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Foreword 

The present document describes the detailed mapping of the general audio service employ ing the aacPlus general audio 

codec within the 3GPP system. 

The contents of the present document are subject to continuing work within the TSG and may change following formal 

TSG approval. Should the TSG modify the contents of this TS, it  will be re-released by the TSG with an identifying 

change of release date and an increase in version number as follows:  

Version x.y.z 

where: 

x the first digit : 

1 presented to TSG for information; 

2 presented to TSG for approval; 

3 Indicates TSG approved document under change control. 

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, 

updates, etc. 

z the third digit is incremented when editorial on ly changes have been incorporated in the specification;  
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1 Scope 

This Telecommunication Standard (TS) describes the SBR encoder part of the Enhanced aacPlus general audio codec 

[3]. 

2 Normative references 

This TS incorporates by dated and undated reference, provisions from other publications. These normative references 

are cited in the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent 

amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or 

revision. For undated references, the latest edition of the publication referred to applies.  

[1] ISO/IEC 14496-3:2001/Amd.1:2003, Bandwidth Extension. 

[2] ISO/IEC 14496-3:2001/Amd.1:2003/DCOR1. 

[3] 3GPP TS 26.401 : Enhanced aacPlus general audio codec; General Description 

3 Definitions, symbols and abbreviations 

3.1 Definitions 

For the purposes of this TS, the following defin itions apply: 

band:  (as in limiter band, noise floor band, etc.) a group of consecutive QMF subbands  

chirp factor: the bandwidth expansion factor of the formants described by a LPC polynomial 

Down Sampled SBR: the SBR Tool with a modified synthesis filterbank resulting in a down sampled output signal 

with the same sample rate as the input signal to the SBR Tool. May be used whenever a lower 

sample rate output is desired. 

envelope scalefactor: an element representing the averaged energy of a signal over a reg ion described by a 

frequency band and a time segment 

frequency band: interval in frequency, group of consecutive QMF subbands 

frequency border: frequency band delimiter, expressed as a specific QMF subband 

noise floor:  a vector of noise floor scalefactors  

noise floor scalefactor: an element associated with a region described by a frequency band and a time segment, 

representing the ratio between the energy of the noise to be added to the envelope adjusted HF 

generated signal and the energy of the same  

patch:  a number of adjoin ing QMF subbands moved to a different frequency location  

SBR envelope:  a vector of envelope scalefactors 

SBR frame: time segment associated with one SBR extension data element 

SBR range:  the frequency range of the signal generated by the SBR algorithm 

subband:  a frequency range represented by one row in a QMF matrix, carry ing a subsampled signal  

time border:  time segment delimiter, expressed as a specific t ime slot 

time segment:  interval in time, group of consecutive time slots  
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time / frequency grid: a  description of SBR envelope time segments and associated frequency resolution tables as 

well as description of noise floor time segments 

time slot:  finest resolution in time for SBR envelopes and noise floors. One time slot equals two subsamples 

in the QMF domain  

3.2 Symbols 

For the purposes of this TS, the following symbols apply:  

Description of variables defined in one sub clause and used in other subclasses. 

ch is the current channel, and when used as index in vectors left channel is represented by ch= 0 and 

right channel is represented ch= 1. 

EOrig has LE columns where each column is of length NLow or NHigh depending on the frequency 

resolution for each SBR envelope. The elements in EOrig contains the envelope scalefactors of the 

original signal. 

,TableLow TableHigh
   F f f  has two column vectors containing the frequency border tables for low and high frequency 

resolution. 

SBRFs  internal sampling frequency of the SBR Tool, twice the sampling frequency of the core coder 

(after sampling frequency mapping, Table 4.55). The sampling frequency of the SBR enhanced 

output signal is equal to the internal sampling frequency of the SBR Tool, unless the SBR Tool is 

operated in downsampled mode. If the SBR Tool is operated in downsampled mode, the output 

sampling frequency is equal to the sampling frequency of the core coder. 

fMaster is of length NMaster+1 and contains QMF master frequency grouping information.  

fTableHigh is of length NHigh+1 and contains frequency borders for high frequency resolution SBR envelopes.  

fTableLow is of length NLow+1 and contains frequency borders for low frequency resolution SBR envelopes.  

fTableNoise is of length NQ+1 and contains frequency borders used by noise floors. 

k x the first QMF subband in the SBR range. 

k0 the first QMF subband in the fMaster table. 

LE number of SBR envelopes. 

LQ number of noise floors. 

M number of QMF subbands in the SBR range.  

middleBorder points to a specific time  border.  

NL number of limiter bands. 

NMaster number of frequency bands in the master frequency resolution table. 

NQ number of noise floor bands. 

[ , ]Low HighN Nn  number of frequency bands for low and high frequency resolution. 

numPatches a variable indicat ing the number of patches in the SBR range. 

numTimeSlots number of SBR envelope time slots that exist within an AAC frame, 16 for a 1024 AAC frame .  

 24,12panOffset  offset-values for the SBR envelope and noise floor data, when using coupled channels. 
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patchBorders a vector containing the frequency borders of the patches. 

patchNumSubbands  a vector holding the number of subbands in every patch. 

QOrig has LQ columns where each column is of length NQ and contains the noise floor scalefactors. 

0 1[ ,..., ]Lr r r  frequency resolution for all SBR envelopes in the current SBR frame, zero for low resolution, one 

for high resolution. 

reset a variable in the encoder and the decoder set to one if certain bitstream elements have changed 

from the previous SBR frame, otherwise set to zero.  

tE is of length LE+1 and contains start and stop time borders for all SBR envelopes in the current 

SBR frame. 

tHFAdj offset for the envelope adjuster module.  

tHFGen offset for the HF-generation module. 

tQ is of length LQ+1 and contains start and stop time borders for all noise floors  in the current SBR 

frame. 

 

3.3 Abbreviations 

For the purposes of this TS, the following abbreviations apply. 

NA Not Applicable  

aacPlus Combination of MPEG-4 AAC and MPEG-4 Bandwidth extension (SBR) 

Enhanced aacPlus Combination of MPEG-4 AAC, MPEG-4 Bandwidth extension (SBR) and MPEG-4 

Parametric Stereo 

 

QMF Quadrature Mirror Filter 

SBR Spectral Band Replicat ion 

 

4 Outline description 

This TS is structured as follows: 

Section 5.1 g ives an encoder overview description. Section 5.2 gives a detailed descriptio n of the filterbanks used in the 

encoder. Section 5.3 g ives a specification of the used frequency band tables. Section 5.4 g ives a detailed description of 

the time grid calculat ion and the transient detection. Section 5.5 gives a detailed description of th e envelope estimation. 

Section 5.6 g ives a detailed description of the estimat ion of the additional control parameters. Section 5.7 gives detailed 

description of the data quantisation. Section 5.8 g ives a detailed description of the envelope coding. 

5 SBR encoder description 

5.1 SBR tools overview 

The encoder part of the SBR tool estimates several parameters used by the high frequency reconstruction method on the 

decoder side. In order to synchronise the SBR bitstream data with the AAC codec, the two different modes of operation 

have to be considered; normal aacPlus operation and aacPlus parametric stereo operation. In the normal case, the AAC 

encoder is responsible for downsampling of the input PCM signal, while the SBR encoder works in parallel on twice th e 

sampling frequency compared to the downsampled signal. When using parametric stereo aacPlus, the SBR tool is also 
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responsible for downsampling of the AAC coder signal. The two modes are outlined in the following sections and 

illustrated in Figure 1 and Figure 2. 
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Figure 1 aacPlus block diagram 
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Figure 2 Parametric stereo aacPlus block diagram 

5.1.1 Enhanced aacPlus sdynchronization without parametric stereo 

The time domain input PCM signal is assumed to be stored in a buffer x, where 2048 new samples are added to the end 

of the buffer every frame. Before adding new samples, all samples in the buffer must be left -shifted 2048 samples. The 

buffersize amounts to 576 + 2048 + tinputDelay samples, where tinputDelay equals the total AAC delay, i.e. the delay for the 

entire encoder – decoder chain, plus the SBR decoder buffer delay minus the SBR encoder buffer delay. All delays are 

expressed in the SBR input sampling rate: 

 inputDelayt totAACDelay SBRDelayDec SbrDelayEnc  
 

The PCM buffer x is fed to the analysis QMF bank, where subband filtering is performed. The window stride of the 

QMF bank is illustrated in Figure 3a, which shows that the first window is applied from sample 0 to sample 639 on the 

PCM buffer. The output from the analysis QMF bank: 32 subbands having 64 frequency channels each, is stored in the 

matrix X (Figure 3b) as 

 
( , ), 0 64, 0k l qmfWriteOffset k l numTimeSlots RATE     X

 

A delay of qmfWriteOffset subband samples is hence introduced, making  

 
32 64 2048sbrDelayEnc   

 

The algorithmic buffer delay in the decoder is 6 subband samples, giving  

 
6 64 384SBRDelayDec   

 

The total AAC delay is the delay introduced by the 1024 point MDCT transform, the window switching look-ahead and 

the delay introduced by the downsampling filter. If other delays are introduced these of course have to be accounted for.  
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t
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(a) QMF analysis windowing of input signal

    

Figure 3 aacPlus encoder buffers and synchronisation  

5.1.2 Enhanced aacPlus synchronisation with parametric stereo 

The time domain input PCM signal is assumed to be stored in a buffer x, where 2048 new samples are added to the end 

of the buffer every frame. Before adding new samples, all samples in the buffer must be left -shifted 2048 samples. The 

buffersize amounts to 576 + 2048. Note that two buffers are needed for stereo signals. 

The PCM buffer is fed to the analysis QMF bank, where subband filtering is performed. The window stride of the QMF 

bank is illustrated in Figure 4a, which shows that the first window is applied from sample 0 to sample 639 on the PCM 

buffer. The output from the analysis QMF bank: 32 subbands having 64 frequency channels each, is stored in the matrix  

H (Figure 4b) as  

 
 , 6 , 0 64, 0k l k l numTimeSlots RATE     H

 

Two buffers are needed for stereo operation. The s ubband samples in the matrix H are fed to the hybrid filter bank (See 

[5]) which introduces a delay of 6 subband samples. Parametric stereo parameters are extracted from the output of the 

hybrid filterbank and downmixing of the stereo signal is performed. Subsequently, hybrid synthesis filtering is applied 

to the modified hybrid subband samples. 

The downmixed subband samples are fed to the subband matrix X (Figure 4c) as 

 
 , , 0 64, 0k l qmfWriteOffset k l numTimeSlots RATE     X

 

whereafter “normal” SBR operation is undertaken. The subband samples are in parallel l fed to the 32 channel synthesis 

filter bank. The stride for the synthesis windowing is illustrated in Figure 4d. The output from the filterbank, having a 

sampling frequency half of the SBR sampling frequency is forwarded to the AAC encoder.  

After SBR processing of the current frame, an addit ional delay of one frame has to be introduced by delaying the SBR 

frame data (Figure 4e). 

To achieve synchronisation, the total AAC codec delay is bound to be 3200 samples, expressed in the SBR input 

sampling frequency.   
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Figure 4 Enhanced aacPlus stereo synchronisation  

5.1.3 SBR encoder modules overview 

The modules of the encoder part of the SBR tool are illustrated in the block diagram of Figure 5. The SBR tool operates 

on discrete mono signals in general, but some of the modules in Figure 5 need simultaneous access to both the left and 

right signal in case of stereo signals. 
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 As outlined in 5.1.1 and 5.1.2, the time domain signal is first filtered by the 64 channel complex QMF bank 

(section 5.2). The output from the analysis QMF bank: 32 subbands having 64 frequency channels each, is 

stored in the matrix X as  

 

 
 , , 0 64, 0k l qmfWriteOffset k l numTimeSlots RATE     X

 
 

Several modules use the output from the QMF bank;  

 The transient detector operates on the matrix X starting at subband sample 0.  

 The frame splitter operates  on the matrix X starting at subband sample 0.  

 The output from the transient detector and frame splitter is fed to the frame generator, where the time and 

frequency resolutions for the current frame are determined.   

 The Tonality detector operates on the matrix X starting at subband sample qmfWriteOffset. 

 The control data from the Tonality detector and also the current time and frequency grid is fo rwarded to the 

unit for Additional control parameters. In this module, the levels of the adaptive noise, invers e filtering and 

additional sines are determined.  

 The Envelope energy formatter operates on the matrix X starting from subband sample 0. The unit needs the 

time frequency grid and the additional control data as inputs. 

 The formatted envelope data is subsequently quantised and Huffman coded, before being fed to the Bitstream 

multip lexer, where all SBR data is formatted and packed into a SBR frame. The SBR frame is transmitted as a 

fill-element in the bitstream multiplex together with the AAC channel element for the current frame. In case of 

a Parametric stereo SBR element, the current SBR frame is delayed one frame before entering the bitstream 

multip lexer (Section 5.1.2 ).  
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Figure 5 Sbr Encoder overview 

5.2 Analysis filterbank 

Subband filtering of the input signal is done by a 64-subband QMF bank. The output from the filterbank, i.e. the 

subband samples, are complex-valued and thus oversampled by a factor two compared to a regular QMF bank. The 

flowchart o f this operation is given in Figure 6. The filtering comprises the following steps, where an array x consisting 

of 640 time domain input samples are assumed. Higher indices into the array corresponds to older samples: 

 

 Shift the samples in the array x by 64 positions. The oldest 64 samples are discarded and 64 new samples are stored 

in positions 0 to 63. 

 Multiply the samples of array x by window c. The window coefficients are found in Figure 6. 

 Sum the samples according to the formula in the flowchart to create the 128-element array u. 

 Build two arrays, r and i, from u by the operations 

 
     

     

127
,0 64

127

n u n u n
n

n u n u n

  
 

  

r

i
 

 Calculate 64 new complex-valued subband samples, X = R + i I, where i is the imaginary unit , by DCT and DST 

type III transforming r and i according to 
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   
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  
   

  





R
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Every loop in the flowchart produces 64 complex-valued subband samples, each representing the output from one 

filterbank subband. For every SBR frame the filterbank will produce numTimeSlots RATE  subband samples from 

every filterbank subband, corresponding to a time domain signal o f length 64numTimeSlots RATE   samples. In the 

flowchart X[k][l] corresponds to subband sample l in QMF subband k.  
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Shift input buffer x

For n = 639 down to 64 do

x[n] = x[n - 64]

Add new samples to input buffer x

For n = 63 down to 0 do

x[n] = next_input_audio_sample

Window by 640 coefficients to produce array Z

For n = 0 to 639 do

Z[n] = x[n] * c[n]

Summation to create array Y

For n = 0 to 127 do

    
 4

u[n] = Z[n + j * 128]

    j=0

Start

( for QMF subsample l )

Done

Combinations to form r and i

For n = 0 to 63 do

r[n] =  u[n] - u[127-n]

i[n]  = u[n] + u[127-n]

Apply DCT and DST type III transforms to r and i and output result

For k = 0 to 63 do
                       63

R[k]     =  r[n] * cos( / 64 * (k + 0.5) * n )

         n=0
                        63

I[k]       =  i[n] * sin(  / 64 * (k + 0.5) * n )

          n=0

X[k][l]   = R[k] + i * I[k]

 

Figure 6: Flowchart of encoder analysis QMF bank 
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5.3 Frequency band tables 

The SBR encoder use these different frequency band tables:
Masterf , TableHighf , 

TableLowf  and 
TableNoisef , which are defined 

according to subclause 4.6.18.3.2 in [1]. The parameters needed to define all frequency band tables are transmitted in 

the SBR b itstream header. For SBR header bitstream elements enabled with either bs_header_extra_1 or 

bs_header_extra_1 there are default  values and hence a transmission of these elements are only needed if they differ 

from the default value. Default values are defined in subclause 4.5.2.8.1 in [1]. The SBR header parameters are regarded 

as tuning parameters since they are strongly bitrate and sampling frequency dependant Throughout the tuning work for 

3GPP submission several bitrate and sampling frequency dependant tunings have been created and in the reference c -

code there are tunings available from 8kbit/s mono to 48 kbit/s stereo. 

5.4 Time / frequency grid generation 

An introduction to the time / frequency grid generation, including a brief discussion of the frame classes, is given in the 

informal encoder description in [1], subclause 4.B.18.3.  The present encoder implementation employs three tools for 

the grid generation: 

 The Transient Detector (TD) 

 The Frame Splitter (FS) 

 The Frame Generator (FG) 

Those tools are described in the subsequent sections. Figure 7 shows the ranges of the frame classes and the transient 

detector offset versus the indices used by the frame generator.   

 
        |<------------tranPos---------->| 

        |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| 

        0 1 2 3 4 5 6 7 8 9 A B C D E F   TD index (hexadecimal) 

|<------------FIXFIX----------->| 

|<------------FIXVAR----------->:<--->: 

:<--->:<------VARFIX----------->| 

:<--->:<------VARVAR----------->:<--->:                             Ybuffer 

................................................................    QMF slots 

I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-Io|o|o|-|-|-|-|-|-|-|-|-|-|-|-|-I   SBR slots 

0       4       8               16    19                        32  FG  index 

 I: nominal frame boundaries 

   o: frame overlap region slots 

 

Figure 7: The four frame classes and the transient detector range  

5.4.1 Transient detector 

The transient detection is performed according to the pseudo-code below. It operates on subband samples of one frame 

length starting from sample 8. The output from the transient detector are the variables tranFlag and tranPos. The first is 

a boolean indicating whether there is a transient in the processed frame, and the second specifies the position (in t ime 

slots) for the on-set of the transient. The time / frequency grid generation module uses the output from the transient 

detector and the stored transient detection output from the previous frame to perform its operations.  
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t and a are static channel-dependent arrays of length 64 that needs to be stored in between calls to the transient detector. 

On start-up, all elements in both arrays must be set to zero.  

5.4.2 Frame splitter 

The frame splitting is accomplished according to the following algorithm. It is only active when the transient detector 

has detected the absence of a transient in the current frame of interest, i.e . when tranFlag = 0). It operates on subband 

samples of one and a half frame length s tarting from subband sample 0. The output from the frame splitter is the 

variable splitFlag, which indicates whether the current frame (free from transients) should be divided into two 

envelopes of equal size. 
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The variable prevLowe  is a static channel-dependent variable that must be stored in between calls to the frame splitting 

module. This variab le should be set to zero on start-up. 

5.4.3 Frame generator 

The frame generator creates the time/frequency grid for one SBR frame.  Input signals are provided by the transient 

detector and the frame splitter.  The frame generator produces two outputs:  The sbr_grid() port ion of the bitstream, and 

an internal representation of the time/frequency grid to be used by the envelope and noise floor estimators, see Figure 5. 

When no transients are present (i.e . tranFlag = 0), FIXFIX class frames are used.  The frame splitter decides whether to 

use one  or two envelopes in the FIXFIX frames (splitFlag = 0 or splitFlag = 1 respectively).  "Sparse" transients 

(separated by one or more frames with tranFlag = 0) are coded by means of FIXVAR-VARFIX sequences.  "Tight" 

transients ( tranFlag = 1 for two or more consecutive frames) are handeled by inserting VARVAR class frames.  

As most transients are "sparse", the frame generator prepares a grid for a FIXVAR-VARFIX pair upon detection of a 

transient after a sequence of FIXFIX frames.  The present frame is encoded using the FIXVAR portion, and the 

VARFIX grid is stored.  At the next call of the generator it is known whether the transient actually is "sparse" or not.  If 

'yes', the already calculated and stored VARFIX grid is used.  If 'no', a new grid, meet ing the requirements of the new 

transient, as well as those of the previous one, is calculated, whereby a VARVAR class frame is used. 

The operation of the frame generator is further described below by means of pseudo -code, where the syntax 

[out0, out1, ..., outm-1] = function(in0, in1, ..., inn-1) is used. 

 
FrameGenerator(tranFlag, tranPos, splitFlag) 

{ 

  static frameClassOld;               // frameClass used for previous frame 

  static G1;                          // grid designed during previous call 

 

  [frameClass, frameClassOld] = calcFrameClass(frameClassOld, tranFlag); 

 

  if (tranFlag) 
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    GP = fillFrameTran(tranPos);      // load transient borders into GP 

 

  switch (frameClass) { 

  case FIXFIX: 

    BS = calcSbrGrid(FIXFIX, dc, splitFlag); 

    break; 

  case FIXVAR: 

    if (tranPos > 8) 

      GP = fillFramePre(GP);          // append borders before transient borders 

    if (tranPos < 10) 

      GP = fillFramePost(GP);         // append borders after  transient borders 

    [G0, G1] = splitAndStore(GP);     // split GP into two grids, G0 and G1 

    BS = calcSbrGrid(FIXVAR, G0, dc); // calc BS using G0 

    break; 

  case VARFIX: 

    BS = calcSbrGrid(VARFIX, G1, dc); // calc BS using G1 (from previous call) 

    break; 

  case VARVAR: 

    GP = fillFrameInter(G1, GP);      // resolve conflicts and merge G1 and GP 

    if (tranPos < 10) 

      GP = fillFramePost(GP);         // append fill-borders after tran-borders in GP 

    [G0, G1] = splitAndStore(GP);     // split GP into two grids, G0 and G1 

    BS = calcSbrGrid(VARVAR, G0, dc); // calc BS using newly designed G0 

    break; 

  } 

 

  return [BS, FI = decodeSbrGrid(BS)];// decode BS into FI 

} 

 

The following pseudo-variables are defined: 

GP = "Grid-Pair": 

- GP.aBorders: array holding envelope borders of two consecutive frames 

- GP.aFreqRes: array holding envelope frequency resolutions of two consecutive frames 

- GP.iTran   : index of transient leading border 

 

Gi = "Grid instance i": 

- Gi.aBorders: array holding envelope borders of one frame 

- Gi.aFreqRes: array holding envelope frequency resolutions of one frame 

- Gi.iTran   : index of transient leading border of one frame 

 

BS = "Bit-Stream": 

- sbr_grid() as defined in [1] Subclause 4.4.2.8, Table 4.61A 

 

FI = "Frame-Info": 

- FI.t_E: tE , envelope borders as defined in 3.2 

- FI.r  : 
0 1[ ,..., ]Lr r r , envelope frequency resolutions as defined in 3.2 

- FI.t_Q: tQ , noise floor borders as defined in 3.2 

- FI.l_A: lA  , index of border where the preceding envelope is to be "shortened" 
 

the symbolic constant, 

dc: don't care 

 

and the operations 

cat(a, b): concatenate vectors a & b 

length(a): number of elements of vector a 

fliplr(a): reverse order of elements of vector a 

ones(a)  : generate vector of length a, were all elements are 1    

 

The internal functions are defined below: 

 

calcFrameClass (frameClassOld, tranFlag) 

{ 

  switch (frameClassOld) { 

  case FIXFIX: 

    if (tranFlag) 
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      frameClass = FIXVAR;// stationary to transient transition 

    else 

      frameClass = FIXFIX;// when no transients are present, FIXFIX frames are used 

    break; 

  case FIXVAR: 

    if (tranFlag) 

      frameClass = VARVAR;// "tight"  transients are handeled by VARVAR frames 

    else 

      frameClass = VARFIX;// "sparse" transients are handeled by [FIXVAR, VARFIX] pairs 

    break; 

  case VARFIX: 

    if (tranFlag) 

      frameClass = FIXVAR; 

    else 

      frameClass = FIXFIX;// transient to stationary transition 

    break; 

  case VARVAR: 

    if (tranFlag) 

      frameClass = VARVAR;// "tight"  transients are handeled by VARVAR frames 

    else 

      frameClass = VARFIX; 

    break; 

  } 

 

  frameClassOld = frameClass; 

 

  return [frameClass, frameClassOld]; 

} 

 

fillFrameTran(tranPos) 

{ 

  GP.aBorders  = {tranPos + 4, tranPos + 6, tranPos + 10}; 

  GP.aFreqRes  = {0, 0, 1}; 

  GP.iTran = 0; 

  return GP; 

} 

 

fillFramePre(GP) 

{ 

  aBordersFill = fillHelper(GP.aBorders[0], 8); 

  GP.aBorders = cat(fliplr(aBordersFill), GP.aBorders); 

  GP.aFreqRes = cat(ones(length(aBordersFill)), GP.aFreqRes); 

  GP.iTran += length(aBordersFill); 

  return GP; 

} 

 

fillFramePost(GP, tranPos) 

{ 

  if (tranPos < 4) 

    maxStep = 6; 

  else if (tranPos == 4 || tranPos == 5) 

    maxStep = 4; 

  else 

    maxStep = 8; 

  aBordersFill = fillHelper((32 - GP.aBorders[length(GP.aBorders) - 1], maxStep); 

  GP.aBorders = cat(GP.aBorders, aBordersFill); 

  GP.aFreqRes = cat(GP.aFreqRes, ones(length(aBordersFill))); 

  return GP; 

} 

 

splitAndStore(GP) 

{ 

  iSplit = 0; 

  while (GP.aBorders[iSplit] < 16) 

    iSplit++; 

  for (i = 0; i <= iSplit; i++) { 

    G0.aBorders[i] = GP.aBorders[i]; 

    G0.aFreqRes[i] = GP.aFreqRes[i]; 

  } 

  G0.iTran = GP.iTran; 

  for (j = 0, i = iSplit; i < length(GP.aBorders); i++, j++) { 
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    G1.aBorders[j] = GP.aBorders[i] - 16; 

    G1.aFreqRes[j] = GP.aFreqRes[i]; 

  } 

  G1.iTran = GP.iTran - iSplit; 

} 

 

As evident from the pseudo code, every transient is initially processed by fillFrameTran() by inserting one border at the 

onset of the transient, and two "decay" borders after the onset at the distances 2 and 6 slots from the first border 

respectively.  The frequency resolutions of the two corresponding envelopes are 'low', whereas all other envelopes use 

'high' resolution.  Additional borders are inserted before said borders by fillFramePre() and fillFramePost(), such that no 

envelope exceeds the length 12 slots.  The function  fillHelper(A, B) subdivides the distance A by calculating segments 

quantized to the lengths {2, 4, 6, 8} slots while limit ing the segment length  to B.  In splitAndStore() the borders are 

separated into two groups, each associated with one frame.  The above procedures are illustrated by Figure 8. 

 

        tranFlag = 1 

        tranPos  = 9 

                          <T> 

        |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| 

        0 1 2 3 4 5 6 7 8 9 A B C D E F    TD index 

                          * 

              |<-----6----|<-2|<--4---|-----6---->| 

                          N           |           N 

|<--------- Frame n: FIXVAR ----:--3->|<-- Frame n+1: VARFIX -->| 

................................................................    QMF slots 

I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-Io|o|o|-|-|-|-|-|-|-|-|-|-|-|-|-I   SBR slots 

0             7           13  15      19          25            32  FG  index 

 

   I: nominal frame boundaries 

   o: frame overlap region slots 

   *: border pointed to by bs_pointer 

   N: noise floor middle border 

 

Figure 8: Example of isolated transient 

In Figure 8. the borders at index 7, 13, 15 and 19 are used for the present FIXVAR class frame.  Conversion into 

sbr_grid() bitstream elements is performed in calcSbrGrid().  The methods of the four classes for conversion of borders 

and frequency resolutions are implicitely defined by the bitstream and decoding equations in [1], subclause 4.4.2.8 

(Table 4.61A) and 4.6.18.3, and are hence not described here.  In the example bs_var_bord_1 = 3, bs_num_rel_1 = 3, 

the relative borders have the lengths 4, 2 and 6 ("right to left"), and the frequency resolutions are 0, 0, 1, 1 ("right to 

left").  The bs_pointer is set to point to the transient leading border, i.e. the value is 3 since FIXVAR borders are also 

indexed "right to left", starting from 1 (0 signals that no transient leading border is present within the frame).  The 

border at index 19 must be followed up in the next frame by a leading border at index 3.  The border at 25, however, 

may or may not yield a border at 9, since a transient is possible in frame n + 1.  If the transient actually is "sparse", the  

VARFIX bitstream comprises of bs_var_bord_0 = 3, bs_num_rel_0 = 1, one relative border of length 6, bs_pointer = 0 

and frequency resolutions 1, 1.  

Figure 9. gives an example o f "tight" transients, and also serves to outline the functionality of fillFrameInter().  Here G1 

contains borders at index 1 and 7, but a transient is located already at index 6.  In fillFrameInter() the preliminary border 

at 7 is simply removed, and the rest of the borders for the present frame are taken from GP.  (If on the other hand the 

distance between the last border in G1 and the first border in GP exceeds 12, the segment inbetween said borders is 

subdivided analogously to the procedures in fillFramePre().)  Hereafter GP is finalized and split in the same manner as 

described above, whereafter G0 is converted into a bitstream using the VARVAR method of calcSbrGrid().  Hereby the 

leading border yields bs_var_bord_0 = 1 and the trailing border bs_var_bord_1 = 2.  Clearly bs_num_rel_0 = 0 and 

bs_num_rel_1 = 3.  Figure 9. also shows that fillFramePost() has inserted a border at 18, thereby meeting the 

requirement that one border is present within the interval [16, 19].  Th is concludes the description of how to generate 

BS. 

 

        tranFlag = 1 

        tranPos  = 2 

            <T> 

        I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-I 

        0 1 2 3 4 5 6 7 8 9 A B C D E F    TD index 
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            * 

            |<r2|<--r4--|<----6-----|-----6---->| 

:1|           |                     | 

:1|<------- Frame n: VARVAR ----:2->|<--- Frame n+1: VARFIX --->| 

................................................................    QMF slots 

I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-Io|o|oI-|-|-|-|-|-|-|-|-|-|-|-|-I   SBR slots 

0 1         6 7 8       12          18          24              32  FG  index 

 

Figure 9: Example of tight transients 

 

The second output of the frame generator, FI, comprises of tE, r, tQ and lA.  Since those signals are equivalent to their 

counterparts at the decoder side, the relation between FI and BS is fu lly defined by the decoding equations in MPEG-4.  

Thus, as the last step in the frame generator, the decodeSbrGrid() function parses and decodes the now available 

sbr_grid() portion of the bitstream in accordance with the description in the MPEG-4 standard, which shall not be 

repeated here. 

5.5 Envelope estimation 

By using the time/frequency grid created by the framing generator and the transient information from the transient 

detector, the QMF bank subband matrix is grouped in time and frequency into envelope scalefactorbands. For each 

scalefactorband the squared average energy is calculated and stored in the energy matrix E  according to the recursion 

below. 
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If a missing harmonic has been detected in a certain scalefactorband the squared energy for that scalefatorband is 

calculated as the maximum energy instead of average energy. Since the missing harmonics detection and signalling 

always operate using the recursion shown below.  
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For stereo with no channel coupling, the energy for every channel is calculated as in the mono case shown above. In the 

case of stereo and coupling the energy is calculated according to: 
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5.6 Additional control parameters 

5.6.1 Introduction 

In order to achieve optimal results, given the HF generator used in the decoder, several additional parameters apart from 

the spectral envelope are assessed. The noise floor is estimated for the current SBR frame. It is defined as the ratio 

between the energy of the noise that should be added to a particular frequency band, in order to obtain a similar tonal to 

noise ratio to that of the original signal, and the energy of the HF generated signal for that frequency band. 

The noise floor is estimated once or twice per SBR frame dependent on the number of spectral envelopes estimated fo r 

the SBR frame (indicated by Qt ). The frequency resolution for the noise floor scalefactor is calculated according to the 

same algorithm subsequently used in the decoder and described in [1] subclause 4.6.18.3. The start and stop time 

borders of the different noise floors are g iven from the t ime grid.  

The level of the inverse filtering applied in the decoder is estimated for different frequency ranges with the same 

frequency resolution as used for the noise floor scalefactor estimation. The estimat ion algorithm compares the tonality 

of the original and the tonality that will be attained after the HF generator in the decoder. The rat io between the two is 

mapped to four different inverse filtering levels, off, low, mid and high. These levels corresponds to different chirp 

factors in the HF generator as outlined in [1] subclause 4.6.18.5. Moreover, the encoder assesses where a strong tonal 

component will be missing after the HF generation in the decoder. This detection is done on the highest frequency 

resolution given by the high frequency resolution table, fTableHigh. The level of the tonal component is implicitly coded 

by the SBR envelope and the noise floor scalefactors, and thus only the frequency needs to be coded. 
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5.6.2 Tonality estimation 

The following detection modules base their output on a tonality estimate calculated in the tonality estimation module: 

 Noise-floor estimation 

 Inverse filtering estimation 

 Additional sines estimat ion 

The tonality is derived from the prediction gain of a second order linear prediction performed in every QMF subband. 

The LPC is calculated using the covariance method, and for every frame two tonality estimates are calculated for every 

subband. 

In the following, X is the matrix holding the most recently available complex QMF subband samples. The tonality 

values are calculated and stored in the T and Ts br matrices. These also contain buffered values from previous frames. 

The Ts br values are obtained from the T values by patching the tonality values similarly to the patching of the subband 

channels in the high frequency reconstruction modules in the decoder. 

Since the subband signals are complex valued, this results in complex filter coefficients for the linear prediction. The 

prediction filter coefficients are obtained from the covariance method. The covariance matrix elements for every 

tonality estimate calcu lated are: 
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where k  is the subband index, and l is the tonality estimate. 

Based on the covariance elements the coefficients  0

l k and  1

l k used to calculate the tonality estimates for the 

subbands are calculated as: 
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where  Inv is the relaxation parameter (  Inv = 1E-6 ).  

The tonality values are calculated based on the above coefficients according to: 
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The tonality values are patched similarly to the patching of the QMF subbands in the decoder during high frequency 

reconstruction. Hence, it is possible to compare tonality of a "simulated" SBR signal and the orig inal signal on the 

encoder side. The patch used is built in accordance to the flowchart in Figure 4.46, subclause 4.6.18.6.3 in [1], where 
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the output variable numPatches is an integer value specifying the number of patches. patchStartSubband and 

patchNumSubbands  are vectors holding the data output from the patch decision algorithm.  

Hence, the tonality values for the SBR part is obtained according to: 

    , 2  , 2k l p l  Tsbr T  
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for  0 , 0 , 0 2x i i numPatches l     patchNumSubbands . 

5.6.3 Noise-floor estimation 

The noise floor estimation module estimates the amount of noise relative to the energy of the patched SBR signal that 

should be added on the decoder side in order to obtain a tonal to noise ratio similar to that of the original. The 

estimation is based on the tonality values in the T and Tsbr  matrices, and the estimation is done for the number of 

frequency bands indicated by NQ , and the frequency ranges defined in fTableNoise for the time segments defined by Qt . 

The algorithm below is outlined for noise floor band nfBand for noise floor nfEnv and should be applied for all noise-

floor bands, and noise floors in the present frame. If the number of spectral envelopes for the present frame is larger 

than one, two noise floors will be estimated, otherwise one. For the case of two noise floors startIndex will be zero for 

the first noise-floor and one for the second noise-floor, while stopIndex will be one for the first noise-floor, and two for 

the second noise-floor. In case of only one noise-floor, the startIndex will be zero and the stopIndex will be one. 

The noise floor is calculated by averaging of the tonality values for the given time/frequency range, or by choosing the 

maximum tonality value. The latter is used if the additional sine detection algo rithm detects that a sine should be added 

on the decoder side for frequency band that is included in the present noise floor frequency band. 

Hence, for every noise floor band the tonality values are calculated according to:  
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or, if a  sine will be added at the decoder side as indicated by "missingHarmonicsFlag", according to:  

           max max , ,1 , 1 , 1TableNoise TableNoise Q QTavg k l nfBand k nfBand nfEnv l nfEnv      T f f t t

           max max , ,1 , 1 , 1TableNoise TableNoise Q QTavgSbr k l nfBand k nfBand nfEnv l nfEnv      Tsbr f f t t  

The tonality values Tavg and TavgSbr are subsequently used to calculate the actual noise-floor value, according to: 

  
1

, min ,nfBand nfEnv nfOffset nfMaxLevel
Tavg

 
  

 
nf , 

 

if the additional sine detection has indicated that there is a sinusoidal missing in the present noise-floor band, or the 

inverse filtering level for the present noise-floor band is equal or below INVF_LEVEL_MID. If neither of these cases 

are true, the noise-floor value is calculated according to: 
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The noise-floor values are s moothed by applying a LP filter over t ime using previous noise floor values. Hence for 

every nfBand, the smoothing is done according to:  

 

         
2

0

, , 3 ,prev

i

nfBand nfEnv nfBand nfEnv i nfBand i


   Q nf h h nf  

where nfPrev are the nf values from the previous estimates (where the most recent estimates is placed at the end of the 

vector, i.e. position 2), and h is defined as: 

 
 0.05857864376269,  0.2,  0.34142135623731,  0.4h  

5.6.4 Inverse filtering estimation 

The inverse filtering detection is done on the frequency bands indicated by fTableNoise . For every band a tonality value is 

calculated from the original input signal and the "patched" SBR signal. The values are mapped to a specific regions 

given the "Region borders" in the detectorParamsAAC struct, and the appropriate inverse filtering value is given from 

the "Region space" also in detectorParamsAAC. 

typedef enum 

{ 

  INVF_OFF = 0, 

  INVF_LOW_LEVEL, 

  INVF_MID_LEVEL, 

  INVF_HIGH_LEVEL 

} 

INVF_MODE; 

 

static const DETECTOR_PARAMETERS detectorParamsAAC = { 

  { 1.0f, 10.0f, 14.0f, 19.0f},   /* Region borders SBR. */ 

  { 0.0f,  3.0f,  7.0f, 10.0f},   /* Region borders Orig. */ 

  {25.0f, 30.0f, 35.0f, 40.0f},   /* Region borders Nrg. */ 

  4,                              /* Number of borders SBR. */ 

  4,                              /* Number of borders orig. */ 

  4,                              /* Number of borders Nrg. */ 

  1.0f,                           /* Delta value for hysteresis. */ 

  {                               /* Region space. */ 

    {INVF_MID_LEVEL,  INVF_LOW_LEVEL, INVF_OFF,       INVF_OFF, INVF_OFF}, /*  | */ 

    {INVF_MID_LEVEL,  INVF_LOW_LEVEL, INVF_OFF,       INVF_OFF, INVF_OFF}, /*  | */ 

    {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /*regionSbr*/ 

    {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL,INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /*  | */ 

    {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL,INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /*  | */ 

  },/*------------------------ regionOrig ---------------------------------*/ 

 {                               /* Region space transient. */ 

    {INVF_LOW_LEVEL, INVF_LOW_LEVEL,  INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /*  |  */ 

    {INVF_LOW_LEVEL, INVF_LOW_LEVEL,  INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /*  |  */ 

    {INVF_HIGH_LEVEL,INVF_MID_LEVEL,  INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /*regionSbr*/ 

    {INVF_HIGH_LEVEL,INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /*  |  */ 

    {INVF_HIGH_LEVEL,INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /*  |  */ 

    },/*------------------------ regionOrig ---------------------------------*/ 

  {-4, -3, -2, -1, 0} /*Reduction factor of the inverse filtering for low energies.*/ 

}; 

static const float hysteresis = 1.0f;                /* Delta value for hysteresis. */ 

 

The parameters Tavg and TavgSbr are calcu lated for every inverse filtering band by averaging the tonality values in the 

T and Tsbr  matrices over the frequency regions indicated by fTableNoise according to (outlined for band invBand): 
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The values are subsequently filtered by a two tap FIR filter according to:   

 
0.666666 0.333333Smooth PrevTavg Tavg Tavg     

 
0.666666 0.333333Smooth PrevTavgSbr TavgSbr TavgSbr     

where the 
PrevTavg  and 

PrevTavgSbr are the Tavg and TavgSbr from the previous frame. 

The avgNrg parameter is similarly calculated: 

 

   0 1

2
avgNrg




Nrg Nrg
 

The region borders for the SBR tonality and the original tonality is modified given previous values. The modification is 

done by adding the "hysteresis" value to the upper border of the previous region, and subtracting  the hysteresis value 

from the lower border of the previous region. This gives the region-borders used for the detection of the present band in 

the present frame. The following pseudo-code outlines how the hysteresis is applied, where the quantSteps are the 

region border given in detectorParamsAAC. 

  if(prevRegion < numRegions) 

    quantStepsTmp[prevRegion] = quantSteps[prevRegion] + hysteresis; 

  if(prevRegion > 0) 

    quantStepsTmp[prevRegion - 1] = quantSteps[prevRegion - 1] - hysteresis; 

 

The region corresponding to the filtered tonality values for the orig inal and the SBR signal is obtained by finding the 

region that has an upper border higher than the present value, and a lower border lower or equal to the present value. 

This means that if the present value is smaller than the first value in the border vector, the region returned will be zero, 

and so on. 

The regions for the original and the SBR signal are used to index the region space as indicated by the 

detectorParamsAAC, and the inverse filtering level value corresponding to the element pointed out by the region 

indexes is returned. Different region spaces are used for frames where a transient is detected. 

Subsequently an energy compensation is applied. The energy-value calculated from the auto correlation is mapped to a 

region defined in detectorParamsAAC. The index value is subtracted from the inverse filtering level obtained from the 

region space, and this gives the final inverse filtering level stored in the bs_inv_filt vector. 

5.6.5 Additional sines estimation 

The additional sines estimation module, estimates for which frequency bands a strong sinusoidal component will be 

missing after high frequency reconstruction in the decoder. The result of the detection may not include a detection of a 

new siusoidal component unless the frame contains a transient, as defined by the transient detector, or unless the 

previous frame contained a transient positioned less than nine QMF slots from the trailing border of the previous frame. 

Such a detection will be removed. 

The detection algorithm firstly calcu lates the input data upon which detection is done, based on the T and Ts br values. 
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The detection system is based on using guide-vectors holding information on previous detections. There are two 

different guide-vectors: 

 guidevectorDiff (has the frequency resolution of the scalefactorbands) 

 guidevectorOrig (has the frequency resolution of the QMF) 

 

For every frame two tonality estimates in time are available, and hence two estimates in time fo r the diff, sfm, sfms br 

parameters are availab le as well. For every estimate a detection is done using the guide-vectors from the previous 

detection. The results from the separate detections are finally merged into one decision reflecting the current frame  

The detection algorithm is applied for every estimate, using guide-vectors from the previous detection and producing a 

detection vector and new guide-vectors. The algorithm is outlined below for tonality estimate l0. 

Firstly, for every scalefactor band the difference s ignal is compared to a threshold thresTemp. The threshold is 

calculated based on the guide-vectors and a decay-factor according to: 

  thresTemp = guideVectorDiff[i][l0] ?  

              max(decayGuideDiff*guideVectorDiff[i][l0],thresHoldDiffGuide):   
              thresHoldDiff; 

  thresTemp = min(thresTemp, thresHoldDiff); 

 

If the difference diff for a scalefactor band is higher than the threshold, the detection vector is set to one for this 

scalefactor band, and the new guide vector is given the current difference value for the present scalefactor band. If the 

difference in tonality is lower than the threshold, but the guide vector indicated that present scale factor band had a 

detected missing sine in for the previous tonality estimate, the guide vector "guideVectorOrig", is assigned the 

thresHoldToneGuide value, in order to track the decay of the orig inal tone instead of the difference signal. This is 

outlined for scalefactor band i, in the fo llowing pseudo-code: 

 if(diff[i][l0] > thresTemp){ 

      detVec[i][l0] = 1; 

      guideVectorDiff[i][l0+1] = diff[i][l0]; 

    } 

    else{ 

      if(guideVectorDiff[i]){ 

        guideVectorOrig[i][l0] = thresHoldToneGuide; 

      } 

    } 

 

A second detection is done for all scalefactor bands where guideVectorOrig is not zero. The threshold used is calculated 

according to: 

  thresOrig = max(guideVectorOrig[i][l0]*decayGuideOrig,thresHoldToneGuide); 

  thresOrig = min(thresOrig,thresHoldTone); 
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If the tonality value in T for any QMF subband within the a scalefactor band is above the threshold the detection vector 

element for th is subband is set to one, as well as the new guide vector. The following pseudo -code outlines the second 

round of detection, for scalefactor band i, where ll and lu are the lower and upper QMF subband borders for the present 

scalefactor band: 

 if(guideVectorOrig[i][l0]){ 

      for(j= ll;j<lu;j++){ 

        if(T[j][l0] > thresOrig){ 

          detVec[i][l0] = 1; 

          guideVectorOrig[i][l0+1] = T[j][l0]; 

        } 

      } 

    } 

 

Finally, for every scalefactor band, a detection is done in order to make sure that one single strong sinusoidal in the 

original signal is not replaced (by patching) by several strong sinusoids in the SBR signal. For all scalefactor bands 

larger than one QMF subband, the values of sfm and sfmSbr  is compared. Th is is done according to: 

  for(j= ll;j<lu;j++){ 

    if(T[j][l0] > thresOrig &&  

      (sfmSbr[i][l0] > sfmThresSbr && sfm[i][l0]<sfmThresOrig)){ 

          detVec[i][l0] = 1; 

          guideVectorOrig[i][l0+1] = T[j][l0]; 

        } 

      } 

 

However, for the scalefactor bands only containing one QMF subband the above matrices are defined according to: 

  if(T[ll][l0] > thresHoldTone &&  

    (diff[+1][l0] < 1/thresHoldTone || 

     diff[i-1][l0] < 1/thresHoldTone)){ 

     detVec[i][l0] = 1; 

     guideVectorOrig[i][l0+1] = T[ll][l0]; 

  } 

 

The above is applied for every estimate, i.e. twice per frame. If a  new detection is allowed, e.g. there is a transient 

present in the frame, the following additional algorithmic step is performed:  

 Identify adjacent scalefactor bands where detection of a missing sine is done in both bands 

 Find the QMF subband within each scalefactor band that has the highest tonality  

 If the QMF subband with the highest tonality value are ad jacent, remove the detection for the scalefactor band 

with the lowest tonality. 

 

Finally the detection decisions from the different detections are merged together, according to: 

  for(i = 0; i< nSfb; i++){ 

    for(est = start; est < totNoEst; est++){ 

      bs_add_harmonic[i] = bs_add_harmonic[i] || detVec[i][est]; 

    } 

  } 

Here start equals two if the newDetectionAllowed flag is set, otherwise it is set to zero. 

 

If the newDetectionAllowed flag is not set, detections that were not present before are removed, according to:  

  if(!newDetectionAllowed){ 

    for(i=0;i<nSfb;i++){ 

      if(bs_add_harmonic[i] – prev_bs_add_harmonic[i] > 0) 

        bs_add_harmonic[i] = 0; 

    } 

  } 

 

Apart from detection in which scalefactor band a sinusoidal should be added the module also calculates an energy 

compensation vector. This is used in the envelope estimat ion module.  
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For every scalefactor band where a missing sine has been detected the maximum tonality value in the T matrix is found, 

indicated by maxPosF (indicating the subband) and maxPosT (indicat ing the QMF slot). If maxPosF  coincides with a 

scalefactor band border and a detection was not done for the adjacent scalefactor band, a compensation value is 

calculated according to (here outlined for the case where the maxPosF value coincides for the lower scalefactorband 

border): 

  compValue = (int) (fabs(ILOG2*log(diff[i - 1][maxPosT] +EPS)) + 0.5f); 

  if (compValue > maxComp) 

    compValue = maxComp; 

 

  if(!pAddHarmonicsScaleFactorBands[i-1]) { 

    if(tonality[maxPosF -1][maxPosT] > tonalityQuota*tonality[maxPosF][maxPosT]){ 

      compVec[i-1] = -1*compValue; 

    } 

  } 

 

Finally the detection algorithm compensates for the case where a strong sinusoidal is present in the patched SBR signal 

where there were no strong sinusoidal in the orig inal, and at the same t ime there is a sinusoidal missing in the adjacent 

scalefactor band. This is done for all scalefactor bands where a sine is missing (except fo r the first and the last 

scalefactor band), according to the following: 

  compValue = (int) (fabs(ILOG2*log(diff[i - 1][maxPosT]+EPS)) + 0.5f); 

  if (compValue > maxComp) 

    compValue = maxComp; 

 

  if(1/diff[i-1][maxPosT] > diffQuota*diff[i][maxPosT]){ 

    compVec[i-1] = -1*compValue; 

  } 

 

  compValue = (int) (fabs(ILOG2*log(diff[i + 1][maxPosT]+EPS)) + 0.5f); 

  if (compValue > maxComp) 

    compValue = maxComp; 

 

  if(1/diff[i+1][maxPosT] > diffQuota*diff[i][maxPosT]){ 

    compVec[i+1] = compValue; 

  } 

 

The bitstream element bs_add_harmonic_flag is set to one if any element of the bs_add_harmonic is not zero, 

otherwise it is set to zero. 

5.7 Data quantization 

The spectral envelope scalefactors are quantized in 3dB steps or in 1.5dB steps, dependent on the time frequency 

resolution of the current SBR frame, and bs_amp_res. For the case where there is only one SBR envelope per SBR 

frame and of SBR frame class FIXFIX, 1.5 dB steps are always used, disregarded the value of bs_amp_res. 

For mono and stereo  without channel coupling the quantization is done according to: 
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For the coupled channel mode, the left channel is quantized according to the above, while the right channel should be 

quantized according to: 

        2, log , 0.5QRight k l INT a k l bs_amp_res   E E panOffset  

The noise floor scalefactors data is always quantized in 3dB steps. For stereo without channel coupling and for mono 

the channels are quantized according to: 
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      2, _ _ log , 0.5Q k l INT NOISE FLOOR OFFSET k l  Q Q , 

where  ,Q k lQ  shall be limited to the interval  0,30 . 

For coupling however, the right and left channels are quantized according to:  

  
 

 
 2

,
, log 0.5 1

,

Left

QRight

Right

k l
k l INT

k l

  
    

  
  

Q
Q panOffset

Q
, 

 
   

2

, ,
, _ _ log 0.5

2

Left Right

QLeft

k l k l
k l INT NOISE FLOOR OFFSET

   
      

  

Q Q
Q  

where 

  ,QRight k lQ  shall be limited to the interval  0,2 1   panOffset  and  ,QLeft k lQ  is limited to the interval 

 0,30 .  

In the case of coupling, the  ,QRight k lQ and  ,QRight k lE  values shall be quantized to multip les of two, e.g. 

 0,2,4,6,8... . 

5.8 Envelope and noise floor coding 

The spectral envelope scalefactors and noise floor scalefactors are delta coded in either the time d irect ion or the 

frequency direction, according to the preferred choice indicated in bs_df_env(l) and bs_df_noise (l). The 

bs_df_env and bs_df_noise  elements are chosen so that the total number of b its required for coding the scalefactor 

data of the present frame is min imised, with the reservation for the case when reset = 1. In this case delta coding in the 

time direction is not allowed for the first SBR envelope or noise floor of that SBR frame.  

The above min imization of envelope bits are for stereo done in both coupling and left/right stereo mode and based on 

this the stereo mode is chosen so that the total number of bits required is min imized.  

Below the delta coding of envelope scalefactors and noise floor scalefactors are defined.  
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where 
0.5 1 _ 1

1

if ch AND bs coupling

otherwise


 
 


 and, 

where  ,Eg k l  and  g l  is defined below. As QE  represents the envelope scalefactors for the current SBR frame, 

the envelope scalefactors from the previous SBR frame is denoted Q
E . Envelope scalefactors from the previous SBR 

frame, Q
E  is needed when delta coding in time d irection over SBR frame boundaries. The number o f SBR envelopes of 

the previous SBR frame is denoted 
EL , and is also needed in that case, as well as frequency resolution vector of the 

previous SBR frame, denoted r'. 

  
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The delta coding of the noise floor scalefactors are defined as:  
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where 

 
0.5 1 _ 1

1

if ch AND bs coupling

otherwise


 
 


 

and where Q  is the noise floor scalefactors from the previous SBR frame and QL is the number of noise floors from 

the previous SBR frame.  ,Delta k lQ  and  ,Delta k lE  are stored as bitstream element as shown below prio r to 

Huffman coding. 

      
0

, ,
0

Q

Delta

Q

l L
bs_data_noise ch l k k l

k N

 
 

 
Q  

      
  

0
, ,

0

E

Delta

l L
bs_data_env ch l k k l

k l

 
 

 
E

n r
 

For the envelope scalefactors and the noise floor scalefactors different Huffman tables are used dependent on coding 

directions, quantization and stereo mode, according to in [1], sub clause 4.A.6.1  Table 4.A.76 

6 Bitstream 

 

Figure 10 below gives a brief hierarchical representation of the SBR and parametric stereo parts of the aacPlus 

bitstream, with references to the corresponding decoder specifications.  An overview of sbr_extension_data() is given in 

[1], Figure 4.19A, and subclause 4.4.2.8 of [1] defines the syntax.  Clearly, the operation of the SBR Bitstream 

Multiplexer in Figure 5 is defined by this syntax.  The optional CRC calculation is also defined by the decoder 

description [1], subclause 4.5.2.8.1.  For convenience, pointers to the relevant sections in the present document are 

given within paranthesises in Figure 10. 

 
extension_payload()                 [1], Amendment Subpart 4, Table 4.51 

  sbr_extension_data()              [1], Subclause 4.4.2.8, Table 4.54A 

    sbr_header()                     ", ", Table 4.55A (5.3) 

    sbr_data()                       ", ", Table 4.56A 

      sbr_single_channel_element()   ", ", Table 4.57A 

        sbr_grid()                   ", ", Table 4.61A (5.4.3) 
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        sbr_dtdf()                   ", ", Table 4.62A (5.8) 

        sbr_invf()                   ", ", Table 4.63A (5.6.4) 

        sbr_envelope()               ", ", Table 4.64A (5.5, 5.7, 5.8) 

        sbr_noise()                  ", ", Table 4.65A (5.6.3, 5.7, 5.8) 

        sbr_sinusoidal_coding()      ", ", Table 4.66A (5.6.5) 

        sbr_extension()             [7], Subclause 8.A.2, Table 8.A.1 

          ps_data()                 [7], Subclause 8.4.1, Table 8.1 

 

Figure 10: Enhanced aacPlus with parametric stereo bitstream hierarchy 
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