
3GPP TS 26.404 V11.0.0 (2012-09)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;

General audio codec audio processing functions;
Enhanced aacPlus general audio codec;

Enhanced aacPlus encoder Spectral Band Replication (SBR)
part

(Release 11)

The present document has been developed within the 3
rd

 Generation Partnership Project (3GPP
 TM

) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP
 TM

 system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 2 Release 11

Keywords

UMTS, codec, LTE

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2012, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 3 Release 11

Contents

Foreword ..4

1 Scope ..5

2 Normative references ...5

3 Definitions, symbols and abbreviations ..5
3.1 Definitions .. 5
3.2 Symbols... 6
3.3 Abbreviations ... 7

4 Outline description ...7

5 SBR encoder description ..7
5.1 SBR tools overview... 7
5.1.1 Enhanced aacPlus sdynchronization without parametric stereo ... 8
5.1.2 Enhanced aacPlus synchronisation with parametric stereo.. 9
5.1.3 SBR encoder modules overview... 10
5.2 Analysis filterbank .. 12
5.3 Frequency band tables .. 15
5.4 Time / frequency grid generation.. 15
5.4.1 Transient detector.. 15
5.4.2 Frame splitter ... 16
5.4.3 Frame generator... 17
5.5 Envelope estimation .. 21
5.6 Additional control parameters ... 22
5.6.1 Introduction .. 22
5.6.2 Tonality estimat ion.. 23
5.6.3 Noise-floor estimation .. 24
5.6.4 Inverse filtering estimation .. 25
5.6.5 Additional sines estimat ion ... 26
5.7 Data quantization ... 29
5.8 Envelope and noise floor coding... 30

6 Bitstream ...32

Annex A (informative): Change history..34

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 4 Release 11

Foreword

The present document describes the detailed mapping of the general audio service employ ing the aacPlus general audio

codec within the 3GPP system.

The contents of the present document are subject to continuing work within the TSG and may change following formal

TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying

change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit :

1 presented to TSG for information;

2 presented to TSG for approval;

3 Indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

updates, etc.

z the third digit is incremented when editorial on ly changes have been incorporated in the specification;

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 5 Release 11

1 Scope

This Telecommunication Standard (TS) describes the SBR encoder part of the Enhanced aacPlus general audio codec

[3].

2 Normative references

This TS incorporates by dated and undated reference, provisions from other publications. These normative references

are cited in the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent

amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or

revision. For undated references, the latest edition of the publication referred to applies.

[1] ISO/IEC 14496-3:2001/Amd.1:2003, Bandwidth Extension.

[2] ISO/IEC 14496-3:2001/Amd.1:2003/DCOR1.

[3] 3GPP TS 26.401 : Enhanced aacPlus general audio codec; General Description

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of this TS, the following defin itions apply:

band: (as in limiter band, noise floor band, etc.) a group of consecutive QMF subbands

chirp factor: the bandwidth expansion factor of the formants described by a LPC polynomial

Down Sampled SBR: the SBR Tool with a modified synthesis filterbank resulting in a down sampled output signal

with the same sample rate as the input signal to the SBR Tool. May be used whenever a lower

sample rate output is desired.

envelope scalefactor: an element representing the averaged energy of a signal over a reg ion described by a

frequency band and a time segment

frequency band: interval in frequency, group of consecutive QMF subbands

frequency border: frequency band delimiter, expressed as a specific QMF subband

noise floor: a vector of noise floor scalefactors

noise floor scalefactor: an element associated with a region described by a frequency band and a time segment,

representing the ratio between the energy of the noise to be added to the envelope adjusted HF

generated signal and the energy of the same

patch: a number of adjoin ing QMF subbands moved to a different frequency location

SBR envelope: a vector of envelope scalefactors

SBR frame: time segment associated with one SBR extension data element

SBR range: the frequency range of the signal generated by the SBR algorithm

subband: a frequency range represented by one row in a QMF matrix, carry ing a subsampled signal

time border: time segment delimiter, expressed as a specific t ime slot

time segment: interval in time, group of consecutive time slots

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 6 Release 11

time / frequency grid: a description of SBR envelope time segments and associated frequency resolution tables as

well as description of noise floor time segments

time slot: finest resolution in time for SBR envelopes and noise floors. One time slot equals two subsamples

in the QMF domain

3.2 Symbols

For the purposes of this TS, the following symbols apply:

Description of variables defined in one sub clause and used in other subclasses.

ch is the current channel, and when used as index in vectors left channel is represented by ch= 0 and

right channel is represented ch= 1.

EOrig has LE columns where each column is of length NLow or NHigh depending on the frequency

resolution for each SBR envelope. The elements in EOrig contains the envelope scalefactors of the

original signal.

,TableLow TableHigh
   F f f has two column vectors containing the frequency border tables for low and high frequency

resolution.

SBRFs internal sampling frequency of the SBR Tool, twice the sampling frequency of the core coder

(after sampling frequency mapping, Table 4.55). The sampling frequency of the SBR enhanced

output signal is equal to the internal sampling frequency of the SBR Tool, unless the SBR Tool is

operated in downsampled mode. If the SBR Tool is operated in downsampled mode, the output

sampling frequency is equal to the sampling frequency of the core coder.

fMaster is of length NMaster+1 and contains QMF master frequency grouping information.

fTableHigh is of length NHigh+1 and contains frequency borders for high frequency resolution SBR envelopes.

fTableLow is of length NLow+1 and contains frequency borders for low frequency resolution SBR envelopes.

fTableNoise is of length NQ+1 and contains frequency borders used by noise floors.

k x the first QMF subband in the SBR range.

k0 the first QMF subband in the fMaster table.

LE number of SBR envelopes.

LQ number of noise floors.

M number of QMF subbands in the SBR range.

middleBorder points to a specific time border.

NL number of limiter bands.

NMaster number of frequency bands in the master frequency resolution table.

NQ number of noise floor bands.

[,]Low HighN Nn number of frequency bands for low and high frequency resolution.

numPatches a variable indicat ing the number of patches in the SBR range.

numTimeSlots number of SBR envelope time slots that exist within an AAC frame, 16 for a 1024 AAC frame .

 24,12panOffset offset-values for the SBR envelope and noise floor data, when using coupled channels.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 7 Release 11

patchBorders a vector containing the frequency borders of the patches.

patchNumSubbands a vector holding the number of subbands in every patch.

QOrig has LQ columns where each column is of length NQ and contains the noise floor scalefactors.

0 1[,...,]Lr r r frequency resolution for all SBR envelopes in the current SBR frame, zero for low resolution, one

for high resolution.

reset a variable in the encoder and the decoder set to one if certain bitstream elements have changed

from the previous SBR frame, otherwise set to zero.

tE is of length LE+1 and contains start and stop time borders for all SBR envelopes in the current

SBR frame.

tHFAdj offset for the envelope adjuster module.

tHFGen offset for the HF-generation module.

tQ is of length LQ+1 and contains start and stop time borders for all noise floors in the current SBR

frame.

3.3 Abbreviations

For the purposes of this TS, the following abbreviations apply.

NA Not Applicable

aacPlus Combination of MPEG-4 AAC and MPEG-4 Bandwidth extension (SBR)

Enhanced aacPlus Combination of MPEG-4 AAC, MPEG-4 Bandwidth extension (SBR) and MPEG-4

Parametric Stereo

QMF Quadrature Mirror Filter

SBR Spectral Band Replicat ion

4 Outline description

This TS is structured as follows:

Section 5.1 g ives an encoder overview description. Section 5.2 gives a detailed descriptio n of the filterbanks used in the

encoder. Section 5.3 g ives a specification of the used frequency band tables. Section 5.4 g ives a detailed description of

the time grid calculat ion and the transient detection. Section 5.5 gives a detailed description of th e envelope estimation.

Section 5.6 g ives a detailed description of the estimat ion of the additional control parameters. Section 5.7 gives detailed

description of the data quantisation. Section 5.8 g ives a detailed description of the envelope coding.

5 SBR encoder description

5.1 SBR tools overview

The encoder part of the SBR tool estimates several parameters used by the high frequency reconstruction method on the

decoder side. In order to synchronise the SBR bitstream data with the AAC codec, the two different modes of operation

have to be considered; normal aacPlus operation and aacPlus parametric stereo operation. In the normal case, the AAC

encoder is responsible for downsampling of the input PCM signal, while the SBR encoder works in parallel on twice th e

sampling frequency compared to the downsampled signal. When using parametric stereo aacPlus, the SBR tool is also

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 8 Release 11

responsible for downsampling of the AAC coder signal. The two modes are outlined in the following sections and

illustrated in Figure 1 and Figure 2.

SBR

Encoder

Down-

sampler

AAC

Encoder

B
it

s
tr

e
a

m

P
a

y
lo

a
d

F
o

rm
a

tt
e

rPCM signal

(L/R/M)

Coded Audio

Stream

Figure 1 aacPlus block diagram

Enhanced

SBR

Encoder

AAC

Encoder

B
it

s
tr

e
a
m

P
a
y

lo
a

d

F
o

rm
a

tt
e
r

PCM signal (L)

PCM signal (R)

Downsampled PCM

signal (M)

Coded Audio

Stream

Figure 2 Parametric stereo aacPlus block diagram

5.1.1 Enhanced aacPlus sdynchronization without parametric stereo

The time domain input PCM signal is assumed to be stored in a buffer x, where 2048 new samples are added to the end

of the buffer every frame. Before adding new samples, all samples in the buffer must be left -shifted 2048 samples. The

buffersize amounts to 576 + 2048 + tinputDelay samples, where tinputDelay equals the total AAC delay, i.e. the delay for the

entire encoder – decoder chain, plus the SBR decoder buffer delay minus the SBR encoder buffer delay. All delays are

expressed in the SBR input sampling rate:

 inputDelayt totAACDelay SBRDelayDec SbrDelayEnc  

The PCM buffer x is fed to the analysis QMF bank, where subband filtering is performed. The window stride of the

QMF bank is illustrated in Figure 3a, which shows that the first window is applied from sample 0 to sample 639 on the

PCM buffer. The output from the analysis QMF bank: 32 subbands having 64 frequency channels each, is stored in the

matrix X (Figure 3b) as

(,), 0 64, 0k l qmfWriteOffset k l numTimeSlots RATE     X

A delay of qmfWriteOffset subband samples is hence introduced, making

32 64 2048sbrDelayEnc   

The algorithmic buffer delay in the decoder is 6 subband samples, giving

6 64 384SBRDelayDec   

The total AAC delay is the delay introduced by the 1024 point MDCT transform, the window switching look-ahead and

the delay introduced by the downsampling filter. If other delays are introduced these of course have to be accounted for.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 9 Release 11

new input samples

0 1024 2048

0 numTimeSlots * RATE-1

PCM buffer

640 samples

2624

(b) subband sample buffer X

576

0

new complex QMF samples

qmfWriteOffset

RATE * numTimeSlots 2 * RATE * numTimeSlots - 1

t
inputDelay

(a) QMF analysis windowing of input signal

Figure 3 aacPlus encoder buffers and synchronisation

5.1.2 Enhanced aacPlus synchronisation with parametric stereo

The time domain input PCM signal is assumed to be stored in a buffer x, where 2048 new samples are added to the end

of the buffer every frame. Before adding new samples, all samples in the buffer must be left -shifted 2048 samples. The

buffersize amounts to 576 + 2048. Note that two buffers are needed for stereo signals.

The PCM buffer is fed to the analysis QMF bank, where subband filtering is performed. The window stride of the QMF

bank is illustrated in Figure 4a, which shows that the first window is applied from sample 0 to sample 639 on the PCM

buffer. The output from the analysis QMF bank: 32 subbands having 64 frequency channels each, is stored in the matrix

H (Figure 4b) as

 , 6 , 0 64, 0k l k l numTimeSlots RATE     H

Two buffers are needed for stereo operation. The s ubband samples in the matrix H are fed to the hybrid filter bank (See

[5]) which introduces a delay of 6 subband samples. Parametric stereo parameters are extracted from the output of the

hybrid filterbank and downmixing of the stereo signal is performed. Subsequently, hybrid synthesis filtering is applied

to the modified hybrid subband samples.

The downmixed subband samples are fed to the subband matrix X (Figure 4c) as

 , , 0 64, 0k l qmfWriteOffset k l numTimeSlots RATE     X

whereafter “normal” SBR operation is undertaken. The subband samples are in parallel l fed to the 32 channel synthesis

filter bank. The stride for the synthesis windowing is illustrated in Figure 4d. The output from the filterbank, having a

sampling frequency half of the SBR sampling frequency is forwarded to the AAC encoder.

After SBR processing of the current frame, an addit ional delay of one frame has to be introduced by delaying the SBR

frame data (Figure 4e).

To achieve synchronisation, the total AAC codec delay is bound to be 3200 samples, expressed in the SBR input

sampling frequency.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 10 Release 11

new input samples

time domain samples

0 1024 2048

0 512 1024

0 numTimeSlots * RATE-1

PCM buffer

AAC PCM signal

(a) QMF analysis windowing of input signal

(d) QMF downmix synthesis windowing

640 samples

320 samples

2624

(c) subband sample buffer X

576

new complex-valued QMF samples

0

0

new hybrid filtered QMF samples

RATE * numTimeSlots + 5

qmfWriteOffset

RATE * numTimeSlots 2 * RATE * numTimeSlots - 1

0 numTimeSlots * RATE-1

(b) hybrid filtering delay

(e) delay of SBR frame data

new coded SBR frame datacoded SBR data from last frame

6 subband

samples

Figure 4 Enhanced aacPlus stereo synchronisation

5.1.3 SBR encoder modules overview

The modules of the encoder part of the SBR tool are illustrated in the block diagram of Figure 5. The SBR tool operates

on discrete mono signals in general, but some of the modules in Figure 5 need simultaneous access to both the left and

right signal in case of stereo signals.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 11 Release 11

 As outlined in 5.1.1 and 5.1.2, the time domain signal is first filtered by the 64 channel complex QMF bank

(section 5.2). The output from the analysis QMF bank: 32 subbands having 64 frequency channels each, is

stored in the matrix X as

 , , 0 64, 0k l qmfWriteOffset k l numTimeSlots RATE     X

Several modules use the output from the QMF bank;

 The transient detector operates on the matrix X starting at subband sample 0.

 The frame splitter operates on the matrix X starting at subband sample 0.

 The output from the transient detector and frame splitter is fed to the frame generator, where the time and

frequency resolutions for the current frame are determined.

 The Tonality detector operates on the matrix X starting at subband sample qmfWriteOffset.

 The control data from the Tonality detector and also the current time and frequency grid is fo rwarded to the

unit for Additional control parameters. In this module, the levels of the adaptive noise, invers e filtering and

additional sines are determined.

 The Envelope energy formatter operates on the matrix X starting from subband sample 0. The unit needs the

time frequency grid and the additional control data as inputs.

 The formatted envelope data is subsequently quantised and Huffman coded, before being fed to the Bitstream

multip lexer, where all SBR data is formatted and packed into a SBR frame. The SBR frame is transmitted as a

fill-element in the bitstream multiplex together with the AAC channel element for the current frame. In case of

a Parametric stereo SBR element, the current SBR frame is delayed one frame before entering the bitstream

multip lexer (Section 5.1.2).

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 12 Release 11

6
4

 c
h

A
n

a
ly

s
is

Q
M

F

Transient

detector

Frame

splitter

PCM signal

(L/R/M) Tonality

detector

T / F Grid

Generator

Additional

Control

Parameters

Envelope

Energy

Formatter

Quantiser and

T/F Huffman

Encoder

B
it

s
tr

e
a

m
 M

u
lt

ip
le

x
e

r

Coded SBR

Bitstream

Figure 5 Sbr Encoder overview

5.2 Analysis filterbank

Subband filtering of the input signal is done by a 64-subband QMF bank. The output from the filterbank, i.e. the

subband samples, are complex-valued and thus oversampled by a factor two compared to a regular QMF bank. The

flowchart o f this operation is given in Figure 6. The filtering comprises the following steps, where an array x consisting

of 640 time domain input samples are assumed. Higher indices into the array corresponds to older samples:

 Shift the samples in the array x by 64 positions. The oldest 64 samples are discarded and 64 new samples are stored

in positions 0 to 63.

 Multiply the samples of array x by window c. The window coefficients are found in Figure 6.

 Sum the samples according to the formula in the flowchart to create the 128-element array u.

 Build two arrays, r and i, from u by the operations

     

     

127
,0 64

127

n u n u n
n

n u n u n

  
 

  

r

i

 Calculate 64 new complex-valued subband samples, X = R + i I, where i is the imaginary unit , by DCT and DST

type III transforming r and i according to

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 13 Release 11

   

   

63

0

63

0

1
cos

64 2
,0 64

1
sin

64 2

n

n

k r n k n

k

k i n k n









  
   

  
 

  
   

  





R

I

Every loop in the flowchart produces 64 complex-valued subband samples, each representing the output from one

filterbank subband. For every SBR frame the filterbank will produce numTimeSlots RATE subband samples from

every filterbank subband, corresponding to a time domain signal o f length 64numTimeSlots RATE  samples. In the

flowchart X[k][l] corresponds to subband sample l in QMF subband k.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 14 Release 11

Shift input buffer x

For n = 639 down to 64 do

x[n] = x[n - 64]

Add new samples to input buffer x

For n = 63 down to 0 do

x[n] = next_input_audio_sample

Window by 640 coefficients to produce array Z

For n = 0 to 639 do

Z[n] = x[n] * c[n]

Summation to create array Y

For n = 0 to 127 do

 4

u[n] = Z[n + j * 128]

 j=0

Start

(for QMF subsample l)

Done

Combinations to form r and i

For n = 0 to 63 do

r[n] = u[n] - u[127-n]

i[n] = u[n] + u[127-n]

Apply DCT and DST type III transforms to r and i and output result

For k = 0 to 63 do
 63

R[k] =  r[n] * cos( / 64 * (k + 0.5) * n)

 n=0
 63

I[k] =  i[n] * sin( / 64 * (k + 0.5) * n)

 n=0

X[k][l] = R[k] + i * I[k]

Figure 6: Flowchart of encoder analysis QMF bank

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 15 Release 11

5.3 Frequency band tables

The SBR encoder use these different frequency band tables:
Masterf , TableHighf ,

TableLowf and
TableNoisef , which are defined

according to subclause 4.6.18.3.2 in [1]. The parameters needed to define all frequency band tables are transmitted in

the SBR b itstream header. For SBR header bitstream elements enabled with either bs_header_extra_1 or

bs_header_extra_1 there are default values and hence a transmission of these elements are only needed if they differ

from the default value. Default values are defined in subclause 4.5.2.8.1 in [1]. The SBR header parameters are regarded

as tuning parameters since they are strongly bitrate and sampling frequency dependant Throughout the tuning work for

3GPP submission several bitrate and sampling frequency dependant tunings have been created and in the reference c -

code there are tunings available from 8kbit/s mono to 48 kbit/s stereo.

5.4 Time / frequency grid generation

An introduction to the time / frequency grid generation, including a brief discussion of the frame classes, is given in the

informal encoder description in [1], subclause 4.B.18.3. The present encoder implementation employs three tools for

the grid generation:

 The Transient Detector (TD)

 The Frame Splitter (FS)

 The Frame Generator (FG)

Those tools are described in the subsequent sections. Figure 7 shows the ranges of the frame classes and the transient

detector offset versus the indices used by the frame generator.

 |<------------tranPos---------->|

 |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|

 0 1 2 3 4 5 6 7 8 9 A B C D E F TD index (hexadecimal)

|<------------FIXFIX----------->|

|<------------FIXVAR----------->:<--->:

:<--->:<------VARFIX----------->|

:<--->:<------VARVAR----------->:<--->: Ybuffer

.. QMF slots

I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-Io|o|o|-|-|-|-|-|-|-|-|-|-|-|-|-I SBR slots

0 4 8 16 19 32 FG index

 I: nominal frame boundaries

 o: frame overlap region slots

Figure 7: The four frame classes and the transient detector range

5.4.1 Transient detector

The transient detection is performed according to the pseudo-code below. It operates on subband samples of one frame

length starting from sample 8. The output from the transient detector are the variables tranFlag and tranPos. The first is

a boolean indicating whether there is a transient in the processed frame, and the second specifies the position (in t ime

slots) for the on-set of the transient. The time / frequency grid generation module uses the output from the transient

detector and the stored transient detection output from the previous frame to perform its operations.

 

   

 

 

0; 16;

32

16; 48;

0

for n n n

a n a n

for n n n

a n

   

 

   



3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 16 Release 11

 

   

 

 

63
2

16

263
2

16

2 2

0; 64;

1
(,)

48

1
(,)

47

128000, 0.66 () 0.34

1; 4;

1
(,2) (,2 1)

2 2 2

1
(,2

2

n

n

for i i i

m X i n

temp m X i n

t i MAX t i temp

for n = 16;n < 48;n++

for d d d

n d n d
L X i INT X i INT

n d
R X i INT





   



  
 

   

   

      
         

     


 





  

   
 

 

2 2

) (,2 1)
2 2

n d
X i INT

if R L t i

R L t i
a n a n

t i

     
       

     

 

 
 

 

     

8; 40;

9
1 1 203.125

10

8

2

1

0

0

for n n n

if a n a n AND a n

n
tranPos INT

tranFlag

break

else

tranPos

tranFlag

   

 
    

 

 
  

 







t and a are static channel-dependent arrays of length 64 that needs to be stored in between calls to the transient detector.

On start-up, all elements in both arrays must be set to zero.

5.4.2 Frame splitter

The frame splitting is accomplished according to the following algorithm. It is only active when the transient detector

has detected the absence of a transient in the current frame of interest, i.e . when tranFlag = 0). It operates on subband

samples of one and a half frame length s tarting from subband sample 0. The output from the frame splitter is the

variable splitFlag, which indicates whether the current frame (free from transients) should be divided into two

envelopes of equal size.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 17 Release 11

   
 

 
 

-2

sbrStartBand-1 47
2

0 16

116(1) 1
2

16

 7.5 5 0.01

(,)

,
, , , 0 , 0 1

1,

h

l

currlow

i n

kl
l

high

j l i k h

currhig

totalBitRate frameSize
splitThr e

codecBitrate sampleFreq

e i n

k p HI
e p,l i j p HI l

k p HI

e

 

 

 

 
     

 



 
    

 

 

 

X

F
X n

F

   

 
 

 
 

 
   

 

() ()

0 0

()

0

,0 ,1

2
2

,1 8 6
log , 0

,0 8 6

,0 ,1 16 6

1

HI HI

h high high

p p

currlow prevlow

tot currhigh

high

high

HI
high high

p tot

e p e p

e e
e e

e p e
dvec p ABS p HI

e p e

e p e p e
d dvec p

e

if d splitThr

splitFlag

e

 



 


  

   
        

 






 



n n

n

n

0

prevlow currlow

lse

splitFlag

e e





The variable prevLowe is a static channel-dependent variable that must be stored in between calls to the frame splitting

module. This variab le should be set to zero on start-up.

5.4.3 Frame generator

The frame generator creates the time/frequency grid for one SBR frame. Input signals are provided by the transient

detector and the frame splitter. The frame generator produces two outputs: The sbr_grid() port ion of the bitstream, and

an internal representation of the time/frequency grid to be used by the envelope and noise floor estimators, see Figure 5.

When no transients are present (i.e . tranFlag = 0), FIXFIX class frames are used. The frame splitter decides whether to

use one or two envelopes in the FIXFIX frames (splitFlag = 0 or splitFlag = 1 respectively). "Sparse" transients

(separated by one or more frames with tranFlag = 0) are coded by means of FIXVAR-VARFIX sequences. "Tight"

transients (tranFlag = 1 for two or more consecutive frames) are handeled by inserting VARVAR class frames.

As most transients are "sparse", the frame generator prepares a grid for a FIXVAR-VARFIX pair upon detection of a

transient after a sequence of FIXFIX frames. The present frame is encoded using the FIXVAR portion, and the

VARFIX grid is stored. At the next call of the generator it is known whether the transient actually is "sparse" or not. If

'yes', the already calculated and stored VARFIX grid is used. If 'no', a new grid, meet ing the requirements of the new

transient, as well as those of the previous one, is calculated, whereby a VARVAR class frame is used.

The operation of the frame generator is further described below by means of pseudo -code, where the syntax

[out0, out1, ..., outm-1] = function(in0, in1, ..., inn-1) is used.

FrameGenerator(tranFlag, tranPos, splitFlag)

{

 static frameClassOld; // frameClass used for previous frame

 static G1; // grid designed during previous call

 [frameClass, frameClassOld] = calcFrameClass(frameClassOld, tranFlag);

 if (tranFlag)

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 18 Release 11

 GP = fillFrameTran(tranPos); // load transient borders into GP

 switch (frameClass) {

 case FIXFIX:

 BS = calcSbrGrid(FIXFIX, dc, splitFlag);

 break;

 case FIXVAR:

 if (tranPos > 8)

 GP = fillFramePre(GP); // append borders before transient borders

 if (tranPos < 10)

 GP = fillFramePost(GP); // append borders after transient borders

 [G0, G1] = splitAndStore(GP); // split GP into two grids, G0 and G1

 BS = calcSbrGrid(FIXVAR, G0, dc); // calc BS using G0

 break;

 case VARFIX:

 BS = calcSbrGrid(VARFIX, G1, dc); // calc BS using G1 (from previous call)

 break;

 case VARVAR:

 GP = fillFrameInter(G1, GP); // resolve conflicts and merge G1 and GP

 if (tranPos < 10)

 GP = fillFramePost(GP); // append fill-borders after tran-borders in GP

 [G0, G1] = splitAndStore(GP); // split GP into two grids, G0 and G1

 BS = calcSbrGrid(VARVAR, G0, dc); // calc BS using newly designed G0

 break;

 }

 return [BS, FI = decodeSbrGrid(BS)];// decode BS into FI

}

The following pseudo-variables are defined:

GP = "Grid-Pair":

- GP.aBorders: array holding envelope borders of two consecutive frames

- GP.aFreqRes: array holding envelope frequency resolutions of two consecutive frames

- GP.iTran : index of transient leading border

Gi = "Grid instance i":

- Gi.aBorders: array holding envelope borders of one frame

- Gi.aFreqRes: array holding envelope frequency resolutions of one frame

- Gi.iTran : index of transient leading border of one frame

BS = "Bit-Stream":

- sbr_grid() as defined in [1] Subclause 4.4.2.8, Table 4.61A

FI = "Frame-Info":

- FI.t_E: tE , envelope borders as defined in 3.2

- FI.r :
0 1[,...,]Lr r r , envelope frequency resolutions as defined in 3.2

- FI.t_Q: tQ , noise floor borders as defined in 3.2

- FI.l_A: lA , index of border where the preceding envelope is to be "shortened"

the symbolic constant,

dc: don't care

and the operations

cat(a, b): concatenate vectors a & b

length(a): number of elements of vector a

fliplr(a): reverse order of elements of vector a

ones(a) : generate vector of length a, were all elements are 1

The internal functions are defined below:

calcFrameClass (frameClassOld, tranFlag)

{

 switch (frameClassOld) {

 case FIXFIX:

 if (tranFlag)

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 19 Release 11

 frameClass = FIXVAR;// stationary to transient transition

 else

 frameClass = FIXFIX;// when no transients are present, FIXFIX frames are used

 break;

 case FIXVAR:

 if (tranFlag)

 frameClass = VARVAR;// "tight" transients are handeled by VARVAR frames

 else

 frameClass = VARFIX;// "sparse" transients are handeled by [FIXVAR, VARFIX] pairs

 break;

 case VARFIX:

 if (tranFlag)

 frameClass = FIXVAR;

 else

 frameClass = FIXFIX;// transient to stationary transition

 break;

 case VARVAR:

 if (tranFlag)

 frameClass = VARVAR;// "tight" transients are handeled by VARVAR frames

 else

 frameClass = VARFIX;

 break;

 }

 frameClassOld = frameClass;

 return [frameClass, frameClassOld];

}

fillFrameTran(tranPos)

{

 GP.aBorders = {tranPos + 4, tranPos + 6, tranPos + 10};

 GP.aFreqRes = {0, 0, 1};

 GP.iTran = 0;

 return GP;

}

fillFramePre(GP)

{

 aBordersFill = fillHelper(GP.aBorders[0], 8);

 GP.aBorders = cat(fliplr(aBordersFill), GP.aBorders);

 GP.aFreqRes = cat(ones(length(aBordersFill)), GP.aFreqRes);

 GP.iTran += length(aBordersFill);

 return GP;

}

fillFramePost(GP, tranPos)

{

 if (tranPos < 4)

 maxStep = 6;

 else if (tranPos == 4 || tranPos == 5)

 maxStep = 4;

 else

 maxStep = 8;

 aBordersFill = fillHelper((32 - GP.aBorders[length(GP.aBorders) - 1], maxStep);

 GP.aBorders = cat(GP.aBorders, aBordersFill);

 GP.aFreqRes = cat(GP.aFreqRes, ones(length(aBordersFill)));

 return GP;

}

splitAndStore(GP)

{

 iSplit = 0;

 while (GP.aBorders[iSplit] < 16)

 iSplit++;

 for (i = 0; i <= iSplit; i++) {

 G0.aBorders[i] = GP.aBorders[i];

 G0.aFreqRes[i] = GP.aFreqRes[i];

 }

 G0.iTran = GP.iTran;

 for (j = 0, i = iSplit; i < length(GP.aBorders); i++, j++) {

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 20 Release 11

 G1.aBorders[j] = GP.aBorders[i] - 16;

 G1.aFreqRes[j] = GP.aFreqRes[i];

 }

 G1.iTran = GP.iTran - iSplit;

}

As evident from the pseudo code, every transient is initially processed by fillFrameTran() by inserting one border at the

onset of the transient, and two "decay" borders after the onset at the distances 2 and 6 slots from the first border

respectively. The frequency resolutions of the two corresponding envelopes are 'low', whereas all other envelopes use

'high' resolution. Additional borders are inserted before said borders by fillFramePre() and fillFramePost(), such that no

envelope exceeds the length 12 slots. The function fillHelper(A, B) subdivides the distance A by calculating segments

quantized to the lengths {2, 4, 6, 8} slots while limit ing the segment length to B. In splitAndStore() the borders are

separated into two groups, each associated with one frame. The above procedures are illustrated by Figure 8.

 tranFlag = 1

 tranPos = 9

 <T>

 |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|

 0 1 2 3 4 5 6 7 8 9 A B C D E F TD index

 *

 |<-----6----|<-2|<--4---|-----6---->|

 N | N

|<--------- Frame n: FIXVAR ----:--3->|<-- Frame n+1: VARFIX -->|

.. QMF slots

I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-Io|o|o|-|-|-|-|-|-|-|-|-|-|-|-|-I SBR slots

0 7 13 15 19 25 32 FG index

 I: nominal frame boundaries

 o: frame overlap region slots

 *: border pointed to by bs_pointer

 N: noise floor middle border

Figure 8: Example of isolated transient

In Figure 8. the borders at index 7, 13, 15 and 19 are used for the present FIXVAR class frame. Conversion into

sbr_grid() bitstream elements is performed in calcSbrGrid(). The methods of the four classes for conversion of borders

and frequency resolutions are implicitely defined by the bitstream and decoding equations in [1], subclause 4.4.2.8

(Table 4.61A) and 4.6.18.3, and are hence not described here. In the example bs_var_bord_1 = 3, bs_num_rel_1 = 3,

the relative borders have the lengths 4, 2 and 6 ("right to left"), and the frequency resolutions are 0, 0, 1, 1 ("right to

left"). The bs_pointer is set to point to the transient leading border, i.e. the value is 3 since FIXVAR borders are also

indexed "right to left", starting from 1 (0 signals that no transient leading border is present within the frame). The

border at index 19 must be followed up in the next frame by a leading border at index 3. The border at 25, however,

may or may not yield a border at 9, since a transient is possible in frame n + 1. If the transient actually is "sparse", the

VARFIX bitstream comprises of bs_var_bord_0 = 3, bs_num_rel_0 = 1, one relative border of length 6, bs_pointer = 0

and frequency resolutions 1, 1.

Figure 9. gives an example o f "tight" transients, and also serves to outline the functionality of fillFrameInter(). Here G1

contains borders at index 1 and 7, but a transient is located already at index 6. In fillFrameInter() the preliminary border

at 7 is simply removed, and the rest of the borders for the present frame are taken from GP. (If on the other hand the

distance between the last border in G1 and the first border in GP exceeds 12, the segment inbetween said borders is

subdivided analogously to the procedures in fillFramePre().) Hereafter GP is finalized and split in the same manner as

described above, whereafter G0 is converted into a bitstream using the VARVAR method of calcSbrGrid(). Hereby the

leading border yields bs_var_bord_0 = 1 and the trailing border bs_var_bord_1 = 2. Clearly bs_num_rel_0 = 0 and

bs_num_rel_1 = 3. Figure 9. also shows that fillFramePost() has inserted a border at 18, thereby meeting the

requirement that one border is present within the interval [16, 19]. Th is concludes the description of how to generate

BS.

 tranFlag = 1

 tranPos = 2

 <T>

 I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-I

 0 1 2 3 4 5 6 7 8 9 A B C D E F TD index

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 21 Release 11

 *

 |<r2|<--r4--|<----6-----|-----6---->|

:1| | |

:1|<------- Frame n: VARVAR ----:2->|<--- Frame n+1: VARFIX --->|

.. QMF slots

I-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-Io|o|oI-|-|-|-|-|-|-|-|-|-|-|-|-I SBR slots

0 1 6 7 8 12 18 24 32 FG index

Figure 9: Example of tight transients

The second output of the frame generator, FI, comprises of tE, r, tQ and lA. Since those signals are equivalent to their

counterparts at the decoder side, the relation between FI and BS is fu lly defined by the decoding equations in MPEG-4.

Thus, as the last step in the frame generator, the decodeSbrGrid() function parses and decodes the now available

sbr_grid() portion of the bitstream in accordance with the description in the MPEG-4 standard, which shall not be

repeated here.

5.5 Envelope estimation

By using the time/frequency grid created by the framing generator and the transient information from the transient

detector, the QMF bank subband matrix is grouped in time and frequency into envelope scalefactorbands. For each

scalefactorband the squared average energy is calculated and stored in the energy matrix E according to the recursion

below.

 

   
     

     

  
  

 0

1 , 1
 =

0 ,

 0

1 , 0, , 1, 0, 1

 = 1 , 0, , 1, 0, 2

0 ,

,

1,

E

A

l

k

l k

h

for l ;l < L ;l ++

l l
temp

otherwise

for p ; p < l ; p ++

p l HI HI HI

temp p l LO LO LO

otherwise

k p l temp

k p l



 





    


   



 

 

n r

r F F

r F F

F r

F r

 

 
 

 

       

1 1 1
2

 ,

 ,
1

E h

E l

RATE l k

i RATE l j k

E l E h l

j i

p l
RATE l temp l k k

   

  


     

 
t

t

X

E
t t

If a missing harmonic has been detected in a certain scalefactorband the squared energy for that scalefatorband is

calculated as the maximum energy instead of average energy. Since the missing harmonics detection and signalling

always operate using the recursion shown below.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 22 Release 11

 

   
     

     

  
  

for 0; ;

1 , 1
 =

0 ,

 for 0; ;

1 , 0, , 1, 0, 1

 = 1 , 0, , 1, 0, 2

0 ,

,

1,

E

A

l

k

l k

h

l l L l ++

l l
temp

otherwise

p p l p

p l HI HI HI

temp p l LO LO LO

otherwise

k p l temp

k p l

 

 



   

    


   



 

 

n r

r F F

r F F

F r

F r

 

 

 
 

 

     

   

1 1
2

0,398107267 , 1

0,5 ,

 ; ;

,

1

 ,

E

E

h l

l h

RATE l

i RATE l

temp l

E l E

temp

k k
boostcomp

otherwise

for k k k < k k

k i

k k boostcomp
RATE l temp l

p l MAX

  

 

 
 


  

  
   




t

t

X

e
t t

E e

For stereo with no channel coupling, the energy for every channel is calculated as in the mono case shown above. In the

case of stereo and coupling the energy is calculated according to:

  
   

  
, ,

, , 0 ,0
2

Left Right

CouplingLeft E

p l p l
p l p l l L


    

E E
E n r

  
 

 
  

,
, , 0 ,0

,

Left

CouplingRight E

Right

p l
p l p l l L

p l






    



E
E n r

E

5.6 Additional control parameters

5.6.1 Introduction

In order to achieve optimal results, given the HF generator used in the decoder, several additional parameters apart from

the spectral envelope are assessed. The noise floor is estimated for the current SBR frame. It is defined as the ratio

between the energy of the noise that should be added to a particular frequency band, in order to obtain a similar tonal to

noise ratio to that of the original signal, and the energy of the HF generated signal for that frequency band.

The noise floor is estimated once or twice per SBR frame dependent on the number of spectral envelopes estimated fo r

the SBR frame (indicated by Qt). The frequency resolution for the noise floor scalefactor is calculated according to the

same algorithm subsequently used in the decoder and described in [1] subclause 4.6.18.3. The start and stop time

borders of the different noise floors are g iven from the t ime grid.

The level of the inverse filtering applied in the decoder is estimated for different frequency ranges with the same

frequency resolution as used for the noise floor scalefactor estimation. The estimat ion algorithm compares the tonality

of the original and the tonality that will be attained after the HF generator in the decoder. The rat io between the two is

mapped to four different inverse filtering levels, off, low, mid and high. These levels corresponds to different chirp

factors in the HF generator as outlined in [1] subclause 4.6.18.5. Moreover, the encoder assesses where a strong tonal

component will be missing after the HF generation in the decoder. This detection is done on the highest frequency

resolution given by the high frequency resolution table, fTableHigh. The level of the tonal component is implicitly coded

by the SBR envelope and the noise floor scalefactors, and thus only the frequency needs to be coded.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 23 Release 11

5.6.2 Tonality estimation

The following detection modules base their output on a tonality estimate calculated in the tonality estimation module:

 Noise-floor estimation

 Inverse filtering estimation

 Additional sines estimat ion

The tonality is derived from the prediction gain of a second order linear prediction performed in every QMF subband.

The LPC is calculated using the covariance method, and for every frame two tonality estimates are calculated for every

subband.

In the following, X is the matrix holding the most recently available complex QMF subband samples. The tonality

values are calculated and stored in the T and Ts br matrices. These also contain buffered values from previous frames.

The Ts br values are obtained from the T values by patching the tonality values similarly to the patching of the subband

channels in the high frequency reconstruction modules in the decoder.

Since the subband signals are complex valued, this results in complex filter coefficients for the linear prediction. The

prediction filter coefficients are obtained from the covariance method. The covariance matrix elements for every

tonality estimate calcu lated are:

     
116 1 1

*

,

2 0 0

0 3
, , 16 , 16 ,

1 3

xk M

k l

n k l

i
i j k n i l k n j l

j


 

  

 
        

 
  X X

where k is the subband index, and l is the tonality estimate.

Based on the covariance elements the coefficients  0

l k and  1

l k used to calculate the tonality estimates for the

subbands are calculated as:

       
2

, , ,

1
d 2,2 1,1 1,2

1

l

k l k l k l

Inv

k   


  


,

 

       

 
 

 

, , , ,

1

0,1 1,2 0,2 1,1
, 0

0 , 0

k l k l k l k l l

ll

l

d k
d kk

d k

   



   


 
 

,

 

     

 
 

 

*

, 1 ,

,

,0

,

0,1 1,2
, 1,1 0

1,1

0 , 1,1 0

l

k l k l

k ll

k l

k l

k

k

  






  
 

 




.

where  Inv is the relaxation parameter ( Inv = 1E-6).

The tonality values are calculated based on the above coefficients according to:

 
        

           

* *

0 , 1 ,

* *

, 0 , 1 ,

0,1 0,2
, 2

0,0 0,1 0,2

l l

k l k l

l l

k l k l k l

re k k
k l

re re k k

   

    

  
 

   
T

 

  
1

,

0

0,0

2

N

k l

k

re

l
N




 


Nrg

The tonality values are patched similarly to the patching of the QMF subbands in the decoder during high frequency

reconstruction. Hence, it is possible to compare tonality of a "simulated" SBR signal and the orig inal signal on the

encoder side. The patch used is built in accordance to the flowchart in Figure 4.46, subclause 4.6.18.6.3 in [1], where

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 24 Release 11

the output variable numPatches is an integer value specifying the number of patches. patchStartSubband and

patchNumSubbands are vectors holding the data output from the patch decision algorithm.

Hence, the tonality values for the SBR part is obtained according to:

    , 2 , 2k l p l  Tsbr T

 

 

1

0

i

x

q

k k x q

p i x






  


  

patchNumSubbands

patchStartSubband

for  0 , 0 , 0 2x i i numPatches l     patchNumSubbands .

5.6.3 Noise-floor estimation

The noise floor estimation module estimates the amount of noise relative to the energy of the patched SBR signal that

should be added on the decoder side in order to obtain a tonal to noise ratio similar to that of the original. The

estimation is based on the tonality values in the T and Tsbr matrices, and the estimation is done for the number of

frequency bands indicated by NQ , and the frequency ranges defined in fTableNoise for the time segments defined by Qt .

The algorithm below is outlined for noise floor band nfBand for noise floor nfEnv and should be applied for all noise-

floor bands, and noise floors in the present frame. If the number of spectral envelopes for the present frame is larger

than one, two noise floors will be estimated, otherwise one. For the case of two noise floors startIndex will be zero for

the first noise-floor and one for the second noise-floor, while stopIndex will be one for the first noise-floor, and two for

the second noise-floor. In case of only one noise-floor, the startIndex will be zero and the stopIndex will be one.

The noise floor is calculated by averaging of the tonality values for the given time/frequency range, or by choosing the

maximum tonality value. The latter is used if the additional sine detection algo rithm detects that a sine should be added

on the decoder side for frequency band that is included in the present noise floor frequency band.

Hence, for every noise floor band the tonality values are calculated according to:

 
 

 

 

 

         

1 -1 1 -1

,

1 - 1 -

Q TableNoise

Q TableNoise

nfEnv nfBand

l nfEnv k nfBand

Q Q TableNoise TableNoise

k l

Tavg
nfEnv nfEnv nfBand nfBand

 

 


  

 
t f

t f

T

t t f f

 
 

 

 

 

         

1 -1 1 -1

,

1 - 1 -

Q TableNoise

Q TableNoise

nfEnv nfBand

l nfEnv k nfBand

Q Q TableNoise TableNoise

k l

TavgSbr
nfEnv nfEnv nfBand nfBand

 

 


  

 
t f

t f

Tsbr

t t f f

or, if a sine will be added at the decoder side as indicated by "missingHarmonicsFlag", according to:

           max max , ,1 , 1 , 1TableNoise TableNoise Q QTavg k l nfBand k nfBand nfEnv l nfEnv      T f f t t

           max max , ,1 , 1 , 1TableNoise TableNoise Q QTavgSbr k l nfBand k nfBand nfEnv l nfEnv      Tsbr f f t t

The tonality values Tavg and TavgSbr are subsequently used to calculate the actual noise-floor value, according to:

  
1

, min ,nfBand nfEnv nfOffset nfMaxLevel
Tavg

 
  

 
nf ,

if the additional sine detection has indicated that there is a sinusoidal missing in the present noise-floor band, or the

inverse filtering level for the present noise-floor band is equal or below INVF_LEVEL_MID. If neither of these cases

are true, the noise-floor value is calculated according to:

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 25 Release 11

  

max 1,0.25

, min ,

TavgSbr

Tavg
nfBand nfEnv nfOffset nfMaxLevel

Tavg

  
  

   
 
 
 

nf

The noise-floor values are s moothed by applying a LP filter over t ime using previous noise floor values. Hence for

every nfBand, the smoothing is done according to:

         
2

0

, , 3 ,prev

i

nfBand nfEnv nfBand nfEnv i nfBand i


   Q nf h h nf

where nfPrev are the nf values from the previous estimates (where the most recent estimates is placed at the end of the

vector, i.e. position 2), and h is defined as:

 0.05857864376269, 0.2, 0.34142135623731, 0.4h

5.6.4 Inverse filtering estimation

The inverse filtering detection is done on the frequency bands indicated by fTableNoise . For every band a tonality value is

calculated from the original input signal and the "patched" SBR signal. The values are mapped to a specific regions

given the "Region borders" in the detectorParamsAAC struct, and the appropriate inverse filtering value is given from

the "Region space" also in detectorParamsAAC.

typedef enum

{

 INVF_OFF = 0,

 INVF_LOW_LEVEL,

 INVF_MID_LEVEL,

 INVF_HIGH_LEVEL

}

INVF_MODE;

static const DETECTOR_PARAMETERS detectorParamsAAC = {

 { 1.0f, 10.0f, 14.0f, 19.0f}, /* Region borders SBR. */

 { 0.0f, 3.0f, 7.0f, 10.0f}, /* Region borders Orig. */

 {25.0f, 30.0f, 35.0f, 40.0f}, /* Region borders Nrg. */

 4, /* Number of borders SBR. */

 4, /* Number of borders orig. */

 4, /* Number of borders Nrg. */

 1.0f, /* Delta value for hysteresis. */

 { /* Region space. */

 {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */

 {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */

 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /*regionSbr*/

 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL,INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */

 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL,INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */

 },/*------------------------ regionOrig ---------------------------------*/

 { /* Region space transient. */

 {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */

 {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */

 {INVF_HIGH_LEVEL,INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /*regionSbr*/

 {INVF_HIGH_LEVEL,INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */

 {INVF_HIGH_LEVEL,INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */

 },/*------------------------ regionOrig ---------------------------------*/

 {-4, -3, -2, -1, 0} /*Reduction factor of the inverse filtering for low energies.*/

};

static const float hysteresis = 1.0f; /* Delta value for hysteresis. */

The parameters Tavg and TavgSbr are calcu lated for every inverse filtering band by averaging the tonality values in the

T and Tsbr matrices over the frequency regions indicated by fTableNoise according to (outlined for band invBand):

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 26 Release 11

 
 

 

 

    

1 -1

,0 ,1

2 1 -

TableNoise

TableNoise

invBand

k invBand

TableNoise TableNoise

k k

Tavg
invBand invBand








 


f

f

T T

f f

 
 

 

 

    

1 -1

,0 ,1

2 1 -

TableNoise

TableNoise

invBand

k invBand

TableNoise TableNoise

k k

TavgSbr
invBand invBand








 


f

f

Tsbr Tsbr

f f

The values are subsequently filtered by a two tap FIR filter according to:

0.666666 0.333333Smooth PrevTavg Tavg Tavg   

0.666666 0.333333Smooth PrevTavgSbr TavgSbr TavgSbr   

where the
PrevTavg and

PrevTavgSbr are the Tavg and TavgSbr from the previous frame.

The avgNrg parameter is similarly calculated:

   0 1

2
avgNrg




Nrg Nrg

The region borders for the SBR tonality and the original tonality is modified given previous values. The modification is

done by adding the "hysteresis" value to the upper border of the previous region, and subtracting the hysteresis value

from the lower border of the previous region. This gives the region-borders used for the detection of the present band in

the present frame. The following pseudo-code outlines how the hysteresis is applied, where the quantSteps are the

region border given in detectorParamsAAC.

 if(prevRegion < numRegions)

 quantStepsTmp[prevRegion] = quantSteps[prevRegion] + hysteresis;

 if(prevRegion > 0)

 quantStepsTmp[prevRegion - 1] = quantSteps[prevRegion - 1] - hysteresis;

The region corresponding to the filtered tonality values for the orig inal and the SBR signal is obtained by finding the

region that has an upper border higher than the present value, and a lower border lower or equal to the present value.

This means that if the present value is smaller than the first value in the border vector, the region returned will be zero,

and so on.

The regions for the original and the SBR signal are used to index the region space as indicated by the

detectorParamsAAC, and the inverse filtering level value corresponding to the element pointed out by the region

indexes is returned. Different region spaces are used for frames where a transient is detected.

Subsequently an energy compensation is applied. The energy-value calculated from the auto correlation is mapped to a

region defined in detectorParamsAAC. The index value is subtracted from the inverse filtering level obtained from the

region space, and this gives the final inverse filtering level stored in the bs_inv_filt vector.

5.6.5 Additional sines estimation

The additional sines estimation module, estimates for which frequency bands a strong sinusoidal component will be

missing after high frequency reconstruction in the decoder. The result of the detection may not include a detection of a

new siusoidal component unless the frame contains a transient, as defined by the transient detector, or unless the

previous frame contained a transient positioned less than nine QMF slots from the trailing border of the previous frame.

Such a detection will be removed.

The detection algorithm firstly calcu lates the input data upon which detection is done, based on the T and Ts br values.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 27 Release 11

  
  

   
   

max ,
, , 2 4, 1 ,0

max max , ,1
High High

k l
m l l m k m m Nsfb

k l
       

T
diff f f

Tsbr

  

 
 

 

      
 

     

1 1

1

1 1 1

,

, , 2 4,0

1 ,

High

High

High High High

High

m

k m

m m m

High High

k m

k l

m l l m Nsfb

m m k l

 



   



    

 
   

 
 





f

f

f f f

f

T

sfm

f f T

  

 
 

 

      
 

     

1 1

1

1 1 1

,

, , 2 4,0

1 ,

High

High

High High High

High

m

k m

m m m

High High

k m

k l

m l l m Nsfb

m m k l

 



   



    

 
   

 
 





f

f

f f f

f

Tsbr

sfmSbr

f f Tsbr

The detection system is based on using guide-vectors holding information on previous detections. There are two

different guide-vectors:

 guidevectorDiff (has the frequency resolution of the scalefactorbands)

 guidevectorOrig (has the frequency resolution of the QMF)

For every frame two tonality estimates in time are available, and hence two estimates in time fo r the diff, sfm, sfms br

parameters are availab le as well. For every estimate a detection is done using the guide-vectors from the previous

detection. The results from the separate detections are finally merged into one decision reflecting the current frame

The detection algorithm is applied for every estimate, using guide-vectors from the previous detection and producing a

detection vector and new guide-vectors. The algorithm is outlined below for tonality estimate l0.

Firstly, for every scalefactor band the difference s ignal is compared to a threshold thresTemp. The threshold is

calculated based on the guide-vectors and a decay-factor according to:

 thresTemp = guideVectorDiff[i][l0] ?

 max(decayGuideDiff*guideVectorDiff[i][l0],thresHoldDiffGuide):
 thresHoldDiff;

 thresTemp = min(thresTemp, thresHoldDiff);

If the difference diff for a scalefactor band is higher than the threshold, the detection vector is set to one for this

scalefactor band, and the new guide vector is given the current difference value for the present scalefactor band. If the

difference in tonality is lower than the threshold, but the guide vector indicated that present scale factor band had a

detected missing sine in for the previous tonality estimate, the guide vector "guideVectorOrig", is assigned the

thresHoldToneGuide value, in order to track the decay of the orig inal tone instead of the difference signal. This is

outlined for scalefactor band i, in the fo llowing pseudo-code:

 if(diff[i][l0] > thresTemp){

 detVec[i][l0] = 1;

 guideVectorDiff[i][l0+1] = diff[i][l0];

 }

 else{

 if(guideVectorDiff[i]){

 guideVectorOrig[i][l0] = thresHoldToneGuide;

 }

 }

A second detection is done for all scalefactor bands where guideVectorOrig is not zero. The threshold used is calculated

according to:

 thresOrig = max(guideVectorOrig[i][l0]*decayGuideOrig,thresHoldToneGuide);

 thresOrig = min(thresOrig,thresHoldTone);

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 28 Release 11

If the tonality value in T for any QMF subband within the a scalefactor band is above the threshold the detection vector

element for th is subband is set to one, as well as the new guide vector. The following pseudo -code outlines the second

round of detection, for scalefactor band i, where ll and lu are the lower and upper QMF subband borders for the present

scalefactor band:

 if(guideVectorOrig[i][l0]){

 for(j= ll;j<lu;j++){

 if(T[j][l0] > thresOrig){

 detVec[i][l0] = 1;

 guideVectorOrig[i][l0+1] = T[j][l0];

 }

 }

 }

Finally, for every scalefactor band, a detection is done in order to make sure that one single strong sinusoidal in the

original signal is not replaced (by patching) by several strong sinusoids in the SBR signal. For all scalefactor bands

larger than one QMF subband, the values of sfm and sfmSbr is compared. Th is is done according to:

 for(j= ll;j<lu;j++){

 if(T[j][l0] > thresOrig &&

 (sfmSbr[i][l0] > sfmThresSbr && sfm[i][l0]<sfmThresOrig)){

 detVec[i][l0] = 1;

 guideVectorOrig[i][l0+1] = T[j][l0];

 }

 }

However, for the scalefactor bands only containing one QMF subband the above matrices are defined according to:

 if(T[ll][l0] > thresHoldTone &&

 (diff[+1][l0] < 1/thresHoldTone ||

 diff[i-1][l0] < 1/thresHoldTone)){

 detVec[i][l0] = 1;

 guideVectorOrig[i][l0+1] = T[ll][l0];

 }

The above is applied for every estimate, i.e. twice per frame. If a new detection is allowed, e.g. there is a transient

present in the frame, the following additional algorithmic step is performed:

 Identify adjacent scalefactor bands where detection of a missing sine is done in both bands

 Find the QMF subband within each scalefactor band that has the highest tonality

 If the QMF subband with the highest tonality value are ad jacent, remove the detection for the scalefactor band

with the lowest tonality.

Finally the detection decisions from the different detections are merged together, according to:

 for(i = 0; i< nSfb; i++){

 for(est = start; est < totNoEst; est++){

 bs_add_harmonic[i] = bs_add_harmonic[i] || detVec[i][est];

 }

 }

Here start equals two if the newDetectionAllowed flag is set, otherwise it is set to zero.

If the newDetectionAllowed flag is not set, detections that were not present before are removed, according to:

 if(!newDetectionAllowed){

 for(i=0;i<nSfb;i++){

 if(bs_add_harmonic[i] – prev_bs_add_harmonic[i] > 0)

 bs_add_harmonic[i] = 0;

 }

 }

Apart from detection in which scalefactor band a sinusoidal should be added the module also calculates an energy

compensation vector. This is used in the envelope estimat ion module.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 29 Release 11

For every scalefactor band where a missing sine has been detected the maximum tonality value in the T matrix is found,

indicated by maxPosF (indicating the subband) and maxPosT (indicat ing the QMF slot). If maxPosF coincides with a

scalefactor band border and a detection was not done for the adjacent scalefactor band, a compensation value is

calculated according to (here outlined for the case where the maxPosF value coincides for the lower scalefactorband

border):

 compValue = (int) (fabs(ILOG2*log(diff[i - 1][maxPosT] +EPS)) + 0.5f);

 if (compValue > maxComp)

 compValue = maxComp;

 if(!pAddHarmonicsScaleFactorBands[i-1]) {

 if(tonality[maxPosF -1][maxPosT] > tonalityQuota*tonality[maxPosF][maxPosT]){

 compVec[i-1] = -1*compValue;

 }

 }

Finally the detection algorithm compensates for the case where a strong sinusoidal is present in the patched SBR signal

where there were no strong sinusoidal in the orig inal, and at the same t ime there is a sinusoidal missing in the adjacent

scalefactor band. This is done for all scalefactor bands where a sine is missing (except fo r the first and the last

scalefactor band), according to the following:

 compValue = (int) (fabs(ILOG2*log(diff[i - 1][maxPosT]+EPS)) + 0.5f);

 if (compValue > maxComp)

 compValue = maxComp;

 if(1/diff[i-1][maxPosT] > diffQuota*diff[i][maxPosT]){

 compVec[i-1] = -1*compValue;

 }

 compValue = (int) (fabs(ILOG2*log(diff[i + 1][maxPosT]+EPS)) + 0.5f);

 if (compValue > maxComp)

 compValue = maxComp;

 if(1/diff[i+1][maxPosT] > diffQuota*diff[i][maxPosT]){

 compVec[i+1] = compValue;

 }

The bitstream element bs_add_harmonic_flag is set to one if any element of the bs_add_harmonic is not zero,

otherwise it is set to zero.

5.7 Data quantization

The spectral envelope scalefactors are quantized in 3dB steps or in 1.5dB steps, dependent on the time frequency

resolution of the current SBR frame, and bs_amp_res. For the case where there is only one SBR envelope per SBR

frame and of SBR frame class FIXFIX, 1.5 dB steps are always used, disregarded the value of bs_amp_res.

For mono and stereo without channel coupling the quantization is done according to:

  
 

    2

,
, max log ,0 0.5 , 0 , 0

64
Q E

k l
k l INT a a compgain l k l l L

   
             

   

E
E n r

where
2 , 0

1 , 1

bs_amp_res
a

bs_amp_res


 


 and  

     , , 0

0 ,

compVec l r l HI compVec l
comgain l

otherwise

  
 


For the coupled channel mode, the left channel is quantized according to the above, while the right channel should be

quantized according to:

        2, log , 0.5QRight k l INT a k l bs_amp_res   E E panOffset

The noise floor scalefactors data is always quantized in 3dB steps. For stereo without channel coupling and for mono

the channels are quantized according to:

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 30 Release 11

      2, _ _ log , 0.5Q k l INT NOISE FLOOR OFFSET k l  Q Q ,

where  ,Q k lQ shall be limited to the interval  0,30 .

For coupling however, the right and left channels are quantized according to:

  
 

 
 2

,
, log 0.5 1

,

Left

QRight

Right

k l
k l INT

k l

  
    

  
  

Q
Q panOffset

Q
,

 
   

2

, ,
, _ _ log 0.5

2

Left Right

QLeft

k l k l
k l INT NOISE FLOOR OFFSET

   
      

  

Q Q
Q

where

  ,QRight k lQ shall be limited to the interval  0,2 1   panOffset and  ,QLeft k lQ is limited to the interval

 0,30 .

In the case of coupling, the  ,QRight k lQ and  ,QRight k lE values shall be quantized to multip les of two, e.g.

 0,2,4,6,8... .

5.8 Envelope and noise floor coding

The spectral envelope scalefactors and noise floor scalefactors are delta coded in either the time d irect ion or the

frequency direction, according to the preferred choice indicated in bs_df_env(l) and bs_df_noise (l). The

bs_df_env and bs_df_noise elements are chosen so that the total number of b its required for coding the scalefactor

data of the present frame is min imised, with the reservation for the case when reset = 1. In this case delta coding in the

time direction is not allowed for the first SBR envelope or noise floor of that SBR frame.

The above min imization of envelope bits are for stereo done in both coupling and left/right stereo mode and based on

this the stereo mode is chosen so that the total number of bits required is min imized.

Below the delta coding of envelope scalefactors and noise floor scalefactors are defined.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 31 Release 11

 

 

 

       

 

    
  

 

   

     

  

 

 

 

 

0

0, , 0

0

0

, 1, , 1

0

0

0
, , ,

1

0

0
,

1

, , , 0

1

 is def

E

Q

E

Q Q

E

E Q

E

Delta

E Q

l L

l k

l

l L

k l k l k l

l

l L

k l
g k l k l

l

l g l

l L

k l
k l

l

g i k l k l l

g l

i k









  


 
 

  


    




 


 
  


 

 

 




  



E

bs_df_env

E E n r

bs_df_env

n r
E

bs_df_env

r

n r
E

bs_df_env

E r

    

     

  

 

 

 

 

       

ined by

0

0

1

, , , 1

0

 is defined by

1

TableHigh TableLow

E

E Q

TableLow TableHigh TableLow

i k k

l L

k l

l

g i k l k l l

g l

i k

i k k i k





















 
 
 









  


  


 



   

 
 



   

f f

n r

bs_df_env

E r

f f f






where
0.5 1 _ 1

1

if ch AND bs coupling

otherwise


 
 


 and,

where  ,Eg k l and  g l is defined below. As QE represents the envelope scalefactors for the current SBR frame,

the envelope scalefactors from the previous SBR frame is denoted Q
E . Envelope scalefactors from the previous SBR

frame, Q
E is needed when delta coding in time d irection over SBR frame boundaries. The number o f SBR envelopes of

the previous SBR frame is denoted
EL , and is also needed in that case, as well as frequency resolution vector of the

previous SBR frame, denoted r'.

  

 
  

 
  

1
, 1 ,

0
,

0
, 1 ,

0

E

Q

E

Q E

l L
k l

k l
g k l

l
k L

k l

  
 

  
 

 
     

E
n r

E
n r

and  
 

 

1 ,1

1 , 0

E

E

l l L
g l

L l

   
 

  

r

r´
.

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 32 Release 11

The delta coding of the noise floor scalefactors are defined as:

 

 

 

    
 

    
 

    
 

0

0, , 0

0

0

, 1, , 1

0
,

0

, , 1 , 0

1

1

, , 1 , 0

1

Q

Q

Q

Q Q Q

Delta

Q Q Q Q

Q

Q Q Q

l L

l k

l

l L

k l k l k N

l
k l

l

k l k L k N

l

l L

k l k l k N

l









  
 

  
  


  
     
  

 
 


     
 

  


    




Q

bs_df_noise

Q Q

bs_df_noise
Q

Q Q

bs_df_env

Q Q

bs_df_env








where

0.5 1 _ 1

1

if ch AND bs coupling

otherwise


 
 


and where Q is the noise floor scalefactors from the previous SBR frame and QL is the number of noise floors from

the previous SBR frame.  ,Delta k lQ and  ,Delta k lE are stored as bitstream element as shown below prio r to

Huffman coding.

      
0

, ,
0

Q

Delta

Q

l L
bs_data_noise ch l k k l

k N

 
 

 
Q

      
  

0
, ,

0

E

Delta

l L
bs_data_env ch l k k l

k l

 
 

 
E

n r

For the envelope scalefactors and the noise floor scalefactors different Huffman tables are used dependent on coding

directions, quantization and stereo mode, according to in [1], sub clause 4.A.6.1 Table 4.A.76

6 Bitstream

Figure 10 below gives a brief hierarchical representation of the SBR and parametric stereo parts of the aacPlus

bitstream, with references to the corresponding decoder specifications. An overview of sbr_extension_data() is given in

[1], Figure 4.19A, and subclause 4.4.2.8 of [1] defines the syntax. Clearly, the operation of the SBR Bitstream

Multiplexer in Figure 5 is defined by this syntax. The optional CRC calculation is also defined by the decoder

description [1], subclause 4.5.2.8.1. For convenience, pointers to the relevant sections in the present document are

given within paranthesises in Figure 10.

extension_payload() [1], Amendment Subpart 4, Table 4.51

 sbr_extension_data() [1], Subclause 4.4.2.8, Table 4.54A

 sbr_header() ", ", Table 4.55A (5.3)

 sbr_data() ", ", Table 4.56A

 sbr_single_channel_element() ", ", Table 4.57A

 sbr_grid() ", ", Table 4.61A (5.4.3)

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 33 Release 11

 sbr_dtdf() ", ", Table 4.62A (5.8)

 sbr_invf() ", ", Table 4.63A (5.6.4)

 sbr_envelope() ", ", Table 4.64A (5.5, 5.7, 5.8)

 sbr_noise() ", ", Table 4.65A (5.6.3, 5.7, 5.8)

 sbr_sinusoidal_coding() ", ", Table 4.66A (5.6.5)

 sbr_extension() [7], Subclause 8.A.2, Table 8.A.1

 ps_data() [7], Subclause 8.4.1, Table 8.1

Figure 10: Enhanced aacPlus with parametric stereo bitstream hierarchy

3GPP

3GPP TS 26.404 V11.0.0 (2012-09) 34 Release 11

Annex A (informative):
Change history

Change history

Date TSG SA# TSG Doc. CR Rev Subject/Comment Old New

2004-09 25 SP-040636 Approved at SA#25 2.0.0 6.0.0

2007-09 36 Version for Release 7 6.0.0 7.0.0

2008-12 42 Version for Release 8 7.0.0 8.0.0
2009-12 46 Version for Release 9 8.0.0 9.0.0

2011-03 51 Version for Release 10 9.0.0 10.0.0

2012-09 57 Version for Release 11 10.0.0 11.0.0

	Foreword
	1 Scope
	2 Normative references
	3 Definitions, symbols and abbreviations
	3.1 Definitions
	3.2 Symbols
	3.3 Abbreviations

	4 Outline description
	5 SBR encoder description
	5.1 SBR tools overview
	5.1.1 Enhanced aacPlus sdynchronization without parametric stereo
	5.1.2 Enhanced aacPlus synchronisation with parametric stereo
	5.1.3 SBR encoder modules overview

	5.2 Analysis filterbank
	5.3 Frequency band tables
	5.4 Time / frequency grid generation
	5.4.1 Transient detector
	5.4.2 Frame splitter
	5.4.3 Frame generator

	5.5 Envelope estimation
	5.6 Additional control parameters
	5.6.1 Introduction

	5.6.2 Tonality estimation
	5.6.3 Noise-floor estimation
	5.6.4 Inverse filtering estimation
	5.6.5 Additional sines estimation

	5.7 Data quantization
	5.8 Envelope and noise floor coding

	6 Bitstream
	Annex A (informative): Change history

