomain, authType, frameworkVersion)

2: selectAuthenticationMechanism()

3: challenge()

4: challenge()

5: challenge()

7: challenge()

IpClientAPILevelAuthentication

reference is passed to framework

and IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

9: requestAccess()

6: authenticationSucceeded()

8: authenticationSucceeded()

6.2 Class Diagrams

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 27 Release 9

Figure: Trust and Security Management Package Overview

6.3 Interface Classes

6.3.1 Trust and Security Management Interface Classes

The Trust and Security Management Interfaces provide:

- the first point of contact for a client to access a Framework provider;

- the authentication methods for the client and Framework provider to perform an authentication protocol;

- the client with the ability to select a service capability feature to make use of;

- the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a

different Framework interface:

1) Initial Contact with the Framework;

2) Authentication;

3) Access to Framework and Service Capability Features.

6.3.1.1 Interface Class IpClientAPILevelAuthentication

Inherits from: Ip Interface.

If the IpClientAPILevelAuthentication interface is implemented by a client, challenge(), abortAuthentication() and

authenticationSucceeded() methods shall be implemented.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 28 Release 9

<<Interface>>

IpClientAPILevelAuthentication

abortAuthentication () : void

authenticationSucceeded () : void

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.1 Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework.

This method is invoked if the framework wishes to abort the authentication process before it has been authenticated by

the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client

should occur.) Calls to this method after the Framework has been authenticated by the client shall not result in an

immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again,

however).

Parameters
No Parameters were identified for this method.

6.3.1.1.2 Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may

invoke requestAccess on the Framework's APILevelAuthentication interface following invocation of this method.

Parameters
No Parameters were identified for this method.

6.3.1.1.3 Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to

the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The

authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the

Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevelAuthentication

interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the

Framework has responded to any challenge the client may issue.

Returns <response> : This is the response of the client application to the challenge of the framework in the current

sequence. The formatting and construction of this parameter shall be accord ing to section 4.1 of RFC 1994. A complete

CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the

designated hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an

octet set consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value.

The Name field of the CHAP Response packet must be present and contain a valid value in order for the CHAP

Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's

challenge parameter

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 29 Release 9

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP

Challenge

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4. Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value

Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP

Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original

challenge value

3. Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4. Verify the octet set resulting from the prev ious step matches the octet set contained in the Value field of the CHAP

Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will be in

accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A

complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet

must be present and contain a valid value in o rder for the CHAP Response to be valid. However, the Name field is not

used in the authentication process.

Steps for constructing the challenge octet set:

1. Create a random challenge value (octet set). Per RFC 1994, this value must between 1 an d 255 octets in length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in

the Value field within the CHAP Challenge.

Returns

TpOctetSet

6.3.1.2 Interface Class IpClientAccess

Inherits from: Ip Interface.

IpClientAccess interface is offered by the client to the framework to allow it to in itiate interactions during the access

session. This interface and the terminateAccess() method shall be implemented by a client.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature :

in TpOctetSet) : void

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 30 Release 9

6.3.1.2.1 Method terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be

able to use the references to any of the framework interfaces gained during the access session. Any calls to these

interfaces will fail. The framework shall also identify and terminate all remain ing service instances that apply as a

result of the client access termination. If at any point the framework's level of confidence in the identity of the client

becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service

agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking

terminateAccess() on the client. Th is follows a generally accepted security model where the framework has decided

that it can no longer trust the client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in

response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown

to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as

specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspo nd to the digestAlgorithm

and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signe d-data.

The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The

"external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be

present and contain the termination text string). The signing-t ime attribute, as defined in section 11.3 of RFC 2630,

shall also be used to provide replay prevention. The framework uses this to confirm its identity to the client. The client

can check that the terminationText has been signed by the framework. If a match is made, the access session is

terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE

6.3.1.3 Interface Class IpInitial

Inherits from: Ip Interface.

The Initial Framework interface is used by the client to init iate the authentication with the Framework. Th is interface

and the initiateAuthenticationWithVersion() method shall be implemented by a Framework.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 31 Release 9

<<Interface>>

IpInitial

initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType,

frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1 Method initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a

specific authentication method using the new method with support for backward compatib ility in the framework. The

returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework

response. If the Framework cannot work with the proposed framework version the framework returns an error code

(P_INVALID_VERSION).

Returns <fwDomain> : Th is provides the client with a framework identifier, and a reference to call the authentication

interface of the framework.

 structure TpAuthDomain {

 domainID: TpDomainID;

 authInterface: IpInterfaceRef;

 };

The domainID parameter is an identifier for the framework (i.e . TpFwID). It is used to identify the framework to the

client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for each

requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to

authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the

authentication interface may not be shared amongst multip le clients.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the authentication interface.

 structure TpAuthDomain {

 domainID: TpDomainID;

 authInterface: IpInterfaceRef;

 };

The domainID parameter is an identifier either for a client application (i.e . TpClientAppID) or for an enterprise operator

(i.e . TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e.

TpServiceInstanceID), o r for a service supplier (i.e. TpServ iceSupplierID). It is used to iden tify the client domain to the

framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the

framework returns an error code (P_INVALID_DOMAIN_ID).

A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework

by invoking this method mult iple t imes. The Framework may elect to reject these subsequent requests, or may choose to

associate them together as independent sessions under the same TpClientAppID.

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is

defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error

code (P_INVALID_INTERFACE_TYPE).

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 32 Release 9

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the

opportunity to use an alternative to the API level Authentication interface, e .g. an implementation specific

authentication mechanis m like CORBA Security, using the IpAuthentication interface, or Operator specific

Authentication interfaces. OSA API level Authentication is the default authentication mechanism

(P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain

authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If

P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type

IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.

frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the

version number. Valid version numbers are defined in the respective framework specification.

Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE,

P_INVALID_AUTH_TYPE, P_INVALID_VERSION

6.3.1.4 Interface Class IpAuthentication

Inherits from: Ip Interface.

The Authentication Framework interface is used by client to request access to other interfaces supported by the

Framework. The authentication process should in this case be done with some underlying distribution technology

authentication mechanis m, e.g. CORBA Security.

 At least one of IpAuthentication or IpAPILevelAuthentication interfaces shall be implemented by a Framework as a

minimum requirement. The requestAccess() method shall be imple mented in each.

<<Interface>>

IpAuthentication

requestAccess (accessType : in TpAccessType, clientAccessInterface : in IpInterfaceRef) : IpInterfaceRef

6.3.1.4.1 Method requestAccess()

Once the client has been authenticated by the framework, the client may invoke the requestAccess operation on the

IpAuthentication or IpAPILevelAuthentication interface. Th is allows the client to request the type of access they

require. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is retu rned. (Operators can define

their own access interfaces to satisfy client requirements for different types of access.)

If this method is called before the client has been successfully authenticated, then the request fails, and an error code

(P_ACCESS_DENIED) is returned.

This method may be invoked by the client immediately on IpAuthentication, when API Level authentication is not

being used, since there is no indication to the client at API level that it is authenticated with the Framework.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 33 Release 9

Returns <fwAccessInterface> : This provides the reference for the client to call the access interface of the framework.

The access reference provided is unique to the requesting client.

Parameters

accessType : in TpAccessType

This identifies the type of access interface requested by the client. If the framework does not provide the type of access

identified by accessType, then an error code (P_INVALID_ACCESS_TYPE) is returned.

clientAccessInterface : in IpInterfaceRef

This provides the reference for the framework to call the access interface of the client. If the interface reference is not

of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ACCESS_TYPE,

P_INVALID_INTERFACE_TYPE

6.3.1.5 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.

The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used

to initiate the authentication process.

 If the IpAPILevelAuthentication interface is implemented by a Framework, then selectAuthenticationMechanism(),

challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented. IpAPILevelAuthentication

inherits the requirements of IpAuthentication, therefore requestAccess() shall be implemented.

<<Interface>>

IpAPILevelAuthentication

abortAuthentication () : void

authenticationSucceeded () : void

selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.1 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. Th is

method is invoked if the client no longer wishes to continue the authentication process, (unless the framework

responded incorrectly to a challenge in which case no further communicat ion with the framework should occur.) If this

method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess

operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been

properly authenticated. If this method is invoked after the client has been authenticated by the Framework, it shall not

result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client

again, however).

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 34 Release 9

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.5.2 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method

have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful

authentication of the client.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.5.3 Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of

API level Authentication. The Framework will select one of the suggested authentication mechanisms and that

mechanis m shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a

result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is

re-invoked by the client. If a mechanis m that is acceptable to the framework within the capability of the client cannot be

found, the framework throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mech anism

shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList : in TpAuthMechanismList

The list of authentication mechanis ms supported by the client.

Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS_DENIED,

P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM

6.3.1.5.4 Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct

responses to the challenges presented by the client. The domainID received in the initiateAuthenticationWithVersion()

can be used by the framework to reference the correct public key for the client (the key management system is currently

outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The

authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the

client.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 35 Release 9

The invocation of this method may be interleaved with challenge() calls by the framework on the client's

APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The

formatting and construction of this parameter shall be according to section 4.1 o f RFC 1994. A complete CHAP

Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated

hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an octet set

consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value. The Name

field of the CHAP Response packet must be present and contain a valid value in order for the CHAP Response to be

valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1. Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's

challenge parameter

2. Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP

Challenge

3. Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4. Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value

Steps for validating the response octet set:

1. Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP

Response. If it does not, authentication fails.

2. Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original

challenge value

3. Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4. Verify the octet set resulting from the prev ious step matches the octet set contained in the Value field of the CHAP

Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in

accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).

The challenge octet set must be formatted as a CHAP Challenge packet as defined in sect ion 4.1 of RFC 1994. A

complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet

must be present and contain a valid value in o rder for the CHAP Response to be valid. However, the Name field is not

used in the authentication process.

Steps for constructing the challenge octet set:

1. Create a random challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.

2. Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in

the Value field within the CHAP Challenge.

Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 36 Release 9

6.3.1.6 Interface Class IpAccess

Inherits from: Ip Interface.

This interface shall be implemented by a Framework. As a min imum requirement the obtainInterface() and

obtainInterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

<<Interface>>

IpAccess

obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, client Interface : in IpInterfaceRef) :
IpInterfaceRef

listInterfaces () : TpInterfaceNameList

selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabi lityList) : TpSigningAlgorithm

terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString, digitalSignature : in
TpOctetSet) : void

6.3.1.6.1 Method obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to

other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is requ ired to supply

a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,

the framework returns an error code (P_INVALID_INTERFACE_NAME).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME

6.3.1.6.2 Method obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to

other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface

method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 37 Release 9

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid,

the framework returns an error code (P_INVALID_INTERFACE_NAME).

clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this

method should not be used. (The obtainInterface method should be used when no callback interface needs to be

supplied.) If the interface reference is not of the correct type, the framework returns an error code

(P_INVALID_INTERFACE_TYPE).

Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME,

P_INVALID_INTERFACE_TYPE

6.3.1.6.3 Method listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the

interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework

makes availab le.

Parameters
No Parameters were identified for this method.

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.6.4 Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for use in all cases

where dig ital signatures are required. The Framework will select one of the suggested algorithms. This method shall

be the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method

remains valid for an instance of IpAccess and until this method is re-invoked by the client.

Subsequent invocations of selectSigningAlgorithm() may change the signing algorithm used during the access session.

However, once signServiceAgreement() has been called on the client by the framework, the signing algorithm currently

selected must be used for the client's invocation of signServiceAgreement() on the Framework as well as for subsequent

calls to terminateServiceAgreement(). Other operations requiring dig ital signatures will use the latest algorithm

specified by selectSigningAlgorithm().

If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework

throws the P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 38 Release 9

Returns: selectedAlgorithm. Th is is the signing algorithm chosen by the Framework. The chosen algorithm shall be

taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList

The list of signing algorithms supported by the client.

Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM

6.3.1.6.5 Method terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After

it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the

references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Also, all remaining service instances created by the framework either directly in this access session or on behalf of the

client during this access session shall be terminated.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed -data.

The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with

selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be

used (i.e . the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text

string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay

prevention. The client uses this to confirm its identity to the framework. The framework can check that the

terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the

P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SIGNATURE

6.3.1.6.6 Method relinquishInterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework

throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this

access session, then the P_TASK_REFUSED exception will be thrown.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 39 Release 9

terminationText : in TpString

This is the termination text describes the reason for the release of the interface. This text is required simply because the

digitalSignature parameter requires a terminationText to sign.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.

The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with

selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be

used (i.e . the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text

string). The signing-time attribute, as defined in section 11.3 of RFC 2630, s hall also be used to provide replay

prevention. The client uses this to confirm its identity to the framework. The framework can check that the

terminationText has been signed by the client. If a match is made, the interface is released, otherwise the

P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME

6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the

gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can

be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return

an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to

network events are shown together with the resulting event or action performed by the gateway. These internal events

are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams

6.4.1.1 State Transition Diagrams for IpInitial

Active

initiateAuthenticationWithVersion / return new

IpAuthentication

Figure : State Transition Diagram for IpInitial

6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 40 Release 9

Idle

IpInitial.initiateAuthenticationWithVersion

Authenticating

Framework

selectAuthenticationMechanism

challenge / Client

challenges FW
selectAuthenticationMechanism

Framework

Authenticated

FW Aborts

ÎpClientAPILevelAuthentication.

abortAuthentication

authenticationSucceeded / Client

satisfied with FW response

selectAuthenticationMechanism

challenge / Client

re-challenges Framework

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework using

initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.1 Idle State

When the client has invoked the IpInitial init iateAuthenticationWithVersion method, an object imple menting the

IpAPILevelAuthentication interface is created. The client now has to select the authentication mechanism to be used

using selectAuthenticationMechanism.

6.4.1.2.2 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge

method on the Framework. The Framework may either buffer the requests and respond when the client has been

authenticated, or respond immediately, depending on policy. When the client has processed the response from the

authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process

is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and

the authentication process has been completed, then a transition to the state Framework Authenticated is made and the

Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 41 Release 9

authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may

also call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.3 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling

authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request

re-authentication of the Framework by calling the challenge method, resulting in a transition back to Authenticating

Framework state. The client may also call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge

method on the client. When the Framework has processed the response from the authenticate request or challenge on

the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then

another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has

been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by

invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies

that the client has to re-in itiate the authentication by calling once more the in itiateAuthenticationWithVersion method

on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on

the Framework's IpAPILevelAuthentication interface. The client may also call selectAuthenticationMechanism to

choose another hash algorithm.

6.4.1.2.5 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the

framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the

AuthenticatingClient state occurs. The client may also call selectAuthenticationMechanism to choose another hash

algorithm.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 42 Release 9

Idle

requestAccess

^P_ACCESS_DENIED

IpInitial.initiateAuthenticationWithVersion

Authenticating

Client

requestAccess

^P_ACCESS_DENIED

selectAuthenticationMechanism

selectAuthenticationMechanism

FW challenges Client

ÎpClientAPILevelAuthentication.challenge

Invalid Client Response

abortAuthentication

/ Client Aborts

Client

Authenticated

FW satisfied with Client response

ÎpClientAPILevelAuthentication.authenticationSucceeded

requestAccess / new IpAccess

selectAuthenticationMechanism
FW re-challenges Client

ÎpClientAPILevelAuthentication.challenge

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client using
initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.6 Idle State

When the client has invoked the IpInitial init iateAuthenticationWithVersion method, an object implementing the

IpAPILevelAuthentication interface is created. The client now has to select the authentication mechanism to be used

using selectAuthenticationMechanism.

6.4.1.2.7 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the cha llenge

method on the Framework. The Framework may either buffer the requests and respond when the client has been

authenticated, or respond immediately, depending on policy. When the client has processed the response from the

authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process

is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and

the authentication process has been completed, then a transition to the state Framework Authenticated is made and the

Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the

authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may

also call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.8 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling

authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 43 Release 9

re-authentication of the Framework by calling the challenge method, resulting in a transition back to Authenticating

Framework state. The client may also call selectAuthenticationMechanism to choose another hash algorithm.

6.4.1.2.9 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge

method on the client. When the Framework has processed the response from the authenticate request or challenge on

the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then

another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has

been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by

invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies

that the client has to re-in itiate the authentication by calling once more the in itiateAuthenticationWithVersion method

on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on

the Framework's IpAPILevelAuthentication interface. The client may also call selectAuthenticationMechanism to

choose another hash algorithm.

6.4.1.2.10 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the

framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the

AuthenticatingClient state occurs. The client may also call selectAuthenticationMechanism to choose another hash

algorithm.

6.4.1.3 State Transition Diagrams for IpAccess

Active

IpAuthentication.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

application initiated access termination

terminateAccess / destroy all interface objects used by the client

network operator initiated access termination

 / destroy all interface objects used by the client

 ÎpClientAccess.terminateAccess

listInterfaces

selectSigningAlgorithm

relinquishInterface

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 44 Release 9

Figure : State Transition Diagram for IpAccess

6.4.1.3.1 Active State

When the client requests access to the Framework on the IpAuthentication (IpAPILevelAuthentication) interface, an

object implementing the IpAccess interface is created. The client can now request other Framework interfaces,

including Service Discovery, Integrity Management, Service Subscription etc., and if at any point these framework

interfaces are no longer required, to relinquish these. In addition the client can select the signing algorithm that shall be

used during the access session in cases where a digital signature is required. When the client is no longer interested in

using the interfaces it calls the terminateAccess method. This results in the destruction of all interface objects used by

the client. In case the network operator decides that the client has no longer access to the interfaces the same will

happen.

7 Framework-to-Application API

7.1 Sequence Diagrams

7.1.1 Event Notification Sequence Diagrams

7.1.1.1 Enable Event Notification

AppLogic : IpAppEventNotification : IpAccess : IpEventNotification

2: obtainInterfaceWithCallback()

3: new()

1: new()

4: createNotification()

5: reportNotification()

1: This message is used to create an object implementing the IpAppEventNotificat ion interface.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 45 Release 9

2: This message is used to receive a reference to the object implementing the IpEventNotification interface and set the

callback interface for the framework.

3: If there is currently no object implementing the IpEventNotification in terface, then one is created using this

message.

4: createNotification(eventCriteria : in TpFwEventCriteria) : TpAssignmentID.

This message is used to enable the notification mechanis m so that subsequent framework events can be sent to the

application. The framework event the application requests to be informed of is the availab ility of new SCFs.

Newly installed SCFs become availab le after the invocation of registerServ ice and announceServiceAvailability on the

Framework. The application uses the input parameter eventCriteria to specify the SCFs of whose availability it wants to

be notified: those specified in ServiceTypeNameList.

The result of this invocation has many similarities with the result of invoking listServiceTypes: in both cases the

application is informed of the availability of a list of SCFs. The differences are:

· in the case of invoking listServiceTypes, the application has to take the initiat ive, but it is informed of ALL SCFs

available

· in the case of using the event notification mechanis m, the application needs not take the initiat ive to ask about the

availability of SCFs, but it is only informed of the ones that are newly available.

Alternatively, or addit ionally, the application can request to be informed of SCFs becoming unavailable.

5: The application is notified of the availability of new SCFs of the requested type(s).

7.1.2 Integrity Management Sequence Diagrams

7.1.2.1 Load Management: Suspend/resume notification from application

This sequence diagram shows the scenario of suspending or resuming notifications from the application based on the

evaluation of the load balancing policy as a result of the detection of a change in load level of the framework.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 46 Release 9

 : IpAppLoadManager : IpLoadManager

1: load change detection and policy evaluation

2: suspendNotification()

3: load change detection and policy evaluation

4: resumeNotification()

5: reportLoad()

This is

implementation

detail

Load balancing service

makes a decision based

on pre-defined policy

Application provides

initial load report on

notification

resumption

7.1.2.2 Load Management: Framework queries load statistics

This sequence diagram shows how the framework requests load statistics for an application.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 47 Release 9

 : IpLoadManager : IpAppLoadManager

1: queryAppLoadStatsReq()

2: get load information

3: queryAppLoadStatsRes()

This is the

implementation

detail

7.1.2.3 Load Management: Framework callback registration and Application load

control

This sequence diagram shows how the framework reg isters itself and the application invokes load management function

to inform the framework of application load.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 48 Release 9

 :

IpAppLoadManager

 :

IpLoadManager

1: createLoadLevelNotification()

3: load change detection

4: reportLoad()

5: load change detection

6: reportLoad()

7: destroyLoadLevelNotification()

Application detects a load

condition change and

reports to Framework.

The Framework may take

appropriate load control

action - implementation

detail.

This is implementation

detail. The Application

may take appropriate

load control action.

This is implementation

detail. The Application

may take appropriate

load control action.

2: reportLoad()

Application reports its

initial load condition on

notification creation

7.1.2.4 Load Management: Application reports current load condition

This sequence diagram shows how an application reports its load condition to the framework load manager.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 49 Release 9

 : IpAppLoadManager : IpLoadManager

2: evaluate policy

This is the implementation

detail

1: reportLoad()

7.1.2.5 Load Management: Application queries load statistics

This sequence diagram shows how an application requests load statistics for the framework.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 50 Release 9

 : IpAppLoadManager : IpLoadManager

1: queryLoadStatsReq()

This is the

implementation

detail

2: get load information

3: queryLoadStatsRes()

7.1.2.6 Load Management: Application callback registration and load control

This sequence diagram shows how an application reg isters itself and the framework invokes load management function

based on policy.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 51 Release 9

 : IpAppLoadManager : IpLoadManager

1: createLoadLevelNotification()

Framework detects a load

condition change

and notifies the

application. The

application may take

appropriate load control

action - implementation

detail.

4: loadLevelNotification()

3: load change detection & policy evaluation

This is Framework

implementation detail.

The Framework may take

appropriate load control

action.

6: loadLevelNotification()

7: destroyLoadLevelNotification()

5: load change detection & policy evaluation

This is Framework

implementation detail. The

Framework may take

appropriate load control

action.

2: loadLevelNotification()

Framework reports its

initial load condition on

notification creation

7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the

application

In this sequence diagram, the framework has decided that it wishes to monitor the applicat ion, and has therefore

requested the application to commence sending its heartbeat. The application responds by sending its heartbeat at the

specified interval. The framework then decides that it is satisfied with the applicat ion's health and disables the heartbeat

mechanis m. If the heartbeat was not received from the applicat ion within the specified interval, the framework can

decide that the application has failed the heartbeat and can then perform some recovery action.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 52 Release 9

Framework : IpHeartBeat : IpAppHeartBeatMgmt

1: enableAppHeartBeat()

2: pulse()

3: pulse()

4: disableAppHeartBeat()

At a certain point of

time the framework

decides to stop

heartbeat supervision

7.1.2.8 Fault Management: Framework detects a Service failure

The framework has detected that a service instance has failed (probably by the use of the heartbeat mechanism). The

framework informs the client application.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 53 Release 9

Client Application : IpAppFaultManager Framework : IpFaultManager

The framework should detect if a service instance

fails, for example via an unreturned heartbeat. The

framework should inform the application that is

using that service instance, with the reason:

SVC_UNAVAILABLE_NO_RESPONSE.

1: svcAvailStatusInd()

The application may wait until

it receives SVC_AVAILABLE

1: The framework informs the client application that is using the service instance that the service is unavailable. The

client application may wait to receive a new call to the svcAvailStatusInd with the reason SVC_AVAILABLE when the

Service has become available again. The d ifferent Unavailability reasons used by the Framework

(TpSvcAvailStatusReason) guides the client application developers to make the decision.

7.1.2.9 Fault Management: Application requests a Framework activity test

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 54 Release 9

Client Application : IpAppFaultManager Framework : IpFaultManager

Client application asks framework to

carry out an activity test. The

framework is denoted as the target by

an empty string value for svcId

parameter value.

Framework carries out test and

returns result to client application.

2: activityTestRes()

1: activityTestReq()

1: The client application asks the framework to do an activity test. The client identifies that it would like the activ ity

test done for the framework, rather then a service, by supplying an empty string value for the svcId parameter.

2: The framework does the requested activity test and sends the result to the client application.

7.1.3 Service Discovery Sequence Diagrams

7.1.3.1 Service Discovery

The following figure shows how Applications discover a new Service Capability Feature in the network. Even

applications that have already used the OSA API of a certain network know that the operator may upgrade it any time;

this is why they use the Service Discovery interfaces.

Before the discovery process can start, the Application needs a reference to the Framework's Service Discovery

interface; this is done via an invocation the method obtainInterface on the Framework's Access interface.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 55 Release 9

Discovery can be a three-step process. The first two steps have to be performed in itially, but can subsequently be

skipped (if the service type and its properties are already known, the application can invoke discoverService() without

having to re-invoke the list/discoverServiceType methods).

 : IpServiceDiscoveryApplication

2: listServiceTypes()

3: describeServiceType()

4: discoverService()

 : IpAccess

1: obtainInterface()

2: Discovery: first step - list service types.

In this first step the application asks the Framework what service types that are available from this network. Service

types are standardized or non-standardised SCF names, and thus this first step allows the Application to know what

SCFs are supported by the network.

The following output is the result of this first discovery step:

· out listTypes.

This is a list of service type names, i.e., a list of strings, each of them the name of a SCF or a SCF specialization (e.g.

"P_MPCC").

3: Discovery: second step - describe service type.

In this second step the application requests what are the properties that describe a certain service type that it is interested

in, among those listed in the first step.

The following input is necessary:

· in name.

This is a service type name: a string that contains the name of the SCF whose description the Application is interested in

(e.g. "P_MPCC") .

And the output is:

· out serviceTypeDescription.

The description of the specified SCF type. The description provides informat ion about:

· the property names associated with the SCF;

· the corresponding property value types;

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 56 Release 9

· the corresponding property mode (mandatory or read only) associated with each SCF property;

· the names of the super types of this type; and

· whether the type is currently enabled or disabled.

4: Discovery: third step - discover service

In this third step the application requests for a service that matches its needs by tuning the service properties (i.e.

assigning values for certain properties).

The Framework then checks whether there is a match, in which case it sends the Application the serviceID that is the

identifier this network operator has assigned to the SCF version described in terms of those service properties. This is

the moment where the serviceID identifier is shared with the applicat ion that is interested on the corresponding service.

This is done for either one service or more (the application specifies the maximum number of responses it wishes to

accept).

Input parameters are:

· in serviceTypeName.

This is a string that contains the name of the SCF whose description the Application is interested in (e.g. "P_MPCC").

· in desiredPropertyList.

This is again a list like the one used for service registration, but where the value of the service properties have been fine

tuned by the Application to (they will be logically interpreted as "min imum", " maximum", etc. by the Framework).

The following parameter is necessary as input:

· in max.

This parameter states the maximum number of SCFs that are to be returned in the "ServiceList" result.

And the output is:

· out serviceList.

This is a list of duplets: (serviceID, servicePropertyList). It provides a list of SCFs matching the requirements from the

Application, and about each: the identifier that has been assigned to it in this network (serviceID), and once again the

service property list.

7.1.4 Service Agreement Management Sequence Diagrams

7.1.4.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs

to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 57 Release 9

 :

IpServiceAgreementManagement

 :

IpAppServiceAgreementManagement

Application Framework

1: selectService()

3: signServiceAgreement()

4: signServiceAgreement()

2: initiateSignServiceAgreement()

1: Service Select ion: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the

serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to

the Application an identifier for the service chosen: a service token, that is a private identifier for this service between

this Application and this network, and is used for the process of signing the service agreement.

Input is:

· in serviceID.

This identifies the SCF required.

And output:

· out serviceToken.

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It

contains operator specific information relating to the service level agreement. An application (identifiable by a g iven

TpClientAppID) may select the same service on more than one occasion in which case the same serviceToken, that

identifies the relationship between the Application and the network, and the service agreement that applies, shall be

returned.

2: Service Select ion: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once these

contractual details have been agreed, then the Application can be given the means to actually use it. The means are a

reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By

calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns

it to the Application. The service properties suitable for this application are also fed to the SCF (v ia the lifecycle

manager interface) in o rder for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application init iates the signature process by calling

initiateSignServ iceAgreement, and where the framework calls signServiceAgreement on the application's

IpAppServiceAgreementManagement interface before the application calls signServiceAgreement on the frameworks's

IpServiceAgreementManagement, is the only sequence permitted.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 58 Release 9

Input:

· in serviceToken.

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

· in agreementText.

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

· in signingAlgorithm.

This is the algorithm used to compute the digital signature.

Output:

· out signatureAndServiceMgr.

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a

reference to the manager interface of the SCF.

There must be only one service instance per client applicat ion. Therefore, in case an application (identifiab le by a given

TpClientAppID) attempts to select a service for which it has already signed a service agreement and this service

agreement has not been terminated, the Framework may return a reference to the already existing service, or may raise

an exception to the client indicating that this request is denied.

7.2 Class Diagrams

Figure: Event Notification Class Diagram

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 59 Release 9

IpAppFaultManager

activityTestRes()

appActivityTestReq()

<<deprecated>> fwFaultReportInd()

<<deprecated>> fwFaultRecoveryInd()

<<deprecated>> fwUnavailableInd()

activityTestErr()

appUnavailableInd()

svcAvailStatusInd()

generateFaultStatisticsRecordRes()

generateFaultStatisticsRecordErr()

generateFaultStatisticsRecordReq()

fwAvailStatusInd()

<<Interface>>

IpFaultManager

activityTestReq()

appActivityTestRes()

svcUnavailableInd()

appActivityTestErr()

appAvailStatusInd()

generateFaultStatisticsRecordReq()

generateFaultStatisticsRecordRes()

generateFaultStatisticsRecordErr()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1 0..n1 0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n1 0..n1

IpAppLoadManager

loadLevelNotification()

resumeNotification()

suspendNotification()

createLoadLevelNotification()

destroyLoadLevelNotification()

queryAppLoadStatsReq()

queryLoadStatsRes()

queryLoadStatsErr()

<<Interface>>

IpLoadManager

reportLoad()

createLoadLevelNotification()

destroyLoadLevelNotification()

resumeNotification()

suspendNotification()

queryLoadStatsReq()

queryAppLoadStatsRes()

queryAppLoadStatsErr()

<<Interface>>
IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>><<uses>>

Figure: Integrity Management Package Overview

Figure: Service Discovery Package Overview

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 60 Release 9

Figure: Trust and Security Management Package Overview

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 61 Release 9

Figure: Service Agreement Management Package Overview

7.3 Interface Classes

7.3.1 Service Discovery Interface Classes

7.3.1.1 Interface Class IpServiceDiscovery

Inherits from: Ip Interface.

The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the

enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and

what service "properties" are applicable to each service type. The listServiceTypes() method returns a list of al l "service

types" that are currently supported by the framework and the "describeServiceType()" returns a description of each

service type. The description of service type includes the "service-specific properties" that are applicable to each service

type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both

belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the

enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub -set of) these

services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out

the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service

discovery APIs are invoked by the enterprise operators or client applicat ions. They are described below.

 This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),

describeServiceType() and discoverService() methods.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 62 Release 9

<<Interface>>

IpServiceDiscovery

listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listSubscribedServices () : TpServiceList

7.3.1.1.1 Method listServiceTypes()

This operation returns the names of all service super and sub types that are in the repository. The details of the service

types can then be obtained using the describeServiceType() method. If a sub type of a service is registered, this method

returns, besides the sub type, also the super type.

Returns <listTypes> : The names of the requested service types.

Parameters
No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED

7.3.1.1.2 Method describeServiceType()

This operation lets the caller obtain the details for a particu lar service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information

about:

 · the service properties associated with this service type: i.e. a list of service property {name, mode and type} tuples;

 · the names of the super types of this service type; and

 · whether the service type is currently available or unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described.

· If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception is rais ed.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 63 Release 9

Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_ILLEGAL_SERVICE_TYPE,

P_UNKNOWN_SERVICE_TYPE

7.3.1.1.3 Method discoverService()

The discoverService operation is the means by which a client application is able to obtain the service IDs of the services

that meet its requirements. The client application passes in a list of desired service properties to describe the service it is

looking for, in the form of attribute/value pairs for the service properties. The client applicat ion also specifies the

maximum number of matched responses it is willing to accept. The framework must not return more matches than the

specified maximum, but it is up to the discretion of the Framework implementation to choose to return less than the

specified maximum. The d iscoverService() operation returns a serviceID/Property pair list for those services that match

the desired service property list that the client applicat ion provided. The service properties returned form a complete

view of what the client applicat ion can do with the service, as per the service level agreement. If the framework

supports service subscription, the service level agreement will be encapsulated in the subscription properties contained

in the contract/profile for the client application, which will be a restriction of the reg istered properties.

Returns <serviceList> : This parameter g ives a list of matching services. Each service is characterised by its service ID

and a list of service properties {name and value list} associated with the service.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter conveys the required service type. It is key to the central purpose of "service

trading". It is the basis for type safe interactions between the service exporters (via registerServ ice) and service

importers (via discoverService). By stating a service type, the importer implies the service type and a domain o f

discourse for talking about properties of service.

· If the string representation of the "type" does not obey the rules for service type identifiers, then the

P_ILLEGAL_SERVICE_TYPE exception is raised.

· If the "type" is correct syntactically but is not recognised as a service type within the Framework, then the

P_UNKNOWN_SERVICE_TYPE exception is raised.

The framework may return a service of a subtype of the "type" requested. The requestor may also request for a service

of a specific subtype. The framework will not return the corresponding supertype(s) in this case.

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service property {name, mode and value list} tuples that the discovered

set of services should satisfy. These properties deal with the non-functional and non-computational aspects of the

desired service. The property values in the desired property list must be logically interpreted as "minimum" ,

"maximum", etc. by the framework (due to the absence of a Boolean constraint expression for the specification of the

service criterion). It is suggested that, at the time of service reg istration, each property value be specified as an

appropriate range of values, so that desired property values can specify an "enclosing" range of values to help in the

selection of desired services.

The desiredPropertyList only contains service properties that are relevant for the application. If an application is not

interested in the value of a certain service property, this service property shall not be included in the

desiredPropertyList.

P_INVALID_PROPERTY is raised when an application includes an unknown service property name or invalid service

property value.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 64 Release 9

max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

Returns

TpServiceList

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_ILLEGAL_SERVICE_TYPE,

P_UNKNOWN_SERVICE_TYPE, P_INVALID_PROPERTY

7.3.1.1.4 Method listSubscribedServices()

Returns a list of services so far subscribed by the enterprise operator. The enterprise operator (or the cl ient applicat ions

in the enterprise domain) can obtain a list of subscribed services that they are allowed to access.

Returns <serviceList> : The "serviceList" parameter returns a list of subscribed services. Each service is characterised

by its service ID and a list of service properties {name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServiceList

Raises

TpCommonExceptions, P_ACCESS_DENIED

7.3.2 Service Agreement Management Interface Classes

7.3.2.1 Interface Class IpAppServiceAgreementManagement

Inherits from: Ip Interface.

This interface and the signServiceAgreement() and terminateServiceAgreement() methods shall be implemented by an

application.

<<Interface>>

IpAppServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :

in TpSigningAlgorithm) : TpOctetSet

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,
digitalSignature : in TpOctetSet) : void

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 65 Release 9

7.3.2.1.1 Method signServiceAgreement()

Upon receipt of the in itiateSignServiceAgrement() method from the client application, this method is used by the

framework to request that the client application sign an agreement on the service. The framework provides the service

agreement text for the client applicat ion to sign. The service manager returned will be configured as per the service

level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the

subscription properties contained in the contract/profile for the client applicat ion, which will be a restrict ion of the

registered properties. If the client applicat ion agrees, it signs the service agreement, returning its d igital signature to the

framework.

Returns <digitalSignature> : This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630)

with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the

agreement text g iven by the framework. The "external signature" construct shall not be used (i.e. the eContent field in

the EncapsulatedContentInfo field shall be present and contain the agreement text). The signing -time attribute, as

defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. If the signature is incorrect the

serviceToken will be exp ired immediately.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the

service instance to which this service agreement corresponds. (If the client applicat ion selects many services, it can

determine which selected service corresponds to the service agreement by matching the service token). If the

serviceToken is invalid, or not known by the client application, then the P_INVALID_SERVICE_TOKEN exception is

thrown.

agreementText : in TpString

This is the agreement text that is to be signed by the client applicat ion using the private key of the client application. If

the agreementText is invalid, then the P_INVALID_AGREEMENT_TEXT exception is thrown.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be iden tical to the one chosen by the framework in

response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown

to the client application, the P_INVALID_SIGNING_ALGORITHM exception is thrown. The list of p ossible

algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the

digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the dig italSignature (see below).

Returns

TpOctetSet

Raises

TpCommonExceptions, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN,

P_INVALID_SIGNING_ALGORITHM

7.3.2.1.2 Method terminateServiceAgreement()

This method is used by the framework to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. Th is token is used to

identify the service agreement to be terminated. If the serviceToken is invalid, or unknown to the client application, the

P_INVALID_SERVICE_TOKEN exception will be thrown.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 66 Release 9

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data.

The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to

initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be

used (i.e . the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text

string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay

prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was

signed using signServiceAgreement(). The framework uses this to confirm its identity to the client application. The

client application can check that the terminationText has been signed by the framework. If a match is made, the service

agreement is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.

Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE

7.3.2.2 Interface Class IpServiceAgreementManagement

Inherits from: Ip Interface.

This interface and the signServiceAgreement(), terminateServ iceAgreement(), selectService() and

initiateSignServ iceAgreement() methods shall be implemented by a Framework.

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm :
in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString,

digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1 Method signServiceAgreement()

After the framework has called signServ iceAgreement() on the application's IpAppServiceAgreementManagement

interface, this method is used by the client application to request that the framework sign the service agreement, which

allows the client applicat ion to use the service. A reference to the service manager interface of the service is returned to

the client applicat ion. The service manager returned will be configured as per the service level agreement. If the

framework uses service subscription, the service level agreement will be encapsulated in the subscription properties

contained in the contract/profile for the client applicat ion, which will be a restriction of the registered properties. If th e

client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is

returned. If the client application invokes this method before the processing (i.e. d igital signature verification) of the

response of signServiceAgreement() on the application's IpAppServiceAgreementManagement interface has completed,

a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is

currently unable to complete the method due to a race condition. In this case, the TpCommonExcep tions with

ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount

of time has passed.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 67 Release 9

There must be only one service instance per client applicat ion. Therefore, in case the client attempts to select a service

for which it has already signed a service agreement and this service agreement has not been terminated, a reference to

the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : Th is contains the digital signature o f the framework for the service agreement,

and a reference to the service manager interface o f the service.

 structure TpSignatureAndServiceMgr {

 digitalSignature: TpOctetSet;

 serviceMgrInterface: IpServ iceRef;

 };

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content

type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement

text g iven by the client applicat ion. The "external signature" construct shall not be used (i.e. the eContent field in the

EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing -time attribute, as

defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the

service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code

(P_INVALID_SERVICE_TOKEN) is returned.

agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the

agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.

signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one used by the framework when

invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, is invalid, or unknown to

the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms is

as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the

digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the dig italSignature (see below).

Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_AGREEMENT_TEXT,

P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM,

P_SERVICE_ACCESS_DENIED

7.3.2.2.2 Method terminateServiceAgreement()

This method is used by the client applicat ion to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. Th is token is used to

identify the service agreement to be terminated. If the serviceToken is invalid, or has exp ired, an error code

(P_INVALID_SERVICE_TOKEN) is returned.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 68 Release 9

terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.

digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed -data.

The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to

initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be

used (i.e . the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text

string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay

prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was

signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by

the client applicat ion. If a match is made, the service agreement is terminated, otherwise an error code

(P_INVALID_SIGNATURE) is returned.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN,

P_INVALID_SIGNATURE

7.3.2.2.3 Method selectService()

This method is used by the client applicat ion to identify the service that the client application wishes to use . If the client

application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown.

Returns <serviceToken> : Th is is a free format text token returned by the framework, which can be signed as part of a

service agreement. Th is will contain operator specific information relating to the service level agreement. The

serviceToken has a limited lifetime. If the lifetime of the serviceToken exp ires, a method accepting the serviceToken

will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client

application or framework invokes the terminateAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code

(P_INVALID_SERVICE_ID) is returned.

Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID,

P_SERVICE_ACCESS_DENIED

7.3.2.2.4 Method initiateSignServiceAgreement()

This method is used by the client applicat ion to initiate the sign service agreement process. This method shall be

invoked following the application's call to selectService(), and before the signing of the service agreement can take

place. If the c lient application is not allowed to in itiate the sign service agreement process, the exception

(P_SERVICE_ACCESS_DENIED) is thrown.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 69 Release 9

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the

service instance requested by the client application. If the serviceToken is invalid, or has expired, the exception

(P_INVALID_SERVICE_TOKEN) is thrown.

Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_SERVICE_ACCESS_DENIED

7.3.3 Integrity Management Interface Classes

7.3.3.1 Interface Class IpAppFaultManager

Inherits from: Ip Interface.

This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client

Application. The Fau lt Management Framework will invoke methods on the Fault Management Application Interface

that is specified when the client application obtains the Fault Management interface: i.e . by use of the

obtainInterfaceWithCallback operation on the IpAccess interface

<<Interface>>

IpAppFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecovery Ind (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

appUnavailableInd (serviceID : in TpServiceID) : void

svcAvailStatusInd (serviceID : in TpServiceID, reason : in TpSvcAvailStatusReason) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsErrorList, serviceIDs : in TpServiceIDList) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) :

void

fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

7.3.3.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 70 Release 9

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

7.3.3.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of th is request, the

application must carry out a test on itself, to check that it is operating correctly. The applicat ion reports the test result

by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this

method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the

Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of a failure within the framework. The client

application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecovery Ind).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.

7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this

method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the

Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified.

The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.

7.3.3.1.5 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this

method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the

Application the reason why the Framework is unavailable and also when the Framework becomes available again.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 71 Release 9

The framework invokes this method to inform the client applicat ion that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.

7.3.3.1.6 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application -in itiated activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.

7.3.3.1.7 Method appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not

responding.

Parameters

serviceID : in TpServiceID

Specifies the service for which the indication of unavailability was received.

7.3.3.1.8 Method svcAvailStatusInd()

The framework invokes this method to inform the client applicat ion about the Service instance availability status, i.e.

that it can no longer use its instance of the indicated service according to the reason parameter but as well in formation

when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset

its use of the specified service (using the normal mechanis ms, such as the discovery and authentication interfaces, to

stop use of this service instance and begin use of a different service instance). The client application can also wait for

the problem to be solved and just stop the usage of the service instance until the svcAvailStatusInd() is called again with

the reason SVC_AVAILABLE.

Parameters

serviceID : in TpServiceID

Identifies the affected service.

reason : in TpSvcAvailStatusReason

Identifies the reason why the service is no longer available or that it has become available again .

7.3.3.1.9 Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a

generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this response (when it arrives) with the original request.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 72 Release 9

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is

an empty list, then the fault statistics are for the framework.

In the case where a list of services is present, this is an ordered list in which the location of the service in this list

corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.

7.3.3.1.10 Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fu lfilling the request to provide fault statistics, in response to

a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this error (when it arrives) with the orig inal request.

faultStatistics : in TpFaultStatsErrorList

The list of fault statistics errors returned.

serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the list of fault statistics errors returned. If the serviceIDs

parameter is an empty list, then the fault statistics error relates to the framework.

In the case where a list of services is present, this is an ordered list in which the location of the service in this list

corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.

7.3.3.1.11 Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the

framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation

on the IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics

record, for the application during the specified t ime interval, which is returned to the framework using the

generateFaultStatisticsRecordRes operation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings

leaves the time period to the discretion of the client application.

7.3.3.1.12 Method fwAvailStatusInd()

The framework invokes this method to inform the client applicat ion about the Framework availability status, i.e. that it

can no longer use the Framework according to the reason parameter or that the Framework has become available again.

The client application may wait for the problem to be solved and just stop the usage of the Framework until the

fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 73 Release 9

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become availab le again.

7.3.3.2 Interface Class IpFaultManager

Inherits from: Ip Interface.

This interface is used by the application to inform the framework of events that affect the integrity of the framework

and services, and to request information about the integrity of the system. The fault manager operations do not

exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface

at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation

on the IpAccess interface.

 If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be

implemented. If the Framework is capable of invoking the IpAppFaultManager.appActivityTestReq() method, it shall

implement appActivityTestRes() and appActivityTestErr() in this interface. If the Framework is capable of invoking

IpAppFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and

generateFaultStatisticsRecordErr() in this interface.

<<Interface>>

IpFaultManager

activityTestReq (activityTestID : in TpActivityTestID, svc ID : in TpServiceID) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcUnavailableInd (serviceID : in TpServiceID) : void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval,
serviceIDs : in TpServiceIDList) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in

TpFaultStatsRecord) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatist icsError : in
TpFaultStatisticsError) : void

7.3.3.2.1 Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of

this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check

that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the

IpAppFaultManager interface. If the applicat ion does not have access to a service instance with the specified serviceID,

the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the

exception shall contain the corresponding serviceID.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as

there is a one to one relationship between the client application and a service, i.e. there is only one service instance of

the specified service per client application, it is the obligation of the framework to determine the service instance ID

from the service ID.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 74 Release 9

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.

svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by an empty string.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.2.2 Method appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the orig inal request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

7.3.3.2.3 Method svcUnavailableInd()

This method is used by the client applicat ion to inform the framework that it can no longer use its instance of the

indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this

request, the framework should take the appropriate corrective action.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.2.4 Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 75 Release 9

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the orig inal request.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

7.3.3.2.5 Method appAvailStatusInd()

This method is used by the application to inform the framework of its availab ility status. If the Application has detected

a failure it uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its use of

all of its subscribed service instances. When the Application is working again it shall call this method again with the

APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall also

attempt to inform all of the service instances used by the specific applicat ion and/or its admin istrator about the problem.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer availab le. APP_AVAILABLE is used to inform the Framework

and the Service that the Application is available again.

Raises

TpCommonExceptions

7.3.3.2.6 Method generateFaultStatisticsRecordReq()

This method is used by the application to solicit fau lt statistics from the framework. On receipt of this request the

framework must produce a fault statistics record, for either the framework or fo r the client's instances of the specified

services during the specified time interval, which is returned to the client application using the

generateFaultStatisticsRecordRes operation on the IpAppFaultManager interface. If the application does not have

access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception

shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the application to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings

leaves the time period to the discretion of the framework.

serviceIDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fau lt statistics record. If this parameter is not an

empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault

statistics record of the framework is returned.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 76 Release 9

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.2.7 Method generateFaultStatisticsRecordRes()

This method is used by the client applicat ion to provide fault statistics to the framework in response to a

generateFaultStatisticsRecordReq method invocation on the IpAppFaultMan ager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the orig inal request.

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

Raises

TpCommonExceptions

7.3.3.2.8 Method generateFaultStatisticsRecordErr()

This method is used by the client applicat ion to indicate an error fu lfilling the request to provide fault statistics, in

response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultMan ager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the orig inal request.

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

Raises

TpCommonExceptions

7.3.3.3 Interface Class IpAppHeartBeatMgmt

Inherits from: Ip Interface.

This interface allows the initialisation of a heartbeat supervision of the client applicat ion by the framework.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 77 Release 9

<<Interface>>

IpAppHeartBeatMgmt

enableAppHeartBeat (interval : in TpInt32, fwInterface : in IpHeartBeatRef) : void

disableAppHeartBeat () : void

changeInterval (interval : in TpInt32) : void

7.3.3.3.1 Method enableAppHeartBeat()

With this method, the framework instructs the client application to begin sending its heartbeat to the specified interface

at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

fwInterface : in IpHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

7.3.3.3.2 Method disableAppHeartBeat()

Instructs the client application to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

7.3.3.3.3 Method changeInterval()

Allows the admin istrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

7.3.3.4 Interface Class IpAppHeartBeat

Inherits from: Ip Interface.

The Heartbeat Application interface is used by the Framework to send the client application its heartbeat.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 78 Release 9

<<Interface>>

IpAppHeartBeat

pulse () : void

7.3.3.4.1 Method pulse()

The framework uses this method to send its heartbeat to the client application. The application will be expect ing a pulse

at the end of every interval specified in the parameter to the IpHeartBeatMgmt.enableHeartbeat() method. If the pulse()

is not received with in the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

7.3.3.5 Interface Class IpHeartBeatMgmt

Inherits from: Ip Interface.

This interface allows the initialisation of a heartbeat supervision of the framework by a client application. If the

IpHeartBeatMgmt interface is implemented by a Framework, as a min imum enableHeartBeat() and disableHeartBeat()

shall be implemented.

<<Interface>>

IpHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, appInterface : in IpAppHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

7.3.3.5.1 Method enableHeartBeat()

With this method, the client application instructs the framework to begin sending its heartbeat to the specified interface

at the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

appInterface : in IpAppHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 79 Release 9

Raises

TpCommonExceptions

7.3.3.5.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.5.3 Method changeInterval()

Allows the admin istrative change of the heartbeat interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

7.3.3.6 Interface Class IpHeartBeat

Inherits from: Ip Interface.

The Heartbeat Framework interface is used by the client application to send its heartbeat. If a Framework is capable of

invoking IpAppHeartBeatMgmt.enableHeartBeat(), it shall implement IpHeartBeat and the pulse() method.

<<Interface>>

IpHeartBeat

pulse () : void

7.3.3.6.1 Method pulse()

The client application uses this method to send its heartbeat to the framework. The framework will be expecting a pulse

at the end of every interval specified in the parameter to the IpAppHeartBeatMgmt.enableAppHeartbeat() method. If

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 80 Release 9

the pulse() is not received with in the specified interval, then the client application can be deemed to have failed the

heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

7.3.3.7 Interface Class IpAppLoadManager

Inherits from: Ip Interface.

The client application developer supplies the load manager applicat ion interface to handle requests, reports and other

responses from the framework load manager function. The application supplies the identity of this callback interface at

the time it obtains the framework's load manager interface, by use of the obtainIn terfaceWithCallback() method on the

IpAccess interface.

<<Interface>>

IpAppLoadManager

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

7.3.3.7.1 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework

which have been registered for load level notifications) this method is invoked on the application. In addit ion this

method shall be invoked on the application in order to provide a notification of current load status, when load

notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).

7.3.3.7.2 Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of

suspension during which the framework handled a temporary overload condition. Upon receipt of this method the

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 81 Release 9

client application shall inform the framework of the current load using the reportLoad method on the corresponding

IpLoadManager.

Parameters
No Parameters were identified for this method.

7.3.3.7.3 Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the

framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

7.3.3.7.4 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the

application. Upon receipt of this method the client application shall inform the framework of the current load using the

reportLoad method on the corresponding IpLoadManager.

Parameters
No Parameters were identified for this method.

7.3.3.7.5 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notificat ions of load level changes associated with the application.

Parameters
No Parameters were identified for this method.

7.3.3.7.6 Method queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval : in TpTimeInterval

Specifies the time interval fo r which load statistic records should be reported.

7.3.3.7.7 Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e.

in response to an invocation of the queryLoadStatsReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this response (when it arrives) with the original request.

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 82 Release 9

7.3.3.7.8 Method queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load

statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an

invocation of the queryLoadStatsReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this error (when it arrives) with the orig inal request.

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics .

7.3.3.8 Interface Class IpLoadManager

Inherits from: Ip Interface.

The framework API should allow the load to be distributed across multip le machines and across multip le component

processes, according to a load management policy. The separation of the load management mechanism and load

management policy ensures the flexibility of the load management services. The load management policy identifies

what load management ru les the framework should follow for the specific client application. It might specify what

action the framework should take as the congestion level changes. For example, some real -time critical applications will

want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services

will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management

policy is related to the QoS level to which the application is subscribed. The framework load management function is

represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into

wait ing whilst a transaction performs. To handle responses and reports, the client applicat ion developer must

implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity

of this callback interface at the time it obtains the framework's load manager interface, by use of the

obtainInterfaceWithCallback operation on the IpAccess interface.

 If the IpLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented

as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and

destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then

resumeNotificat ion() shall be implemented also. If a Framework is capable of invoking the

IpAppLoadManager.queryAppLoadStatsReq() method, then it shall implement queryAppLoadStatsRes() and

queryAppLoadStatsErr() methods in this interface.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 83 Release 9

<<Interface>>

IpLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

createLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

destroyLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

resumeNotification (serviceIDs : in TpServiceIDList) : void

suspendNotification (serviceIDs : in TpServiceIDList) : void

queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, serviceIDs : in TpServiceIDList, timeInterval : in
TpTimeInterval) : void

queryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

queryAppLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) :
void

7.3.3.8.1 Method reportLoad()

The client application uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load

level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At

level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded. In addit ion this

method shall be called by the application in order to report current load status, when load notifications are first

requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.

Raises

TpCommonExceptions

7.3.3.8.2 Method createLoadLevelNotification()

The client application uses this method to register to receive notificat ions of load level changes associated with either

the framework or with its instances of the individual services used by the application. If the application does not have

access to a service instance with the specified serviceID, the P_UNAUTHORIS ED_PARAMETER_VALUE exception

shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt

of this method the framework shall inform the client applicat ion of the current framework or service instanc e load using

the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFs to be registered for load control. To register for framework load control, the

serviceIDs parameter must be an empty list.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 84 Release 9

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.3 Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the

framework or with its instances of the individual services used by the application. If the application does not have

access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception

shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for

framework load control, the serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.4 Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications

associated with either the framework or with its instances of the individual services used by the application; e.g. after a

period of suspension during which the application handled a temporary overload condition. If the application does not

have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE

exception shall be thrown. The extraInformat ion field of the exception shall contain the corresponding serviceID.

Upon receipt of this method the framework shall inform the client application of the current framework or service

instance load using the loadLevelNotificat ion method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework

should be resumed. To resume notifications for the framework, the serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,

P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.5 Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notificat ions

associated with either the framework or with its instances of the individual services used by the application; e.g. while

the application handles a temporary overload condition. If the application does not have access to a service instance

with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The

extraInformation field o f the exception shall contain the corresponding serviceID.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 85 Release 9

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended.

To suspend notifications for the framework, the serviceIDs parameter must be an empty list.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,

P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.6 Method queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or

for its instances of the individual services. If the applicat ion does not have access to a service instance with th e

specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The

extraInformation field o f the exception shall contain the corresponding serviceID.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the application to correlate the response (when it arrives) with this request.

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an

empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load

statistics record of the framework is returned.

timeInterval : in TpTimeInterval

Specifies the time interval fo r which load statistics records should be reported.

Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED,

P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.8.7 Method queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the

informat ion; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager

interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the orig inal request.

loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 86 Release 9

Raises

TpCommonExceptions

7.3.3.8.8 Method queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that request ed the application's load

statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an

invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the orig inal request.

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load sta tistics.

Raises

TpCommonExceptions

7.3.3.9 Interface Class IpOAM

Inherits from: Ip Interface.

The OAM interface is used to query the system date and time. The applicat ion and the framework can synchronise the

date and time to a certain extent. Accurate time synchronisation is outside the scope of the OSA APIs. This interface

and the systemDateTimeQuery() method are optional.

<<Interface>>

IpOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client application passes in its own date and time to the

framework. The framework responds with the system date and time.

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (applicat ion). The error code P_INVALID_DATE_TIME_FORMAT is returned if

the format of the parameter is invalid.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 87 Release 9

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT

7.3.3.10 Interface Class IpAppOAM

Inherits from: Ip Interface.

The OAM client application interface is used by the Framework to query the application date and time, for

synchronisation purposes. This method is invoked by the Framework to interchange the framework and client

application date and time.

<<Interface>>

IpAppOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

7.3.3.10.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The framework passes in its own date and time to the

application. The application responds with its own date and time.

Returns <clientDateAndTime> : Th is is the date and time of the client (applicat ion).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework.

Returns

TpDateAndTime

7.3.4 Event Notification Interface Classes

7.3.4.1 Interface Class IpAppEventNotification

Inherits from: Ip Interface.

This interface is used by the framework to inform the application of a generic service-related event. The Event

Notification Framework will invoke methods on the Event Notification Application Interface that is specified when the

Event Notificat ion interface is obtained.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 88 Release 9

<<Interface>>

IpAppEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

7.3.4.1.1 Method reportNotification()

This method notifies the application of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotificat ion() method. The

application can use assignment id to associate events with event specific criteria and to act accordingly.

7.3.4.1.2 Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example , due to

faults detected).

Parameters
No Parameters were identified for this method.

7.3.4.2 Interface Class IpEventNotification

Inherits from: Ip Interface.

The event notification mechanis m is used to notify the application of generic service related ev ents that have occurred.

If Event Notifications are supported by a Framework, this interface and the createNotification() and

destroyNotification() methods shall be supported.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 89 Release 9

7.3.4.2.1 Method createNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CRITERIA,

P_INVALID_EVENT_TYPE

7.3.4.2.2 Method destroyNotification()

This method is used by the application to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the

assignment ID does not correspond to one of the valid assignment IDs, the framework will return the erro r code

P_INVALID_ASSIGNMENTID.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ASSIGNMENT_ID

7.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the

gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can

be invoked by the application are shown. Methods not shown for a specific state are not relevant for that state and will

return an exception. Apart from the methods that can be invoked by the application also events internal to the gateway

or related to network events are shown together with the resulting event or action performed by the gateway. These

internal events are shown between quotation marks.

7.4.1 Service Discovery State Transition Diagrams

7.4.1.1 State Transition Diagrams for IpServiceDiscovery

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 90 Release 9

Active

obtainFrameworkInterface(discoveryService)

obtainInterfaceWithCallback(discoveryService)

listServiceTypes

describeServiceType

listSubscribedServices

discoverService

IpAccess.endAccess

Figure : State Transition Diagram for IpServiceDiscovery

7.4.1.1.1 Active State

When the application requests Service Discovery by invoking the obtainInterface or the obtainInterfaceWithCallback

methods on the IpAccess interface, an instance of the IpServiceDiscovery will be created. Next the applicat ion is

allowed to request a list of the provided SCFs and to obtain a reference to interfaces of SCFs.

7.4.2 Service Agreement Management State Transition Diagrams

There are no State Transition Diagrams defined for Service Agreement Management

7.4.3 Integrity Management State Transition Diagrams

7.4.3.1 State Transition Diagrams for IpLoadManager

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 91 Release 9

Idle

Notification

Suspended

Active

IpAccess.obtainInterface

reportLoad

queryAppLoadStatsRes[load statistics requested by LoadManager]

queryAppLoadStatsErr[load statistics requested by LoadManager]

reportLoad

IpAccess.obtainInterfaceWithCallback

All States

IpAccess.terminateAccess

createLoadLevelNotification ^loadLevelNotification

destroyLoadLevelNotification

suspendNotification[all notifications

suspended]

queryLoadStatsReq

queryLoadStatsReq

"load change" ^loadLevelNotification

destroyLoadLevelNotification

resumeNotification

l̂oadLevelNotification

queryAppLoadStatsRes[load statistics requested by LoadManager]

queryAppLoadStatsErr[load statistics requested by LoadManager]

Figure : State Transition Diagram for IpLoadManager

7.4.3.1.1 Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.

7.4.3.1.2 Notification Suspended State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load

level notification informat ion.

7.4.3.1.3 Active State

In this state the application has indicated its interest in notifications by performing a createLoadLevelNotificat ion()

invocation on the IpLoadManager. The load manager can now request the application to supply load statistics

informat ion (by invoking queryAppLoadStatsReq()). Furthermore the LoadManager can request the application to

control its load (by invoking loadLevelNotificat ion(), resumeNotification() or suspendNotification() on the application

side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the

method reportLoad().

7.4.3.2 State Transition Diagrams for LoadManagerInternal

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 92 Release 9

Normal load Application Overload

...

A necessary action can

be suspending the load

notifictions to the

application or enabling

load control mechanisms

on certain services.

Internal overload

...

A necessary action can be

suspending the load

notifictions from the

application by invoking

suspendNotification or

enabling load control

mechanisms on the

application by invoking

enableLoadControl.

Internal and Application Overload

...

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"
"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

registerLoadController

ALL

STATES

unregisterLoadControler

Figure : State Transition Diagram for LoadManagerInternal

7.4.3.2.1 Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs

is overloaded.

7.4.3.2.2 Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the

appropriate actions are taken by the LoadManager.

7.4.3.2.3 Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this

state the load policy is consulted and the appropriate actions are taken by the LoadManager.

7.4.3.2.4 Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs with in the specific load

policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 93 Release 9

7.4.3.3 State Transition Diagrams for IpOAM

Active

systemDateTimeQuery

IpAccess.terminateAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure : State Transition Diagram for IpOAM

7.4.3.3.1 Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the

date / time of the Framework.

7.4.3.4 State Transition Diagrams for IpFaultManager

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 94 Release 9

Framework

Active

Framework Faulty

entry/ ^fwAvailStatusInd to all appl ications with callback

exit/ ^fwAvailStatusInd to all applications with callback

Framework Activity Test

entry/ test activity of framework

exit/ ^IpAppFaultManager.activityTestRes

exit/ ^IpAppFaultManager.activityTestErr

Service Activity Test

entry/ test activity of service

exit/ ^IpAppFaultManager.activityTestRes

exit/ ^IpAppFaultManager.activityTestErr

generateFaultStatisticsRecordReq ^app.generateFaultStatisticsRecordRes / Err

svcUnavailableInd / test the service, inform service that application is not using it

'change in service availability' ^svcAvailStatusInd to all applications using the service

IpAccess.terminateAccess / remove

application from load management

IpAccess.obtainInterfaceWithCallback("FaultManagement") /

add application to fault management

fault detected in fw

no fault detected

IpAccess.terminateAccess /

Abort pending test request

fault resolved

fault detected in fw

activityTestReq[

empty string]

activityTestReq[scfID]

IpAccess.terminateAccess

service fault ^svcAvailStatusInd to all applications using the service

no fault detected

IpAccess.terminateAccess /

Abort pending test request

'change in framework availabili lty (non fault)' ^fwAvailStatusInd to all applications with callback

Figure : State Transition Diagram for IpFaultManager

7.4.3.4.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications

and services capability features.

7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability

features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the

framework return an error. If the framework ever recovers, applications with fault management callbacks will be

notified via a fwAvailStatusInd message.

7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault

management callbacks are notified through a fwAvailStatusInd message.

7.4.3.4.4 Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with

fault management callbacks are notified accordingly through a svcAvailStatusInd message.

7.4.4 Event Notification State Transition Diagrams

7.4.4.1 State Transition Diagrams for IpEventNotification

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 95 Release 9

Idle

IpAccess.obtainInterface

Notification

Active

createNotification

destroyNotification

destroyNotification[no more notifications installed]

IpAccess.terminateAccess

IpAccess.obtainInterfaceWithCallback

createNotification

IpAccess.terminateAccess

Figure : State Transition Diagram for IpEventNotification

8 Framework-to-Service API

8.1 Sequence Diagrams

8.1.1 Service Discovery Sequence Diagrams

No Sequence Diagrams exist for Serv ice Discovery

8.1.2 Service Registration Sequence Diagrams

8.1.2.1 New SCF Sub Type Registration

The following figure shows the process of registering a new proprietary Serv ice Capability Feature in the Framework.

This SCF is a sub type of the standard SCF.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 96 Release 9

 :

IpFwServiceRegistration

SCS

1: registerServiceSubType()

2: announceServiceAvailability()

1: Registration: first step - register service sub type. For sub type registration, besides the values for the standard

service properties, the modes, types, and values for the additional service properties must be provided by the SCF.

2: Registration: second step - announce service availability. This is identical to announcing availability of super types.

8.1.2.2 New SCF Registration

The following figure shows the process of registering a new Service Capability Feature in the Framework. Service

Registration is a two step process:

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 97 Release 9

SCS :

IpFwServiceRegistration

1: registerService()

2: announceServiceAvailability()

1: Registration: first step - register service.

The purpose of this first step in the process of registration is to agree, within the network, on a name to call, internally, a

newly installed SCF version. It is necessary because the OSA Framework and SCF in the same network may come f rom

different vendors. The goal is to make an association between the new SCF version, as characterized by a list of

properties, and an identifier called serviceID.

This service ID will be the name used in that network (that is, between that network's Framework and its SCSs),

whenever it is necessary to refer to this newly installed version of SCF (for example for announcing its availability, o r

for withdrawing it later).

The following input parameters are given from the SCS to the Framework in this first registration step:

· in serviceTypeName

This is a string with the name of the SCF, among a list of standard names (e.g. "P_MPCC").

· in servicePropertyList

This is a list of types TpServiceProperty; each TpServiceProperty is a pair of (ServicePropertyName,

ServicePropertyValueList).

· ServicePropertyName is a string that defines a valid SFC property name (valid SCF property names are listed in the

SCF data defin ition).

· ServicePropertyValueList is a numbered set of types TpServicePropertyValue; TpServ icePro pertyValue is a string

that describes a valid value of a SCF property (valid SCF property values are listed in the SCF data definit ion).

The following output parameter results from service reg istration:

· out serviceID

This is a string, automatically generated by the Framework and unique with in the Framework.

This is the name by which the newly installed version of SCF, described by the list of properties above, is going to be

identified internally in this network.

2: Registration: second step - announce service availability.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 98 Release 9

At this point the network's Framework is aware of the existence of a new SCF, and could let applications know - but

they would have no way to use it. Installing the SCS logic and assigning a name to it does not make this SCF availab le.

In order to make the SCF availab le an "entry point", called lifecycle manager, is used. The role of the lifecycle manager

is to control the life cycle of an interface, or set of interfaces, and provide clients with the references that are necessary

to invoke the methods offered by these interfaces. The starting point for a client to use an SCF is to obtain an interface

reference to a lifecycle manager o f the desired SCF.

A Network Operator, upon complet ion of the first registration phase, and once it has an identifier to the new SCF

version, will instantiate a lifecycle manager fo r it that will allow client to use it. Then it will in form the Framework of

the value of the interface associated to the new SCF. After the receipt of this informat ion, the Framewo rk makes the

new SCF (identified by the pair [serviceID, serviceInstanceLifecycleManagerRef]) d iscoverable.

The following input parameters are given from the SCS to the Framework in this second registration step:

· in serviceID.

This is the identifier that has been agreed in the network for the new SCF; any interaction related to the SCF needs to

include the serviceID, to know which SCF it is.

· in serviceInstanceLifecycleManagerRef.

This is the interface reference at which the lifecycle manager of the new SCF is available. Note that the Framework will

have to invoke the method createServiceManager() in this interface when a client application signs an agreement to use

the SCF so that it can get the service manager interface necessary for applications as an entry point to any SCF.

8.1.3 Service Instance Lifecycle Manager Sequence Diagrams

8.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the

signing of the service agreement and the corresponding actions towards the service. For more informat ion on accessing

the framework, authentication and discovery of services, see the corresponding clauses.

 : IpAppCallControlManagerAppLogic : IpInitial :

IpServ iceAgreementManagement

 : IpCallControlManager :

IpAppServ iceAgreementManagement

GenericCallControlServ ice :

IpServ iceInstanceLif ecy cleManager

1: selectServ ice()

3: signServ iceAgreement()
4: createServ iceManager() 5: new()

6: new()

7: setCallback()

We assume that the application is already authenticated and discov ered the serv ice it wants to use

2: signServ iceAgreement()

1: The application selects the service, using a serviceID for the generic call control service. The serviceID could have

been obtained via the discovery interface. A Serv iceToken is returned to the application.

2: The client application signs the service agreement.

3: The framework signs the service agreement. As a result a service manager interface reference (in this case of type

IpCallControlManager) is returned to the application.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 99 Release 9

4: Provided the signature information is correct and all conditions have been fulfilled, the framework will request the

service identified by the serviceID to return a service manager interface reference. The service manager is the init ial

point of contact to the service.

5: The lifecycle manager creates a new manager interface instance (a call control manager) for the specified

application. It should be noted that this is an implementation detail. The service implementation may use other

mechanis m to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the

application client results. This service instance is assigned a serviceInstanceID by the Framework, which is provided to

the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Framework

Integrity Management functionality and operations are to be supported between the Framework and the service instance

identified by the defined serviceInstanceID, it is then necessary for the new service instance to establish an access

session with the Framework. Th is provides the Framework with the ability to manage and monitor the operation of the

service instance that relates to a particular application client. The steps required to establish a Framework access

session are outlined in clause 6 of the present document.

6: The application creates a new IpAppCallControlManager interface to be used for callbacks.

7: The Application sets the callback interface to the interface created with the previous message.

An application (identifiab le by a given TpClientAppID may carry out the sequence, as exemplified above, multip le

times.

8.1.4 Integrity Management Sequence Diagrams

8.1.4.1 Load Management: Service callback registration and load control

This sequence diagram shows how a service registers itself and the fra mework invokes load management function

based on policy.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 100 Release 9

 : IpSvcLoadManager : IpFwLoadManager

1: createLoadLevelNotification()

3: load change detection & policy evaluation

4: loadLevelNotification()

5: load change detection & policy evaluation

6: loadLevelNotification()

7: destroyLoadLevelNotification()

This is Framework

implementation detail. The

Framework may take

appropriate load control action.Framework detects a load

condition change and notifies

the service. The service may

take appropriate load control

action - implementation

detail.

This is Framework

implementation detail. The

Framework may take

appropriate load control action.

2: loadLevelNotification()

Framework reports its

initial load condition on

notification creation

8.1.4.2 Load Management: Framework callback registration and service load control

This sequence diagram shows how the framework reg isters itself and the service invokes load management function to

inform the framework of service load.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 101 Release 9

 :

IpFwLoadManager

 :

IpSvcLoadManager

1: createLoadLevelNotification()

3: load change detection

4: reportLoad()

5: load change detection

6: reportLoad()

7: destroyLoadLevelNotification()

Service detects a load condition

change and reports to

Framework. The Framework

may take appropriate load

control action - implementation

detail.

This is Service implementation

detail. The Service may take

appropriate load control action.

This is Service implementation

detail. The Service may take

appropriate load control action.

2: reportLoad()

Service reports its

initial load condition on

notification creation

8.1.4.3 Load Management: Client and Service Load Balancing

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 102 Release 9

Application :

IpAppLoadManager

Service :

IpSvcLoadManager

Framework :

IpLoadManager

 :

IpFwLoadManager

Framework checks

application load.

Depending on the load, the

framework may choose to stop

sending notifications to the

application, to allow its load to

reduce.

The framework may then check

the load on the service, and take

action if (according to the load

balancing policy) if required.

1: queryAppLoadStatsReq()

2: queryAppLoadStatsRes()

3: querySvcLoadStatsReq()

4: querySvcLoadStatsRes()

8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service

In this sequence diagram, the framework has decided that it wishes to monitor the service, and has therefore requested

the service to commence sending its heartbeat. The service responds by sending its heartbeat at the specified interval.

The framework then decides that it is satisfied with the service's health and dis ables the heartbeat mechanism. If the

heartbeat was not received from the service within the specified interval, the framework can decide that the service has

failed the heartbeat and can then perform some recovery action.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 103 Release 9

Framework :

IpFwHeartBeat

 :

IpSvcHeartBeatMgmt

1: enableSvcHeartBeat()

2: pulse()

3: pulse()

4: disableSvcHeartBeat()

At a certain point of

time the framework

decides to stop

heartbeat supervision

8.1.4.5 Fault Management: Service requests Framework activity test

Framework :

IpFwFaultManager

Service :

IpSvcFaultManager

The Service requests that the

Framework does an activity test.
1: activityTestReq()

2: activityTestRes()

1: The service asks the framework to carry out its activity test. The service denotes that it requires the activity test done

for the framework, rather than an application, by supplying an appropriate parameter.

2: The framework carries out the test and returns the result to the service.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 104 Release 9

8.1.4.6 Fault Management: Service requests Application activity test

Service :

IpSvcFaultManager

Application :

IpAppFaultManager

Framework :

IpFaultManager

 :

IpFwFaultManager

The Framework identifies the service

instance to conclude which

Application the test is directed at, and

comunicates internally to Framework

interface to the Application.

The application

carries out the

activity test and

returns the result to

the Framework.

Internal Framework

Communications.

1: activityTestReq()

2: appActivityTestReq()

3: appActivityTestRes()

4: activityTestRes()

1: The service instance asks the framework to invoke an act ivity test on the client applicat ion.

2: The framework asks the application to do the activity test. It is assumed that there is internal communication

between the service facing part of the framework (i.e. IpFwFaultManager interface) and the part that faces the client

application.

3: The application does the activity test and returns the result to the framework.

4: The framework internally passes the result from its applicat ion facing interface (IpFaultManager) to its service

facing side, and sends the result to the service.

8.1.4.7 Fault Management: Application requests Service activity test

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 105 Release 9

Client Application :

IpAppFaultManager

Service :

IpSvcFaultManager

 :

IpFwFaultManager

Framework :

IpFaultManager

The client application asks the

framework to carry out the

activity test on a service.

The Framework identifies which

service the test is directed at by the

svcID parameter, and

communicates internally with the

appropriate framework interface.

Which invokes the call on the

service.

Service does test and

returns the result.

Framework passes result

internally from service facing

part to application facing part,

and sends the result to the

application.

1: activityTestReq()

2: svcActivityTestReq()

3: svcActivityTestRes()

4: activityTestRes()

1: The client application asks the framework to invoke an activity test on a service, the service is identified by the

svcId parameter.

2: The framework asks the service to do the activity test. It is assumed that there is internal communication between

the application facing part of the framework (i.e . IpFaultManager interface) and the part that faces the service.

3: The service does the activity test and returns the result to the framework.

4: The framework internally passes the result from its service facing interface (IpFwFaultManager) to its application

facing side, and sends the result to the client application.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 106 Release 9

8.1.4.8 Fault Management: Application detects service is unavailable

Client Application :

IpAppFaultManager

Service :

IpSvcFaultManager

Framework :

IpFaultManager

 :

IpFwFaultManager

The application detects that

the service is not responding,

so it informs the framework via

the svcUnavailableInd method.

The framework informs

the service.

1: svcUnavailableInd()

2: svcUnavailableInd()

1: The client application detects that the service instance is currently not available, i.e. the service instance is not

responding to the client application in the normal way, so it informs the framework.

2: The framework informs the service instance that the client application was unable to get a response from it and can

no longer use the service instance. The service or framework may then decide to carry out an activity test to see whether

there is a general problem with the service instance that requires further action.

8.1.5 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification

8.2 Class Diagrams

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 107 Release 9

Figure: Service Discovery Package Overview

Figure: Service Registration Package Overview

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 108 Release 9

Figure: Trust and Security Management Package Overview

Figure: Service Instance Lifecycle Manager Package Overview

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 109 Release 9

IpSvcHeartBeatMgmt

enableSvcHeartBeat()

disableSvcHeartBeat()

changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1 0..n1 0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n1 0..n1

IpFwLoadManager

reportLoad()

createLoadLevelNotification()

destroyLoadLevelNotification()

suspendNotification()

resumeNotification()

queryLoadStatsReq()

querySvcLoadStatsRes()

querySvcLoadStatsErr()

<<Interface>>

IpSvcLoadManager

loadLevelNotification()

suspendNotification()

resumeNotification()

createLoadLevelNotification()

destroyLoadLevelNotification()

querySvcLoadStatsReq()

queryLoadStatsRes()

queryLoadStatsErr()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()

svcActivityTestReq()

<<deprecated>> fwFaultReportInd()

<<deprecated>> fwFaultRecoveryInd()

<<deprecated>> fwUnavailableInd()

svcUnavailableInd()

activityTestErr()

appAvailStatusInd()

generateFaultStatisticsRecordRes()

generateFaultStatisticsRecordErr()

generateFaultStatisticsRecordReq()

fwAvailStatusInd()

<<Interface>>

IpFwFaultManager

activityTestReq()

svcActivityTestRes()

appUnavailableInd()

svcActivityTestErr()

svcAvailStatusInd()

generateFaultStatisticsRecordReq()

generateFaultStatisticsRecordRes()

generateFaultStatisticsRecordErr()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview

Figure: Event Notification Package Overview

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 110 Release 9

8.3 Interface Classes

8.3.1 Service Registration Interface Classes

Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with

the Framework. Services are reg istered against a particular service type. Therefore service types are created first, and

then services corresponding to those types are accepted from the Serv ice Suppliers for registration in the framework.

The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property

values" for the service. The service d iscovery functionality described in the previous clause enables the service supplier

to obtain a list of all the service types supported by the framework and their associated se ts of service property values.

The Framework service reg istration-related interfaces are invoked by third party service supplier's administrative

applications. They are described below. Note that these methods cannot be invoked until the authentication methods

have been invoked successfully.

8.3.1.1 Interface Class IpFwServiceRegistration

Inherits from: Ip Interface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

This interface and at least the methods registerService(), announceServiceAvailability(), unreg isterService() and

unannounceService() shall be implemented by a Framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList)
: TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in

service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

registerServiceSubType (serviceTypeName : in TpServiceTypeName, servicePropertyList : in
TpServicePropertyList, extendedServicePropertyList : in TpServiceTypePropertyValueList) : TpServiceID

8.3.1.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent

discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known

to the Framework (Serv iceType is 'available '). A service-ID is returned to the service supplier when a service is

registered in the Framework. When the service is not registered because the ServiceType is 'unavailable ', a

P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can

identify the registered service when needed (e.g. for withdrawing it). The service-ID is only mean ingful in the context

of the Framework that generated it.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 111 Release 9

This method should be used for registration of service super types only. For registering service sub types, the

registerServiceSubType() method should be used.

Returns <serviceID> : Th is is the unique handle that is returned as a result of the successful completion of this

operation. The Service Supplier can identify the registered service when attempting to access it via other operations

such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to

discover a service of this type.

If a service is registered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyList, then the

Framework shall notify all applications using instances of services identified by this property, using the

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such a notification. If an

incorrect combination of properties is included in conjunction with P_COMPATIBLE_WITH_SERVICE, a

P_MISSING_MANDATORY_PROPERTY exception is raised.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey

the rules for identifiers, then a P_ILLEGAL_ SERVICE_TYPE exception is raised. If the "type" is correct syntactically

but the Framework is able to unambiguously determine that it is not a recognised service type, then a

P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being

registered. This description typically covers behavioural, non-functional and non-computational aspects of the service.

Service propert ies are marked " mandatory" or "readonly". These property mode attributes have the following semantics:

 a. mandatory - a service associated with this service type must provide an appropriate value for this property when

registering.

 b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may

not be modified.

 Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified.

Examples of such properties are those which form part of a service agreement and hence cannot be modified by service

suppliers during the life t ime of service.

 If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in

the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If the "servicePropertyList"

parameter omits any property declared in the service type with a mode of mandatory, then a

P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name

are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.

Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME,

P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,

P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE

8.3.1.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The

announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle

manager is instantiated at a particular interface. Th is method informs the framework of the availability of "service

instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. Afte r

the receipt of this method, the framework makes the corresponding service discoverable.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 112 Release 9

There exists a "service manager" instance per service instance. Each service implements the

IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method

called the createServ iceManager(application: in TpClientAppID, serviceProperties : in TpServ icePropertyList,

serviceInstanceID : in TpServiceInstanceID) : IpServ iceRef. When the service agreement is signed for some serviceID

(using signServiceAgreement()), the framework calls the createServiceManager() for th is service, gets a

serviceManager and returns this to the client application.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the

rules for service identifiers , then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there

is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

serviceInstanceLifecycleManagerRef : in

service_lifecycle::IpServiceInstanceLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID,

P_INVALID_INTERFACE_TYPE

8.3.1.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove a reg istered service from the Framework.

The service is identified by the "service-ID" which was originally returned by the Framework in response to the

registerService() operation. The service must be in the SCF Registered state. All instances of the service will be

deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the

registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers,

then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service o ffer within the

Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID

8.3.1.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises,

the "type" of the service , and the "properties" that describe this service. The service is identified by the "service -ID"

parameter which was orig inally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for

example), and each getting a different serviceID assigned.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 113 Release 9

Returns <serviceDescription> : Th is consists of the informat ion about an offered service that is held by the Framework.

It comprises the "type" of the service , and the properties that describe this service.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the

registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers,

then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within

the Framework with that ID, then a P_UNKNOW N_SERVICE_ID exception is raised.

Returns

TpServiceDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID

8.3.1.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the

service ID is still associated with it. Applications currently using the service can continue to use the service but no new

applications should be able to start using the service. Also, all unused service tokens relating to the service will be

expired. Th is will prevent anyone who has already performed a selectService() but not yet performed the

signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey

the rules for service identifiers, then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but

there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID

8.3.1.1.6 Method registerServiceSubType()

The registerServiceSubType() operation is the means by which an extended service is reg istered in the Framework, for

subsequent discovery by the enterprise applications. Reg istration only succeeds if the service type is known to the

Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is reg istered in

the Framework. When the service is not registered because the ServiceType is 'unavailab le', a

P_SERVICE_TYPE_UNAVAILABLE exception is raised. The service-ID is the handle with which the service

supplier can identify the registered service when needed (e.g. fo r withdrawing it). The service-ID is only meaningful in

the context of the Framework that generated it.

This method should be used for registration of service sub types only. For registering service super types, the

registerService () method should be used.

Returns <serviceID> : Th is is the unique handle that is returned as a result of the successful completion of this

operation. The Service Supplier can identify the registered service when attempting to access it via other operations

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 114 Release 9

such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to

discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey

the rules for identifiers, then a P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically

but the Framework is able to unambiguously determine that it is not a recognised service type, then a

P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs corresponding to the service

properties applicable to the standard service. They describe the service being registered.

If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the

service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised.

If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a

P_MISSING_MANDATORY_PROPERTY exception is raised.

If two or more properties with the same property name are included in this parameter, the

P_DUPLICATE_PROPERTY_NAME exception is raised.

extendedServicePropertyList : in TpServiceTypePropertyValueList

The "extendedServicePropertyList" parameter is a list of property name, mode, type, and property value tuples

corresponding to the service properties applicable to the extended standard service. They describe the service being

registered.

If two or more properties with the same property name are included in this parameter, the

P_DUPLICATE_PROPERTY_NAME exception is raised.

Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME,

P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,

P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE

8.3.2 Service Instance Lifecycle Manager Interface Classes

The IpServiceInstanceLifecycleManager interface allows the framework to get access to a service manager interface o f

a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the

application. Each service has a service manager interface that is the initial point of contact for the service. E.g. the

generic call control service uses the IpCallControlManager interface.

8.3.2.1 Interface Class IpServiceInstanceLifecycleManager

Inherits from: Ip Interface.

The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager

Instances. This interface and the createServiceManager() and destroyServiceManager() methods shall be implemented

by a Service.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 115 Release 9

<<Interface>>

IpServiceInstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList,

serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void

8.3.2.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will

be configured for the client application using the properties agreed in the service level agreement.

In case there is already a service manager available for the specified applicat ion and serviceInstanceID this reference is

returned and no new service manager is created.

Returns <serviceManager> : Specifies the service manager interface reference for the specified applicat ion ID.

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.

serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties

form a part of the service level agreement. An example of these properties is a list of methods that the client applicat ion

is allowed to invoke on the service interfaces.

serviceInstanceID : in TpServiceInstanceID

Specifies the Service Instance ID that the new Service Manager is to be identified by.

Returns

IpServiceRef

Raises

TpCommonExceptions, P_INVALID_PROPERTY

8.3.2.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. Th is will result in the client applicat ion being

unable to use the service manager any more.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 116 Release 9

Parameters

serviceInstance : in TpServiceInstanceID

Identifies the Serv ice Instance to be destroyed.

Raises

TpCommonExceptions

8.3.3 Service Discovery Interface Classes

This API complements the Service Registration functionality described in another clause.

Before a service can be reg istered in the framework, the service supplier must know what "types" of services the

Framework supports and what service "properties" are applicable to each service type. The "listServiceType()" method

returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()"

method returns a description of each service type. The description of service type includes the "service -specific

properties" that are applicable to each service type. Then the service supplier can retrieve a specific set of registered

services that both belong to a given type and possess a specific set of "property values", by using the

"discoverService()" method.

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values,

by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework

implementation; e.g. a service supplier may only be permitted to retrieve a list o f services that the service supplier has

previously registered.

8.3.3.1 Interface Class IpFwServiceDiscovery

Inherits from: Ip Interface.

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(),

describeServiceType() and discoverService() methods.

<<Interface>>

IpFwServiceDiscovery

listServiceTypes () : TpServiceTypeNameList

describeServiceType (name : in TpServiceTypeName) : TpServiceTypeDescription

discoverService (serviceTypeName : in TpServiceTypeName, desiredPropertyList : in
TpServicePropertyList, max : in TpInt32) : TpServiceList

listRegisteredServices () : TpServiceList

8.3.3.1.1 Method listServiceTypes()

This operation returns the names of all service types that are in the repository. The details of the service types can then

be obtained using the describeServiceType() method.

Returns <listTypes> : The names of the requested service types.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 117 Release 9

Parameters
No Parameters were identified for this method.

Returns

TpServiceTypeNameList

Raises

TpCommonExceptions

8.3.3.1.2 Method describeServiceType()

This operation lets the caller obtain the details for a particu lar service type.

Returns <serviceTypeDescription> : The description of the specified service type. The description provides information

about: the service properties associated with this service type: i.e. a list of service property {name, mode and type}

tuples, the names of the super types of this service type, and whether the service type is currently available or

unavailable.

Parameters

name : in TpServiceTypeName

The name of the service type to be described. If the "name" is malformed, then the P_ILLEGAL_SERVICE_TYPE

exception is raised. If the "name" does not exist in the repository, then the P_UNKNOWN_SERVICE_TYPE exception

is raised.

Returns

TpServiceTypeDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE

8.3.3.1.3 Method discoverService()

The discoverService operation is the means by which the service supplier can retrieve a specific set of reg istered

services that both belong to a given type and possess a specific set of "property values". The service supplier passes in

a list of desired service properties to describe the service it is looking for, in the form of attribute/value pairs for the

service properties. The service supplier also specifies the maximum number of matched responses it is willing to accept.

The framework must not return more matches than the specified maximum, but it is up to the discretion of the

Framework implementation to choose to return less than the specified maximum. The discoverService() operation

returns a serviceID/Property pair list for those services that match the desired service property list that the service

supplier provided.

Returns <serviceList> : This para meter g ives a list of matching services. Each service is characterised by its service ID

and a list of service properties {name and value list} associated with the service.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 118 Release 9

Parameters

serviceTypeName : in TpServiceTypeName

The name of the required service type. If the string representation of the "type" does not obey the rules for service type

identifiers, then the P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but is not

recognised as a service type within the Framework, then the P_UNKNOWN_SERVICE_TYPE exception is raised. The

framework may return a service of a subtype of the "type" requested. A service sub -type can be described by the

properties of its supertypes.

desiredPropertyList : in TpServicePropertyList

The "desiredPropertyList" parameter is a list of service properties {name and value list} that the required services

should satisfy. These properties deal with the non-functional and non-computational aspects of the desired service. The

property values in the desired property list must be logically interpreted as "minimum", "maximum", etc. by the

framework (due to the absence of a Boolean constraint expression for the specification of the service criterion). It is

suggested that, at the time of service reg istration, each property value be specified as an appropriate range of values, so

that desired property values can specify an "enclosing" range of values to help in the selection of desired services.

max : in TpInt32

The "max" parameter states the maximum number of services that are to be returned in the "serviceList" result.

Returns

TpServiceList

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE,

P_INVALID_PROPERTY

8.3.3.1.4 Method listRegisteredServices()

Returns a list of services so far reg istered in the framework.

Returns <serviceList> : The "serviceList" parameter returns a list of reg istered services. Each service is characterised

by its service ID and a list of service properties {name and value list} associated with the service.

Parameters
No Parameters were identified for this method.

Returns

TpServiceList

Raises

TpCommonExceptions

8.3.4 Integrity Management Interface Classes

8.3.4.1 Interface Class IpFwFaultManager

Inherits from: Ip Interface.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 119 Release 9

This interface is used by the service instance to inform the framework of events which affect the integrity of the API,

and request fault management status information from the framework. The fault manager operations do not exchange

callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the

time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on

the IpAccess interface.

 If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be

implemented. If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall

implement svcActivityTestRes() and svcActivityTestErr() in this interface. If the Framework is capable of invoking

IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and

generateFaultStatisticsRecordErr() in this interface. If the Framework is capable of invoking

IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and

generateFaultStatisticsRecordErr() in this interface.

<<Interface>>

IpFwFaultManager

activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

svcActivityTestErr (activityTest ID : in TpActivityTestID) : void

svcAvailStatusInd (reason : in TpSvcAvailStatusReason) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval,
recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in

TpFaultStatisticsError) : void

8.3.4.1.1 Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of

this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly.

The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.

testSubject : in TpSubjectType

Identifies the subject for testing (framework or client application).

Raises

TpCommonExceptions

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 120 Release 9

8.3.4.1.2 Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the orig inal request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

8.3.4.1.3 Method appUnavailableInd()

This method is used by the service instance to inform the framework that the client applicat ion is not responding. On

receipt of this indicat ion, the framework must act to inform the client application.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.1.4 Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework -requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the orig inal request.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 121 Release 9

8.3.4.1.5 Method svcAvailStatusInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use

according to the provided reason and as well to inform the Framework when the Service instance becomes available

again. The framework should inform the client applicat ions that are currently using this service instance that it is

unavailable and as well when it becomes available again for use (via the svcAvailStatusInd method on the

IpAppFaultManager interface).

Parameters

reason : in TpSvcAvailStatusReason

Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to

inform the Framework when the Service instance becomes available again.

Raises

TpCommonExceptions

8.3.4.1.6 Method generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the

framework must produce a fault statistics record, for the framework or for the application during the specified time

interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the

IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings

leaves the time period to the discretion of the framework.

recordSubject : in TpSubjectType

Specifies the subject to be included in the general fau lt statistics record (framework or application).

Raises

TpCommonExceptions

8.3.4.1.7 Method generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a

generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the orig inal requ est.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 122 Release 9

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

Raises

TpCommonExceptions

8.3.4.1.8 Method generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statis tics, in response to a

generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the orig inal request.

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

Raises

TpCommonExceptions

8.3.4.2 Interface Class IpSvcFaultManager

Inherits from: Ip Interface.

This interface is used to inform the service instance of events that affect the integrity of the Framework, Serv ice or

Client Applicat ion. The Framework will invoke methods on the Fault Management Service Interface that is specified

when the service instance obtains the Fault Management Framework interface: i.e. by use of the

obtainInterfaceWithCallback operation on the IpAccess interface.

 If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented.

If the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement

activityTestRes() and activityTestErr() in this interface. If the Service is capable of invoking

IpFwFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and

generateFaultStatisticsRecordErr() in this interface.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 123 Release 9

<<Interface>>

IpSvcFaultManager

activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTest ID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecovery Ind (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

activityTestErr (activityTestID : in TpActivityTestID) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in
TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in
TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) :

void

fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

8.3.4.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the orig inal request.

activityTestResult : in TpActivityTestRes

The result of the activity test.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

8.3.4.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service

instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result

by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 124 Release 9

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

Raises

TpCommonExceptions

8.3.4.2.3 Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this

method. The new method fwAvailStatusInd shall be used instead, using the new type of reason para meter to inform the

Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of a failure within the framework. The service

instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.

Raises

TpCommonExceptions

8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this

method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the

Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified.

The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.

Raises

TpCommonExceptions

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 125 Release 9

8.3.4.2.5 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this

method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the

Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.

Raises

TpCommonExceptions

8.3.4.2.6 Method svcUnavailableInd()

The framework invokes this method to inform the service ins tance that the client applicat ion has reported that it can no

longer use the service instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.2.7 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service -requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.

Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

8.3.4.2.8 Method appAvailStatusInd()

The framework invokes this method to inform the service instance that the client applicat ion is no longer available

using different reasons for the unavailability. This may be a result of the application reporting a failure. Alternatively,

the framework may have detected that the application has failed: e.g. non-response from an act ivity test, failure to return

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 126 Release 9

heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes a vailable again

the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer availab le. APP_AVAILABLE is used to inform the Service that

the Application is available again.

Raises

TpCommonExceptions

8.3.4.2.9 Method generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a

generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this response (when it arrives) with the original request.

faultStatistics : in TpFaultStatsRecord

The fault statistics record.

recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.

Raises

TpCommonExceptions

8.3.4.2.10 Method generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fu lfilling the request to provide fault statistics, in response to

a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this error (when it arrives) with the original request.

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.

recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 127 Release 9

Raises

TpCommonExceptions

8.3.4.2.11 Method generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the

framework was asked for these statistics by the client application using the generateFaultStatisticsRecordReq operation

on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record

during the specified t ime interval, which is returned to the framework using the generateFaultStatisticsRecordRes

operation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings

leaves the time period to the discretion of the service.

Raises

TpCommonExceptions

8.3.4.2.12 Method fwAvailStatusInd()

The framework invokes this method to inform the service instance about the Framework availab ility status, i.e. that it

can no longer use the Framework according to the reason parameter or that the Framework has become available again.

The service instance may wait for the problem to be solved and just stop the usage of the Framework until the

fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become availab le again.

8.3.4.3 Interface Class IpFwHeartBeatMgmt

Inherits from: Ip Interface.

This interface allows the initialisation of a heartbeat supervision of the framework by a service instance. If the

IpFwHeartBeatMgmt interface is implemented by a Framework, as a min imum enableHeartBeat() and

disableHeartBeat() shall be implemented.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 128 Release 9

<<Interface>>

IpFwHeartBeatMgmt

enableHeartBeat (interval : in TpInt32, svc Interface : in IpSvcHeartBeatRef) : void

disableHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.4.3.1 Method enableHeartBeat()

With this method, the service instance instructs the framework to begin sending its heartbeat to the specified interface at

the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

svcInterface : in IpSvcHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

8.3.4.3.2 Method disableHeartBeat()

Instructs the framework to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.3.3 Method changeInterval()

Allows the admin istrative change of the heartbeat interval.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 129 Release 9

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.3.4.4 Interface Class IpFwHeartBeat

Inherits from: Ip Interface.

 The service side framework heartbeat interface is used by the service instance to send the framework its heartbeat. If a

Framework is capable of invoking IpSvcHeartBeatMgmt.enableHeartBeat(), it shall implement IpFwHeartBeat and the

pulse() method.

<<Interface>>

IpFwHeartBeat

pulse () : void

8.3.4.4.1 Method pulse()

The service instance uses this method to send its heartbeat to the framework. The framework will be expecting a pulse

at the end of every interval specified in the parameter to the IpSvcHeartBeatMgmt.enableSvcHeartbeat() method. If the

pulse() is not received within the specified interval, then the service instance can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.5 Interface Class IpSvcHeartBeatMgmt

Inherits from: Ip Interface.

This interface allows the initialisation of a heartbeat supervision of the service instance by the framework. If the

IpSvcHeartBeatMgmt interface is implemented by a Service, as a minimum enableHeartBeat() and dis ableHeartBeat()

shall be implemented.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 130 Release 9

<<Interface>>

IpSvcHeartBeatMgmt

enableSvcHeartBeat (interval : in TpInt32, fwInterface : in IpFwHeartBeatRef) : void

disableSvcHeartBeat () : void

changeInterval (interval : in TpInt32) : void

8.3.4.5.1 Method enableSvcHeartBeat()

With this method, the framework instructs the service instance to begin sending its heartbeat to the specified interface at

the specified interval.

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

fwInterface : in IpFwHeartBeatRef

This parameter refers to the callback interface the heartbeat is calling.

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

8.3.4.5.2 Method disableSvcHeartBeat()

Instructs the service instance to cease the sending of its heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.5.3 Method changeInterval()

Allows the admin istrative change of the heartbeat interval.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 131 Release 9

Parameters

interval : in TpInt32

The time interval in milliseconds between the heartbeats.

Raises

TpCommonExceptions

8.3.4.6 Interface Class IpSvcHeartBeat

Inherits from: Ip Interface.

The service heartbeat interface is used by the framework to send the service instance its heartbeat. If a Service is

capable of invoking IpFwHeartBeatMgmt.enableHeartBeat(), it shall implement IpSvcHeartBeat and the pulse()

method.

<<Interface>>

IpSvcHeartBeat

pulse () : void

8.3.4.6.1 Method pulse()

The framework uses this method to send its heartbeat to the service instance. The service will be expect ing a pulse at

the end of every interval specified in the parameter to the IpFwHeartBeatMgmt.enableHeartbeat() method. If the

pulse() is not received within the specified interval, then the framework can be deemed to have failed the heartbeat.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.7 Interface Class IpFwLoadManager

Inherits from: Ip Interface.

The framework API should allow the load to be distributed across multip le machines and across multip le component

processes, according to a load management policy. The separation of the load management mechanism and load

management policy ensures the flexibility of the load management services. The load management policy identifies

what load management ru les the framework should follow for the specific service. It might specify what action the

framework should take as the congestion level changes. For example, some real-time crit ical applications will want to

make sure continuous service is maintained, below a g iven congestion level, at all costs, whereas other services will be

satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is

related to the QoS level to which the application is subscribed. The framework load management function is represented

by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 132 Release 9

IpSvcLoadManager interface to provide the callback mechanism.

 If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be

implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification()

and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then

resumeNotificat ion() shall be implemented also. If a Framework is capable of invoking the

IpSvcLoadManager.querySvcLoadStatsReq() method, then it shall imple ment querySvcLoadStatsRes() and

querySvcLoadStatsErr() methods in this interface.

<<Interface>>

IpFwLoadManager

reportLoad (loadLevel : in TpLoadLevel) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubject : in TpSubjectType, timeInterval : in

TpTimeInterval) : void

querySvcLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

querySvcLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in TpLo adStatisticError) :

void

8.3.4.7.1 Method reportLoad()

The service instance uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load

level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded).

At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In

addition this method shall be called by the service instance in order to report current load status, when load notifications

are first requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance's load level.

Raises

TpCommonExceptions

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 133 Release 9

8.3.4.7.2 Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the

framework or with the application that uses the service instance. Upon receipt of this method the fra mework shall

inform the service instance of the current framework or application load using the loadLevelNotification method on the

corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.

Raises

TpCommonExceptions

8.3.4.7.3 Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the

framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.

Raises

TpCommonExceptions

8.3.4.7.4 Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the

framework or with the application that uses the service instance; e.g. while the service instance handles a t emporary

overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be

suspended.

Raises

TpCommonExceptions

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 134 Release 9

8.3.4.7.5 Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the

framework or with the application that uses the service instance; e.g. after a period of suspension during which the

service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the

service instance of the current framework or applicat ion load using the loadLevelNotification method on the

corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the

framework should be resumed.

Raises

TpCommonExceptions

8.3.4.7.6 Method queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or

for the application that uses the service instance.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.

querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.

timeInterval : in TpTimeInterval

Specifies the time interval fo r which load statistics records should be reported.

Raises

TpCommonExceptions

8.3.4.7.7 Method querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the

informat ion; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager

interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the orig inal request.

loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 135 Release 9

Raises

TpCommonExceptions

8.3.4.7.8 Method querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's

load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in

response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the orig inal request.

loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.

Raises

TpCommonExceptions

8.3.4.8 Interface Class IpSvcLoadManager

Inherits from: Ip Interface.

The service developer supplies the load manager service interface to handle requests, reports and other responses from

the framework load manager function. The service instance supplies the identity of its callback interface at the time it

obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess

interface.

 If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as

a min imum requirement. If load level notificat ions are supported, then loadLevelNotification() shall be implemented. If

a Service is capable of invoking the IpFwLoadManager.queryLoadStatsReq() method, then it shall implement

queryLoadStatsRes() and queryLoadStatsErr() methods in this interface.

<<Interface>>

IpSvcLoadManager

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

querySvcLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 136 Release 9

8.3.4.8.1 Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or

framework which has been registered for load level notifications) this method is invoked on the SCF. In addit ion this

method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are

first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).

Raises

TpCommonExceptions

8.3.4.8.2 Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the

framework handles a temporary overload condition.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.3 Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of

suspension during which the framework handled a temporary overload condition. Upon receipt of this method the

service instance shall inform the framework of the current load using the reportLoad method on the corresponding

IpFwLoadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 137 Release 9

8.3.4.8.4 Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service

instance. Upon receipt of this method the service instance shall inform the framework of the current load using the

reportLoad method on the corresponding IpFwLoadManager.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.5 Method destroyLoadLevelNotification()

The framework uses this method to unregister for notificat ions of load level changes associated with the service

instance.

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.8.6 Method querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.

timeInterval : in TpTimeInterval

Specifies the time interval fo r which load statistic records should be reported.

Raises

TpCommonExceptions

8.3.4.8.7 Method queryLoadStatsRes()

The framework uses this method to send load statistic records back to the service instance that requested the

informat ion; i.e. in response to an invocation of the queryLoadStatsReq method on the IpFwLoadManager interface.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 138 Release 9

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this response (when it arrives) with the original request.

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.

Raises

TpCommonExceptions

8.3.4.8.8 Method queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics

informat ion, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an

invocation of the queryLoadStatsReq method on the IpFwLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this error (when it arrives) with the original request.

loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.

Raises

TpCommonExceptions

8.3.4.9 Interface Class IpFwOAM

Inherits from: Ip Interface.

The OAM interface is used to query the system date and time. The service and the framework can synchronise the date

and time to a certain extent. Accurate time synchronisation is outside the scope of this API. Th is interface and the

systemDateTimeQuery() method are optional.

<<Interface>>

IpFwOAM

systemDateTimeQuery (clientDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.9.1 Method systemDateTimeQuery()

This method is used to query the system date and time. The client (service) passes in its own date and time to the

framework. The framework responds with the system date and time.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 139 Release 9

Returns <systemDateAndTime> : This is the system date and time of the framework.

Parameters

clientDateAndTime : in TpDateAndTime

This is the date and time of the client (service). The error code P_INVALID_DATE_TIME_FORMAT is returned if the

format of the parameter is invalid.

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT

8.3.4.10 Interface Class IpSvcOAM

Inherits from: Ip Interface.

This interface and the systemDateTimeQuery() method are optional.

<<Interface>>

IpSvcOAM

systemDateTimeQuery (systemDateAndTime : in TpDateAndTime) : TpDateAndTime

8.3.4.10.1 Method systemDateTimeQuery()

This method is used by the framework to send the system date and time to the service. The service responds with its

own date and time.

Returns <clientDateAndTime> : Th is is the date and time of the client (service).

Parameters

systemDateAndTime : in TpDateAndTime

This is the system date and time of the framework. The error code P_INVALID_DATE_TIME_FORMAT is returned

if the format of the parameter is invalid.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 140 Release 9

Returns

TpDateAndTime

Raises

TpCommonExceptions, P_INVALID_TIME_AND_DATE_FORMAT

8.3.5 Event Notification Interface Classes

8.3.5.1 Interface Class IpFwEventNotification

Inherits from: Ip Interface.

The event notification mechanis m is used to notify the service of generic events that have occurred. If Event

Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification()

methods shall be supported.

<<Interface>>

IpFwEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8.3.5.1.1 Method createNotification()

This method is used to install generic notifications so that events can be sent to the service.

Returns <assignmentID> : Specifies the ID assigned by the framework for this newly installed event notification.

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the service to define the event required.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_EVENT_TYPE, P_INVALID_CRITERIA

8.3.5.1.2 Method destroyNotification()

This method is used by the service to delete generic notifications from the framework.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 141 Release 9

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the

assignment ID does not correspond to one of the valid assignment IDs, the framework will return the erro r code

P_INVALID_ASSIGNMENT_ID.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

8.3.5.2 Interface Class IpSvcEventNotification

Inherits from: Ip Interface.

This interface is used by the framework to inform the service of a generic event. The Event Notification Framework

will invoke methods on the Event Notification Service Interface that is specified when the Event Notification interface

is obtained. If Event Not ifications are supported by a Service, this interface and the reportNotification() and

notificationTerminated() methods shall be supported.

<<Interface>>

IpSvcEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

8.3.5.2.1 Method reportNotification()

This method notifies the service of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotificat ion() method. The service

can use the assignment id to associate events with event specific criteria and to act accordingly.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 142 Release 9

8.3.5.2.2 Method notificationTerminated()

This method indicates to the service that all generic event notificat ions have been terminated (for example, due to faults

detected).

Parameters
No Parameters were identified for this method.

Raises

TpCommonExceptions

8.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the

gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can

be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return

an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to

network events are shown together with the resulting event or action performed by the gateway. These internal events

are shown between quotation marks.

8.4.1 Service Registration State Transition Diagrams

8.4.1.1 State Transition Diagrams for IpFwServiceRegistration

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 143 Release 9

SCF

Registered

registerService

SCF

Announced

describeService

unannounceService announceServiceAvailability

unregisterService

Figure : State Transition Diagram for IpFwServiceRegistration

8.4.1.1.1 SCF Registered State

This is the state entered when a Service Capability Server (SCS) registers its SCF in the Framework, by informing it of

the existence of an SCF characterised by a service type and a set of service properties. As a result the Framework

associates a service ID to this SCF, that will be used to identify it by both sides.

An SCF may be unregistered, the service ID then being no longer associated with the SCF.

8.4.1.1.2 SCF Announced State

This is the state entered when the existence of the SCF has been announced, thus making it available for d iscovery by

applications. The SCF can be unannounced at any time, taking it back into the SCF Registered state where it is no

longer available for discovery.

8.4.2 Service Instance Lifecycle Manager State Transition Diagrams

There are no State Transition Diagrams defined for Service Instance Lifecycle Manager

8.4.3 Service Discovery State Transition Diagrams

There are no State Transition Diagrams defined for Service Discovery

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 144 Release 9

8.4.4 Integrity Management State Transition Diagrams

8.4.4.1 State Transition Diagrams for IpFwLoadManager

Idle

Notification

Suspended

Active

All States

reportLoad

querySvcLoadStatsRes[load statistics requested by LoadManager]

querySvcLoadStatsErr[load statistics requested by LoadManager]

destroyLoadLevelNotification

queryLoadStatsReq

reportLoad

querySvcLoadStatsRes[load statistics requested by LoadManager]

querySvcLoadStatsErr[load statistics requested by LoadManager]

createLoadLevelNotification l̂oadLevelNotification

destroyLoadLevelNotification

suspendNotification

[all notifications suspended]

resumeNotification

l̂oadLevelNotification

queryLoadStatsReq

"load change" l̂oadLevelNotification

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.terminateAccess

Figure : State Transition Diagram for IpFwLoadManager

8.4.4.1.1 Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.

8.4.4.1.2 Notification Suspended State

Due to e.g. a temporary load condition, the service has requested the LoadManager to suspend sending the load level

notification information.

8.4.4.1.3 Active State

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification()

invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics

informat ion (by invoking querySvcLoadStatsReq()). Furthermore the LoadManager can request the service to control

its load (by invoking loadLevelNotificat ion(), resumeNotification() or suspendNotification() on the service side of

interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method

reportLoad().

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 145 Release 9

8.4.4.2 State Transition Diagrams for IpFwFaultManager

Framework

Active

Framework Activity Test

entry/ test activity of framework

exit/ ^IpSvcFaultManager.activityTestRes

exit/ ^IpSvcFaultManager.activityTestErr

Application Activity Test

entry/ test activity of application

exit/ ^IpSvcFaultManager.activityTestRes

exit/ ^IpSvcFaultManager.activityTestErr

Framework Faulty

entry/ ^fwAvailStatusInd to all services with callback

exit/ ^fwAvailStatusInd to all services with callback

IpAccess.obtainInterfaceWithCallback("FaultManagement")

/ add service to fault management

generateFaultStatisticsRecordReq ^svc.generateFaultStatisticsRecordRes / Err

appUnavai lableInd / test the application, inform application that service is not using it

'change in application availability' ^appAvailStatusInd to all services used by application

'change in framework availability (non fault)' ^fwAvailStatusInd to all services with callback

no fault detected

fault detected in fw

IpAccess.terminateAccess /

Abort pending test request

activityTestReq[framework]

IpAccess.terminateAccess

fault detected in fw

activityTestReq[client]

fault resolved

IpAccess.terminateAccess / remove

service from load management

application fault ^appAvailStatusInd to all

services used by the application

no fault detected

IpAccess.terminateAccess /

Abort pending test request

Figure : State Transition Diagram for IpFwFaultManager

8.4.4.2.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications

and service capability features.

8.4.4.2.2 Framework Activity Test State

In this state, the framework is performing a self-d iagnostic test. If a problem is diagnosed, all services with fau lt

management callbacks are notified through an fwAvailStatusInd message.

8.4.4.2.3 Application Activity Test State

In this state, the framework is performing a test on one client applicat ion. If the application is faulty, services that are

used by the application and that have provided fault management callbacks are notified accordingly through an

appAvailStatusInd message.

8.4.4.2.4 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and service ca pability

features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the

framework return an error. If the framework ever recovers, services with fault management callbacks will be notified

via a fwAvailStatusInd message.

8.4.5 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 146 Release 9

8a Framework-to-Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of thes e applications) must exp licitly

subscribe to the services before the client applications can access those services. To accomplish this, they use the

service subscription function of the Framework for subscribing or un-subscribing to services. Subscription represents a

contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the

role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of

the service.

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in

the role of users or consumers of services. The framework itself acts in the role of retailer of services. The fo llowing

examples illustrate these roles:

 Service (to be subscribed): Call Centre Serv ice, Mobility Service, etc.

 Framework Operator: AT&T, BT, etc.

 Enterprise Operator: A Financial institution such as a Bank or Insurance Company, or possibly an Application

Service Provider (Such an enterprise has a conformant Subscription Application in its domain which "talks" to

its peer in the Framework).

 User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call

Centre Service or the Mobility Service.

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before

a client application of the enterprise can use the new service. In general, the service subscription is performed after an

off-line negotiation of a set of services and the associated price between the framework operator and the enterprise

operator. The service subscription is performed online by the enterprise operator in the frame of an existing off-line

negotiated contract between the framework operator and the enterprise. The on-line service subscription function is used

for subscriber, client application, and service contract management. The following clause describes a service

subscription model.

Subscription Business Model
The following figure shows the subscription business model with respect to the business roles involved in the service

subscription process. The subscription process involves the enterprise operator (which acts in the role of service

subscriber) and the Framework (which acts in the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through a retailer, such

as the Framework. An enterprise operator represents an organisation or a company which will be hosting client

applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to

the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about

the service usage with the Framework, using an on-line subscription interface provided by the Framework. The

Framework provides the service according to the service contract. The Enterprise Operator authorise s the client

application in h is/her domain for the service usage. Finally a subscribed service can be used by a particular client

application.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 147 Release 9

Enterprise Operator (In the role
of Service Subscriber)

Framework (In the role
of Service Retailer)

Client Application (In the role of
User or Consumer of Services)

Signs contract about service usage

Uses service

Authorises

Figure: Subscription Business Model

The interfaces between an enterprise operator and the client applications in its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of

services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The

Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client applicat ion and service

contract management. Th is gives the enterprise operators the capability to dynamical ly create, modify and delete, in the

framework domain, the client applications and service contracts belonging to its domain.

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object is identified by a

unique ID and contains the enterprise operator properties. The EntOp ID is a unique identifier of an enterprise operator

in the Framework domain. It is created by the Framework Operator during the pre-subscription off-line negotiation of

services (and their price, etc.) phase. The enterprise operator properties contain informat ion such as the name and

address of the enterprise operator (indiv idual or o rganisation), service charge payment in formation, etc. The enterprise

operator domain has one or more client applications associated with it. The enterprise operator may group a sub-set of

client applications in its domain in o rder to assign the same set of service features to the group. Such a group is called a

Subscription Assignment Group (SAG). An enterprise operator may have mult iple SAGs in its domain. A SAG relates a

client application to the features of a service. A client application may be a member of multip le SAGs, one fo r each

service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each

service. Each service subscription is described by a service contract which defines the conditions for the service

provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or

more Service Profiles, one for each SAG in the enterprise operator domain. A Service Pro file contains the service

parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the

SAG's needs. A service profile is therefore a restriction of the service contract in order to provide restricted service

features to a SAG. It is identified by a unique ID (within the framework domain) and contains a set of service

properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 148 Release 9

ca1,

ca2,

ca3

 ca4,
ca5, ca6,
ca7, ca8,
ca9

SAG2

ca10, ca11,

ca12, ca12, ca13,

SAG3

Client Applications and SAGs in the Enterprise Domain

SC1

SC2

SC3

SC4

Service Contracts for Individual Services

Subscribed by Enterprise Operator

SP1

SP2 SP3

SP5

SP4

Service Profiles in a Service Contract

Assignment of ClientApps/ SAGs to Service Profiles

SAG1

Figure: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application is related to the enterprise operator for the usage of a service. The client application is

represented in the Framework domain as a clientApp object. The clientApp object is identified by a unique ID and

contains a set of client application properties describing the client application relevant information for subscription.

Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has

one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG

can have mult iple Service Profiles associated with it, one for each service subscribed by the enterprise operator on

behalf of the SAG members. The figure above shows the relationship between client application objects, SAGs, service

contracts and service profiles.

An enterprise operator may not want to grant all client applications in its domain the same service characteristics and

usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service

Profile to each group. A client application can be assigned to more than one service profile for a given service, as long

as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to

two SAGs. One of these SAGs uses ServiceProfile1 to control access to service 1. The other uses ServiceProfile3 to

control access to service 1. If the dates in the two service profiles overlap, as is the case here, then it cannot be

determined when the client signs the service agreement which service profile should be used. For example, if the client

application signed the service agreement on February the 8
th

, then it could not be determined which of service p rofile 1

or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of

the service profiles to use. A SAG may have multiple service profiles, one for each subscribed s ervice, associated with

it.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 149 Release 9

ServiceProfile1

Start: 02, Feb

End: 10, Feb

ServiceID: 1

Client

App.2

SAG

2
SAG

1
Client

App.1

Client

App.3
Client

App.1

ServiceProfile2

Start: 02, Feb

End: 10, Feb

ServiceID: 2

ServiceProfile3

Start: 08, Feb

End: 30, Feb

ServiceID: 1

Figure: Overlapping date fields in service profiles

Client

App 7

Client

App 6

Framework

Enterprise

Operator 1

Enterprise

Operator 3

Enterprise

Operator 2

Client

App 3

Client

App 4

Client

App 5

Client

App 2

Client

App 1

Figure: Multiple Enterprise Operators

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise

operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator

(if the services offered through the framework belong to a single network – it is even possible that the network operator

will be the only enterprise operator). It is possible, however, that each service registered with the framework could

actually be in a d ifferent network. The client application IDs have to be unique within the framework. The framework

operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the

enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription-related functions. The

service subscription interfaces are classified in the following categories:

 Enterprise Operator Account Management.

 Enterprise Operator Account Query.

 Service Contract Management.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 150 Release 9

 Service Contract Query.

 Service Profile Management.

 Service Profile Query.

 Client Applicat ion Management.

 Client Applicat ion Query.

Only the enterprise operator, which is reg istered and later on authenticated, is allowed to use these interfaces.

8a.1 Sequence Diagrams

8a.1.1 Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

8a.1.2 Service Subscription Sequence Diagrams

8a.1.2.1 Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behalf

of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must

have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services

provided by the framework using the IpServiceDiscovery interface. Init ially, the enterprise operator obtains a list of

service types supported by the framework by invoking listServiceTypes() on IpServiceDiscovery interface. Then it

obtains the description of a service type using describeServiceType() to find out the set of properties applicable to a

particular service type. Subsequently it invokes discoverService() to discover the services of a given type which

supports the desired set of property values. The discoverService() method returns a list of "serviceIDs" and their

associated property values. The service discovery phase is followed by the service subscription phase. The enterprise

operator uses the IpServiceContractManagement and IpServiceProfileManagement interfaces to perform service

subscription.

The enterprise operator invokes the createServiceContract() on IpServiceContractManagement interface to subscribe to

a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by

their "serviceID" or by their service type. In the former case only the specific service can be used by the enterprise

operator and its client applications. In the latter case, all registered services of the given type can be used. The enterprise

operator may create multip le service profiles (each of which are a restriction of the service contract) by invoking

createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to a d ifferent

Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different

service privileges to different client application groups. During the life t ime of a service contract, the enterprise operator

may perform service contract and service profile management functions, such as modify ing the service profiles

(modifyServiceProfile()) and service contract (modifyServiceContract()), re -assigning the service profiles to a SAG

(assign()), obtaining information about a service profile (getServiceProfile()), delet ing service profiles

(deleteServiceProfile()), etc. These methods may be interleaved in any logical order. The enterprise operator or the

client applications, can at any time obtain a list of currently subscribed services by invoking listSubscribedServices()

method on the IpServiceDiscovery interface. Th is method returns a list of serviceIDs of the set of subscribed services.

The service contract ceases to exist after the specified end date. The deleteServ iceContract deletes the service contract

object held in the framework. It is up to the discretion of the Framework operator to allow the enterprise operator to

delete a service contract before its specified end date.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 151 Release 9

After the service subscription is performed the client applications can access and use the set of subscribed services in

addition to the set of freely availab le services. In order to start a service, the interface reference of the service is

required. The d iscoverService() method or the listSubscribedServices() method, described above, return the

"serviceID". The interface reference of the service is obtained in the service access phase. The service access phase

begins with the client applicat ions selecting the service, via the selectService() method, and signing a service

agreement, v ia the signServiceAgreement() method. The selectService() method is used by the client application to

identify the service that it wants to initiate. The input to the selectServ ice() is the "serviceID" returned by the

discoverService() o r the listSubscribedServices() and the output is a "serviceToken". The serviceToken is free format

text token returned by the framework, which can be used as part of a service agreement. If the se rvice is not subscribed

by the enterprise operator, then a "service not subscribed" exception is raised. The signServiceAgreement() is invoked

by the client application on the framework to sign an agreement on the service. The input to this method is the s ervice

token returned by the selectService() method. The sign service agreement is used as a way of non -repudiation of the

intention to use the service by the client applicat ion. The successful completion of the signServiceAgreement() returns

the interface reference to the service (or to its service manager). The client applicat ion can then use this interface

reference to start the service.

:

EnterpriseOperator

:

ClientApplication

 : IpAccess : IpServiceDiscovery : IpServiceContractManagement : IpServiceContractInfoQuery : IpServiceProfileManagement : IpServiceProfileInfoQuery

Auth. phase

followed by

1: obtainInterface()

2: listServiceTypes()

3: describeServiceType()

4: discoverService()

Find desired

Services

5: obtainInterface()

6: createServiceContract(in TpServiceContractDescription)

Subscribe

the Services

7: createServiceProfile()

create more

SPs in SC

8: assign()

9: modifyServiceProfile()

10: assign()

11: describeServiceProfile()

12: deleteServiceProfile()

13: modifyServiceContract(in TpServiceContract)

14: listSubscribedServices()

15: listSubscribedServices()

16: describeServiceContract()

17: createServiceContract(in TpServiceContractDescription)

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 152 Release 9

8a.1.2.2 Enterprise Operator and Client Application Subscription Management

Sequence Diagram

The first step in the service subscription process is the creation of an account for the enterprise operator. The creation of

enterprise operator accounts is performed by the Framework Operator via interfaces outside of the present document.

When the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator

(acting in the ro le of service subscriber) can then create accounts within the framework for all of the client applicat ions

in its domain. The enterprise operator obtains the reference to the IpEntOpManagement interface by invoking

obtainInterface() on the IpAccess interface. The enterprise operator at any time may inspect its subscription account by

invoking describeEntOpAccount on the IpEntOpAccountInfoQuery interface and mo dify the subscriber-related

informat ion contained in its subscription account by invoking modifyEntOpAccount() on IpEntOpAccountManagement

interface.

An enterprise operator usually has many client applications in its enterprise domain. These client applic ations must be

registered within the framework so that the set of services subscribed to by the enterprise operator (through

createServiceContract()) can be assigned to these client applications by associating a service profile (a restrict ion of

service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create

an account for indiv idual client applications, the enterprise operator invokes createClientApp() on

IpClientAppManagement interface. The enterprise operator groups a related set of client applications in a SAG so that

the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking

createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly

created SAG by invoking addSAGMembers() on IpClientAppManagement interface. The enterprise operator also

performs other client application / SAG management functions such as modifyClientApp(), deleteClientApp(),

modifySAG(), listSAGs(), listSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be

interleaved in any logical order. Finally, the enterprise operator (or the framework operator) can delete its subscription

account by invoking deleteEntOpAccount() on IpEntOpAccountManagement interface.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 153 Release 9

Enterprise

Operator

Framework

Operator

 : IpAccess :

IpEntOpAccountManagement

 :

IpEntOpAccountInfoQuery

 :

IpClientAppManagement

 :

IpClientAppInfoQuery

The Enterprise Operator

account has already been created.

Auth. Phase followed by:

1: obtainInterface()

2: describeEntOpAccount()

3: modifyEntOpAccount()

4: obtainInterface()

5: createClientApp()

Create more client

apps

6: createSAG()

7: addSAGMembers()

8: modifyClientApp()

9: modifySAG()

10: deleteClientApp()

11: removeSAGMembers()

12: modifySAG()

13: obtainInterface()

14: listSAGs()

15: listSAGMembers()

16: deleteEntOpAccount()

8a.2 Class Diagrams

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 154 Release 9

Figure: Event Notification Package Overview

Figure: Trust and Security Management Package Overview

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 155 Release 9

Figure: Service Subscription Package Overview

8a.3 Interface Classes

8a.3.1 Event Notification Interface Classes

8a.3.1.1 Interface Class IpClientEventNotification

Inherits from: Ip Interface.

This interface is used by the framework to inform the client of a generic event. The Event Notificat ion Framework will

invoke methods on the Event Notification Client Interface that is specified when the Event Notification interface is

obtained.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 156 Release 9

<<Interface>>

IpClientEventNotification

reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

8a.3.1.1.1 Method reportNotification()

This method notifies the client of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo

Specifies specific data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the framework during the createNotificat ion() method. The client

can use assignment id to associate events with event specific criteria and to act accordingly.

8a.3.1.1.2 Method notificationTerminated()

This method indicates to the client that all generic event notifications have been terminated (for example, due to faults

detected).

Parameters
No Parameters were identified for this method.

8a.3.1.2 Interface Class IpEventNotification

Inherits from: Ip Interface.

The event notification mechanis m is used to notify the client of generic events that have occurred. If Event Notifications

are supported by a Framework, this interface and the createNotification() and destroyNotification() methods shall be

supported.

<<Interface>>

IpEventNotification

createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8a.3.1.2.1 Method createNotification()

This method is used to enable generic notifications so that events can be sent to the client.

Returns <assignmentID>: Specifies the ID assigned by the framework for this newly installed notification.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 157 Release 9

Parameters

eventCriteria : in TpFwEventCriteria

Specifies the event specific criteria used by the client to define the event required.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CRITERIA,

P_INVALID_EVENT_TYPE

8a.3.1.2.2 Method destroyNotification()

This method is used by the client to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the framework when the previous createNotification() was called. If the

assignment ID does not correspond to one of the valid assignment IDs, the f ramework will return the erro r code

P_INVALID_ASSIGNMENT_ID.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ASSIGNMENT_ID

8a.3.2 Service Subscription Interface Classes

8a.3.2.1 Interface Class IpClientAppManagement

Inherits from: Ip Interface.

If the enterprise operator wants the client applicat ions in its domain to access the subscribed services in name of the

enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator

must use the client application management interface, to which (s)he can subscribe as a privileged user. The client

application management interface is intended for cases where an organisation wants to allow several client applications

to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client

applications and SAGs, delete them and to modify subscription related information concerning the client applications

and the SAGs. Client applicat ions use the subscribed services in the enterprise operator's name. The main task of client

application management is to register, modify and delete client applications (Client Application Management), and

manage groups of client applications, called Subscription Assignment Groups (SAG Management).

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 158 Release 9

<<Interface>>

IpClientAppManagement

createClientApp (clientAppDescription : in TpClientAppDescription) : void

modifyClientApp (clientAppDescription : in TpClientAppDescription) : void

deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientAppIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (sagID : in TpSagID) : void

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientAppIDList) : void

removeSAGMembers (sagID : in TpSagID, clientAppIDList : in TpClientAppIDList) : void

requestConflictInfo () : TpAddSagMembersConflictList

8a.3.2.1.1 Method createClientApp()

A client application is represented in the Framework domain as a "clientApp object". This method creates a new

clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other

subscription related client application's properties stored in it.

Parameters

clientAppDescription : in TpClientAppDescription

The "clientAppDescription" parameter contains the clientApp ID that is to be associated with the newly created

clientApp object and the subscription-related "client applicat ion properties". The clientApp ID must be a unique ID

across framework, if the ID already exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client

application properties are a list of name/value pairs. The client applicat ion properties are an item for b i-lateral

agreement between the enterprise operator and the framework operator.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID

8a.3.2.1.2 Method modifyClientApp()

Modify the informat ion contained in an existing clientApp object associated with the enterprise operator. An exception

"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

clientAppDescription : in TpClientAppDescription

The "clientAppDescription" parameter contains the modified client applicat ion information. If the clientApp ID does

not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 159 Release 9

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID

8a.3.2.1.3 Method deleteClientApp()

Delete the specified client application associated with the enterprise operator. If the client applicatio n currently has an

access session with the framework then this will be terminated, along with any service instances it may have created.

An exception of "P_TASK_REFUSED" will be raised if a non-associated enterprise operator invokes this method.

Parameters

clientAppID : in TpClientAppID

The "clientAppID" parameter identifies the client application that is to be deleted. If the clientAppID does not exist, a

"P_INVALID_CLIENT_APP_ID" exception will be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID

8a.3.2.1.4 Method createSAG()

Create a new SAG associated with the enterprise operator. The SAG object is identified by a SAG - ID and contains

SAG - specific description.

Parameters

sag : in TpSag

The "sag" parameter contains the SAG-ID and SAG-specific description. Th is sagID is particular to the SAG, and must

be unique across framework. If the sagID supplied already exists, an exception of type "P_INVALID_SAG_ID" would

be raised.

clientAppIDs : in TpClientAppIDList

The "clientAppIDs" parameter contains the list of client application IDs that are to be associated with the newly created

SAG.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID,

P_INVALID_SAG_ID

8a.3.2.1.5 Method modifySAG()

Modify the description of an existing SAG associated with the enterprise operator. An exception of

"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

Parameters

sag : in TpSag

The "sag" parameter contains the modified SAG-specific description. If the SAG ID does not exist, an exception

"P_INVALID_SAG_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID

8a.3.2.1.6 Method deleteSAG()

Delete an existing SAG. Only the enterprise operator associated with the SAG is allowed to delete it, an exception

"P_TASK_REFUSED" would be raised if a non-associated enterprise operator invokes this method.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 160 Release 9

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG that is to be deleted. If the SAG ID does not exist, an excep tion

"P_INVALID_SAG_ID" is raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID

8a.3.2.1.7 Method addSAGMembers()

Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise

operator associated with the SAG is allowed to assign members to it, an exception "P_TASK_REFUSED" would be

raised if a non-associated enterprise operator invokes this method. Each client application may be assigned to a service

only through a single service profile at a particular moment in time. If this condition is vio lated, a

"P_INVALID_ADDITION_TO_SAG" would be raised. In this case, no partial execution of this method is performed.

The enterprise operator can query further informat ion about this invalid addition using the method

requestConflictInfo().

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG object to which the client applicat ions are to be added. If the SAG ID does

not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDs : in TpClientAppIDList

The "clientAppIDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The

clientApp objects are first created using the createClientApp() method. If one or all o f the client applicat ion IDs in the

list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID,

P_INVALID_SAG_ID, P_INVALID_ADDITION_TO_SAG

8a.3.2.1.8 Method removeSAGMembers()

Delete specified client applicat ions from the specified SAG object of the enterprise operator. Only the enterprise

operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be

raised if a non-associated enterprise operator invokes this method.

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not

exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDList : in TpClientAppIDList

The "clientAppIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG.

If one or all of the client application IDs in the list does not exist, an exception "P_INVALID_CLIENT_APP_ID"

would be raised.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 161 Release 9

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID,

P_INVALID_SAG_ID

8a.3.2.1.9 Method requestConflictInfo()

Requests details about the latest conflict that occurred during performing the method addSagMembers() on this

interface (i.e . Information about the invocation of addSagMembers() that raised a

P_INVALID_ADDITION_TO_SAG). Each client application may be assigned to a service only through a single

service profile at a part icular moment in t ime. The enterprise operator might try to add a client applicat ion to a SAG,

where both, the client application and the SAG are already assigned to the same service through different service

profiles. As this may happen in one method call for mult iple client applications, a conflict list is generated.

It is only possible to retrieve information about the last conflicting addSagMembers() method call; informat ion about

previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAddSagMembersConflictList>: The list of conflicts of the last invocation of addSagMembers() that raised

a P_INVALID_ADDITION_TO_SAG. Each conflict contains the following elements:

 a. The conflict generating client applicat ion.

 b. The SAG and the service profile through which the conflict generating client application is already assigned to

the conflict generating service. It includes the current service profile.

 c. The SAG, to which the conflict generating client application should be added. However, this SAG is already

assigned to a concurrent service profile concerning the conflict generating service. Th is creates a conflict, as each client

application may be assigned to a service only through a single service profile at a part icular moment in time.

 d. The conflict generating service.

Parameters
No Parameters were identified for this method.

Returns

TpAddSagMembersConflictList

Raises

TpCommonExceptions, P_ACCESS_DENIED

8a.3.2.2 Interface Class IpClientAppInfoQuery

Inherits from: Ip Interface.

This interface is used by the enterprise operator to list the client applications and the SAGs in its domain and to obtain

informat ion about them.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 162 Release 9

<<Interface>>

IpClientAppInfoQuery

describeClientApp (clientAppID : in TpClientAppID) : TpClientAppDescription

listClientApps () : TpClientAppIDList

describeSAG (sagID : in TpSagID) : TpSagDescription

listSAGs () : TpSagIDList

listSAGMembers (sagID : in TpSagID) : TpClientAppIDList

listClientAppMembership (clientAppID : in TpClientAppID) : TpSagIDList

8a.3.2.2.1 Method describeClientApp()

Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription>: The "clientAppDescription" parameter contains the clientApp description.

Parameters

clientAppID : in TpClientAppID

The "clientAppID" parameter identifies the clientApp object whose description is requested.

Returns

TpClientAppDescription

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID

8a.3.2.2.2 Method listClientApps()

Get a list of all client applicat ions belonging to an enterprise operator.

Returns <clientAppIDs>: The "clientAppIDs" parameter identifies the list of client applications in the enterprise

operator domain.

Parameters
No Parameters were identified for this method.

Returns

TpClientAppIDList

Raises

TpCommonExceptions, P_ACCESS_DENIED

8a.3.2.2.3 Method describeSAG()

Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription>: The "sagDescription" parameter returns the SAG-specific description.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 163 Release 9

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG whose description is required.

Returns

TpSagDescription

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID

8a.3.2.2.4 Method listSAGs()

Get a list of all SAGs associated with an enterprise operator.

Returns <SagIDList>: The "sagIDList" parameter returns the list of the identifiers of the SAGs associated with the

enterprise operator.

Parameters
No Parameters were identified for this method.

Returns

TpSagIDList

Raises

TpCommonExceptions, P_ACCESS_DENIED

8a.3.2.2.5 Method listSAGMembers()

Get a list of all client applicat ions associated with the specified SAG.

Returns <clientAppIDList>: The "clientAppIDList" parameter returns the list of the client applications associated with

the SAG.

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG whose clientAppID list is required.

Returns

TpClientAppIDList

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID

8a.3.2.2.6 Method listClientAppMembership()

Obtain a list of the SAGs of which the specified client application is a member.

Returns <sags>: The SAGs of which the client application is a member.

Parameters

clientAppID : in TpClientAppID

The "clientAppID" parameter identifies the clientApp object whose membership details are requested.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 164 Release 9

Returns

TpSagIDList

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID

8a.3.2.3 Interface Class IpServiceProfileManagement

Inherits from: Ip Interface.

This interface is used by the enterprise operator for the management of Serv ice Profiles, which are defined for every

subscribed service, and to assign/de - assign the Service Profiles to SAGs.

<<Interface>>

IpServiceProfileManagement

createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfileID

modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfileID : in TpServiceProfileID) : void

assign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : void

deassign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : void

requestConflictInfo () : TpAssignSagToServiceProfileConflictList

8a.3.2.3.1 Method createServiceProfile()

Creates a new Service Profile for the specified service contract. The service properties within the service profile restrict

the service to meet the client application requirements. A Service Profile is a restriction of the corresponding service

contract. When the description has been verified, a s ervice profile ID will be generated.

Returns <serviceProfileID>: The service profile ID, generated by the framework, will be used to uniquely identify the

service profile within the framework.

Parameters

serviceProfileDescription : in TpServiceProfileDescription

The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract

informat ion and which may further restrict the value ranges of the service subscription properties.

Returns

TpServiceProfileID

Raises

TpCommonExceptions, P_ACCESS_DENIED

8a.3.2.3.2 Method modifyServiceProfile()

Modifies the specified Serv ice Profile associated with the enterprise operator. Only the enterprise operator associated

with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a

non-associated enterprise operator invokes this method.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 165 Release 9

Parameters

serviceProfile : in TpServiceProfile

The modified Serv ice Profile. If the serviceProfileID specified in the serviceProfile parameter does not exist, an

exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID

8a.3.2.3.3 Method deleteServiceProfile()

Deletes the specified Serv ice Profile. If there are any service instances running that are governed by this profile then

they will be terminated. Only the enterprise operator associated with the particular service profile is allowed to delete it,

a "P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.

Parameters

serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile that is to be deleted. If the serviceProfileID does not

exist, a "P_INVALID_SERVICE_PROFILE_ID" exception will be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID

8a.3.2.3.4 Method assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfileID is

allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non-associated enterprise

operator invokes this method. Each client application may be assigned to a service only through a single service profile

at a particular moment in t ime. If this condition is violated, a

"P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT" would be raised. In this case, no partial execution of

this method is performed. The enterprise operator can query further information about this invalid assignment using the

method requestConflictInfo().

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG to which Service Profile is to be assigned. If the SAG ID does not exist, an

exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile that is to be assigned to the SAG. If the serviceProfileID

does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID,

P_INVALID_SERVICE_PROFILE_ID, P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT

8a.3.2.3.5 Method deassign()

De-assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the

serviceProfileID is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if a

non-associated enterprise operator invokes this method.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 166 Release 9

Parameters

sagID : in TpSagID

The "sagID" parameter identifies the SAG whose Service Profile is to be de-assigned. If the SAG ID does not exist, an

exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile that is to be de-assigned. If the serviceProfileID does not

exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID,

P_INVALID_SERVICE_PROFILE_ID

8a.3.2.3.6 Method requestConflictInfo()

Requests details about the latest conflict that occurred during performing the method assign() on this interface (i.e.

Information about the invocation of assign () that threw a

P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT). Each client application may be assigned to a service

only through a single service profile at a particular moment in time. The enterprise operator could try to assign a SAG

to a service profile of a given service. If one or more client applications in this SAG are already assigned to service

profiles belonging to the given service, the client applications would have two concurrent service profiles at a particular

moment in time. As this is prohibited, a conflict list is generated.

It is only possible to retrieve information about the last conflicting assign() method call; in formation about previous

conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAssignSagToServiceProfileConflictList>: The description of the conflicts occurring at the latest invocation

of assign() that raised a P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT. Each conflict contains the

following elements:

 a. The conflict generating client applicat ion.

 b. The SAG and the service profile through which the conflict generating client application is already assigned to

the conflict generating service. It includes the current service profile.

 c. The conflict generating service.

The conflict generating SAG and service profile are supposed to be well known, because they are input parameters of

the assign() method. Therefore, they do not appear in the returned conflict list.

Parameters
No Parameters were identified for this method.

Returns

TpAssignSagToServiceProfileConflictList

Raises

TpCommonExceptions, P_ACCESS_DENIED

8a.3.2.4 Interface Class IpServiceProfileInfoQuery

Inherits from: Ip Interface.

This interface is used by the enterprise operator to obtain information about individual Service Profiles, to find out

which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given

client application or SAG.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 167 Release 9

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles () : TpServiceProfileIDList

describeServiceProfile (serviceProfileID : in TpServiceProfileID) : TpServiceProfileDescription

listAssignedMembers (serviceProfileID : in TpServiceProfileID) : TpSagIDList

8a.3.2.4.1 Method listServiceProfiles()

Get a list of all service profiles created by the enterprise operator.

Returns <serviceProfileIDList>: The "serviceProfileIDList" is a list of the service profiles associated with the enterprise

operator.

Parameters
No Parameters were identified for this method.

Returns

TpServiceProfileIDList

Raises

TpCommonExceptions, P_ACCESS_DENIED

8a.3.2.4.2 Method describeServiceProfile()

Query information about a single service profile.

Returns <serviceProfileDescription>: The "serviceProfileDescription" parameter is a structured data type which

contains a description for the specified service profile.

Parameters

serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile whose description is being requested.

Returns

TpServiceProfileDescription

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID

8a.3.2.4.3 Method listAssignedMembers()

Get a list of SAGs assigned to the specified service profile.

Returns <sagIDList>: The "sagIDs" parameter is the list of the SAG IDs that are assigned to the specified service

profile.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 168 Release 9

Parameters

serviceProfileID : in TpServiceProfileID

The "serviceProfileID" parameter identifies the Service Profile. If the serviceProfileID is not recognised by the

framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns

TpSagIDList

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID

8a.3.2.5 Interface Class IpServiceContractManagement

Inherits from: Ip Interface.

The enterprise operator uses this interface for service contract management, such as create, modify, and delete service

contracts.

<<Interface>>

IpServiceContractManagement

createServiceContract (serviceContractDescription : in TpServiceContractDescription) :
TpServiceContractID

modifyServiceContract (serviceContract : in TpServiceContract) : void

deleteServiceContract (serviceContractID : in TpServiceContractID) : void

8a.3.2.5.1 Method createServiceContract()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract

description. This contract should conform to the previously negotiated high - level agreement (regard ing the services,

their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the

appropriate exception is raised by the framework. When the description has been validated, a service contract ID will be

generated.

Returns <serviceContractID>: The service contract ID will be used to uniquely identify the service contract within the

framework.

Parameters

serviceContractDescription : in TpServiceContractDescription

The "serviceContractDescription" parameter provides the information contained in the service contract. The service

contract is a structured data type, which contains the following informat ion:

 a. informat ion about the service requestor, i.e . the enterprise operator;

 b. informat ion about the billing contact (person);

 c. service start date;

 d. service end date;

 e. service type (e.g. obtained from listServiceType() method);

 f. service ID (e.g. obtained from discoverService() method). For certain services, service type informat ion is

sufficient and service ID may not be required. This implies that any service of the type specified above is subscribed

and hence accessible to the enterprise operator or to its client applications;

 g. list of service subscription properties and their value ranges (service profiles further restrict these value ranges).

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 169 Release 9

Returns

TpServiceContractID

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID

8a.3.2.5.2 Method modifyServiceContract()

Modify an existing service contract. The service contract can be modified only within the context of a pre -existing

off-line negotiated high-level agreement between the enterprise operator and the framework operator. Only the

enterprise operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED"

would be raised if a non-associated enterprise operator invokes this method.

Parameters

serviceContract : in TpServiceContract

The "serviceContract" parameter provides the modified service contract. If the serviceContractID does not exist, an

exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID,

P_INVALID_SERVICE_CONTRACT_ID

8a.3.2.5.3 Method deleteServiceContract()

Delete an existing service contract. All the Serv ice Profiles associated with the service contract are also deleted. If there

are any service instances running that are governed by this contract, or any of the profiles associated with it, then they

will be terminated. Only the enterprise operator associated with the serviceContract is allowed to delete it, a

"P_TASK_REFUSED" exception will be raised if a non-associated enterprise operator invokes this method.

Parameters

serviceContractID : in TpServiceContractID

The "serviceContractID" parameter identifies the service contract that the enterprise operator wishes to delete. If the

serviceContractID does not exist, a "P_INVALID_SERVICE_CONTRACT_ID" exception will be rais ed.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_CONTRACT_ID

8a.3.2.6 Interface Class IpServiceContractInfoQuery

Inherits from: Ip Interface.

The enterprise operator uses this interface to query informat ion about a given service contract.

<<Interface>>

IpServiceContractInfoQuery

describeServiceContract (serviceContractID : in TpServiceContractID) : TpServiceContractDescription

listServiceContracts () : TpServiceContractIDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfileIDList

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 170 Release 9

8a.3.2.6.1 Method describeServiceContract()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain

informat ion that is stored in the specified service contract. The enterprise operator can only obtain information about the

service contracts that it has created.

Returns <serviceContractDescription>: The "serviceContract" parameter contains the description for the specified

service contract.

Parameters

serviceContractID : in TpServiceContractID

The "serviceContractID" parameter identifies the service whose description is being requested.

Returns

TpServiceContractDescription

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_CONTRACT_ID

8a.3.2.6.2 Method listServiceContracts()

Returns a list of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractIDs>: The "serviceContractIDs" parameter will contain a list of IDs for service contracts that

the enterprise operator has created.

Parameters
No Parameters were identified for this method.

Returns

TpServiceContractIDList

Raises

TpCommonExceptions, P_ACCESS_DENIED

8a.3.2.6.3 Method listServiceProfiles()

The enterprise operator invokes this operation to obtain a list of service p rofiles that are associated with a particular

service contract.

Returns <serviceProfileIDs>: This contains the service profiles associated with a particular service contract.

Parameters

serviceContractID : in TpServiceContractID

The "serviceContractID" parameter identifies the service contract. If the serviceContractID is not recognised by the

framework, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 171 Release 9

Returns

TpServiceProfileIDList

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_CONTRACT_ID

8a.3.2.7 Interface Class IpEntOpAccountManagement

Inherits from: Ip Interface.

The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise

operator subscription accounts, such as modify and delete enterprise operator accounts. The EntOpID will be decided in

an off-line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more

meaningful than a random number. The EntOp account, consisting of the EntOpID, along with the list of valid

properties and their modes and prescribed ranges, will be entered via a FW operator interface that is currently outside

the scope of the API.

<<Interface>>

IpEntOpAccountManagement

modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : void

deleteEntOpAccount () : void

8a.3.2.7.1 Method modifyEntOpAccount()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseOperatorProperties : in TpEntOpProperties

The "enterprise operator properties" parameter conveys the modified/populated information about the enterprise

operator. The values of the "enterprise operator properties" can only be modified within the prescribed range, as

negotiated earlier (an off-line process) between the enterprise operator and the framework operator, otherwise a

P_INVALID_PROPERTY exception is raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_PROPERTY

8a.3.2.7.2 Method deleteEntOpAccount()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the

enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete

the enterprise operator account will result in a P_TASK_REFUSED exception if there are outstanding service contracts

(and service profiles).

Parameters
No Parameters were identified for this method.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 172 Release 9

Raises

TpCommonExceptions, P_ACCESS_DENIED

8a.3.2.8 Interface Class IpEntOpAccountInfoQuery

Inherits from: Ip Interface.

This interface is used by the enterprise operator to query information related to its own subscription account as held

within the framework.

<<Interface>>

IpEntOpAccount InfoQuery

describeEntOpAccount () : TpEntOp

8a.3.2.8.1 Method describeEntOpAccount()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what

informat ion about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator>: The "enterpriseOperator" parameter conveys the information stored in the EntOp object

about the enterprise operator. It contains the unique "enterprise operator ID" followed by a list of "enterprise operator

properties". The enterprise operator properties is a list of name/value pairs which provide enterprise operator related

informat ion such as the name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account),

etc. to the framework.

Parameters
No Parameters were identified for this method.

Returns

TpEntOp

Raises

TpCommonExceptions, P_ACCESS_DENIED

8a.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the

gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can

be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return

an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to

network events are shown together with the resulting event or action performed by the gateway. These internal events

are shown between quotation marks.

8a.4.1 Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.

8a.4.2 Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 173 Release 9

9 Service Properties

9.1 Service Super and Sub Types

Service Properties are used at service registration to indicate the capabilit ies of an SCF. They are normally used as an

indication for limitations an SCF has. These limitations can come from the way an SCF is implemented or from

limitat ions in the network. The service type of an SCF defines which properties the supplier shall provide at

registration of the SCF.

An application uses Service Properties at service discovery to find services that have the required capabilities. The

Framework validates the requested properties with the registered properties and provides the application with a list of

SCFs that comply to the application's request.

The capabilit ies of an SCF can be extended by providing service properties in addition to the ones defined in this

standard. For this extended SCF, a dedicated sub-type of a service is defined. A sub-type of an SCF shall be fu lly

compatible with the standard SCF, that is, an application shall be able to use the sub type as if it was the standard type.

This implies that the interface to the SCF remains unchanged. Also SCF sub types can be further extended. This way a

hierarchy of service types can be built with the standard type being the root.

An example of a sub type is a Multy Party Call Control service that allows the application to request a certain quality -

of-service level. An additional service property is added for this.

9.2 Service Property Types

At Service Registration the properties of a type shall be interpreted as the set of values that can be supported by the

service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property value

of {"true", "false"}. Th is means that the SCS is able to support Service instances where this property is used or

allowed and instances where this property is not used or allowed. Th is clarifies why sets of values shall be used for the

property values instead of primit ive types.

At establishment of the Serv ice Level Agreement the property can then be set to the value of the specific agreement.

The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a

sub-set of the service property values. When the correct SCF is ins tantiated during the discovery and selection

procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE: This is achieved through the createServiceManager() operation in the Service Instance Lifecycle Man ager

interface.

All property values are represented by an array of strings. The following table shows all supported service property

types.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 174 Release 9

Service Property type
name

Description Example value (array of
strings)

Interpretation of example
value

BOOLEAN_SET set of Booleans {"FALSE"} The set of Booleans consisting
of the Boolean "false".

INTEGER_SET set of integers {"1", "2", "5", "7"} The set of integers consisting
of the integers 1, 2, 5 and 7.

STRING_SET set of strings {"Sophia", "Rijen"} The set of strings consisting of
the string “Sophia" and the
string "Rijen"

INTEGER_INTERVAL interval of integers {"5", "100"} The integers that are between
or equal to 5 and 100.

STRING_INTERVAL interval of strings {"Rijen", "Sophia"} The strings that are between
or equal to the strings "Rijen"
and "Sophia", in
lexicographical order.

INTEGER_INTEGER_MAP map from integers to
integers

{"1", "10", "2", "20", "3",
"30"}

The map that maps 1 to 10, 2
to 20 and 3 to 30.

XML_ADDRESS_RANGE_
SET

set of values of
TpAddressRange.
Values of
TpAddressRange are
described using XML.
An XML schema is
provided below for this
purpose.

{"<AddressRangeSet>
<AddressRange>
 <Plan>P_ADDRESS_P
LAN_E164</Plan>
 <AddrString>123*</Add
rString>
</AddressRange>
<AddressRange>
 <Plan>P_ADDRESS_P
LAN_E164</Plan>
 <AddrString>456*</Add
rString>
</AddressRange>
</AddressRangeSet>"}

In case
P_REGEX_SUPPORT_FOR_
ADDRESS_RANGE is TRUE:
Any addresses containing 123
or containing 456 in the E.164
Address Plan.

In case
P_REGEX_SUPPORT_FOR_
ADDRESS_RANGE is FALSE:
Any addresses starting with
123 or starting with 456 in the
E.164 Address Plan.

FLOAT_SET set of values of
TpFloat.

{"0.1", “.2”, “0.1e+3}

The set of floats containing
floating point numbers 0.1, 0.2
and 100

FLOAT_INTERVAL interval of TpFloat
values

{“-1.1”, “5.0”} The floating point numbers
that are between or equal to –
1.1 and 5.0

The bounds of the string interval, integer interval and float interval types may hold the reserved value

"UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is

the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper

bound of the interval is the largest value supported by the type.

When an SCF is registerd by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an

empty set. When a service is discovered by an application, this application shall specify either {TRUE} or {FALSE} as

value for service properties of type BOOLEAN_SET.

The value of XML_ADDRESS_RANGE_SET should comply with the following XML Schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualif ied"

attributeFormDefault="unqualif ied">

 <xs:element name="AddressRangeSet">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="AddressRange" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Plan" type="xs:string" default="P_ADDRESS_PLAN_ANY"/>

 <xs:element name="AddrStr ing" type="xs:string"/>

 <xs:element name="Name" type="xs:string" minOccurs="0"/>

 <xs:element name="SubAddressString" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 175 Release 9

 </xs:complexType>

 </xs:element>

</xs:schema>

An example usage could be:

{"<?xml version="1.0" encoding="UTF-8"?>

<AddressRangeSet xmlns:xsi="http://www.w 3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xml_address_range_set.xsd">

 <AddressRange>

 <Plan>P_A DDRESS_PLA N_E164</Plan>

 <AddrStr ing>789*</AddrString>

 </AddressRange>

 <AddressRange>

 <Plan>P_A DDRESS_PLA N_A NY</Plan>

 <AddrStr ing>123*</AddrString>

 </AddressRange>

 <AddressRange>

 <Plan>P_A DDRESS_PLA N_SIP</Plan>

 <AddrStr ing><sip:*@par lay.org></AddrString>

 <Name/>

 </AddressRange>

</AddressRangeSet>"}

Note that the final address range corresponds to any sip address @parlay.org, i.e. <sip:*@parlay.org>.

9.3 General Service Properties

Each service instance has the following general properties:

 Service Name

 Service Version

 Service ID

 Service Description

 Product Name

 Product Version

 Operation Set

 Compatible Serv ice

 Backward Compatib ility Level

 Migration Required

 Data Migrated

 Migration Date and Time

 Support for Regular Expressions in Address Range

The following sections describe these general service properties in more detail. The values for the mode are defined in

the type TpServiceTypePropertyMode.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 176 Release 9

9.3.1 Service Name

Property Type Mode Description
P_SERVICE_NAME STRING_SET MANDATORY_

READONLY
This property contains the name of the
service, e.g. “UserLocation”,
“UserLocationCamel”,
“UserLocationEmergency” or “UserStatus”.

9.3.2 Service Version

Property Type Mode Description

P_SERVICE_VERSION STRING_SET MANDATORY This property contains the version of the
APIs, to which the service is compliant. It is
a set of strings as specified in the TpVersion
type.

9.3.3 Service ID

Property Type Mode Description
P_SERVICE_ID STRING_INTERVAL READONLY This property uniquely identifies a specific

service. Note that the Framework generates
this property value when the Service
Supplier registers the service. This property
should not be confused with the
serviceInstanceID generated by the
Framework when a Client Application signs
a Service Agreement to obtain the Service
Manager

9.3.4 Service Description

Property Type Mode Description

P_SERVICE_DESCRIPTION STRING_SET MANDATORY_
READONLY

This property contains a textual description
of the service. It should not be interpreted
as a description of a Service Instance (as
identified by a serviceInstanceID generated
by the Framework when a Client Application
signs a Service Agreement to obtain the
Service Manager).

9.3.5 Product Name

Property Type Mode Description

P_PRODUCT_NAME STRING_SET READONLY This property contains the name of the
product that provides the service, e.g. “Find
It”, “Locate.com”.

9.3.6 Product Version

Property Type Mode Description
P_PRODUCT_VERSION STRING_SET READONLY This property contains the version of the

product that provides the service, e.g.
“3.1.11”.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 177 Release 9

9.3.7 Void

9.3.8 Operation Set

Property Type Mode Description

P_OPERATION_SET STRING_SET MANDATORY Specifies set of the operations the SCS
supports.
The notation to be used is :
{“Interface1.operation1”,”Interface1.operation
2”, “Interface2.operation1”}, e.g.:
{“IpCall.createCall”,”IpCall.routeReq”}.

9.3.9 Compatible Service

Property Type Mode Description

P_COMPATIBLE_WITH_SERVICE STRING_SET READONLY Specifies the Set of Services, identified by
their ServiceIDs, with which this new service
is compatible.
This property should at least be
accompanied with the properties
P_BACKWARD_COMPATIBILITY_LEVEL,
P_MIGRATION_REQUIRED.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties like Migration Required, Data
Migrated, etc.
For all these properties the order of the
Services shall be identical.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 178 Release 9

9.3.10 Backward Compatibility Level

Property Type Mode Description
P_BACKWARD_COMPATIBILITY_
LEVEL

BOOLEAN_SET READONLY Specifies if the new service is completely
backwards compatible with each service
identified in the
P_COMPATIBLE_WITH_SERVICE
property:
Value = TRUE: Service is completely
backwards compatible
Value = FALSE: SCS is not completely
backwards compatible.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE
property.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.
For all these properties the order of the
Services shall be identical.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 179 Release 9

9.3.11 Migration Required

Property Type Mode Description

P_MIGRATION_REQUIRED BOOLEAN_SET READONLY Specifies if the new service is replacing the
service identified in the
P_COMPATIBLE_WITH_SERVICE property:
Value = TRUE: new service is replacing the
existing one – migration is required before
the date/time indicated in
P_MIGRATION_DATE_AND_TIME property.
Value = FALSE: new service is not replacing
the existing one – migration not required, the
existing service is retained.
This property requires the presence of
P_COMPATIBLE_WITH_SERVICE property.
If the value set of
P_MIGRATION_REQUIRED contains
TRUE, P_DATA_MIGRATED and
P_MIGRATION_DATE_AND_TIME
properties shall also to be present.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.
For all these properties the order of the
Services shall be identical.

9.3.12 Data Migrated

Property Type Mode Description

P_DATA_MIGRATED BOOLEAN_SET READONLY Indicates if the data (e.g. notifications) from
the existing service identified in the
P_COMPATIBLE_WITH_SERVICE property
is also available in this Service.
Value = TRUE: all data is migrated
Value = FALSE: no data is migrated

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE and the
P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.
For all these properties the order of the
Services shall be identical.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 180 Release 9

9.3.13 Migration Date And Time

Property Type Mode Description
P_MIGRATION_DATE_AND_TIME STRING_SET READONLY This property contains the date and time, in

the format described in TpDateAndTime, by
which point applications shall have migrated
from existing services to this new service.
Migration to the new service requires the
application to terminate the existing service
agreement, and sign a new one.
Failure to do this by the migration date and
time indicated in this property may result in
the service agreement being terminated by
the Framework, since the service supplier
may choose to unregister the service
following this date and time.
Only one value of TpDateAndTime is
permitted to be present in this property at
service registration.

This property requires the presence of
P_COMPATIBLE_WITH_SERVICE,
P_MIGRATION_REQUIRED and
P_DATA_MIGRATED properties.

Note that the new Service can be compatible
with more than one Service that is currently
registered to the Framework. Therefore this
Property is a SET, as well as all related
properties.

For each service identified in
P_COMPATIBLE_WITH_SERVICE, one
value of this property shall be present in the
value set of this property at service
registration.
For all these properties the order of the
Services shall be identical. For those
services for which migration is not required
(P_MIGRATION_REQUIRED set to FALSE),
the corresponding value of this property shall
be ignored.

9.3.14 Support for Regular Expressions in Address Range

Property Type Mode Description

P_REGEX_SUPPORT_FOR_ADDRE
SS_RANGE

BOOLEAN_SET READONLY Indicates if the AddrString and
SubAddressString fields of
TpAddressRange are expressed as
regular expressions (TRUE) or not
(FALSE)

10 Data Definitions

This clause provides the Framework specific data definitions necessary to s upport the OSA interface specification.

The general format of a data definition specification is the following:

 Data type, that shows the name of the data type;

 Description, that describes the data type;

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 181 Release 9

 Tabular specificat ion, that specifies the data types and values of the data type;

 Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definit ions which may be found in

3GPP TS 29.198-2.

10.1 Common Framework Data Definitions

10.1.1 TpClientAppID

This is an identifier for the client application. It is used to identify the client to the Framework. Th is data type is

identical to TpString and is defined as a string of characters that uniquely identifies the application. The co ntent of this

string shall be unique for each OSA API implementation (or unique for a network operator’s domain). This unique

identifier shall be negotiated with the OSA operator and the application shall use it to identify itself.

10.1.2 TpClientAppIDList

This data type defines a Numbered Set of Data Elements of type TpClientAppID.

10.1.3 TpDomainID

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity

attempting to access the Framework.

 Tag Element Type

 TpDomainIDType

Tag Element Value Choice Element Type Choice Element Name

P_FW TpFwID FwID

P_CLIENT_APPLICATION TpClientAppID ClientAppID

P_ENT_OP TpEntOpID EntOpID

P_SERVICE_INSTANCE TpServiceInstanceID ServiceID (See Note)

P_SERVICE_SUPPLIER TpServiceSupplierID ServiceSupplierID

Note: The Choice Element Name ServiceID of TpDomainID refers to a service instance.

10.1.4 TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name Value Description

P_FW 0 The Framework

P_CLIENT_APPLICATION 1 A client application

P_ENT_OP 2 An enterprise operator

P_SERVICE_INSTANCE 3 A service instance

P_SERVICE_SUPPLIER 4 A service supplier

10.1.5 TpEntOpID

This data type is identical to TpString and is defined as a string of characters that identifies an enterprise operator.

In conjunction with the application it uniquely identifies the enterprise operator which uses a particular OSA Service

Capability Feature (SCF).

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 182 Release 9

10.1.6 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

10.1.7 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

10.1.8 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data

type consisting of the following {name,value} pair:

Sequence Element
Name

Sequence Element
Type

PropertyName TpPropertyName

PropertyValue TpPropertyValue

10.1.9 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.1.10 TpEntOpIDList

This data type defines a Numbered Set of Data Elements of type TpEntOpID.

10.1.11 TpFwID

This data type is identical to TpString and identifies the Framework.

10.1.12 TpService

This data type is a Sequence of Data Elements which describes a registered SCFs. It is a structured type which consists

of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceID TpServiceID

ServiceDescription TpServiceDescription This field contains the description of the service

10.1.13 TpServiceList

This data type defines a Numbered Set of Data Elements of type TpService.

10.1.14 TpServiceDescription

This data type is a Sequence of Data Elements which describes a registered SCF. It is a structured data type which

consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceTypeName TpServiceTypeName

ServicePropertyList TpServicePropertyList

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 183 Release 9

10.1.15 TpServiceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies a registered SCF

interface. The string is automatically generated by the Framework.

10.1.16 TpServiceIDList

This data type defines a Numbered Set of Data Elements of type TpServiceID.

10.1.17 TpServiceInstanceID

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies an instance of a

registered SCF interface. The string is automatically generated by the Framework.

10.1.18 TpServiceTypeProperty

This data type is a Sequence of Data Elements which describes a service property associated with a service

type. It defines the name and mode of the service property, and also the service property type: e.g. Boolean, integer.

It is similar to, but distinct from, TpServ iceProperty. The latter is associated with an actual service: it defines the

service property’s name and mode, but also defines the list of values assigned to it.

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServicePropertyName

ServiceTypePropertyMode TpServiceTypePropertyMode

ServicePropertyTypeName TpServicePropertyTypeName

10.1.19 TpServiceTypePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeProperty.

10.1.20 TpServiceTypePropertyMode

This type defines SCF property modes.

Name Value Documentation

NORMAL 0 The value of the corresponding SCF property type may optionally be provided

MANDATORY 1 The value of the corresponding SCF property type shall be provided at service registration time

READONLY 2 The value of the corresponding SCF property type is optional, but once given a value it can not be
modified/restricted by a service level agreement

MANDATORY_READONLY 3 The value of the corresponding SCF property type shall be provided but can not subsequently be
modified/restricted by a service level agreement.

10.1.21 TpServicePropertyTypeName

This data type is identical to TpString and describes a valid SCF property type name. Valid service property typ e names

are detailed in 10.1.

10.1.22 TpServicePropertyName

This data type is identical to TpString. It defines a valid SCF property name. The valid service p roperty names are

detailed in 10.3 and in the SCF data defin itions. Additionally, service property names for proprietary service propert ies

(used for service sub types) are possible.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 184 Release 9

10.1.23 TpServicePropertyNameList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyName.

10.1.24 TpServicePropertyValue

This data type is identical to TpString and describes a valid value of a SCF property.

10.1.25 TpServicePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServicePropertyValue.

10.1.26 TpServiceProperty

This data type is a Sequence of Data Elements which describes an “SCF property”. It is a structured data type which

consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServicePropertyName TpServicePropertyName

ServicePropertyValueList TpServicePropertyValueList

10.1.27 TpServicePropertyList

This data type defines a Numbered Set of Data Elements of type TpServiceProperty.

10.1.28 TpServiceSupplierID

This is an identifier for a service supplier. It is used to identify the supplier to the Framework. Th is data type is

identical to TpString.

10.1.29 TpServiceTypeDescription

This data type is a Sequence of Data Elements which describes an SCF type. It is a structured data type. It consists of:

Sequence Element
Name

Sequence Element
Type

Documentation

ServiceTypePropertyList TpServiceTypePropertyList a sequence of property name and property mode tuples associated with the
SCF type

ServiceTypeNameList TpServiceTypeNameList the names of the super types of the associated SCF type

AvailableOrUnavailable TpBoolean an indication whether the SCF type is available (true) or unavailable (false)

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 185 Release 9

10.1.30 TpServiceTypeName

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an

SCF interface. Other Network operator specific capabilit ies may also be used, but should be preceded by the string

"SP_". The following values are defined.

Character String Value Description

NULL An empty (NULL) string indicates no SCF name

P_GENERIC_CALL_CONTROL The name of the Generic Call Control SCF

P_MULTI_PARTY_CALL_CONTROL The name of the MultiParty Call Control SCF

P_MULTI_MEDIA_CALL_CONTROL The name of the MultiMedia Call Control SCF

P_CONFERENCE_CALL_CONTROL The name of the Conference Call Control SCF

P_USER_INTERACTION The name of the User Interaction SCFs

P_USER_INTERACTION_ADMIN The name of the User Interaction Administration SCF

P_TERMINAL_CAPABILITIES The name of the Terminal Capabilities SCF

P_USER_BINDING The name of the User Binding SCF

P_USER_LOCATION The name of the User Location SCF

P_USER_LOCATION_CAMEL The name of the Network User Location SCF

P_USER_LOCATION_EMERGENCY The name of the User Location Emergency SCF

P_USER_STATUS The name of the User Status SCF

P_EXTENDED_USER_STATUS The name of Extended User Status SCF

P_DATA_SESSION_CONTROL The name of the Data Session Control SCF

P_GENERIC_MESSAGING The name of the Generic Messaging SCF

P_CONNECTIVITY_MANAGER The name of the Connectivity Manager SCF

P_CHARGING The name of the Charging SCF

P_ACCOUNT_MANAGEMENT The name of the Account Management SCF

P_POLICY_PROVISIONING The name of the Policy Management provisioning SCF

P_POLICY_EVALUATION The name of the Policy Management policy evaluation SCF

P_PAM_ACCESS The name of PAM presentity SCF

P_PAM_EVENT_MANAGEMENT The name of PAM watcher SCF

P_PAM_PROVISIONING The name of PAM provisioning SCF

P_MULTI_MEDIA_MESSAGING The name of the Multimedia Messaging SCF

P_SERVICE_BROKER The name of the Service Broker SCF

10.1.31 TpServiceTypeNameList

This data type defines a Numbered Set of Data Elements of type TpServiceTypeName.

10.1.32 TpSubjectType

Defines the subject of a query/notificat ion request/result.

Name Value Description

P_SUBJECT_UNDEFINED 0 The subject is neither the framework nor the
client application

P_SUBJECT_CLIENT_APP 1 The subject is the client application

P_SUBJECT_FW 2 The subject is the framework

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 186 Release 9

10.1.33 TpServiceTypePropertyValue

This data type is a Sequence of Data Elements which describes a service property associated with a service. It

defines the name and mode of the service property, the service property type (e.g. Boolean, integer), and also value. It

is similar to, but distinct from, TpServiceProperty. The latter does not define the modes and types and is used to

register values for known service p roperties only.

Sequence ElementName Sequence ElementType Documentation

ServicePropertyName TpServicePropertyName The name of the service property.

ServiceTypePropertyMode TpServiceTypePropertyMode The mode of the service property.

ServicePropertyTypeName TpServicePropertyTypeName The type of the service property.

ServicePropertyValueList TpServicePropertyValueList The Value-list of the service property.

10.1.34 TpServiceTypePropertyValueList

This data type defines a Numbered Set of Data Elements of type TpServiceTypePropertyValue.

10.2 Event Notification Data Definitions

10.2.1 TpFwEventName

Defines the name of event being notified.

Name Value Description

P_EVENT_FW_NAME_UNDEFINED 0 Undefined

P_EVENT_FW_SERVICE_AVAILABLE 1 Notification of SCS(s) available

P_EVENT_FW_SERVICE_UNAVAILABLE 2 Notification of SCS(s) becoming unavailable

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE 3 Notification of a backwards compatible SCS

becoming available, to which the application
can migrate.

P_EVENT_FW_APP_SESSION_CREATED 4 Notification of an application<->FW access
session created. (See note 1)

P_EVENT_FW_APP_SESSION_TERMINATED 5 Notification of an application<->FW access
session terminated. (See note 1)

P_EVENT_FW_APP_AGREEMENT_SIGNED 6 Notification that a service agreement has been
signed. (See note 1)

P_EVENT_FW_APP_AGREEMENT_ENDED 7 Notification that a service agreement has been
ended/terminated. (See note 1)

NOTE: These events can only be requested by enterprise operators. If requested by any other entity then
the method will throw the P_INVALID_CRITERIA exception.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 187 Release 9

10.2.2 TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specifies the criteria fo r an event notification to be

generated.

 Tag Element Type

 TpFwEventName

Tag Element Value Choice Element Type Choice Element Name

P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE TpServiceTypeNameList ServiceTypeNameList

P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceTypeNameList UnavailableServiceTypeNameList

P_EVENT_FW_MIGRATION_SERVICE_AVAILAB
LE

TpServiceTypeNameList CompatibleServiceTypeNameList

P_EVENT_FW_APP_SESSION_CREATED TpClientAppIDList SessionCreatedList

P_EVENT_FW_APP_SESSION_TERMINATED TpClientAppIDList SessionTerminatedList

P_EVENT_FW_APP_AGREEMENT_SIGNED TpClientAppIDList AgreementSignedList

P_EVENT_FW_APP_AGREEMENT_ENDED TpClientAppIDList AgreementEndedList

10.2.3 TpFwEventInfo

Defines the Tagged Choice of Data Elements that specifies the informat ion returned to the client in an event

notification.

 Tag Element Type

 TpFwEventName

Tag Element Value Choice Element Type Choice Element Name

P_EVENT_FW_NAME_UNDEFINED TpString EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE TpServiceIDList ServiceIDList

P_EVENT_FW_SERVICE_UNAVAILABLE TpServiceIDList UnavailableServiceIDList

P_EVENT_FW_MIGRATION_SERVICE_AVAILAB
LE

TpFWMigrationServiceAvailableInfo MigrationServiceAvailable

P_EVENT_FW_APP_SESSION_CREATED TpClientAppID AppSessionCreated

P_EVENT_FW_APP_SESSION_TERMINATED TpClientAppID AppSessionTerminated

P_EVENT_FW_APP_AGREEMENT_SIGNED TpFwAgreementInfo AppAgreementSigned

P_EVENT_FW_APP_AGREEMENT_ENDED TpFwAgreementInfo AppAgreementEnded

10.2.4 TpFwMigrationServiceAvailableInfo

Defines the information to be supplied when an SCS becomes available.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 188 Release 9

Sequence ElementName Sequence ElementType Documentation

ServiceType TpServiceTypeName Type of SCS that has become available

ServiceID TpServiceID ID of the SCS that has become available

CompatibleServiceID TpServiceID ID of the SCS with which this new SCS is compatible with.

BackwardCompatibilityLevel TpBoolean Specifies if the new SCS is completely backwards compatible
with the currently used SCS.

Value = TRUE: SCS is completely backwards compatible

Value = FALSE: SCS is not completely backwards compatible.

Contact the Framework operator for more information.on how
to migrate.

MigrationRequired TpBoolean Specifies if the new SCS is replacing the existing SCS

Value = TRUE: new SCS is replacing the existing one -

migration is required before the date/time indicated in
MigrationDateAndTime field

Value = FALSE: new SCS is not replacing the existing one, but
is provided in addition.

All migration to the new SCS, whether required or not, shall

involve the application terminating the existing service
agreement and signing a new one.

DataMigrated TpBoolean Indicates whether all the data the application set in the previous
SCS (e.g. notifications) is also available in the new SCS.

Value = FALSE : the new SCS has not obtained all data (e.g.

notifications) related to the old SCS and the application needs
to reset all the previous data.

Value = TRUE: the new SCS has obtained data (e.g.

notifications) related to the old SCS, the application can use the
new SCS without resetting data.

MigrationDataAndTime TpDateAndTime Indicates the date and time before which applications shall have
migrated from existing the existing SCS to this new SCS.

Migration to the new SCS requires the application to terminate
the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in

this field may result in the service agreement being terminated
by the Framework, since the service supplier may choose to
unregister the service following this date and time.

The value of this parameter, if present, shall be ignored if
MigrationRequired is set to FALSE

MigrationAdditionalInfo TpMigrationAdditionalInfoSet Contains additional migration information. This is initially

provided to permit addition of information in later releases
without impacting backwards compatibility.

10.2.5 TpMigrationAdditionalInfo

Defines the Tagged Choice of Data Elements that specify additional migration-related in formation.

 Tag Element Type

 TpMigrationAdditionalInfoType

Tag Element Value Choice Element Type Choice Element Name

P_MIGRATION_INFO_UNDEFINED NULL Undefined

10.2.6 TpMigrationAdditionalInfoType

Defines the type of migrat ion-related additional information.

Name Value Description

P_MIGRATION_INFO_UNDEFINED 0 Undefined

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 189 Release 9

10.2.7 TpMigrationAdditionalInfoSet

Defines a Numbered Set of Data Elements of TpMigrationAdditionalInfo.

10.2.8 TpFwAgreementInfo

Defines the Sequence of Data Elements that specifies the informat ion returned to the enterprise operator

application in an event notificat ion.

Sequence Element Name Sequence Element Type Description

ClientApplicationID TpClientAppID The ID of the client application

ServiceID TpServiceID The ID of the service for whom the agreement was
signed/terminated

ServiceContractID TpServiceContractID The ID of the service contract related to the
agreement if available, an empty string otherwise.

ServiceProfileID TpServiceProfileID The ID of the service profile related to the
agreement if available, an empty string otherwise.

10.3 Trust and Security Management Data Definitions

10.3.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application.

If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define

their own access interfaces to satisfy client requirements for different types of access. These can be selected using the

TpAccessType, but should be preceded by the string "SP_". The following value is defined:

String Value Description

P_OSA_ACCESS Access using the OSA Access Interfaces: IpAccess and IpClientAccess

10.3.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It

provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication

interface. Th is can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a

proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default

authentication method. Other Network operator specific capabilit ies may also be used, but should be preceded by the

string “SP_”. The following values are defined:

String Value Description

P_OSA_AUTHENTICATION Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and
IpClientAPILevelAuthentication

P_AUTHENTICATION Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 190 Release 9

10.3.3 Void

10.3.4 Void

10.3.5 Void

10.3.6 TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain

identifier, and a reference to the authentication interface of the doma in.

Sequence Element
Name

Sequence Element
Type

Description

DomainID TpDomainID Identifies the domain for authentication. This identifier is assigned to the domain during
the initial contractual agreements, and is valid during the lifetime of the contract.

AuthInterface IpInterfaceRef Identifies the authentication interface of the specific entity. This data element has the same
lifetime as the domain authentication process, i.e. in principle a new interface reference

can be provided each time a domain intends to access another.

10.3.7 TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the

Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used,

but should be preceded by the string "SP_". The following values are defined.

Character String Value Description
P_DISCOVERY The name for the Discovery interface.

P_EVENT_NOTIFICATION The name for the Event Notification interface.

P_OAM The name for the OA&M interface.

P_LOAD_MANAGER The name for the Load Manager interface.

P_FAULT_MANAGER The name for the Fault Manager interface.

P_HEARTBEAT_MANAGEMENT The name for the Heartbeat Management interface.

P_SERVICE_AGREEMENT_MANAGEMENT The name of the Service Agreement Management interface.

P_REGISTRATION The name for the Service Registration interface.

P_ENT_OP_ACCOUNT_MANAGEMENT The name for the Service Subscription: Enterprise Operator Account Management
interface.

P_ENT_OP_ACCOUNT_INFO_QUERY The name for the Service Subscription: Enterprise Operator Account Information Query
interface.

P_SVC_CONTRACT_MANAGEMENT The name for the Service Subscription: Service Contract Management interface.

P_SVC_CONTRACT_INFO_QUERY The name for the Service Subscription: Service Contract Information Query interface.

P_CLIENT_APP_MANAGEMENT The name for the Service Subscription: Client Application Management interface.

P_CLIENT_APP_INFO_QUERY The name for the Service Subscription: Client Application Information Query interface.

P_SVC_PROFILE_MANAGEMENT The name for the Service Subscription: Service Profile Management interface.

P_SVC_PROFILE_INFO_QUERY The name for the Service Subscription: Service Profile Information Query interface.

10.3.8 TpInterfaceNameList

This data type defines a Numbered Set of Data Elements of type TpInterfaceName.

10.3.9 TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the

Framework, which can be signed as part of a service agreement. This will contain Network operator specific

informat ion relat ing to the service level agreement. The serviceToken has a limited lifetime, which is the same as the

lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 191 Release 9

method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will

automatically exp ire if the client or Framework invokes the terminateAccess method on the other's corresponding

access interface.

10.3.10 TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a

reference to the SCF manager interface of the SCF.

Sequence Element
Name

Sequence Element
Type

DigitalSignature TpOctetSet

ServiceMgrInterface IpServiceRef

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content

type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement

text g iven by the client applicat ion. The "external signature" construct shall not be used (i.e. the eContent field in the

EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as

defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

10.3.11 TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that

shall be used. Other Network operator specific capabilit ies may also be used, but should be preceded by the string

"SP_". The following values are defined.

String Value Description

NULL An empty (NULL) string indicates no signing algorithm is required

P_MD5_RSA_512 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the

input. This is then encrypted with the private key under the RSA public-key cryptography system

using a 512-bit modulus. The signature generation follows the process and format defined in RFC
2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

P_MD5_RSA_1024 MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the

input. This is then encrypted with the private key under the RSA public- key cryptography system
using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC

2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

P_RSASSA_PKCS1_v1_5_SH

A1_1024
SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is

then used to generate the signature value, following the process defined in section 8 of RFC 2437 and
format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024 -bit
modulus.

P_SHA1_DSA SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is
then used to generate the signature value. The signature generation follows the process and format
defined in section 7.2.2 of RFC 2459.

10.3.12 TpSigningAlgorithmCapabilityList

This data type is identical to a TpString. It is a string of mult iple TpSigningAlgorithm concatenated using a comma (,)

as the separation character.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 192 Release 9

10.3.13 TpAuthMechanism

This data type is identical to a TpString. It identifies an authentication mechanis m to be used for API Level

Authentication. The following values are defined:

String Value Description

P_OSA_MD5 Authentication is based on the use of MD5 (RFC 1321) hashing algorithm to generate a response based on a

shared secret and a challenge received via challenge() method. The capability to use this algorithm is required
to be supported when using CHAP (RFC 1994) but its use is not recommended.

P_OSA_HMAC_SHA1_96 Authentication is based on the use of HMAC-SHA1 (RFC 2404) hashing algorithm to generate a response
based on a shared secret and a challenge received via challenge() method.

P_OSA_HMAC_MD5_96 Authentication is based on the use of HMAC-MD5 (RFC 2403) hashing algorithm to generate a response
based on a shared secret and a challenge received via challenge() method.

10.3.14 TpAuthMechanismList

This data type is identical to a TpString. It is a string of mult iple TpAuthMechanism concatenated using a comma (,) as

the separation character.

10.4 Integrity Management Data Definitions

10.4.1 TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are “Available”

or “Unavailable”.

10.4.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

Sequence Element
Name

Sequence Element
Type

Period TpTimeInterval

FaultStatsSet TpFaultStatsSet

10.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

Sequence Element
Name

Sequence Element
Type

Description

Fault TpInterfaceFault

Occurrences TpInt32 The number of separate instances of this fault

MaxDuration TpInt32 The number of seconds duration of the longest fault

TotalDuration TpInt32 The cumulative duration (all occurrences)

NumberOfClientsAffected TpInt32 The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDurat ion and TotalDuration are the

number of seconds duration of the longest fault and the cumulat ive total during the period. NumberOfClientsAffected is

the number of clients informed of the fault by the Framework.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 193 Release 9

10.4.4 TpFaultStatisticsError

Defines the error code associated with a failed attempt to retrieve any fault

statistics information.

Name Value Description

P_FAULT_INFO_ERROR_UNDEFINED 0 Undefined error

P_FAULT_INFO_UNAVAILABLE 1 Fault statistics unavailable

10.4.5 TpFaultStatsSet

This data type defines a Numbered Set of Data Elements of type TpFaultStats

10.4.6 TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

10.4.7 TpInterfaceFault

Defines the cause of the interface fault detected.

Name Value Description

INTERFACE_FAULT_UNDEFINED 0 Undefined

INTERFACE_FAULT_LOCAL_FAILURE 1 A fault in the local API software or hardware has been detected

INTERFACE_FAULT_GATEWAY_FAILURE 2 A fault in the gateway API software or hardware has been detected

INTERFACE_FAULT_PROTOCOL_ERROR 3 An error in the protocol used on the client -gateway link has been detected

10.4.8 Void

10.4.9 TpFwUnavailReason

Defines the reason why the Framework is unavailable.

Name Value Description

FW_UNAVAILABLE_UNDEFINED 0 Undefined

FW_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed

FW_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed

FW_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded

FW_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect from fraud or malicious attack)

FW_UNAVAILABLE_PROTOCOL_FAILURE 5 The protocol used on the client-gateway link has failed

10.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

Name Value Description

LOAD_LEVEL_NORMAL 0 Normal load

LOAD_LEVEL_OVERLOAD 1 Overload

LOAD_LEVEL_SEVERE_OVERLOAD 2 Severe Overload

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 194 Release 9

10.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is

application and SCF dependent, so is their relationship with load level.

Sequence Element
Name

Sequence Element
Type

LoadThreshold TpFloat

10.4.12 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

Sequence Element
Name

Sequence Element
Type

LoadLevel TpLoadLevel

LoadThreshold TpLoadThreshold

10.4.13 TpLoadPolicy

Defines the load balancing policy.

Sequence Element Name Sequence Element Type

LoadPolicy TpString

10.4.14 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e.

Framework, service or applicat ion) at a specific date and time.

Sequence Element Name Sequence Element Type

LoadStatisticEntityID TpLoadStatisticEntityID

TimeStamp TpDateAndTime

LoadStatisticInfo TpLoadStatisticInfo

10.4.15 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

10.4.16 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic informat ion.

Sequence Element Name Sequence Element Type

LoadValue (see Note) TpFloat

LoadLevel TpLoadLevel

NOTE: LoadValue is expressed as a percentage.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 195 Release 9

10.4.17 TpLoadStatisticEntityID

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, applicat ion or

Framework) provid ing load statistics.

 Tag Element Type

 TpLoadStatisticEntityType

Tag Element Value Choice Element Type Choice Element Name

P_LOAD_STATISTICS_FW_TYPE TpFwID FrameworkID

P_LOAD_STATISTICS_SVC_TYPE TpServiceID ServiceID

P_LOAD_STATISTICS_APP_TYPE TpClientAppID ClientAppID

10.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e . service, application or Framework) supplying load statistics.

Name Value Description

P_LOAD_STATISTICS_FW_TYPE 0 Framework-type load statistics

P_LOAD_STATISTICS_SVC_TYPE 1 Service-type load statistics

P_LOAD_STATISTICS_APP_TYPE 2 Application-type load statistics

10.4.19 TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic informat ion (i.e. valid or

invalid).

 Tag Element Type

 TpLoadStatisticInfoType

Tag Element Value Choice Element Type Choice Element Name

P_LOAD_STATISTICS_VALID TpLoadStatisticData LoadStatisticData

P_LOAD_STATISTICS_INVALID TpLoadStatisticError LoadStatisticError

10.4.20 TpLoadStatisticInfoType

Defines the type of load statistic information (i.e . valid or invalid).

Name Value Description

P_LOAD_STATISTICS_VALID 0 Valid load statistics

P_LOAD_STATISTICS_INVALID 1 Invalid load statistics

10.4.21 TpLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load statistics information .

Name Value Description

P_LOAD_INFO_ERROR_UNDEFINED 0 Undefined error

P_LOAD_INFO_UNAVAILABLE 1 Load statistics unavailable

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 196 Release 9

10.4.22 TpSvcAvailStatusReason

Defines the reason detailing the change in status of Service Instance availability.

Name Value Description

SVC_UNAVAILABLE_UNDEFINED 0 Undefined. A permanent failure. See Note 1.

SVC_UNAVAILABLE_LOCAL_FAILURE 1 The Local API software or hardware has failed. A permanent failure. See Note
1.

SVC_UNAVAILABLE_GATEWAY_FAILURE 2 The gateway API software or hardware has failed. A permanent failure. See
Note 1.

SVC_UNAVAILABLE_OVERLOADED 3 The Service Instance is fully overloaded. A temporary problem. See Note 2.

SVC_UNAVAILABLE_CLOSED 4 The Service Instance has closed itself (e.g. to protect from fraud or malicious
attack). A permanent failure. See Note 1.

SVC_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that a Service Instance has failed: e.g. non-

response from an activity test, failure to return heartbeats. A permanent failure.
See Note 1.

SVC_UNAVAILABLE_SW_UPGRADE 6 The Service Instance is unavailable due to software upgrade or other similar
maintenance. A permanent failure. See Note 1.

SVC_AVAILABLE 7 The Service has become available again

Note 1: The client application must act to reset its use of the specified service instance (using the normal
mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and
begin use of a different service instance).

Note 2: The "expected" recovery time could be defined within the SLA.

10.4.23 TpAppAvailStatusReason

Defines the reason detailing the change in status of Application availab ility.

Name Value Description

APP_UNAVAILABLE_UNDEFINED 0 Undefined. A permanent failure. See Note 1.

APP_UNAVAILABLE_LOCAL_FAILURE 1 A local failure in the Application has been detected. A permanent failure. See Note 1.

APP_UNAVAILABLE_REMOTE_FAILURE 2 A remote failure to the application has been detected, e.g. a database is not working. A
permanent failure. See Note 1.

APP_UNAVAILABLE_OVERLOADED 3 The Application is fully overloaded. A temporary problem. See Note 2.

APP_UNAVAILABLE_CLOSED 4 The Application has closed itself (e.g. to protect from fraud or malicious attack) . A
permanent failure. See Note 1.

APP_UNAVAILABLE_NO_RESPONSE 5 The Framework has detected that the application has failed: e.g. non-response from an
activity test, failure to return heartbeats. A permanent failure. See Note 1.

APP_UNAVAILABLE_SW_UPGRADE 6 The Application is unavailable due to SW upgrade or other similar maintenance. A
permanent failure. See Note 1.

APP_AVAILABLE 7 The Application has become available

Note 1: The client application is unable (or does not wish) to continue using the service instance.
Note 2: The "expected" recovery time could be defined within the SLA.

10.4.24 TpLoadTestID

This data type is identical to a TpInt32, and is used as a token to match load statistics requests with their results.

10.4.25 TpFaultStatsErrorList

Defines a Numbered List of Data Elements of type TpFaultStatisticsError.

10.4.26 TpFaultReqID

This data type is identical to a TpInt32, and is used as a token to match fault statistics requests with their results.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 197 Release 9

10.4.27 TpFwAvailStatusReason

Defines the reason detailing the change in status of Framework availability.

Name Value Description

FRAMEWORK_UNAVAILABLE_UNDEFINED 0 Undefined. A permanent failure. See Note 1.

FRAMEWORK_UNAVAILABLE_LOCAL_FAILURE 1 A local failure in the Framework has been detected. A permanent failure. See
Note 1.

FRAMEWORK_UNAVAILABLE_REMOTE_FAILURE 2 A remote failure to the Framework has been detected, e.g. a database is not
working. A permanent failure. See Note 1.

FRAMEWORK_UNAVAILABLE_OVERLOADED 3 The Framework is fully overloaded. A temporary problem. See Note 2.

FRAMEWORK_UNAVAILABLE_CLOSED 4 The Framework has closed itself (e.g. to protect from fraud or malicious attack) .
A permanent failure. See Note 1.

FRAMEWORK_UNAVAILABLE_PROTOCOL_FAILURE 5 The Framework has detected that the protocol used between client and
framework has failed. A permanent failure. See Note 1.

FRAMEWORK_UNAVAILABLE_SW_UPGRADE 6 The Framework is unavailable due to SW upgrade or other similar maintenance.
A permanent failure. See Note 1.

FRAMEWORK_AVAILABLE 7 The Framework has become available

Note 1: The Framework is unable (or does not wish) to continue using the client or service instance.
Note 2: The 'expected' recovery time could be part of the Framework's local policies.

10.5 Service Subscription Data Definitions

10.5.1 TpPropertyName

This data type is identical to TpString. It is the name of a generic “property”.

10.5.2 TpPropertyValue

This data type is identical to TpString. It is the value (or the list of values) associated with a generic “property”.

10.5.3 TpProperty

This data type is a Sequence of Data Elements which describes a generic “property”. It is a structured data

type consisting of the following {name,value} pair:

Sequence Element
Name

Sequence Element
Type

PropertyName TpPropertyName

PropertyValue TpPropertyValue

10.5.4 TpPropertyList

This data type defines a Numbered List of Data Elements of type TpProperty.

10.5.5 TpEntOpProperties

This data type is of type TpPropertyList. It identifies the list of properties associated with an enterprise operator: e.g.

name, organisation, address, phone, e-mail, fax, payment method (credit card, bank account).

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 198 Release 9

10.5.6 TpEntOp

This data type is a Sequence of Data Elements which describes an enterprise operator. It is a structured data

type, consisting of a unique “enterprise operator ID” and a list of “enterprise operator properties”, as follows:

Sequence Element
Name

Sequence Element
Type

EntOpID TpEntOpID

EntOpProperties TpEntOpProperties

10.5.7 TpServiceContractID

This data type is identical to TpString. It uniquely identifies the contract, between an enterprise operator and the

Framework, for the use of an OSAservice by the enterprise.

10.5.8 TpServiceContractIDList

This data type defines a Numbered List of Data Elements of type TpServiceContractID.

10.5.9 TpPersonName

This data type is identical to TpString. It is the name of a generic “person”.

10.5.10 TpPostalAddress

This data type is identical to TpString. It is the mailing address of a generic “person”.

10.5.11 TpTelephoneNumber

This data type is identical to TpString. It is the telephone number of a generic “person”.

10.5.12 TpEmail

This data type is identical to TpString. It is the email address of a generic “person”.

10.5.13 TpHomePage

This data type is identical to TpString. It is the web address of a generic “person”.

10.5.14 TpPersonProperties

This data type is of type TpPropertyList. It identifies the list of additional properties, other than those listed above, that

can be associated with a generic “person”.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 199 Release 9

10.5.15 TpPerson

This data type is a Sequence of Data Elements which describes a generic “person”: e.g. a billing contact, a

service requestor. It is a structured data type which consists of:

Sequence Element
Name

Sequence Element
Type

PersonName TpPersonName

PostalAddress TpPostalAddress

TelephoneNumber TpTelephoneNumber

Email TpEmail

HomePage TpHomePage

PersonProperties TpPersonProperties

10.5.16 TpServiceStartDate

This is of type TpDateAndTime. It identifies the contractual start date and time for the use of an OSA service by an

enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.17 TpServiceEndDate

This is of type TpDateAndTime. It identifies the contractual end date and time for the use of an OSA service by an

enterprise or an enterprise Subscription Assignment Group (SAG).

10.5.18 TpServiceRequestor

This is of type TpPerson. It identifies the enterprise person requesting use of an OSA service: e.g. the enterprise

operator.

10.5.19 TpBillingContact

This is of type TpPerson. It identifies the enterprise person responsible for billing issues associated with an enterprise’s

use of an OSA service.

10.5.20 TpServiceSubscriptionProperties

This is of type TpServicePropertyList. It specifies a subset of all available service properties and service property

values that apply to an enterprise’s use of an OSA service.

10.5.21 TpServiceContract

This data type is a Sequence of Data Elements which represents a service contract. It is a structured data type

which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceContractID TpServiceContractID

ServiceContractDescription TpServiceContractDescription

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 200 Release 9

10.5.22 TpServiceContractDescription

This data type is a Sequence of Data Elements which describes a service contract. This contract should

conform to a previously negotiated high-level agreement (regard ing OSA services, their usage and the price, etc.), if

any, between the enterprise operator and the framework operator. It is a structured data type which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceRequestor TpServiceRequestor

BillingContact TpBillingContact

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate

ServiceTypeName TpServiceTypeName

ServiceID TpServiceID

ServiceSubscriptionProperties TpServiceSubscriptionProperties

InUse TpBoolean (See note)

Note: The InUse flag indicates if the contract, or one of its associated profiles, is currently in use by a service
instance and will be returned in describeServiceContract(). This flag will be ignored if it is passed in to
createServiceContract().

10.5.23 TpClientAppProperties

This is of type TpPropertyList. The client application properties is a list of {name,value} pairs, fo r bilateral agreement

between the enterprise operator and the Framework.

10.5.24 TpClientAppDescription

This data type is a Sequence of Data Elements which describes an enterprise client applicat ion. It is a

structured data type, consisting of a unique “client application ID”, password and a list of “client application properties:

Sequence Element
Name

Sequence Element
Type

ClientAppID TpClientAppID

ClientAppProperties TpClientAppProperties

HasAccessSession TpBoolean (See note 1)
HasServiceInstances TpBoolean(See note 2)

Note 1: The HasAccessSession flag indicates if the client application currently has an access session active with the
framework and will be returned in describeClientApp(). This flag will be ignored if it is passed in to
createClientApp().

Note 2: The HasServiceInstances flag indicates if the client application currently has service instances active and will
be returned in describeClientApp(). This flag will be ignored if it is passed in to createClientApp(). This flag
must be false if hasAccessSession is false.

10.5.25 TpSagID

This data type is identical to TpString. It uniquely identifies a Subscription Assignment Group (SAG) of clien t

applications within an enterprise.

10.5.26 TpSagIDList

This data type defines a Numbered List of Data Elements of type TpSagID.

10.5.27 TpSagDescription

This data type is identical to TpString. It describes a SAG: e.g. a list of identifiers of the constituent client

applications, the purpose of the “grouping”.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 201 Release 9

10.5.28 TpSag

This data type is a Sequence of Data Elements which describes a Subscription Assignment Group (SAG) of

client applications within an enterprise. It is a structured data type consisting of a unique SAG ID and a description:

Sequence Element
Name

Sequence Element
Type

SagID TpSagID

SagDescription TpSagDescription

10.5.29 TpServiceProfileID

This data type is identical to TpString. It uniquely identifies the service profile, which further constrains how an

enterprise SAG uses an OSA service.

10.5.30 TpServiceProfileIDList

This data type defines a Numbered List of Data Elements of type TpServiceProfileID.

10.5.31 TpServiceProfile

This data type is a Sequence of Data Elements which represents a Service Profile. It is a structured data type

which consists of:

Sequence Element
Name

Sequence Element
Type

ServiceProfileID TpServiceProfileID

ServiceProfileDescription TpServiceProfileDescription

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 202 Release 9

10.5.32 TpServiceProfileDescription

This data type is a Sequence of Data Elements which describes a Service Profile. A service contract contains

one or more Service Profiles, one for each SAG in the enterprise operator domain. A service profile is a restriction of

the service contract in order to provide restricted service features to a SAG. It is a structured data type which consists

of:

Sequence Element
Name

Sequence Element
Type

ServiceContractID TpServiceContractID

ServiceStartDate TpServiceStartDate

ServiceEndDate TpServiceEndDate
ServiceTypeName TpServiceTypeName (See note 1)

ServiceSubscriptionProperti

es

TpServiceSubscriptionProperties

InUse TpBoolean (See note 2)

ServiceID TpServiceID (See note 3)

Note 1: When the Framework returns a TpServiceProfileDescription to the enterprise operator, it should
set the ServiceTypeName field to the same value as the corresponding field of the service
contract; When the enterprise operator passes a TpServiceProfileDescription to the
Framework, the Framework should ignore the value sent in the ServiceTypeNam e field to
ensure interoperability; The enterprise operator should be required to set the
ServiceTypeName field to the correct value when passing a TpServiceProfileDescription to the
Framework.

Note 2: The InUse flag indicates if the profile is currently in use by a service instance and will be
returned in describeServiceProfile(). This flag will be ignored if it is passed in to
createServiceProfile().

Note 3: The ServiceID field is used to restrict a service type-based service contract to a specific
service. When the TpServiceProfileDescription is passed to the Framework by an enterprise
operator, the Framework should ensure that the ServiceID field, if not empty, contains a service
which is of the service type specified in the service contract. If the corresponding contract is for
a service ID then the Framework should ignore this field.
When a TpServiceProfileDescription is returned to the enterprise operator, the contents of this
field will depend on the associated service contract. If the contract is for a service ID, then this
field should be populated with the correct value. If the contract is for a service type, and the
profile is restricted to a specific service ID then this field should be populated with the correct
value. Otherwise, it should contain an empty string.

10.5.33 TpSagProfilePair

This data type is a Sequence of Data Elements which describes a pair of aSAG and a Service Profile. It is a structured

data type which consists of:

Sequence Element Name Sequence Element Type

Sag TpSagID

ServiceProfile TpServiceProfileID

10.5.34 TpAddSagMembersConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when client applicat ions are

added to a SAG - see method addSagMembers(). This happens, when a client applicat ion is assigned to a service twice.

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is

already assigned to the service. It includes the current service profile. The ConflictGenerat ingSagProfilePair describes

another SAG, to which the client application should be added, and the corresponding service profile, through which the

client application is also connected to this service. This creates a conflict, as there may exist only a single service profile

for each service.

The TpAddSagMembersConflict is a structured data type which consists of:

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 203 Release 9

Sequence Element Name Sequence Element Type

ClientApplication TpClientAppID

ConflictGeneratingSagProfilePair TpSagProfilePair

AlreadyAssignedSagProfilePair TpSagProfilePair

Service TpServiceID

10.5.35 TpAddSagMembersConflictList

This data type defines a Numbered List of Data Elements of type TpAddSagMembersConflict.

10.5.36 TpAssignSagToServiceProfileConflict

This data type is a Sequence of Data Elements which describes a conflict that may occur when a SAG is assigned to a

Service Profile - see method assign().

The AlreadyAssignedSagProfilePair describes the SAG and the service profile through which the client application is

already assigned to the service.

The TpAssignSagToServiceProfileConflict is a structured data type which consists of:

Sequence Element Name Sequence Element Type

ClientApplication TpClientAppID

AlreadyAssignedSagProfilePair TpSagProfilePair

Service TpServiceID

10.5.37 TpAssignSagToServiceProfileConflictList

This data type defines a Numbered List of Data Elements of type TpAssignSagToServiceProfileConflict.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 204 Release 9

11 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

Name Description

P_ACCESS_DENIED The client is not currently authenticated with the framework

P_DUPLICATE_PROPERTY_NAME A duplicate property name has been received

P_ILLEGAL_SERVICE_ID Illegal Service ID

P_ILLEGAL_SERVICE_TYPE Illegal Service Type

P_INVALID_ACCESS_TYPE The framework does not support the type of access interface requested by the
client.

P_INVALID_ACTIVITY_TEST_ID ID does not correspond to a valid activity test request

P_INVALID_ADDITION_TO_SAG A client application cannot be added to the SAG because this would imply that the

client application has two concurrent service profiles at a particular moment in
time for a particular service.

P_INVALID_AGREEMENT_TEXT Invalid agreement text

P_INVALID_ENCRYPTION_CAPABILITY Invalid encryption capability

P_INVALID_AUTH_TYPE Invalid type of authentication mechanism

P_INVALID_CLIENT_APP_ID Invalid Client Application ID

P_INVALID_DOMAIN_ID Invalid client ID

P_INVALID_ENT_OP_ID Invalid Enterprise Operator ID

P_INVALID_PROPERTY The framework does not recognise the property supplied by the client

P_INVALID_SAG_ID Invalid Subscription Assignment Group ID

P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT A SAG cannot be assigned to the service profile because this would imply that a

client application has two concurrent service profiles at a particular moment in
time for a particular service.

P_INVALID_SERVICE_CONTRACT_ID Invalid Service Contract ID

P_INVALID_SERVICE_ID Invalid service ID

P_INVALID_SERVICE_PROFILE_ID Invalid service profile ID

P_INVALID_SERVICE_TOKEN The service token has not been issued, or it has expired.

P_INVALID_SERVICE_TYPE Invalid Service Type

P_INVALID_SIGNATURE Invalid digital signature

P_INVALID_SIGNING_ALGORITHM Invalid signing algorithm

P_MISSING_MANDATORY_PROPERTY Mandatory Property Missing

P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY No encryption mechanism, which is acceptable to the framework, is supported by
the client

P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM No authentication mechanism, which is acceptable to the framework, is supported
by the client

P_NO_ACCEPTABLE_SIGNING_ALGORITHM No signing algorithm, which is acceptable to the framework, is supported by the
client

P_PROPERTY_TYPE_MISMATCH Property Type Mismatch

P_SERVICE_ACCESS_DENIED The client application is not allowed to access this service.

P_SERVICE_NOT_ENABLED The service ID does not correspond to a service that has been enabled

P_SERVICE_TYPE_UNAVAILABLE The service type is not available according to the Framework.

P_UNKNOWN_SERVICE_ID Unknown Service ID

P_UNKNOWN_SERVICE_TYPE Unknown Service Type

Each exception class contains the following structure:

Structure Element Name Structure Element Type Structure Element Description

ExtraInformation TpString Carries extra information to help identify the source of the
exception, e.g. a parameter name

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 205 Release 9

Annex A (normative):
OMG IDL Description of Framework

The OMG IDL representation of this interface specification is contained in text files (fw_data.idl, fw_if_access.idl,

fw_if_app.idl, fw_if_service.id l contained in arch ive 2919803V800IDL.ZIP) which accompany the present document.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 206 Release 9

Annex B (informative):
W3C WSDL Description of Framework

The W3C WSDL representation of this interface specification is contained in zip file 2919803V800WSDL.ZIP, which

accompanies the present document.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 207 Release 9

Annex C (informative):
Java™ API Description of the Framework

The Java™ API realisation of this interface specification is produced in accordance with the Java™ Realisation rules

defined in Part 1 of this specificat ion series. These rules aim to deliver for Java™, a developer API, provided as a

realisation, supporting a Java™ API that represents the UML specifications. The rules support the production of both

J2SE™ and J2EE™ versions of the API from the common UML s pecifications.

The J2SE™ representation of this interface specificat ion is provided as Java™, contained in arch ive

2919803V800J2SE.ZIP that accompanies the present document.

The J2EE™ representation of this interface specification is provided as Java™, con tained in arch ive

2919803V800J2EE.ZIP that accompanies the present document.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 208 Release 9

Annex D (informative):
Description of the Framework for 3GPP2 cdma2000
networks

This annex is intended to define the OSA API Stage 3 interface defin itions and it provides the co mplete OSA

specifications for cdma2000-based systems. It is an extension of OSA API specifications capabilities to enable

operation in cdma2000 systems environment. They are in alignment with 3GPP2 Stage 1 requirements and Stage 2

architecture defined in

[1] 3GPP2 P.S0001-B: "Wireless IP Network Standard", Version 1.0, September 2000;

[2] 3GPP2 S.R0037-0: "IP Network Architecture Model for cdma2000 Spread Spectrum Systems",

Version 2.0, May 14, 2002;

[3] 3GPP2 X.S0013: "All-IP Core Network Multimedia Doma in", December 2003.

These requirements are expressed as additions to and/or exclusions from the 3GPP Release 8 specification. The

informat ion given here is to be used by developers in 3GPP2 cdma2000 network architecture to interpret the 3GPP

OSA specifications.

D.1 General Exceptions

The term UMTS is not applicable fo r the cdma2000 family of standards. Nevertheless the term UMTS is used in 3GPP

TR 21.905 (Vocabulary for 3GPP Specifications) mostly in the broader sense of "3G Wireless System". If not stated

otherwise there are no additions or exclusions required.

CAMEL and CAP mappings are not applicable for cdma2000 systems.

D.2 Specific Exceptions

D.2.1 Clause 1: Scope

There are no additions or exclusions.

D.2.2 Clause 2: References

Normative references on 3GPP TS 23.078 and on 3GPP TS 29.078 are not applicable for cdma2000 systems.

D.2.3 Clause 3: Definitions and abbreviations

There are no additions or exclusions.

D.2.4 Clause 4: Overview of the Framework

There are no additions or exclusions.

D.2.5 Clause 5: The Base Interface Specification

There are no additions or exclusions.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 209 Release 9

D.2.6 Clause 6: Framework Access Session API

There are no additions or exclusions.

D.2.7 Clause 7 Framework-to-Application Sequence Diagrams

There are no additions or exclusions.

D.2.8 Clause 8: Framework-to-Service API

There are no additions or exclusions.

D.2.9 Clause 9: Service Properties

Since CAMEL protocol is not applicable for cdma2000 systems, an SCS shall ind icate support for the CAMEL feature

through service properties. For cdma2000 systems the CAMEL service properties shall be d isabled (CAMEL shall be

turned always off in the case of the 3GPP2 networks; e.g.: UserLocationCamel shall be set to false).

D.2.10 Clause 10: Data Definitions

There are no additions. P_USER_LOCATION_CAMELvalue of TpServ iceTypeName is not required to be supported

in the 3GPP2 networks.

D.2.11 Clause 11: Exception Classes

There are no additions or exclusions.

D.2.12 Annex A (normative): OMG IDL Description of the
Framework

There are no additions or exclusions.

D.2.13 Annex B (informative): W3C WSDL Description of the

Framework

There are no additions or exclusions.

D.2.14 Annex C (informative): Java™ API Description of the

Framework

There are no additions or exclusions.

3GPP

3GPP TS 29.198-3 V9.0.0 (2009-12) 210 Release 9

Annex E (informative):
Change history

Change history

Date TSG # TSG Doc. CR Rev Subject/Comment Old New

Jun 2006 CT-32 CP-060205 0133 -- Remove deprecated items from Trust and Security Management
interfaces

6.6.1 7.0.0

Jun 2006 CT-32 CP-060205 0134 -- Remove deprecated items from Integrity Management: Fault and
Load Management

6.6.1 7.0.0

Sep 2006 -- -- -- -- Added missing code attachments J2EE and J2SE. 7.0.0 7.0.1

Dec 2006 CT-34 CP-060721 0136 1 Remove unintended limitation on the support of regular expressions
within TpAddressRange

7.0.1 7.1.0

Dec 2006 CT-34 CP-060596 0137 -- Add TpServiceTypeName to include name of Service Broker SCF 7.0.1 7.1.0

May 2008 CT-40 CP-080254 0138 -- Transfer of missing items from ETSI TISPAN OSA Framew ork
specif ication

7.1.0 8.0.0

2009-12 - - - - Update to Rel-9 version (MCC) 8.0.0 9.0.0

	Foreword
	Introduction
	1 Scope
	2 References
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Overview of the Framework
	5 The Base Interface Specification
	5.1 Interface Specification Format
	5.1.1 Interface Class
	5.1.2 Method descriptions
	5.1.3 Parameter descriptions
	5.1.4 State Model

	5.2 Base Interface
	5.2.1 Interface Class IpInterface

	5.3 Service Interfaces
	5.3.1 Overview

	5.4 Generic Service Interface
	5.4.1 Interface Class IpService
	5.4.1.1 Method setCallback()
	5.4.1.2 Method setCallbackWithSessionID()

	6 Framework Access Session API
	6.1 Sequence Diagrams
	6.1.1 Trust and Security Management Sequence Diagrams
	6.1.1.1 Initial Access
	6.1.1.2 Framework Terminates Access
	6.1.1.3 Application Terminates Access
	6.1.1.4 Non-API level Authentication
	6.1.1.5 API Level Authentication

	6.2 Class Diagrams
	6.3 Interface Classes
	6.3.1 Trust and Security Management Interface Classes
	6.3.1.1 Interface Class IpClientAPILevelAuthentication
	6.3.1.1.1 Method abortAuthentication()
	6.3.1.1.2 Method authenticationSucceeded()
	6.3.1.1.3 Method challenge()

	6.3.1.2 Interface Class IpClientAccess
	6.3.1.2.1 Method terminateAccess()

	6.3.1.3 Interface Class IpInitial
	6.3.1.3.1 Method initiateAuthenticationWithVersion()

	6.3.1.4 Interface Class IpAuthentication
	6.3.1.4.1 Method requestAccess()

	6.3.1.5 Interface Class IpAPILevelAuthentication
	6.3.1.5.1 Method abortAuthentication()
	6.3.1.5.2 Method authenticationSucceeded()
	6.3.1.5.3 Method selectAuthenticationMechanism()
	6.3.1.5.4 Method challenge()

	6.3.1.6 Interface Class IpAccess
	6.3.1.6.1 Method obtainInterface()
	6.3.1.6.2 Method obtainInterfaceWithCallback()
	6.3.1.6.3 Method listInterfaces()
	6.3.1.6.4 Method selectSigningAlgorithm()
	6.3.1.6.5 Method terminateAccess()
	6.3.1.6.6 Method relinquishInterface()

	6.4 State Transition Diagrams
	6.4.1 Trust and Security Management State Transition Diagrams
	6.4.1.1 State Transition Diagrams for IpInitial
	6.4.1.2 State Transition Diagrams for IpAPILevelAuthentication
	6.4.1.2.1 Idle State
	6.4.1.2.2 Authenticating Framework State
	6.4.1.2.3 Framework Authenticated State
	6.4.1.2.4 Authenticating Client State
	6.4.1.2.5 Client Authenticated State
	6.4.1.2.6 Idle State
	6.4.1.2.7 Authenticating Framework State
	6.4.1.2.8 Framework Authenticated State
	6.4.1.2.9 Authenticating Client State
	6.4.1.2.10 Client Authenticated State

	6.4.1.3 State Transition Diagrams for IpAccess
	6.4.1.3.1 Active State

	7 Framework-to-Application API
	7.1 Sequence Diagrams
	7.1.1 Event Notification Sequence Diagrams
	7.1.1.1 Enable Event Notification

	7.1.2 Integrity Management Sequence Diagrams
	7.1.2.1 Load Management: Suspend/resume notification from application
	7.1.2.2 Load Management: Framework queries load statistics
	7.1.2.3 Load Management: Framework callback registration and Application load control
	7.1.2.4 Load Management: Application reports current load condition
	7.1.2.5 Load Management: Application queries load statistics
	7.1.2.6 Load Management: Application callback registration and load control
	7.1.2.7 Heartbeat Management: Start/perform/end heartbeat supervision of the application
	7.1.2.8 Fault Management: Framework detects a Service failure
	7.1.2.9 Fault Management: Application requests a Framework activity test

	7.1.3 Service Discovery Sequence Diagrams
	7.1.3.1 Service Discovery

	7.1.4 Service Agreement Management Sequence Diagrams
	7.1.4.1 Service Selection

	7.2 Class Diagrams
	7.3 Interface Classes
	7.3.1 Service Discovery Interface Classes
	7.3.1.1 Interface Class IpServiceDiscovery
	7.3.1.1.1 Method listServiceTypes()
	7.3.1.1.2 Method describeServiceType()
	7.3.1.1.3 Method discoverService()
	7.3.1.1.4 Method listSubscribedServices()

	7.3.2 Service Agreement Management Interface Classes
	7.3.2.1 Interface Class IpAppServiceAgreementManagement
	7.3.2.1.1 Method signServiceAgreement()
	7.3.2.1.2 Method terminateServiceAgreement()

	7.3.2.2 Interface Class IpServiceAgreementManagement
	7.3.2.2.1 Method signServiceAgreement()
	7.3.2.2.2 Method terminateServiceAgreement()
	7.3.2.2.3 Method selectService()
	7.3.2.2.4 Method initiateSignServiceAgreement()

	7.3.3 Integrity Management Interface Classes
	7.3.3.1 Interface Class IpAppFaultManager
	7.3.3.1.1 Method activityTestRes()
	7.3.3.1.2 Method appActivityTestReq()
	7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()
	7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()
	7.3.3.1.5 Method <<deprecated>> fwUnavailableInd()
	7.3.3.1.6 Method activityTestErr()
	7.3.3.1.7 Method appUnavailableInd()
	7.3.3.1.8 Method svcAvailStatusInd()
	7.3.3.1.9 Method generateFaultStatisticsRecordRes()
	7.3.3.1.10 Method generateFaultStatisticsRecordErr()
	7.3.3.1.11 Method generateFaultStatisticsRecordReq()
	7.3.3.1.12 Method fwAvailStatusInd()

	7.3.3.2 Interface Class IpFaultManager
	7.3.3.2.1 Method activityTestReq()
	7.3.3.2.2 Method appActivityTestRes()
	7.3.3.2.3 Method svcUnavailableInd()
	7.3.3.2.4 Method appActivityTestErr()
	7.3.3.2.5 Method appAvailStatusInd()
	7.3.3.2.6 Method generateFaultStatisticsRecordReq()
	7.3.3.2.7 Method generateFaultStatisticsRecordRes()
	7.3.3.2.8 Method generateFaultStatisticsRecordErr()

	7.3.3.3 Interface Class IpAppHeartBeatMgmt
	7.3.3.3.1 Method enableAppHeartBeat()
	7.3.3.3.2 Method disableAppHeartBeat()
	7.3.3.3.3 Method changeInterval()

	7.3.3.4 Interface Class IpAppHeartBeat
	7.3.3.4.1 Method pulse()

	7.3.3.5 Interface Class IpHeartBeatMgmt
	7.3.3.5.1 Method enableHeartBeat()
	7.3.3.5.2 Method disableHeartBeat()
	7.3.3.5.3 Method changeInterval()

	7.3.3.6 Interface Class IpHeartBeat
	7.3.3.6.1 Method pulse()

	7.3.3.7 Interface Class IpAppLoadManager
	7.3.3.7.1 Method loadLevelNotification()
	7.3.3.7.2 Method resumeNotification()
	7.3.3.7.3 Method suspendNotification()
	7.3.3.7.4 Method createLoadLevelNotification()
	7.3.3.7.5 Method destroyLoadLevelNotification()
	7.3.3.7.6 Method queryAppLoadStatsReq()
	7.3.3.7.7 Method queryLoadStatsRes()
	7.3.3.7.8 Method queryLoadStatsErr()

	7.3.3.8 Interface Class IpLoadManager
	7.3.3.8.1 Method reportLoad()
	7.3.3.8.2 Method createLoadLevelNotification()
	7.3.3.8.3 Method destroyLoadLevelNotification()
	7.3.3.8.4 Method resumeNotification()
	7.3.3.8.5 Method suspendNotification()
	7.3.3.8.6 Method queryLoadStatsReq()
	7.3.3.8.7 Method queryAppLoadStatsRes()
	7.3.3.8.8 Method queryAppLoadStatsErr()

	7.3.3.9 Interface Class IpOAM
	7.3.3.9.1 Method systemDateTimeQuery()

	7.3.3.10 Interface Class IpAppOAM
	7.3.3.10.1 Method systemDateTimeQuery()

	7.3.4 Event Notification Interface Classes
	7.3.4.1 Interface Class IpAppEventNotification
	7.3.4.1.1 Method reportNotification()
	7.3.4.1.2 Method notificationTerminated()

	7.3.4.2 Interface Class IpEventNotification
	7.3.4.2.1 Method createNotification()
	7.3.4.2.2 Method destroyNotification()

	7.4 State Transition Diagrams
	7.4.1 Service Discovery State Transition Diagrams
	7.4.1.1 State Transition Diagrams for IpServiceDiscovery
	7.4.1.1.1 Active State

	7.4.2 Service Agreement Management State Transition Diagrams
	7.4.3 Integrity Management State Transition Diagrams
	7.4.3.1 State Transition Diagrams for IpLoadManager
	7.4.3.1.1 Idle State
	7.4.3.1.2 Notification Suspended State
	7.4.3.1.3 Active State

	7.4.3.2 State Transition Diagrams for LoadManagerInternal
	7.4.3.2.1 Normal load State
	7.4.3.2.2 Application Overload State
	7.4.3.2.3 Internal overload State
	7.4.3.2.4 Internal and Application Overload State

	7.4.3.3 State Transition Diagrams for IpOAM
	7.4.3.3.1 Active State

	7.4.3.4 State Transition Diagrams for IpFaultManager
	7.4.3.4.1 Framework Active State
	7.4.3.4.2 Framework Faulty State
	7.4.3.4.3 Framework Activity Test State
	7.4.3.4.4 Service Activity Test State

	7.4.4 Event Notification State Transition Diagrams
	7.4.4.1 State Transition Diagrams for IpEventNotification

	8 Framework-to-Service API
	8.1 Sequence Diagrams
	8.1.1 Service Discovery Sequence Diagrams
	8.1.2 Service Registration Sequence Diagrams
	8.1.2.1 New SCF Sub Type Registration
	8.1.2.2 New SCF Registration

	8.1.3 Service Instance Lifecycle Manager Sequence Diagrams
	8.1.3.1 Sign Service Agreement

	8.1.4 Integrity Management Sequence Diagrams
	8.1.4.1 Load Management: Service callback registration and load control
	8.1.4.2 Load Management: Framework callback registration and service load control
	8.1.4.3 Load Management: Client and Service Load Balancing
	8.1.4.4 Heartbeat Management: Start/perform/end heartbeat supervision of the service
	8.1.4.5 Fault Management: Service requests Framework activity test
	8.1.4.6 Fault Management: Service requests Application activity test
	8.1.4.7 Fault Management: Application requests Service activity test
	8.1.4.8 Fault Management: Application detects service is unavailable

	8.1.5 Event Notification Sequence Diagrams

	8.2 Class Diagrams
	8.3 Interface Classes
	8.3.1 Service Registration Interface Classes
	8.3.1.1 Interface Class IpFwServiceRegistration
	8.3.1.1.1 Method registerService()
	8.3.1.1.2 Method announceServiceAvailability()
	8.3.1.1.3 Method unregisterService()
	8.3.1.1.4 Method describeService()
	8.3.1.1.5 Method unannounceService()
	8.3.1.1.6 Method registerServiceSubType()

	8.3.2 Service Instance Lifecycle Manager Interface Classes
	8.3.2.1 Interface Class IpServiceInstanceLifecycleManager
	8.3.2.1.1 Method createServiceManager()
	8.3.2.1.2 Method destroyServiceManager()

	8.3.3 Service Discovery Interface Classes
	8.3.3.1 Interface Class IpFwServiceDiscovery
	8.3.3.1.1 Method listServiceTypes()
	8.3.3.1.2 Method describeServiceType()
	8.3.3.1.3 Method discoverService()
	8.3.3.1.4 Method listRegisteredServices()

	8.3.4 Integrity Management Interface Classes
	8.3.4.1 Interface Class IpFwFaultManager
	8.3.4.1.1 Method activityTestReq()
	8.3.4.1.2 Method svcActivityTestRes()
	8.3.4.1.3 Method appUnavailableInd()
	8.3.4.1.4 Method svcActivityTestErr()
	8.3.4.1.5 Method svcAvailStatusInd()
	8.3.4.1.6 Method generateFaultStatisticsRecordReq()
	8.3.4.1.7 Method generateFaultStatisticsRecordRes()
	8.3.4.1.8 Method generateFaultStatisticsRecordErr()

	8.3.4.2 Interface Class IpSvcFaultManager
	8.3.4.2.1 Method activityTestRes()
	8.3.4.2.2 Method svcActivityTestReq()
	8.3.4.2.3 Method <<deprecated>> fwFaultReportInd()
	8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()
	8.3.4.2.5 Method <<deprecated>> fwUnavailableInd()
	8.3.4.2.6 Method svcUnavailableInd()
	8.3.4.2.7 Method activityTestErr()
	8.3.4.2.8 Method appAvailStatusInd()
	8.3.4.2.9 Method generateFaultStatisticsRecordRes()
	8.3.4.2.10 Method generateFaultStatisticsRecordErr()
	8.3.4.2.11 Method generateFaultStatisticsRecordReq()
	8.3.4.2.12 Method fwAvailStatusInd()

	8.3.4.3 Interface Class IpFwHeartBeatMgmt
	8.3.4.3.1 Method enableHeartBeat()
	8.3.4.3.2 Method disableHeartBeat()
	8.3.4.3.3 Method changeInterval()

	8.3.4.4 Interface Class IpFwHeartBeat
	8.3.4.4.1 Method pulse()

	8.3.4.5 Interface Class IpSvcHeartBeatMgmt
	8.3.4.5.1 Method enableSvcHeartBeat()
	8.3.4.5.2 Method disableSvcHeartBeat()
	8.3.4.5.3 Method changeInterval()

	8.3.4.6 Interface Class IpSvcHeartBeat
	8.3.4.6.1 Method pulse()

	8.3.4.7 Interface Class IpFwLoadManager
	8.3.4.7.1 Method reportLoad()
	8.3.4.7.2 Method createLoadLevelNotification()
	8.3.4.7.3 Method destroyLoadLevelNotification()
	8.3.4.7.4 Method suspendNotification()
	8.3.4.7.5 Method resumeNotification()
	8.3.4.7.6 Method queryLoadStatsReq()
	8.3.4.7.7 Method querySvcLoadStatsRes()
	8.3.4.7.8 Method querySvcLoadStatsErr()

	8.3.4.8 Interface Class IpSvcLoadManager
	8.3.4.8.1 Method loadLevelNotification()
	8.3.4.8.2 Method suspendNotification()
	8.3.4.8.3 Method resumeNotification()
	8.3.4.8.4 Method createLoadLevelNotification()
	8.3.4.8.5 Method destroyLoadLevelNotification()
	8.3.4.8.6 Method querySvcLoadStatsReq()
	8.3.4.8.7 Method queryLoadStatsRes()
	8.3.4.8.8 Method queryLoadStatsErr()

	8.3.4.9 Interface Class IpFwOAM
	8.3.4.9.1 Method systemDateTimeQuery()

	8.3.4.10 Interface Class IpSvcOAM
	8.3.4.10.1 Method systemDateTimeQuery()

	8.3.5 Event Notification Interface Classes
	8.3.5.1 Interface Class IpFwEventNotification
	8.3.5.1.1 Method createNotification()
	8.3.5.1.2 Method destroyNotification()

	8.3.5.2 Interface Class IpSvcEventNotification
	8.3.5.2.1 Method reportNotification()
	8.3.5.2.2 Method notificationTerminated()

	8.4 State Transition Diagrams
	8.4.1 Service Registration State Transition Diagrams
	8.4.1.1 State Transition Diagrams for IpFwServiceRegistration
	8.4.1.1.1 SCF Registered State
	8.4.1.1.2 SCF Announced State

	8.4.2 Service Instance Lifecycle Manager State Transition Diagrams
	8.4.3 Service Discovery State Transition Diagrams
	8.4.4 Integrity Management State Transition Diagrams
	8.4.4.1 State Transition Diagrams for IpFwLoadManager
	8.4.4.1.1 Idle State
	8.4.4.1.2 Notification Suspended State
	8.4.4.1.3 Active State

	8.4.4.2 State Transition Diagrams for IpFwFaultManager
	8.4.4.2.1 Framework Active State
	8.4.4.2.2 Framework Activity Test State
	8.4.4.2.3 Application Activity Test State
	8.4.4.2.4 Framework Faulty State

	8.4.5 Event Notification State Transition Diagrams

	8a Framework-to-Enterprise Operator API
	8a.1 Sequence Diagrams
	8a.1.1 Event Notification Sequence Diagrams
	8a.1.2 Service Subscription Sequence Diagrams
	8a.1.2.1 Service Discovery and Subscription Scenario
	8a.1.2.2 Enterprise Operator and Client Application Subscription Management Sequence Diagram

	8a.2 Class Diagrams
	8a.3 Interface Classes
	8a.3.1 Event Notification Interface Classes
	8a.3.1.1 Interface Class IpClientEventNotification
	8a.3.1.1.1 Method reportNotification()
	8a.3.1.1.2 Method notificationTerminated()

	8a.3.1.2 Interface Class IpEventNotification
	8a.3.1.2.1 Method createNotification()
	8a.3.1.2.2 Method destroyNotification()

	8a.3.2 Service Subscription Interface Classes
	8a.3.2.1 Interface Class IpClientAppManagement
	8a.3.2.1.1 Method createClientApp()
	8a.3.2.1.2 Method modifyClientApp()
	8a.3.2.1.3 Method deleteClientApp()
	8a.3.2.1.4 Method createSAG()
	8a.3.2.1.5 Method modifySAG()
	8a.3.2.1.6 Method deleteSAG()
	8a.3.2.1.7 Method addSAGMembers()
	8a.3.2.1.8 Method removeSAGMembers()
	8a.3.2.1.9 Method requestConflictInfo()

	8a.3.2.2 Interface Class IpClientAppInfoQuery
	8a.3.2.2.1 Method describeClientApp()
	8a.3.2.2.2 Method listClientApps()
	8a.3.2.2.3 Method describeSAG()
	8a.3.2.2.4 Method listSAGs()
	8a.3.2.2.5 Method listSAGMembers()
	8a.3.2.2.6 Method listClientAppMembership()

	8a.3.2.3 Interface Class IpServiceProfileManagement
	8a.3.2.3.1 Method createServiceProfile()
	8a.3.2.3.2 Method modifyServiceProfile()
	8a.3.2.3.3 Method deleteServiceProfile()
	8a.3.2.3.4 Method assign()
	8a.3.2.3.5 Method deassign()
	8a.3.2.3.6 Method requestConflictInfo()

	8a.3.2.4 Interface Class IpServiceProfileInfoQuery
	8a.3.2.4.1 Method listServiceProfiles()
	8a.3.2.4.2 Method describeServiceProfile()
	8a.3.2.4.3 Method listAssignedMembers()

	8a.3.2.5 Interface Class IpServiceContractManagement
	8a.3.2.5.1 Method createServiceContract()
	8a.3.2.5.2 Method modifyServiceContract()
	8a.3.2.5.3 Method deleteServiceContract()

	8a.3.2.6 Interface Class IpServiceContractInfoQuery
	8a.3.2.6.1 Method describeServiceContract()
	8a.3.2.6.2 Method listServiceContracts()
	8a.3.2.6.3 Method listServiceProfiles()

	8a.3.2.7 Interface Class IpEntOpAccountManagement
	8a.3.2.7.1 Method modifyEntOpAccount()
	8a.3.2.7.2 Method deleteEntOpAccount()

	8a.3.2.8 Interface Class IpEntOpAccountInfoQuery
	8a.3.2.8.1 Method describeEntOpAccount()

	8a.4 State Transition Diagrams
	8a.4.1 Event Notification State Transition Diagrams
	8a.4.2 Service Subscription State Transition Diagrams

	9 Service Properties
	9.1 Service Super and Sub Types
	9.2 Service Property Types
	9.3 General Service Properties
	9.3.1 Service Name
	9.3.2 Service Version
	9.3.3 Service ID
	9.3.4 Service Description
	9.3.5 Product Name
	9.3.6 Product Version
	9.3.7 Void
	9.3.8 Operation Set
	9.3.9 Compatible Service
	9.3.10 Backward Compatibility Level
	9.3.11 Migration Required
	9.3.12 Data Migrated
	9.3.13 Migration Date And Time
	9.3.14 Support for Regular Expressions in Address Range

	10 Data Definitions
	10.1 Common Framework Data Definitions
	10.1.1 TpClientAppID
	10.1.2 TpClientAppIDList
	10.1.3 TpDomainID
	10.1.4 TpDomainIDType
	10.1.5 TpEntOpID
	10.1.6 TpPropertyName
	10.1.7 TpPropertyValue
	10.1.8 TpProperty
	10.1.9 TpPropertyList
	10.1.10 TpEntOpIDList
	10.1.11 TpFwID
	10.1.12 TpService
	10.1.13 TpServiceList
	10.1.14 TpServiceDescription
	10.1.15 TpServiceID
	10.1.16 TpServiceIDList
	10.1.17 TpServiceInstanceID
	10.1.18 TpServiceTypeProperty
	10.1.19 TpServiceTypePropertyList
	10.1.20 TpServiceTypePropertyMode
	10.1.21 TpServicePropertyTypeName
	10.1.22 TpServicePropertyName
	10.1.23 TpServicePropertyNameList
	10.1.24 TpServicePropertyValue
	10.1.25 TpServicePropertyValueList
	10.1.26 TpServiceProperty
	10.1.27 TpServicePropertyList
	10.1.28 TpServiceSupplierID
	10.1.29 TpServiceTypeDescription
	10.1.30 TpServiceTypeName
	10.1.31 TpServiceTypeNameList
	10.1.32 TpSubjectType
	10.1.33 TpServiceTypePropertyValue
	10.1.34 TpServiceTypePropertyValueList

	10.2 Event Notification Data Definitions
	10.2.1 TpFwEventName
	10.2.2 TpFwEventCriteria
	10.2.3 TpFwEventInfo
	10.2.4 TpFwMigrationServiceAvailableInfo
	10.2.5 TpMigrationAdditionalInfo
	10.2.6 TpMigrationAdditionalInfoType
	10.2.7 TpMigrationAdditionalInfoSet
	10.2.8 TpFwAgreementInfo

	10.3 Trust and Security Management Data Definitions
	10.3.1 TpAccessType
	10.3.2 TpAuthType
	10.3.3 Void
	10.3.4 Void
	10.3.5 Void
	10.3.6 TpAuthDomain
	10.3.7 TpInterfaceName
	10.3.8 TpInterfaceNameList
	10.3.9 TpServiceToken
	10.3.10 TpSignatureAndServiceMgr
	10.3.11 TpSigningAlgorithm
	10.3.12 TpSigningAlgorithmCapabilityList
	10.3.13 TpAuthMechanism
	10.3.14 TpAuthMechanismList

	10.4 Integrity Management Data Definitions
	10.4.1 TpActivityTestRes
	10.4.2 TpFaultStatsRecord
	10.4.3 TpFaultStats
	10.4.4 TpFaultStatisticsError
	10.4.5 TpFaultStatsSet
	10.4.6 TpActivityTestID
	10.4.7 TpInterfaceFault
	10.4.8 Void
	10.4.9 TpFwUnavailReason
	10.4.10 TpLoadLevel
	10.4.11 TpLoadThreshold
	10.4.12 TpLoadInitVal
	10.4.13 TpLoadPolicy
	10.4.14 TpLoadStatistic
	10.4.15 TpLoadStatisticList
	10.4.16 TpLoadStatisticData
	10.4.17 TpLoadStatisticEntityID
	10.4.18 TpLoadStatisticEntityType
	10.4.19 TpLoadStatisticInfo
	10.4.20 TpLoadStatisticInfoType
	10.4.21 TpLoadStatisticError
	10.4.22 TpSvcAvailStatusReason
	10.4.23 TpAppAvailStatusReason
	10.4.24 TpLoadTestID
	10.4.25 TpFaultStatsErrorList
	10.4.26 TpFaultReqID
	10.4.27 TpFwAvailStatusReason

	10.5 Service Subscription Data Definitions
	10.5.1 TpPropertyName
	10.5.2 TpPropertyValue
	10.5.3 TpProperty
	10.5.4 TpPropertyList
	10.5.5 TpEntOpProperties
	10.5.6 TpEntOp
	10.5.7 TpServiceContractID
	10.5.8 TpServiceContractIDList
	10.5.9 TpPersonName
	10.5.10 TpPostalAddress
	10.5.11 TpTelephoneNumber
	10.5.12 TpEmail
	10.5.13 TpHomePage
	10.5.14 TpPersonProperties
	10.5.15 TpPerson
	10.5.16 TpServiceStartDate
	10.5.17 TpServiceEndDate
	10.5.18 TpServiceRequestor
	10.5.19 TpBillingContact
	10.5.20 TpServiceSubscriptionProperties
	10.5.21 TpServiceContract
	10.5.22 TpServiceContractDescription
	10.5.23 TpClientAppProperties
	10.5.24 TpClientAppDescription
	10.5.25 TpSagID
	10.5.26 TpSagIDList
	10.5.27 TpSagDescription
	10.5.28 TpSag
	10.5.29 TpServiceProfileID
	10.5.30 TpServiceProfileIDList
	10.5.31 TpServiceProfile
	10.5.32 TpServiceProfileDescription
	10.5.33 TpSagProfilePair
	10.5.34 TpAddSagMembersConflict
	10.5.35 TpAddSagMembersConflictList
	10.5.36 TpAssignSagToServiceProfileConflict
	10.5.37 TpAssignSagToServiceProfileConflictList

	11 Exception Classes
	Annex A (normative): OMG IDL Description of Framework
	Annex B (informative): W3C WSDL Description of Framework
	Annex C (informative): Java™ API Description of the Framework
	Annex D (informative): Description of the Framework for 3GPP2 cdma2000 networks

	D.1 General Exceptions
	D.2 Specific Exceptions
	D.2.1 Clause 1: Scope
	D.2.2 Clause 2: References
	D.2.3 Clause 3: Definitions and abbreviations
	D.2.4 Clause 4: Overview of the Framework
	D.2.5 Clause 5: The Base Interface Specification
	D.2.6 Clause 6: Framework Access Session API
	D.2.7 Clause 7 Framework-to-Application Sequence Diagrams
	D.2.8 Clause 8: Framework-to-Service API
	D.2.9 Clause 9: Service Properties
	D.2.10 Clause 10: Data Definitions
	D.2.11 Clause 11: Exception Classes
	D.2.12 Annex A (normative): OMG IDL Description of the Framework
	D.2.13 Annex B (informative): W3C WSDL Description of the Framework
	D.2.14 Annex C (informative): Java™ API Description of the Framework
	Annex E (informative): Change history

