3rd Generation Partnership Project;
 Technical Specification Group Services and System Aspects; Universal Geographical Area Description (GAD)
 (Release 11)

The present document has been developed within the 3 rd Generation Partnership Project ($3 \mathrm{GPP}{ }^{1 \mathrm{M}}$) and may be further elaborated for the purposes of 3 GPP .

Keywords
LTE, GSM, UMTS, location

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33492944200 Fax: +33493654716
Internet
http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.
© 2012, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.
UMTSTM is a Trade Mark of ETSI registered for the benefit of its members
3GPP ${ }^{\text {TM }}$ is a Trade M ark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE $^{\text {TM }}$ is a Trade Mark of ETSI currently being registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM \circledR^{\circledR} and the GSM logo are registered and owned by the GSM Association

Contents

Foreword 5
1 Scope 6
2 References. 6
3 Definitions and abbreviations 6
3.1 Definitions 6
3.2 Abbreviations6
4 Reference system 7
5 Shapes 7
5.1 Ellipsoid Point 7
5.2 Ellipsoid point with uncertainty circle 8
5.3 Ellipsoid point with uncertainty ellipse 8
5.4 Polygon. 9
5.5 Ellipsoid Point with Altitude 10
5.6 Ellipsoid point with altitude and uncertainty ellipsoid 10
5.7 Ellipsoid Arc 11
6 Coding 11
6.1 Point 11
6.2 Uncertainty 12
6.3 Altitude 12
6.4 Uncertainty Altitude 13
6.5 Confidence 13
6.6 Radius 13
6.7 Angle 13
7 General message format and information elements coding 14
7.1 Overview 14
7.2 Type of Shape 14
7.3 Shape description 15
7.3.1 Ellipsoid Point15
7.3.2 Ellipsoid Point with uncertainty Circle 16
7.3.3 Ellipsoid Point with uncertainty Ellipse 17
7.3.4 Polygon 18
7.3.5 Ellipsoid Point with Altitude 19
7.3.6 Ellipsoid Point with altitude and uncertainty ellipsoid 20
7.3.7 Ellipsoid Arc 21
8 Description of Velocity 21
8.1 Horizontal Velocity 21
8.2 Horizontal and Vertical Velocity 22
8.3 Horizontal Velocity with Uncertainty. 22
8.4 Horizontal and Vertical Velocity with Uncertainty 22
8.5 Coding Principles 22
8.6 Coding of Velocity Type 23
8.7 Coding of Horizontal Speed 23
8.8 Coding of Bearing 23
8.9 Coding of Vertical Speed 23
8.10 Coding of Vertical Speed Direction 24
8.11 Coding of Uncertainty Speed 24
8.12 Coding of Horizontal Velocity 24
8.13 Coding of Horizontal with Vertical Velocity 24
8.14 Coding of Horizontal Velocity with Uncertainty 25
8.15 Coding of Horizontal with Vertical Velocity and Uncertainty 25
Annex A (informative): Element description in compact notation 27
Annex B (informative): Change history. 29

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).
The present document defines an intermed iate universal Geographical Area Description within the 3GPP s ystem. The contents of the present document are subject to continuing work within the TSG and may change follo wing formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:
x the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.
y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

The present document defines an intermediate universal Geographical Area Description which subscriber applications, GSM or UMTS services can use and the network can convert into an equivalent radio coverage map.

For GSM or UMTS services which involve the use of an "area", it can be assumed that in the majority of cases the Service Requester will be forbidden access to data on the radio coverage map of a particular PLMN and that the Service Requester will not have direct access to network entities (e.g. BSC/BTS or RNC/Node B).

The interpretation by the PLMN operator of the geographical area in terms of cells actually used, cells that are partly within the given area and all other technical and quality of service aspects are out of the scope of the present document.

This specification also provides a description of velocity that may be associated with a universal Geographical Area Description when both are applied to a common entity at a common time.

2 References

The following documents contain provisions which, through reference in this text, constit ute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1] GSM 01.04: "Digital cellu lar te lecommunications system (Phase 2+); Abbreviations and acronyms".
[2] GSM 04.07: "Digital cellu lar te lecommunications system (Phase 2+); Mobile radio interface signalling layer 3 General aspects".
[3] Military Standard W GS84 Metric MIL-STD-2401 (11 January 1994): "Military Standard Department of Defence World Geodetic System(WGS)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following definitions apply.
Service Requester: Entity, which uses the Geographical Area Description in any protocol to inform the network about a defined area.

Target: Entity whose precise geographic position is to be described.

3.2 Abbreviations

For the purposes of the present document, the abbreviations given in GSM 01.04 [1] and the follo wing apply.

GAD	Geographical Area Description
GPS	Global Positioning System
WGS	World Geodetic System

4 Reference system

The reference system chosen for the coding of locations is the World Geodetic System 1984, (W GS 84), which is also used by the Global Positioning System, (GPS). The origin of the WGS 84 co-ordinate system is the geometric centre of the WGS 84 ellipsoid. The ellipsoid is constructed by the rotation of an ellipse around the minor axis which is oriented in the North-South direction. The rotation axis is the polar axis of the ellipsoid, and the plane orthogonal to it and including the centre of symmetry is the equatorial plane.

The relevant dimensions are as follows:
Major Axis (a) $=6378137 \mathrm{~m}$
Minor Axis (b) $=6356752,314 \mathrm{~m}$
First eccentricity of the ellipsoid
Co-ordinates are then expressed in terms of longitude and latitude relevant to this ellipsoid. The range of longitude is -180° to $+180^{\circ}$, and the range of latitude is -90° to $+90^{\circ} .0^{\circ}$ longitude corresponds to the Greenwich Meridian, and positive angles are to the East, while negative angles are to the West. 0° latitude corresponds to the equator, and positive angles are to the North, while negative angles are to the South. Altitudes are defined as the distance between the ellipsoid and the point, along a line orthogonal to the ellipsoid.

5 Shapes

The intention is to incorporate a number of different shapes, that can be chosen according to need.

- Ellipsoid Point;
- Ellipsoid point with uncertainty circle;
- Ellipsoid point with uncertainty ellipse;
- Polygon;
- Ellipsoid point with altitude;
- Ellipsoid point with altitude and uncertainty ellipsoid;
- Ellipsoid Arc.

Each shape is discussed individually.

5.1 Ellipsoid Point

The description of an ellipsoid point is that of a point on the surface of the ellipsoid, and consists of a latitude and a longitude. In practice, such a description can be used to refer to a point on Earth's surface, or close to Earth's surface, with the same longitude and latitude. No provision is made in this version of the standard to give the height of a point.

Figure 1 illustrates a point on the surface of the ellipsoid and its co-ordinates.
The latitude is the angle between the equatorial plane and the perpendicular to the plane tangent to the ellipsoid surface at the point. Positive latitudes correspond to the North hemisphere. The longitude is the angle between the half-plane determined by the Greenwich meridian and the half-plane defined by the point and the polar axis, measured Eastward.

Figure 1: Description of a Point as two co-ordinates

5.2 Ellipsoid point with uncertainty circle

The "ellipsoid point with uncertainty circle" is characterised by the co-ordinates of an ellipsoid point (the orig in) and a distance r. It describes formally the set of points on the ellipsoid which are at a distance from the origin less than or equal to r, the distance being the geodesic distance over the ellipsoid, i.e., the minimum length of a path staying on the ellipsoid and joining the two points, as shown in figure 2.

As for the ellipsoid point, this can be used to indicate points on the Earth surface, or near the Earth surface, of same latitude and longitude.

The typical use of this shape is to indicate a point when its position is known only with a limited accuracy.

Figure 2: De scription of an uncertainty Circle

5.3 Ellipsoid point with uncertainty ellipse

The "ellipsoid point with uncertainty ellipse" is characterised by the co-ordinates of an ellipsoid point (the origin), distances $r 1$ and $r 2$ and an angle of orientation A. It describes formally the set of points on the ellipsoid which fall within or on the boundary of an ellipse with semi-major axis of length $r l$ oriented at angle $A\left(0\right.$ to $\left.180^{\circ}\right)$ measure clockwise from north and semi-minor axis of length $r 2$, the distances being the geodesic distance over the ellipsoid, i.e., the minimum length of a path staying on the ellipsoid and joining the two points, as shown in figure 2 a.

As for the ellipsoid point, this can be used to indicate points on the Earth's surface, or near the Earth's surface, of same latitude and longitude. The confidence level with which the position of a target entity is included within this set of points is also included with this shape.

The typical use of this shape is to indicate a point when its position is known only with a limited accuracy, but the geometrical contributions to uncertainty can be quantified.

Figure 2a: Description of an uncertainty Ellipse

5.4 Polygon

A polygon is an arbitrary shape described by an ordered series of points (in the example pictured in the drawing, A to E). The minimu m nu mber of points allowed is 3 , and the maximum number of points allowed is 15 . The points shall be connected in the order that they are given. A connecting line is defined as the line over the ellipsoid joining the two points and of minimum distance (geodesic). The last point is connected to the first. The list of points shall respect a number of conditions:

- a connecting line shall not cross another connecting line;
- two successive points must not be diametrically opposed on the ellipsoid.

The described area is situated to the right of the lines with the downward direction being toward the Earth's centre and the forward direction being from a point to the next.

NOTE: This definition does not permit connecting lines greater than roughly 20000 km . If such a need arises, the polygon can be described by adding an intermediate point.

Computation of geodesic lines is not simple. Approximations leading to a maximu m distance between the computed line and the geodesic line of less than 3 metres are acceptable.

Figure 3: Description of a Polygon

5.5 Ellipsoid Point with Altitude

The description of an ellipsoid point with altitude is that of a point at a specified distance above or below a point on the earth's surface. This is defined by an ellipsoid point with the given longitude and latitude and the altitude above or below the ellipsoid point. Figure 3a illustrates the altitude aspect of this description.

Figure 3a: Description of an Ellipsoid Point with Altitude

5.6 Ellipsoid point with altitude and uncertainty ellipsoid

The "ellipsoid point with altitude and uncertainty ellipsoid" is characterised by the co-ordinates of an ellipsoid point with altitude, distances r1 (the "semi-major uncertainty"), r2 (the "semi-minor uncertainty") and r3 (the "vertical uncertainty") and an angle of orientation A (the "angle of the major axis"). It describes formally the set of points which fall with in or on the surface of a general (three dimensional) ellipsoid centred on an ellipsoid point with altitude whose real semi-major, semi-mean and semi-minor axis are so me permutation of $\mathrm{r} 1, \mathrm{r} 2$, r 3 with $\mathrm{r} 1 \geq \mathrm{r} 2$. The r 3 axis is aligned vertically, while the r 1 axis, which is the semi-major axis of the ellipse in a horizontal plane that bisects the ellipsoid, is oriented at an angle A (0 to 180 degrees) measured clockwise fro m north, as illu strated in Figure 3b.

Figure 3b: Description of an Ellipsoid Point with Altitude and Uncertainty Ellipsoid
The typical use of this shape is to indicate a point when its horizontal position and altitude are known only with a limited accuracy, but the geometrical contributions to uncertainty can be quantified. The confidence level with which the position of a target entity is included within the shape is also included.

5.7 Ellipsoid Arc

An ellipsoid arc is a shape characterised by the co-ordinates of an ellipsoid point o (the orig in), inner radius $r 1$, uncertainty radius $r 2$, both radii being geodesic distances over the surface of the ellipsoid, the offset angle (θ) between the first defining radius of the ellipsoid arc and North, and the included angle (β) being the angle between the first and second defining radii. The offset angle is within the range of 0° to $359,999 \ldots{ }^{\circ}$ while the included angle is within the range from $0,000 \ldots 1^{\circ}$ to 360°. This is to be able to describe a full circle, 0° to 360°.

This shape-definition can also be used to describe a sector (inner radius equal to zero), a circle (included angle equal to 360°) and other circular shaped areas. The confidence level with which the position of a target entity is included within the shape is also included.

Figure 3c: Description of an Ellipsoid Arc

6 Coding

6.1 Point

The co-ordinates of an ellipsoid point are coded with an uncertainty of less than 3 metres.

The latitude is coded with 24 bits: 1 bit of sign and a number between 0 and $2^{23}-1$ coded in binary on 23 bits. The relation between the coded number N and the range of (absolute) latitudes X it encodes is the following (X in degrees):

$$
N \leq \frac{2^{23}}{90} X<N+1
$$

except for $\mathrm{N}=2^{23}-1$, for which the range is extended to include $\mathrm{N}+1$.
The longitude, expressed in the range $-180^{\circ},+180^{\circ}$, is coded as a number between -2^{23} and $2^{23}-1$, coded in 2 's comple ment binary on 24 bits. The re lation between the coded number N and the range of longitude X it encodes is the following (X in degrees):

$$
N \leq \frac{2^{24}}{360} X<N+1
$$

6.2 Uncertainty

A method of describing the uncertainty for latitude and longitude has been sought which is both fle xible (can cover wide differences in range) and efficient. The proposed solution makes use of a variation on the Bino mial expansion. The uncertainty r, expressed in metres, is mapped to a number K , with the following formula:

$$
r=C\left((1+x)^{K}-1\right)
$$

with $\mathrm{C}=10$ and $\mathrm{x}=0,1$. With $0 \leq \mathrm{K} \leq 127$, a suitably useful range between 0 and 1800 kilo metres is achieved for the uncertainty, while still being able to code down to values as small as 1 metre. The uncertainty can then be coded on 7 bits, as the binary encoding of K .

Table 1: Example values for the uncertainty Function

Value of K	Value of uncertainty
0	0 m
1	1 m
2	$2,1 \mathrm{~m}$
-	-
20	$57,3 \mathrm{~m}$
-	-
40	443 m
-	-
60	3 km
-	-
80	20 km
-	-
100	138 km
-	-
120	927 km
-	-
127	1800 km

6.3 Altitude

Altitude is encoded in increments of 1 meter using a 15 bit binary coded number N . The relation between the number N and the range of altitudes a (in metres) it encodes is described by the follo wing equation:

$$
N \leq a<N+1
$$

except for $\mathrm{N}=2^{15}-1$ for which the range is extended to include all greater values of a.

The direction of altitude is encoded by a single bit with bit value 0 representing height above the WGS84 ellipsoid surface and bit value 1 representing depth below the WGS84 ellipsoid surface.

6.4 Uncertainty Altitude

The uncertainty in altitude, h , expressed in metres is mapped from the binary number K , with the following formula:

$$
\mathrm{h}=\mathrm{C}\left((1+\mathrm{x})^{\mathrm{K}}-1\right)
$$

with $C=45$ and $x=0,025$. With $0 \leq \mathrm{K} \leq 127$, a suitably useful range between 0 and 990 meters is achieved for the uncertainty altitude. The uncertainty can then be coded on 7 bits, as the binary encoding of K .

Table 2: Example values for the uncertainty altitude Function

Value of K	Value of uncertainty altitude
0	0 m
1	$1,13 \mathrm{~m}$
2	$2,28 \mathrm{~m}$
-	-
20	$28,7 \mathrm{~m}$
-	-
40	$75,8 \mathrm{~m}$
-	-
60	$153,0 \mathrm{~m}$
-	-
80	$279,4 \mathrm{~m}$
-	-
100	$486,6 \mathrm{~m}$
-	-
120	$826,1 \mathrm{~m}$
-	-
127	$990,5 \mathrm{~m}$

6.5 Confidence

The confidence by which the position of a target entity is known to be with in the shape description, (expressed as a percentage) is directly mapped from the 7 bit binary number K , except for $\mathrm{K}=0$ which is used to indicate 'no information', and $100<\mathrm{K} \leq 128$ which should not be used but may be interpreted as "no information" if received.

6.6 Radius

Inner radius is encoded in increments of 5 meters using a 16 bit binary coded number N . The relation between the number N and the range of radius r (in metres) it encodes is described by the following equation:

$$
5 N \leq r<5(N+1)
$$

Except for $\mathrm{N}=2^{16}-1$ for which the range is extended to include all greater values of r. This provides a true maximum radius of 327,675 meters.

The uncertainty radius is encoded as for the uncertainty latitude and longitude.

6.7 Angle

Offset and Included angle are encoded in increments of 2° using an 8 bit binary coded number N in the range 0 to 179 . The relation between the number N and the range offset (ao) and included (ai) of angles (in degrees) it encodes is described by the follo wing equations:

Offset angle (ao)
$2 \mathrm{~N}<=$ ao $<2(\mathrm{~N}+1)$ Accepted values for ao are within the range from 0 to $359,9 \ldots 9$ degrees.
Included angle (ai)
$2 \mathrm{~N}<$ ai $<=2(\mathrm{~N}+1) \quad$ Accepted values for ai are within the range from $0,0 \ldots 1$ to 360 degrees.

7 General message format and information elements coding

This clause describes a coding method for geographical area descriptions. A geographical area description is coded as a fin ite bit string. In the figures, the bit string is described by octets from top downward, and in the octet from left to right. Number encoding strings start with the most significant bit.

7.1 Overview

A bit string encoding a geographical description shall consist of the following parts:

- Type of Shape;
- Shape Description.

Such a bit string is usually part of an information element. The structure of the information element (e.g., ele ment identifier, length) depends on the protocol in which the message containing the description is defined, and is specified in the protocol specification.

This organisation is illustrated in the example shown in figure 4.

Figure 4: Example

7.2 Type of Shape

The Type of Shape information field identifies the type which is being coded in the Shape Description. The Type of Shape is coded as shown in table 2a.

Table 2a: Coding of Type of Shape

Bits	
43021	
00000	Ellipsoid Point
00001	Ellipsoid point with uncertainty Circle
00011	Ellipsoid point with uncertainty Ellipse
010	Polygon 100
1000	Ellipsoid point with altitude
1001	Ellipsoid point with altitude and uncertainty Ellipsoid
other values	Ellipsoid Arc

7.3 Shape description

The shape description consist of different ele ments.

7.3.1 Ellipsoid Point

The coding of a point is described in figure 5 .

Figure 5: Shape description of a point
S: Sign of latitude
Bit value 0 North
Bit value 1 South
Degrees of latitude
Bit 1 of octet 4 is the low order bit
Degrees of longitude
Bit 1 of octet 7 is the low order bit

7.3.2 Ellipsoid Point with uncertainty Circle

Figure 6: Shape description of an ellipsoid point with uncertainty circle

7.3.3 Ellipsoid Point with uncertainty Ellipse

Figure 6a: Shape description of an ellipsoid point with uncertainty ellipse
Orientation of major axis
angle in degrees between the major axis and north
($0=$ north, $90=$ east, values of 180 and above are not used $)$

7.3.4 Polygon

Figure 7: Shape description of a polygon
The number of points field encodes in binary on 4 bits the number n of points in the description, and ranges from 3 to 15 .

7.3.5 Ellipsoid Point with Altitude

The coding of an ellipsoid point with altitude is described in figure 8 .

Figure 8: Shape description of an ellipsoid point with altitude
D: Direction of Altitude
Bit value 0 Altitude expresses height
Bit value 1 Altitude expresses depth
Altitude
Bit 1 of octet 9 is the low order bit

7.3.6 Ellipsoid Point with altitude and uncertainty ellipsoid

Figure 9: Shape description of an ellipsoid point with altitude and uncertainty ellipsoid

7.3.7 Ellipsoid Arc

Figure 10: Shape description of an Ellipsoid arc

Inner radius

Bit 8 of octet 8 is the high order bit.
Bit 1 of octet 9 is the low order bit.

8 Description of Velocity

A description of velocity is applicable to any target entity on or close to the surface of the WGS 84 ellipsoid.

8.1 Horizontal Velocity

Horizontal velocity is characterised by the horizontal speed and bearing. The horizontal speed gives the magnitude of the horizontal component of the velocity of a target entity. The bearing provides the direction of the horizontal component of velocity taken clockwise from North.

Figure 11: Description of Horizontal Velocity with Uncertainty

8.2 Horizontal and Vertical Velocity

Horizontal and vertical velocity is characterised by horizontal speed, bearing, vertical speed and direction. The horizontal speed and bearing characterise the horizontal component of velocity. The vertical speed and direction provides the component of velocity of a target entity in a vertical direction.

8.3 Horizontal Velocity with Uncertainty

Horizontal velocity with uncertainty is characterised by a horizontal speed and bearing, giving a horizontal ve locity vector \underline{V}, and an uncertainty speed s. It describes the set of velocity vectors \underline{v} related to the given velocity \underline{V} as follows:

Figure 12: Description of Horizontal Velocity with Uncertainty

8.4 Horizontal and Vertical Velocity with Uncertainty

Horizontal and vertical ve locity with uncertainty is characterised by a horizontal speed and bearing, giving a horizontal velocity vector $\underline{V}_{x, y}$, a vertical speed and direction giving a vertical velocity component V_{z}, and uncertainty speeds s 1 and s2. It describes the set of velocity vectors \underline{v} with horizontal and vertical components $\underline{v}_{x, y}$, and v_{z} that are related to the given velocity components $\underline{V}_{x, y}$, and V_{z} as follows:

$$
\begin{gathered}
\left|\underline{v}_{x, y},--\underline{V}_{x, y},\right| \leq \mathrm{s} 1 \\
\left|v_{z}-V_{z}\right| \leq \mathrm{s} 2
\end{gathered}
$$

8.5 Coding Principles

[^0]

Figure 13: General Coding of Velocity

8.6 Coding of Velocity Type

Table 3 shows the coding of the velocity type.
Table 3: Coding of Velocity Type

Bits	
4321	
0000	Horizontal Velocity
0001	Horizontal with Vertical Velocity
0010	Horizontal Velocity with Uncertainty
0011	Horizontal with Vertical Velocity and Uncertainty
other values	reserved for future use

8.7 Coding of Horizontal Speed

Horizontal speed is encoded in increments of 1 kilo metre per hour using a 16 bit binary coded number N . The relation between the number N and the horizontal speed h (in kilometres per hour) it encodes is described by the following equations:

$$
\begin{array}{ll}
\mathrm{N} \leq \mathrm{h}<\mathrm{N}+0.5 & (\mathrm{~N}=0) \\
\mathrm{N}-0.5 \leq \mathrm{h}<\mathrm{N}+0.5 & \left(0<\mathrm{N}<2^{16}-1\right) \\
\mathrm{N}-0.5 \leq \mathrm{h} & \left(\mathrm{~N}=2^{16}-1\right)
\end{array}
$$

8.8 Coding of Bearing

Bearing is encoded in increments of 1 degree measured clockwise from North using a 9 bit binary coded number N. The relation between the number N and the bearing b (in degrees) it encodes is described by the follo wing equation:

```
N}\leq\textrm{b}<\textrm{N}+
except for 360 \leq N < 511 which are not used.
```


8.9 Coding of Vertical Speed

Vertical speed is encoded in increments of 1 kilo metre per hour using 8 bits giving a nu mber N between 0 and $2^{8}-1$. The relation between the number N and the vertical speed v (in kilo metres per hour) it encodes is described by the following equations:

$\mathrm{N} \leq \mathrm{v}<\mathrm{N}+0.5$	$(\mathrm{~N}=0)$
$\mathrm{N}-0.5 \leq \mathrm{v}<\mathrm{N}+0.5$	$\left(0<\mathrm{N}<2^{8}-1\right)$
$\mathrm{N}-0.5 \leq \mathrm{v}$	$\left(\mathrm{N}=2^{8}-1\right)$

8.10 Coding of Vertical Speed Direction

Vertical speed direction is encoded using 1 bit: a bit value of 0 indicates upward speed; a bit value of 1 indicates downward speed.

8.11 Coding of Uncertainty Speed

Uncertainty speed is encoded in increments of 1 kilo metre per hour using an 8 bit binary coded number N. The value of N gives the uncertainty speed except for $\mathrm{N}=255$ which indicates that the uncertainty is not specified.

8.12 Coding of Horizontal Velocity

The coding of horizontal velocity is described in figure 14.

Figure 14: Coding of Horizontal Velocity
Bearing
Bit 1 of octet 1 is the high order bit; bit 1 of octet 2 is the low order bit
Horizontal Speed
Bit 1 of octet 4 is the low order bit

8.13 Coding of Horizontal with Vertical Velocity

The coding of horizontal with vertical velocity is described in figure 15.

8	7	6	5	43	2	Octet 1
0	0	0	1	spare	D	
Bearing						Octet 2
Horizontal Speed						Octet 3
						Octet 4
Vertical Speed						Octet 5

Figure 15: Coding of Horizontal with Vertical Velocity
D: Direction of Vertical Speed
Bit value 0 Upward
Bit value 1 Downward

8.14 Coding of Horizontal Velocity with Uncertainty

The coding of horizontal velocity with uncertainty is described in figure 16.

8	7	6	5	4	
0	0	1	0		Octet 1
Bearing					Octet 2
Horizontal Speed					Octet 3
					Octet 4
Uncertainty Speed					Octet 5

Figure 16: Coding of Horizontal Velocity with Uncertainty

8.15 Coding of Horizontal with Vertical Velocity and Uncertainty

The coding of horizontal with vertical velocity and uncertainty is described in figure 17.

Figure 17: Coding of Horizontal with Vertical Velocity and Uncertainty

Annex A (informative): Element description in compact notation

The notation is the one described in GSM 04.07 [2].

```
<Geographical Area Description> ::=
<Point> |
<Point with uncertainty circle > |
    <Point with uncertainty ellipse> |
<Polygon> |
<Point with Altitude> |
    <Point with altitude and uncertainty ellipsoid> |
        <Arc>;
<Point> : :=
0000 <spare>(4)
<Point horizontal co-ordinates> ;
<point horizontal co-ordinates> ::=
<Latitude sign : bit> <Unsigned latitude:bit string(23)>
<Longitude : bit string(24)> ;
<Point with uncertainty circle > ::=
0001 <spare>(4)
<Point horizontal co-ordinates>
<spare bit> <Uncertainty: bit string(7)> ;
<Point with uncertainty ellipse> ::=
0011 <spare>(4)
<Point co-ord inates>
<spare bit> <Uncertainty semi-major: bit string(7)>
<spare bit> <Uncertainty semi-minor: bit string(7)>
    <Orientation of major axis: bit string(8)>
    <spare bit> <Confidence: bit string(7)>;
<Polygon> ::=
0101 <Nu mber of points>
<Point co-ord inates>(val(Nu mber of points));
<Nu mber of points> ::=
0011 | 0100| 0101 | 0110| 0111 | 1000| 1001 | 1010|
1011| 1100 | 1101 | 1110 | 1111;
<Point with Altitude> ::=
    1000 <spare>(4)
    <Point horizontal co-ordinates>
    <Point vertical co-ordinate>;
<point vertical co-ordinate> ::=
<sign : bit> <Unsigned altitude : bit string(15)>
<Point with altitude and uncertainty ellipsoid> ::=
    1001 <spare>(4)
    <Point horizontal co-ordinates>
    <point vertical co-ordinate>
<spare bit> <Uncertainty semi-major: bit string(7)>
<spare bit> <Uncertainty semi-minor: bit string(7)>
```

```
    <Orientation of major axis: bit string(8)>
    <spare bit> <Uncertainty altitude: bit string(7)>
    <spare bit> <Confidence: bit string(7)>;
<Ellipsoid Arc> ::=
<1010> spare(4)
<Point horizontal co-ordinates>
<Inner radius: bit string(16)>
<Spare bit> <Uncertainty radius: bit string(7)>;
<Offset angle: bit string(8)>
<Included angle: bit string (8)>
    <spare bit> <Confidence: bit string(7)>;
<Velocity Description>::=
<Horizontal Velocity> |
<Horizontal and Vertical Velocity> |
    <Horizontal Velocity with Uncertainty>|
    <Horizontal and Vertical Velocity with Uncertainty>;
<Horizontal Velocity> : :=
    0000 <spare>(3)
    <Bearing: bit string(9)>
    <Horizontal speed: bit string(16)>;
<Horizontal and Vertical Velocity> : :=
0001 <spare>(2)
    <Vertical direction : bit>
    <Bearing: bit string(9)>
    <Horizontal speed: bit string(16)>
    \(<\) Vertical speed: bit string(8)>;
<Horizontal Velocity with Uncertainty> : :=
    0010 <spare>(3)
    <Bearing: bit string(9)>
    <Horizontal speed: bit string(16)>
    <Uncertainty Speed: bit string(8)>;
<Horizontal and Vertical Velocity with Uncertainty> : :=
0011 <spare>(2)
    <Vertical direction : bit>
    <Bearing: bit string(9)>
    <Horizontal speed: bit string(16)>
    <Vertical speed: bit string(8)>
    <Horizontal Uncertainty Speed: bit string(8)>
    <Vertical Uncertainty Speed: bit string(8)>;
```


Annex B (informative):
 Change history

Change history								
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New	
$2004-12$	SP-26				Created version 6.0.0	5.0 .0	6.0 .0	
$2007-06$	SP-36	-	-	-	Update to Rel-7 version (MCC)	6.0 .0	7.0 .0	
$2008-12$	SP-42	-	-	-	Update to Rel-8 version (MCC)	7.0 .0	8.0 .0	
$2009-12$	SP-46	-	-	-	Update to Rel-9 version (MCC)	8.0 .0	9.0 .0	
$2011-03$	SP-51	-	-	-	Update to Rel-10 version (MCC)	9.0 .0	10.0 .0	
$2012-09$	-	-	-	-	Update to Rel-11 version (MCC)	10.0 .0	11.0 .0	

[^0]: Velocity is encoded as shown in Figure 13. The velocity type in bits $8-5$ of octet 1 defines the type of velocity information in succeeding bits.

