

3GPP TS 26.230 V11.0.0 (2012-09)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;

Cellular text telephone modem;
Transmitter bit exact C-code

(Release 11)

GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

The present document has been developed within the 3
rd

 Generation Partnership Project (3GPP
 TM

) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP

Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP

only. The Organizational Partners accept no liability for any use of this Specification.

Specifications and reports for implementation of the 3GPP
 TM

 system should be obtained via the 3GPP Organizational Partners' Publications Offices.

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 2 Release 11

Keywords

UMTS, GSM, modem

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.

The copyright and the foregoing restriction extend to reproduction in all media.

© 2012, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners

LTE™ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 3 Release 11

Contents

0 Scope ..5

1 Normative references ...5

2 Definitions and Abbreviations...5

3 C code structure ...5
3.1 Contents of the C source code ... 6
3.2 Program execution... 6
3.3 Code hierarchy ... 10
3.3.1 Initializat ion routines .. 10
3.3.2 Signal Processing Functions.. 11
3.4 Description of global constants used in the C-code... 12
3.5 Type Defin itions .. 13
3.6 Functions of the C Code ... 13

Annex A (informative): Change history..27

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 4 Release 11

Foreword

This Technical Specification has been produced by T1P1.

The contents of the present document are subject to continuing work within the 3GPP TSG and may change following

formal 3GPP approval. Should the 3GPP TSG modify the contents of this TS, it will be re -released by the 3GPP TSG

with an identifying change of release date and an increase in version number as fo llows:

Version x.y.z

where:

x the first digit :

1 presented to 3GPP for information;

2 presented to 3GPP for approval;

3 Indicates 3GPP approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

updates, etc.

z the third digit is incremented when editorial on ly changes have been incorporated in the specification;

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 5 Release 11

0 Scope

This Technical Standard (TS) contains an electronic copy of the ANSI-C code for the Cellular Text Telephone Modem

(CTM) for reliable trans mission of text telephone text via the speech channel of cellu lar networks. While CTM is

generally usable with text in UCS coding, the example application linked to CTM in this document is limited to use the

signals and character set of the Baudot type.

1 Normative references

This TS incorporates by dated and undated reference, provisions from other publications. These normative references

are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent

amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or

revision. For undated references, the latest edition of the publication referred to applies.

[1] 3GPP TS 26.226: "Cellular text telephone modem; General description".

[2] ISO/IEC 10646-1: "Information technology – Universal Multip le-Octet Coded Character Set

(UCS) – Part 1: Architecture and Basic Multilingual Plane".

2 Definitions and Abbreviations

For the purposes of this TS, the following abbreviations apply:

CTM Cellu lar Text Telephone Modem

FEC Forward Error Correct ion

FSK Frequency Shift Key

HCO Hearing Carry Over, (ind ividual may be able to hear, but cannot speak) Alternating transmission

of speech and text.

PCM Pulse Code Modulation

RX Receive

TX Transmit

TTY Text Telephone

UCS Universal Mult iple -Octet Coded Character Set

UTF UCS transformation format

VAD Voice Activ ity Detection

VCO Voice Carry Over, A lternating transmission of speech and text

3 C code structure

This clause gives an overview of the structure of the bit-exact C code and provides an overview of the contents and

organization of the C code attached to this document.

The C code has been verified on the following system.

- Sun Microsystems workstations with SUN Solaris
TM

 operating system and the the Gnu C Compiler (gcc version

2.7.2.3) and GNU Make 3.77;

The C code has also been successfully compiled and used in the following environment, with the exception that it

cannot be guaranteed that the upper part of the UCS code table in file ucs_functions.c will be compiled

correctly since it depends on the codepage setting of the environment.

- IBM PC/AT compatible computers with Windows
TM

 NT 4.0 operating system and Microsoft Visual C++ 6.0
TM

compiler.

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 6 Release 11

3.1 Contents of the C source code

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files. All these

files are in the root level of the ZIP-arch ive.

Makefiles are provided fo r the platforms in which the C code has been verified (listed above). They are called

“Makefile” for GNU Make and “Makefile.vc” fo r Microsoft Visual C++
TM

.

For the Sun Microsystems platform, an example shell script for a t ransmission via two signal adaptation modules is

given in "test_negotiation". For the Microsoft Windows
TM

 platform, no shell script or batch program is provided.

The software can be compiled using the commands

make all or gmake all in case of Gnu Make

nmake /f Makefile.vc in case of Microsoft Visual C++.

The executables are compiled into the directory ./solaris (in case of Gnu Make) o r into the actual directory in

case of Microsoft Visual C++
TM

.

The directory ./patterns provides the file baudot.pcm that serves as input signal for the test script

test_negotiation. All output data of test_negotiation will be stored into the directory ./output. If

required, this directory will be created by test_negotiation automatically.

3.2 Program execution

The CTM signal adaptation module is implemented in the execuable adaptation_switch (in case of Sun

Solaris
TM

 platform) or adaptation_switch.exe (in case of the Micorsoft Windows
TM

 platform).

The program should be called like:

adaptation_switch -ctmin <file> -ctmout <file>

 -baudotin <file> -baudotout <file>

using the following parameters:

 -ctmin <input_file> input file with CTM signal

 -ctmout <output_file> output file for CTM signal

 -baudotin <input_file> input file with Baudot Tones

 -baudotout <output_file> output file for Baudot Tones

 -textout <text_file> output text file from CTM receiver (optional)

 -numsamples <number> number of samples to process (optional)

 -nonegotiation disables the negotiation (optional)

All files contain 16-bit linear encoded PCM audio samples, which are swapped according to the platform’s endian type

(Sun Microsystems platforms use big endian, Intel platforms use little endian). An example file baudot.pcm

containing a Baudot Code modem signal (b ig endian) is provided in the subdirectory ./patterns.

Due to the fact that the signal adaptation module expects a successful negotiation before Baudot Code signals can be

converted to CTM signals, the signal adaptation module has to be executed several times in two instances in order to

execute a successful negotiation. For the Sun Microsystems platform, a shell script test_negotiation is

provided for executing the following structure:

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 7 Release 11

 ----------- ctm_forward -----------

 baudot.pcm --->| | ---------------->| |---> baudot_out.pcm

 | adapt#1 | | adapt#2 |

 /dev/null <---| | <----------------| |<--- /dev/zero

 ----------- ctm_backward -----------

First, the adaptation module #1 is executed. At this first run, the signal ctm_backward is not known. Therefore, the

negotiation does not get a positive acknowledge, so that the transmission falls back to Baudot Tones.

Then signal adaptation module #2 is executed for the first time.

After that, adaptation module #1 is executed for the second time. W ith this second run, the signal ctm_backward is

valid. Therefore, the negotiation receives a valid acknowledge, so that CTM s ignals are transmitted.

At last, adaptation module #2 is executed for the second time. With this run, adaptation module #2 receives a valid

CTM signal so that the baudot_out.pcm signal can be generated.

After executing each of the modules twice, the signal baudot_out.pcm is analyzed. This analysis is also performed by

the program adaptation_switch. First, the Baudot detector of adaptation_switch is used for this analysis in order to

examine whether the regenerated Baudot signal can be decoded correctly. In a second step it is examined whether the

regenerated signal still contains any CTM preambles. Th is investigation is performed by means of the CTM detector

that is integrated in adaptation_switch. This last test fails if the CTM detector is able to detect any CTM preamble in the

regenerated signal.

During the execution of the script test_negotiation the following text output shall be generated:

===

Execute adaptation module #1 (first pass)

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

number of samples to process: 100000

>>> Enquiry Burst generated! <<<

THE>>> Enquiry Burst generated! <<<

 >>> Enquiry Burst generated! <<<

CELL

===

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 8 Release 11

Execute adaptation module #2 (first pass)

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

>>> CTM from far-end detected! <<<

>>> Enquiry From Far End Detected! <<<

THE>>> Enquiry From Far End Detected! <<<

 >>> Enquiry From Far End Detected! <<<

CELL

===

Execute adaptation module #1 (second pass)

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

>>> Enquiry Burst generated! <<<

THE>>> CTM from far-end detected! <<<

 CELLULAR TEXT TELEPHONE MODEM (CTM) ALLOWS RELIABLE

TRANSMISSION OF A TEXT TELEPHONE CONVERSATION ALTERNATING

WITH A SPEECH CONVERSATION THROUGH THE EXISTING SPEECH

COMMUNICATION PATHS IN CELLULAR MOBILE PHONE SYSTEMS.

THIS RELIABILITY IS ACHIEVED BY AN IMPROVED MODULATION

TECHNIQUE, INCLUDING ERROR PROTECTION, INTERLEAVING AND

SYNCHRONIZATION.

===

Execute adaptation module #2 (second pass)

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 9 Release 11

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

>>> CTM from far-end detected! <<<

>>> Enquiry From Far End Detected! <<<

THE CELLULAR TEXT TELEPHONE MODEM (CTM) ALLOWS RELIABLE

TRANSMISSION OF A TEXT TELEPHONE CONVERSATION ALTERNATING

WITH A SPEECH CONVERSATION THROUGH THE EXISTING SPEECH

COMMUNICATION PATHS IN CELLULAR MOBILE PHONE SYSTEMS.

THIS RELIABILITY IS ACHIEVED BY AN IMPROVED MODULATION

TECHNIQUE, INCLUDING ERROR PROTECTION, INTERLEAVING AND

SYNCHRONIZATION.

==

Now we try to decode the regenerated Baudot signal. The text message

shall be decoded completely now...

==

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

THE CELLULAR TEXT TELEPHONE MODEM (CTM) ALLOWS RELIABLE

TRANSMISSION OF A TEXT TELEPHONE CONVERSATION ALTERNATING

WITH A SPEECH CONVERSATION THROUGH THE EXISTING SPEECH

COMMUNICATION PATHS IN CELLULAR MOBILE PHONE SYSTEMS.

THIS RELIABILITY IS ACHIEVED BY AN IMPROVED MODULATION

TECHNIQUE, INCLUDING ERROR PROTECTION, INTERLEAVING AND

SYNCHRONIZATION.

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 10 Release 11

===

Testing whether the regenerated Baudot signal is free of CTM headers.

No CTM burst shall be detected now...

===

**

 Cellular Text Telephone Modem (CTM) - Example Implementation for

 Conversion between CTM and Baudot Code (use option -h for help)

**

3.3 Code hierarchy

This section gives an overview of the hierarchy how the functions are used in the signal adaptation module. All standard

C functions: printf(), fwrite(), etc. have been omitted. Also, all functions related to the asynchronous transfer between

the signal processing functions by means of FIFO buffers (Shortint_fifo_push, Shortint_fifo_pop , etc.)

are not listed in the charts.

The following functions are not part of the actual CTM bit exact specificat ion but are included to allow demonstration

of CTM in a Baudot environment:

 init_baudot_tonedemod

 init_baudot_tonemod

 baudot_tonedemod

 convertUCScode2char

 convertChar2TTYcode

 baudot_tonemod
 convertTTYcode2char

 convertChar2UCScode

3.3.1 Initialization routines

The following functions are called for the in itializat ion of the signal adaptation module.

init_baudot_tonedemod

init_baudot_tonemod

init_ctm_transmitter init_interleaver generate_scambling_sequence

 m_sequence

 init_tonemod

 conv_encoder_init

 generate_resync_sequence m_sequence

 calc_mute_positions

init_ctm_receiver init_tonedemod sin_fip

 viterbi_init

 calc_mute_positions

 init_deinterleaver generate_scambling_sequence

 init_wait_for_sync m_sequence

 generate_scambling_sequence

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 11 Release 11

3.3.2 Signal Processing Functions

The following functions are called during the main signal processing loop.

baudot_tonedemod iir_filt

ctm_receiver tonedemod rotate_right

 rotate_left

 wait_for_sync

 reinit_deinterleaver

 viterbi_reinit

 diag_deinterleaver

 shift_deinterleaver

 mutingRequired

 viterbi_exec

 reinit_wait_for_sync

 reinit_deinterleaver

 viterbi_reinit

 transformUTF2UCS

convertUCScode2char

convertChar2TTYcode

baudot_tonemod

convertTTYcode2char

convertChar2UCScode

ctm_transmitter transformUCS2UTF

 reinit_interleaver

 conv_encoder_exec

 mutingRequired

 diag_interleaver

 diag_interleaver_flush

 tonemod

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 12 Release 11

3.4 Description of global constants used in the C-code

The following constants are defined in the file ctm_defines.h

Constant Value Description

MAX_IDLE_SYMB 5 Number of Idle Symbols at End of Burst

CHC_RATE 4 Rate of the Error Protection

CHC_K 5 Constraint Length of the Error Protection

SYMB_LEN 40 Length of one CTM symbol

LENGTH_TONE_VEC 1 frame size

LENGTH_TX_BITS 8 number of bits per 20 ms frame

BITS_PER_SYMB 8 bits per symbol

NCYCLES_0 2 Number of periods for symbol #0

NCYCLES_1 3 Number of periods for symbol #1

NCYCLES_2 4 Number of periods for symbol #2

NCYCLES_3 5 Number of periods for symbol #3

THRESHOLD_RELIABILITY_FOR_SUPPRESSING_OUTPUT 100 Characters with lower reliability are suppressed

THRESHOLD_RELIABILITY_FOR_XCORR 200 Bits with lower reliability don’t contribute to xcorr

THRESHOLD_RELIABILITY_FOR_GOING_OFFLINE 100 Threshold for regarding a bit as unreliable

MAX_NUM_UNRELIABLE_GROSS_BITS 400 Receiver goes offline after 400 unreliable bits

NUM_BITS_GUARD_INTERVAL 6 Number of muted bits between two bursts

WAIT_SYNC_REL_THRESHOLD_0 20316 (=0.62) rel. threshold for preamble

WAIT_SYNC_REL_THRESHOLD_1 17039 (=0.52) rel. threshold for preamble

WAIT_SYNC_REL_THRESHOLD_2 23065 (=0.71) dto. in case that RX is already online

RESYNC_REL_THRESHOLD 26542 Threshold for Resynchronization (=0.81)

GUARD_BIT_SYMBOL 10 magic number indicating that a bit shall be muted

intlvB 8 Interleaver block length (number of rows)

intlvD 2 Interleaver block distance (interlace factor)

demodSyncLns 1 Number of demodulator sync lines

deintSyncLns 0 Number of deinterleaver sync lines

IDLE_SYMB 0x16 UCS code for Idle Symbol

ENQU_SYMB 0x05 UCS code for Enquiry Symbol

ENQUIRY_TIMEOUT 3040 number of 20-ms frames for negotiation

NUM_ENQUIRY_BURSTS 3 number of enquiry attempts

NUM_MUTE_ROWS 4 Number of Intl. rows that shall be muted

RESYNC_SEQ_LENGTH 32 length of the resynchronization sequence,

 must be a multiple of 8

NUM_BITS_BETWEEN_RESYNC 352 Distance between two resync sequences, the value
 NUM_BITS_BETWEEN_RESYNC+RESYNC_SEQ_LENGTH

 must be a multiple of CHC_RATE, intlvB, and
 BITS_PER_CHAR, and must be greater than
 intlvB*((intlvB-1)*intlvD+NUM_MUTE_ROWS

BAUDOT_NUM_INFO_BITS 5 number of information bits per Baudot character

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 13 Release 11

BAUDOT_SHIFT_FIGURES 27 code of shift to figures symbol

BAUDOT_SHIFT_LETTERS 31 code of shift to letters symbol

BAUDOT_BIT_DURATION 176 must be 176 (for 45.45 baud) or 160 (50 baud)

BAUDOT_LP_FILTERORDER 1 Order of the low-pass filters in function
 baudot_tonedemod()

BAUDOT_BP_FILTERORDER 2 Order of the according band-pass filters, must

 be equal to 2*BAUDOT_BP_FILTERORDER

3.5 Type Definitions

In order to make the C code platform-independent, the following type definitions have been used, which are defined in

typedefs.h:

defined type meaning corresponding constants

--

Char character (none)

Bool boolean true, false

Shortint 16-bit signed minShortint, maxShortint

UShortint 16-bit unsigned minUShortint, maxUShortint

Longint 32-bit signed minLongint, maxLongint

ULongint 32-bit unsigned minULongint, maxULongint

3.6 Functions of the C Code

void baudot_tonedemod(Shortint* toneVec, Shortint numSamples,

 fifo_state_t* ptrOutFifoState,

 baudot_tonedemod_state_t* state);

Purpose: Demodulator for Baudot Tones

Defined in: baudot_functions.c

Input Variables:

toneVec Vector containing the input audio signal

numSamples Length of toneVec

Input/Output Variables:

ptrOutFifoState Pointer to the state of the output shift register

containing the demodulated TTY codes

state Pointer to the state variable of baudot_tonedemod()

void baudot_tonemod(Shortint inputTTYcode,

 Shortint *outputToneVec,

 Shortint lengthToneVec,

 Shortint *ptrNumBitsStillToModulate,

 baudot_tonemod_state_t* state);

Purpose: Modulator for Baudot Tones

Defined in: baudot_functions.c

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 14 Release 11

Input Variables:

inputTTYcode TTY code of the character that has to be modulated.

inputTTYcode must be in the range 0...63, otherwise

it is assumed that there is no character to

modulate.

lengthToneVec Indicates how many samples have to be generated.

Output Variables:

outputToneVec Vector where the output samples are written to.

ptrNumBitsStillToModulate Indicates how many bits are still in the fifo

buffer.

Input/Output Variables:

state Pointer to the state variable of baudot_tonedemod()

void calc_mute_positions(Shortint *mute_positions,

 Shortint num_rows_to_mute,

 Shortint start_position,

 Shortint B,

 Shortint D);

Purpose: Calculation of the indices of the bits that have to be muted

within one burst. The indices are returned in the vector

mute_positions.

Defined in: init_interleaver.c

Shortint convertChar2ttyCode(char inChar);

Purpose: Conversion from character into TTY code

Defined in: baudot_functions.c

Input Variables:

inChar character that shall be converted

Return Value: baudot code of the input or -1 in case that inChar

is not valid (e.g. inChar=='\0')

UShortint convertChar2UCScode(char inChar);

Purpose: Conversion from character into UCS code (Universal Multiple-

Octet Coded Character Set, Row 00 of the Multilingual plane

according to ISO/IEC 10646-1). This routine only handles

characters in the range 0..255 since that is all that is

required for demonstration of Baudot support.

Defined in: ucs_functions.c

Input Variables:

inChar character that shall be converted

Return Value: UCS code of the input or 0x0016 <IDLE> in case that

inChar is not valid (e.g. inChar=='\0')

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 15 Release 11

char convertTTYcode2char(Shortint ttyCode);

Purpose: Conversion from TTY code into Character

Defined in: baudot_functions.c

Input Variables:

ttyCode Baudot code (must be within the range 0...63) or -1

if there is nothing to convert

Return Value:

character (or '\0' if ttyCode is not valid)

char convertUCScode2char(UShortint ucsCode);

Purpose: Conversion from UCS code into character (Universal Multiple-

Octet Coded Character Set, Row 00 of the Multilingual plane

according to ISO/IEC 10646-1). This routine only handles

characters in the range 0..255 since that is all that is

required for demonstration of Baudot support.

Defined in: ucs_functions.c

Input Variables:

ucsCode UCS code index, must be within the range 0...255

Return Value: character (or '\0' if ucsCode is not valid)

void conv_encoder_exec(conv_encoder_t* ptr_state, Shortint* in,

 Shortint inbits, Shortint* out);

Purpose: Execution of the convolutional encoder for error protection

Defined in: conv_encoder.c

Input Variables:

in Vector with net bits

inbits Number of valid net bits in vector in

Output variables:

out Vector with the encoded gross bits. The gross bits

are either 0 or 1. The vector out must have at

least CHC_RATE*inbits elements.

Input/output variables:

*ptr_state state variable of the encoder

void conv_encoder_init(conv_encoder_t* ptr_state);

Purpose: Initialization of the convolutional encoder

Defined in: conv_encoder.c

Output Variables:

*ptr_state Initialized state variable of the encoder

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 16 Release 11

void ctm_receiver(fifo_state_t* ptr_signal_fifo_state,

 fifo_state_t* ptr_output_char_fifo_state,

 Bool* ptr_early_muting_required,

 rx_state_t* rx_state);

Purpose: Runs the CTM Receiver for a block of (nominally) 160 samples.

Due to the internal synchronization, the number of processed

samples might vary between 156 and 164 samples. The input of

the samples and the output of the decoded characters is

handled via fifo buffers, which have to be initialized

externally before using this function (see fifo.h for

details).

Defined in: ctm_receiver.c

input/output variables

*ptr_signal_fifo_state fifo state for the input samples

*ptr_output_char_fifo_state fifo state for the output characters

*ptr_early_muting_required returns whether the original audio signal must not

be forwarded. This is to guarantee that the

preamble or resync sequence is detected only by the

first CTM device, if several CTM devices are

cascaded subsequently.

rx_state pointer to the variable containing the receiver

states

void ctm_transmitter(UShortint ucsCode,

 Shortint* txToneVec,

 tx_state_t* tx_state,

 Shortint *ptrNumBitsStillToModulate,

 Bool sineOutput);

Purpose: Runs the CTM Transmitter for a block of 160 output samples,

representing 8 gross bits.

The bits, which are modulated into tones, are taken from an

internal fifo buffer. If the fifo buffer is empty, zero-valued

samples are generated. The fifo buffer is filled with channel-

encoded and interleaved bits, which are generated internally

by coding the actual input character. With each call of this

function one or less input characters can be coded. If there

is no character to for transmission, one of the following

codes has be used:

- 0x0016 <IDLE>: indicates that there is no character to

transmit and that the transmitter should stay in idle mode, if

it is currently already in idle mode. If the transmitter is

NOT in idle mode, it might generate <IDLE> symbols in order to

keep an active burst running. The CTM burst is terminated if

five <IDLE> symbols have been generated consecutively.

- 0xFFFF: although there is no character to transmit, a CTM

burst is initiated in order to signal to the far-end side that

CTM is supported. The burst starts with the <IDLE> symbol and

will be continued with <IDLE> symbols if there are no regular

characters handed over during the next calls of this function.

The CTM burst is terminated if five <IDLE> symbols have been

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 17 Release 11

transmitted consecutively.

In order to avoid an overflow of the internal fifo buffer, the

variable *ptrNumBitsStillToModulate should be checked before

calling this function.

Defined in: ctm_transmitter.c

input variables:

ucsCode UCS code of the character or one of the code 0x0016

or 0xFFFF

sineOutput must be false in regular mode; if true, a pure sine

output signal is generated

output variables:

txToneVec output signal (vector of 160 samples)

input/output variables:

tx_state pointer to the variable containing the transmitter

states

void diag_deinterleaver(Shortint *out,

 Shortint *in,

 Shortint num_valid_bits,

 interleaver_state_t *intl_state);

Purpose: Corresponding deinterleaver to diag_interleaver. An arbitrary

number of bits can be interleaved, depending of the length of

the vector "in". The vector "out", which must have the same

length than "in", contains the interleaved samples.

All states (memory etc.) of the interleaver are stored in the

variable *intl_state. Therefore, a pointer to this variable

must be handled to this function. This variable initially has

to be initialized by the function init_interleaver, which

offers also the possibility to specify the dimensions of the

deinterleaver matrix.

Defined in: diag_deinterleaver.c

void diag_interleaver(Shortint *out,

 Shortint *in,

 Shortint num_bits,

 interleaver_state_t *intl_state);

Purpose: Diagonal (chain) interleaver, based on block-by-block

processing. An arbitrary number of bits can be interleaved,

depending of the value num_bits. The vector "out", which must

have the same length than "in", contains the interleaved

samples.

All states (memory etc.) of the interleaver are stored in the

variable *intl_state. Therefore, a pointer to this variable

must be handled to this function. This variable initially has

to be initialized by the function init_interleaver(), which

offers also the possibility to specify the dimensions of the

interleaver matrix.

Defined in: diag_interleaver.c

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 18 Release 11

void diag_interleaver_flush(Shortint *out,

 Shortint *num_bits,

 interleaver_state_t *intl_state);

Purpose: Execution of the diagonal (chain) interleaver without writing

in new samples. The number of calculated output samples is

returned via the value *num_bits.

Defined in: diag_interleaver.c

void generate_resync_sequence(Shortint *sequence);

Purpose: Generation of the sequence for resynchronization. The length

of the sequence is defined by the global constant

RESYNC_SEQ_LENGTH. The vector sequence must be allocated

accordingly before calling this function.

Defined in: wait_for_sync.c

void generate_scrambling_sequence(Shortint *sequence, Shortint length);

Purpose: Generation of the sequence used for scrambling. The sequence

consists of 0 and 1 elements. The sequence is stored into the

vector *sequence and the length of the sequence is specified

by the variable length.

Defined in: init_interleaver.c

void init_baudot_tonedemod(baudot_tonedemod_state_t* state);

Purpose: Initialization of the demodulator for Baudot Tones

Defined in: baudot_functions.c

Input/Output Variables:

state Pointer to the initialized state variable (must be

allocated before calling init_baudot_tonedemod()

void init_baudot_tonemod(baudot_tonemod_state_t* state);

Purpose: Initialization of the modulator for Baudot Tones

Defined in: baudot_functions.c

Input/Output Variables:

state Pointer to the initialized state variable (must be

allocated before calling init_baudot_tonemod()

void init_deinterleaver(interleaver_state_t *intl_state,

 Shortint B, Shortint D);

Purpose: Initialization of the deinterleaver.

Defined in: init_interleaver.c

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 19 Release 11

void init_ctm_receiver(rx_state_t* rx_state);

Purpose: Initialization of the CTM Receiver.

Defined in: ctm_receiver.c

output variables:

rx_state pointer to a variable of rx_state_t containing the

initialized states of the receiver

void init_ctm_transmitter(tx_state_t* tx_state);

Purpose: Initialization of the CTM Transmitter

Defined in: ctm_transmitter.c

input/output variables

tx_state pointer to a variable of tx_state_t containing

initialized states of the transmitter

void init_interleaver(interleaver_state_t *intl_state,

 Shortint B, Shortint D,

 Shortint num_sync_lines1, Shortint num_sync_lines2);

Purpose: Function for initialization of diag_interleaver and

diag_deinterleaver, respectively. The dimensions of the

interleaver must be specified:

B = (horizontal) blocklength, D = (vertical distance)

According to this specifications, this function initializes a

variable of type interleaver_state_t.

Additionally, this function adds two types of sync information

to the bitstream. The first sync info is for the demodulator

and consists of a sequence of alternating bits so that the

tones produced by the modulator are not the same all the time.

This is essential for the demodulator to find the transitions

between adjacent bits. The bits for this demodulator

synchronization simply precede the bitstream.

The second sync info is for synchronizing the deinterleaver

and of a m-sequence with excellent autocorrelation properties.

These bits are positioned at the locations of the dummy bits,

which are not used by the interleaver. In addition, even more

bits for this can be spent by inserting additional sync bits,

which precede the interleaver's bitstream. This is indicated

by choosing num_sync_lines2>0.

Defined in: init_interleaver.c

void init_tonedemod(demod_state_t *demod_state);

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 20 Release 11

Purpose: Initialization of one instance of the Tone Demodulator. The

argument must contain a pointer to a variable of type

demod_state_t, which contains all the memory of the tone

demodulator. Each instance of tonedemod must have its own

variable.

Defined In: tonedemod.c

void init_wait_for_sync(wait_for_sync_state_t *ptr_wait_state,

 interleaver_state_t intl_state);

Purpose: Initialization of the synchronization detector. The dimensions

of the corresponding interleaver at the TX side must be

specified by the variables B, D, and num_sync_lines2.

Defined In: wait_for_sync.c

Input Variables:

B (horizontal) blocklength

D (vertical) interlace factor

num_Sync_line2 number of interleaver lines with additional sync

bits (see description of init_interleaver())

Output Variables:

ptr_wait_state pointer to the state variable of the sync detector

int main(int argc, const char** argv)

Purpose: main function of the signal adaptation Module

Defined in: adaptation_switch.c

Bool mutingRequired(Shortint actualIndex,

 Shortint *mute_positions,

 Shortint length_mute_positions);

Purpose: Determines whether the actual bit has to be muted, i.e.

whether it is contained in the vector mute_positions.

Defined in: init_interleaver.c

void m_sequence(Shortint *sequence, Shortint length);

Purpose: Calculates one period of an m-sequence (binary pseudo noise).

The sequence is stored in the vector sequence, which must have

a of (2^r)-1, where r is an integer number between 2 and 10.

Therefore, with this release of m_sequence, sequences of

length 3, 7, 15, 31, 63, 127, 255, 511, or 1023 can be

generated. The resulting sequence is bipolar, i.e. it has

values -1 and +1.

Defined in: m_sequence.c

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 21 Release 11

void polynomials(Shortint rate, Shortint k,

 Shortint* polya, Shortint* polyb,

 Shortint* polyc, Shortint* polyd);

Purpose: Returns the polynomials for the convolutional encoder and the

Viterbi decoder for various rates and constraint lengths. The

following parameters are supported:

rate = {2, 3, or 4}

k = {3, 4, 5, 6, 7, 8, 9}

Defined in: conv_poly.c

Input Variables:

rate Rate of the convolutional encoder (2, 3, or 4)

k Constraint length (length of the impulse response

of the encoder)

Output Variables:

poly_a Vector with polynomials #1

poly_b Vector with polynomials #2

poly_c Vector with polynomials #3 (only if rate > 2)

poly_d Vector with polynomials #4 (only if rate > 3)

void reinit_deinterleaver(interleaver_state_t *intl_state);

Purpose: Re-Initialization of the deinterleaver.

Defined in: init_interleaver.c

void reinit_interleaver(interleaver_state_t *intl_state);

Purpose: Re-initialization of the deinterleaver

Defined in: init_interleaver.c

void reinit_wait_for_sync(wait_for_sync_state_t *ptr_wait_state);

Purpose: Reinitialization of synchronization detector. This function is

used in case that a burst has been finished and the

transmitter has switched into idle mode. After calling

reinit_wait_for_sync(), the function wait_for_sync() inhibits

the transmission of the demodulated bits to the deinterleaver,

until the next synchronization sequence can be detected.

Defined In: wait_for_sync.c

void shift_deinterleaver(Shortint shift,

 Shortint *insert_bits,

 interleaver_state_t *ptr_state);

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 22 Release 11

Purpose: Shift of the deinterleaver buffer by <shift> samples.

shift>0 -> shift to the right

shift<0 -> shift to the left

The elements from <insert_bits> are inserted into the

resulting space. The vector <insert_bits> must have at least

abs(shift) elements.

Defined in: diag_deinterleaver.c

Shortint sin_fip(Shortint phase_value);

Purpose: Fixed Point sine function, returns the following value:

sin_fip(phase_value)

 = round(32767*sin(2*pi*50/8000*phase_value))

phase_value must be within the range [0...159]. This function

can be used for calculating sine waveforms of frequencies that

are integer-multiples of 50 Hz

Defined in: sin_fip.c

void tonedemod(Shortint *bits_out,

 Shortint *rx_tone_vec,

 Shortint num_in_samples,

 Shortint *ptr_sampling_correction,

 demod_state_t *demod_state);

Purpose: Tone Demodulator for the CTM using one out of four tones for

coding two bits in parallel within a frame of 40 samples (5

ms).

The function has to be called for every frame of 40 samples of

the received tone sequence. However, in order to track a

non-ideal of the transmitter's and the receiver's clock

frequencies, one frame might be shorter (only 39 samples) or

longer (41 samples). The length of the following frame is

indicated by the variable *sampling_correction, which is

calculated and returned by this function.

Defined in: tonedemod.c

input variables:

bits_out contains the 39, 40 or 41 actual samples of the

received tones; the bits are soft bits, i.e. they

are in the range between -1.0 and 1.0, where the

magnitude serves as reliability information

num_in_samples number of valid samples in bits_out

output variables:

bits_out contains the two actual decoded soft bits

sampling_correction is either -1, 0, or 1 and indicates whether the

next frame shall contain 39, 40, or 41 samples.

demod_state contains all the memory of tonedemod. Must be

initialized using the function init_tonedemod()

void tonemod(Shortint *tones_out,

 Shortint *bits_in,

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 23 Release 11

 Shortint num_samples_tones_out,

 Shortint num_bits_in,

 mod_state_t *mod_state);

Purpose: Modulator for the CTM. The input vector bits_in must contain

the bits that have to be transmitted. The length of bits_in

must be even because always two bits are coded in parallel.

Bits are either unipolar (i.e. {0, 1}) or bipolar (i.e. {-1,

+1)}. The length of the output vector tones_out must be 20

times longer than the length of bits_in, since each pair of

two bits is coded within a frame of 40 audio samples.

Defined In: tonemod.c

void transformUCS2UTF(UShortint ucsCode,

 fifo_state_t* ptr_octet_fifo_state);

Purpose: Transformation from UCS code into UTF-8. UTF-8 is a sequence

consisting of 1, 2, 3, or 5 octets (bytes). See ISO/IEC

10646-1 Annex G.

This routine only handles UCS codes in the range 0...0xFF

since that is all that is required for the demonstration of

Baudot support.

Defined In: ucs_functions.c

Input Variables:

ucsCode UCS code index

Output Variables:

ptr_octet_fifo_state pointer to the output fifo state buffer for the

UTF-8 octets.

Bool transformUTF2UCS(UShortint *ptr_ucsCode,

 fifo_state_t* ptr_octet_fifo_state)

Purpose: Transformation from UTF-8 into UCS code.

This routine only handles UTF-8 sequences consisting of one or

two octets (corresponding to UCS codes in the range 0...0xFF)

since that is all that is required for the demonstration of

Baudot support.

Defined In: ucs_functions.c

Input/Output Variables:

ptr_octet_fifo_state pointer to the input fifo state buffer for the

UTF-8 octets.

Output Variables:

*ptr_ucsCode UCS code index

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 24 Release 11

Return Value:

true, if conversion was successful

false, if the input fifo buffer didn’t contain enough

octets for a conversion into UCS code. The output

variable *ptr_ucsCode doesn’t contain a value in

this case.

void viterbi_exec(Shortint* inputword, Shortint length_input,

 Shortint* out, Shortint* num_valid_out_bits,

 viterbi_t* viterbi_state);

Purpose: Execution of the Viterbi decoder

Defined in: viterbi.c

Input Variables:

inputword Vector with gross bits

length_input Number of valid gross bits in vector inputword.

length_input must be an integer multiple of

CHC_RATE.

Output variables:

out Vector with the decoded net bits. The net bits are

either 0 or 1.

*num_valid_out_bits Number of valid bits in vector out.

Input/output variables:

*viterbi state state variable of the decoder

void viterbi_init(viterbi_t* viterbi_state);

Purpose: Initialization of the Viterbi decoder

Defined in: viterbi.c

Output Variables:

*viterbi_state Initialized state variable of the decoder

void viterbi_reinit(viterbi_t* viterbi_state);

Purpose: Re-Initialization of the Viterbi decoder. This function should

be used for re-setting a Viterbi decoder that has already been

initialized. In contrast to init_viterbi(), this reinit

function does not calculate the values of all members of

viterbi_state that do not change during the execution of the

Viterbi algorithm.

Defined in: viterbi.c

Output Variables:

*viterbi_state Initialized state variable of the decoder

Bool wait_for_sync(Shortint *out_bits,

 Shortint *in_bits,

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 25 Release 11

 Shortint num_in_bits,

 Shortint num_received_idle_symbols,

 Shortint *ptr_num_valid_out_bits,

 Shortint *ptr_wait_interval,

 Shortint *ptr_resync_detected,

 Bool *ptr_early_muting_required,

 wait_for_sync_state_t *ptr_wait_state);

Purpose: This function shall be inserted between the demodulator and

the deinterleaver. The function searches the synchronization

bitstream and cuts all received heading bits. As long as no

sync is found, this function returns

*ptr_num_valid_out_bits=0 so that the main program is able to

skip the deinterleaver as long as no valid bits are available.

If the sync info is found, the complete internal shift

register is copied to out_bits so that wait_for_sync can be

transparent and causes no delay for future calls.

*ptr_wait_interval returns a value of 0 after such a

synchronization indicating that this was a regular

synchronization.

Regularly, the initial preamble of each burst is used as sync

info. In addition, the resynchronization sequences, which

occur periodically during a running burst, are used as "back-

up" synchronization in order to avoid loosing all characters

of a burst, if the preamble was not detected.

If the receiver is already synchronized on a running burst and

the resynchronization sequence is detected,

*ptr_resync_detected returns a non-negative value in the range

0...num_in_bits-1 indicating at which bit the

resynchronization sequence has been detected. If no

resynchronization has been detected, *ptr_resync_detected is -

1. If the receiver is NOT synchronized and the

resynchronization sequence is detected, the resynchronization

sequence is used as initial synchronization.

*ptr_wait_interval returns a value of 32 in this case due to

the different alignments of the synchronizations based on the

preamble or the resynchronization sequence, respectively.

In order to carry all bits, the minimum length of out_bits

must be

in_bits.size()-1 + ptr_wait_state->shift_reg_length

Defined In: wait_for_sync.c

InputVariables:

in_bits Vector with bits from the demodulator. The vector's

length can be arbitrarily chosen, i.e. according to

the block length of the signal processing of the

main program.

num_in_bits length of vector in_bits

Output Variables:

num_received_idle_symbols Number if idle symbols received coherently

out_bits Vector with bits for the deinterleaver. The number

of the valid bits is indicated by

*ptr_num_valid_out_bits.

*ptr_num_valid_out_bits returns the number of valid output bits

*ptr_wait_interval returns either 0 or 32

*ptr_resync_detected returns a value –1, 0,...num_in_bits

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 26 Release 11

*ptr_early_muting_required returns whether the original audio signal must not

be forwarded. This is to guarantee that only the

first CTM device will detect the preamble or resync

sequence, if several CTM devices are cascaded

subsequently.

Input/Output Variables:

ptr_wait_state state information. This variable must be initialized with

init_wait_for_sync().

3GPP

3GPP TS 26.230 V11.0.0 (2012-09) 27 Release 11

Annex A (informative):
Change history

Change history

Date TSG SA# TSG Doc. CR Rev Subject/Comment Old New

12-2000 10 SP-000570 Specification approved for Release 4 4.0.0

03-2001 11 SP-010108 001 Bug fix in source code of the CTM receiver 4.0.0 5.0.0

05-2001 Correct source code CTM attached 5.0.0 5.0.1
07-2004 Removed copyright terms and conditions in the

source code CTM attached
5.0.1 5.0.2

12-2004 26 Version for Release 6 5.0.2 6.0.0

06-2007 36 Version for Release 7 6.0.0 7.0.0

03-2008 39 SP-080006 002 1 Bug fix to baudot_tonemod function in
baudot_functions.c

7.0.0 7.1.0

12-2008 42 Version for Release 8 7.1.0 8.0.0

12-2009 46 Version for Release 9 8.0.0 9.0.0

03-2011 51 Version for Release 10 9.0.0 10.0.0

09-2012 57 Version for Release 11 10.0.0 11.0.0

	0 Scope
	1 Normative references
	2 Definitions and Abbreviations
	3 C code structure
	3.1 Contents of the C source code
	3.2 Program execution
	3.3 Code hierarchy
	3.3.1 Initialization routines
	3.3.2 Signal Processing Functions

	3.4 Description of global constants used in the C-code
	3.5 Type Definitions
	3.6 Functions of the C Code
	Annex A (informative): Change history

