
TI Proprietary information – Internal Data
WTBU Chipset Department

Riviera PresentationRiviera Presentation

Vincent OberleVincent Oberle
Riviera Riviera Development UnitDevelopment Unit TeamTeam

Wireless Terminal BUWireless Terminal BU
vv--oberle@ti.comoberle@ti.com

TI Proprietary information – Internal Data
WTBU Chipset Department

Before getting started…Before getting started…

TI SW Activities for 2.5GTI SW Activities for 2.5G
1/ Worldwide activities1/ Worldwide activities
2/ Nice Activities / SSA2/ Nice Activities / SSA

TI Proprietary information – Internal DataWTBU Chipset Department

TI SW Activities and Development Sites
2.5G Chipset

TI Nice:
- 2.5G Layer1
- DSP SW
- System Validation
- SSA Dev: Riviera,
application framework
support (app integ.),
platform support

TI Aalborg
- Reference Design
support (HW related
SW, prod/calib SW…)
- Production line

support

TI Berlin
- 2.5G Protocol Stack
(GSM and GPRS)
- Building tools
- MMI integration

TI San Diego
- 3G Layer1 dev

- 3G platform support

TI Aalborg
- 3G Protocol Stack

development

TI India
- Partners in Java VM

development/integ.All TI Sites
- FAEs: local support
structures, customer
support

TI Nice:
- SSA Integration: overall
integration, validation and
release (db management)

Integration /
Validation

Customization
and

Release

TI Proprietary information – Internal DataWTBU Chipset Department

System Software and Application group
Supplying customizable turn-key Software database for TI 2.5G reference designs

Riviera Program
Application Development

Core of Riviera SW development
and application integration in TI

2.5G chipset
Defining “SW Integration rules”:

Riviera development guide

Integration / Database
Management / Releases

Integration, validation, release
and support of a “turnkey” SW
database integrating protocol

and applications
Database management

Development Chain:

from the core
to the system

System Software and Application Group

TI Proprietary information – Internal DataWTBU Chipset Department

Today…

• Riviera Overview

• What is a SW environment

• Main concepts of Riviera Environment

• A few Riviera SW entities overview

• Riviera Coding Guidelines

• Riviera Integration with other SW environment

TI Proprietary information – Internal Data
WTBU Chipset Department

Riviera Initiative PresentationRiviera Initiative Presentation

TI Proprietary information – Internal DataWTBU Chipset Department

What triggered RIVIERA

• Background:
More SW and applications are running on wireless terminals:
– Increased complexity
– SW is shared by more and more Development Teams/Companies
– SW is key to Differentiate the Final Device
– SW has severe impact on time to market

• RIVIERA Objective:
Be able to easily develop, add new functionalities and
applications on top of TI wireless solutions
– Provide a complete SW Package, ready for FTA
– Improve Time to Market, while Reducing Risk
– Provide Customers with Easy Access to Differentiation

• Customer can easily configure the SW package
• Customer can focus development on key differentiator SW

TI Proprietary information – Internal DataWTBU Chipset Department

• A SW Environment (Riviera SW environment)
• Runs on standard GSM/GPRS solution

• Make any SW development easy to develop, to integrate and to customize on TI
wireless real-time systems.

• A SW Development Tool (Riviera Tool) running on a single PC, emulating the
GSM/GPRS target

• A SW Database (Riviera compliant SWs)
• Includes most of the basic SWs needed for a GSM/GPRS solution

• Regular releases , validated with GSM/GPRS PS are provided.

• Very easy to customize, add custom SWs …

Riviera Offer : an Enabling Technology

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera SW Environment Overview (1)

Riviera SW Environment
=

• C code Library (Core SW)
• Methodology:

– Development methodology
– Coding rules / guidelines
– Integration methodology
– Validation methodology
– Customization method

The environment
defines what is outside the

box and the shape of the box

The developers
Define what is
inside the box

The integrator
Assembles the boxes

to make a system

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera SW Environment Overview (2)

• Easy to program:
– No need of wireless knowledge (abstraction layer)
– Independant on HW roadmap

• Safe:
– Modem resource are protected (memory available, real time constraints)
– Usual developers do not have access to critical parts of the SW

• Modular:
– SW components can easily be added / removed / changed, dynamically,

using only resources when activated
– Easy to integrate a new SWE and debug

• Cost Efficient:
– SW environment has a small footprint (15 kB Flash, 5 kB RAM)
– Optimal memory use in term of RAM and FLASH
– Data handling optimisation (zero copy mechanism)

TI Proprietary information – Internal DataWTBU Chipset Department

SW development with a Network connection (GSM/GPRS or TCP/IP)

TCP/IP
AT cmd / PPP

Bluetooth SW development example

SW development when no external connection is needed

SW is ported transparently
from tool to final target

Riviera SW Development Tool (-Set)

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera Trace Multiplexer / Riviera Tracer
Trace Multiplexer:
Serial Mux / Unmux
on PC and target for
traces and other
(TCP/IP, AT…)

Allows to connect as
many flows as
required

Allows to use legacy
/ cust. application on
PC (socket instead of
COM: low rework)

PC Target

Riviera Trace
Environment

(non-Riv) Trace
Environment 1

SER (Serial Switch) /
UART Driver

TraceMux

Non-Riviera Trace
tool 1 (PCTM) Non-Riviera Trace tool 2

(Xpanel)

Riviera Tracer

R
iv

ie
ra

 T
ra

ce
r

M
od

ul
e

RVT BODY
(Lowest priority

task)

RVT API

(non-Riv) Trace
Environment 2

Windows
Sockets

Riviera Tracer: Displays, filter and saves log messages coming from
Riviera entities and from Layer1.

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera Database

• A SW Database (collection Riviera compliant SWs)
– Easier for the developer of a SW Entity:

• Service based APIs: Developers know to which bricks it should
interact

– Easier for the integrators of the final product:
• Bricks interfacing and inter-dependencies has been checked. No

intrusion of other native SW.
• Integrator can have Riviera Environment along with other environment

TI Proprietary information – Internal DataWTBU Chipset Department

Example of Riviera SW Database

JAVA
(KVM

/
CLDC)

GSM/GPRS LY1

SIM

ATP

BT PS

2D

RGUI

SER

JAVA
Classes

LLS

SPI

RNET
(TCP/IP)

RVT

DAR

Storage (FFS)

Battery

RTC

A
U

D
IO

M
PM

KPD
BT

Profiles

RTOS

GSM/GPRS LY2-3

ACI – PPP - UDP

G
PF

NM

CM

SIM

SAT

PB

SS

CPHS SMS

J2N APIs

WAP
PS

EMS MMS

Msg
Server

Media
Library

WAP
Services

Cust.
Services

Main MMI – Template (Widget Based)

MSG
UI

JAM +
Midlets UI

Phone
UIs

… Customer
Application

Browser
UI

Games
UI

MMI

Services
M
A
N
A
G
E
R

F
R
A
M
E

DSP Schedul.

Voice Codecs

Melody Generator

Speech Recognition

Voice Memo

DSP Routine Libraries
Modem Algo

Generic
Services
Released

Debug
Services
Released

Core
Services
Released

Multi-Media
Services
Released

Low Level
Services
ReleasedTransport

Services
Released

High Level
Services

Under Integration

Application /
UI Services

Under Integration

Vali
dat

ed

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera Database: Products and Platforms
• Riviera Database vs. Product Definition and Platform

– Transparent:
• Ported and validated on every TI wireless platform (reference design)
• Basic Support of new Platform within 2 months

– Modular: any application can be added or removed depending on product definition
– Optimal: all application are optimized on TI Chipset, application consumes resources

only when running.
– Opened: SSA database brings the needed standard bricks to build a product, but is

opened to customization:
• Existing SW customization (Look and Feel, application customization, pick and choose)
• Adding of new custom application, through ease of porting.

– Vertical:
• Targets low cost as well as middle range products
• 1 Single SW database for all TI wireless platforms (Calypso, Locosto1/2/3, Calypso+,

Perseus2…)
=> Easy and fast MIGRATION to new TI wireless platforms

(Provides a roadmap for integration and optimization)
=> Easy handling of several “feature based” product lines / segments

(Easy definition of product features)

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera Database: Products and Platforms

⇒ Scalable and Flexible product definition.
⇒ Maximum Synergy and reusability amongst platform,
⇒ Starting point available NOW (for all platforms!!).

TI Proprietary information – Internal Data
WTBU Chipset Department

Riviera Release FlowRiviera Release Flow

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera Riviera EnvEnv..

Texas InstrumentsTexas Instruments
System SW & ApplicationSystem SW & Application

GroupGroup

Riviera Development and Release Flow

Riviera Riviera EnvEnv..

TI InternalTI Internal
DevelopmentDevelopment

DevtDevt 22

Riviera Riviera EnvEnv..

Riviera Riviera EnvEnv..DevelopmentDevelopment
FromFrom

PartnersPartners

DevtDevt 3 3

DevtDevt 44

DevtDevt 11

DevtDevt 22

DevtDevt 33

DevtDevt 44

CustomerCustomer
Reference DesignReference Design

FAEsFAEs

Riviera Riviera EnvEnv..

DevtDevt 11

DevtDevt 22

DevtDevt 44

TI Proprietary information – Internal DataWTBU Chipset Department

Partnership Model for Standard SW

TI
Partners

TI Standard
SW DB

Riviera
Package

Mobile OEM/ODM

Support on Riviera Environment

Support

Support for integration and certification

Release

Integration on wireless platform
Non-regression test

1

2

3

4

8

5

Approval / Certification

7

6

Release
type

validation

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera
Core Tech.

Devt
Nice - SD

2.5G
Reference SW

Database
Nice

Reference
Design

TI-DK

TI-US

TI-Japan

TI-Taiwan

TI-China

TI-Europe

TI 2.5G Chipset
Local Team support

End
Application

Partners

2.5G Chipset
Customers

Enabler
Application

Partners

Remote TI
Development

Center
SD/DK/India Technical

Center
Partners

New SW
Services
Developed

No need of new
SW services
(Example Native
Games)

Back to
SW

database

Riviera SW release and support Flow

TI Proprietary information – Internal Data
WTBU Chipset Department

Riviera HistoryRiviera History

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera Initiative Steps

Riviera Core
Technology
Development

(Bluetooth work)

Riviera Drivers support
Riviera Environment

into GSM/GPRS releases

Export to key partners
Export to local support forces

Introduction to TIer2 customers

Riviera Apps support
Spread toTier2 customers

Port on other platforms

1999-2000

2000 - 2001

2002

2003

Status Today

TI Proprietary information – Internal DataWTBU Chipset Department

Today…

• Riviera Overview

• What is a SW environment

• Main concepts of Riviera Environment

• A few Riviera SW entities overview

• Riviera Coding Guidelines

• Riviera Integration with other SW environment

TI Proprietary information – Internal DataWTBU Chipset Department

What is a SW environment? (1)

A SW environment allows to create and integrate a new SW block = SW Entity
into a complex system without complex knowledge on this system.

New SWE
to develop

How is the SWE
started/ killed?

Which rules
to follow

to code the SWE
(generic types/coding guidelines/

file partitioning)?

How does the SWE can
have access to

system resources
(OS- drivers)?

Should not starve the rest of the system

How can we debug the SWE
(trace system,

memory scanning,
buffer controls)?

How does the SWE
communicate with others?

How can we integrate
the SWE and validate it

in the full system?

How can we recover
when SWE crashes?

TI Proprietary information – Internal DataWTBU Chipset Department

What is a SW environment? (2)
The environment

defines what is outside the
box and the shape of the box

The developers define what is
inside the box

The integrator assembles the
boxes to make a system

TI Proprietary information – Internal DataWTBU Chipset Department

Today…

• Riviera Overview

• What is a SW environment

• Main concepts of Riviera Environment

• A few Riviera SW entities overview

• Riviera Coding Guidelines

• Riviera Integration with other SW environment

TI Proprietary information – Internal Data
WTBU Chipset Department

SW entity ConceptSW entity Concept

TI Proprietary information – Internal DataWTBU Chipset Department

SW Entity concept

• SW Entity = SW component, which provides a certain number of
coherent services to the other SW components of the system.

• Software system = collection of SW entities.
• Exchanges performed between SW entities are exchange of service

requests and service answers.

SW ENT1
BODY

ENT1 API

SW Entity SW Entity
SW Entity

SW Entity The SW is splitted in 2 distinct parts :
– API = SW allowing to access the services

provided by the SW entity
– BODY = SW implementing the services

TI Proprietary information – Internal DataWTBU Chipset Department

A Particular SWE : Riviera Drivers
• A driver is a SW entity which has a HW dependency

SW ENT1
COMMON BODY

ENT1 API

SW Entity SW Entity

SW Entity
SW Entity

In most of the cases, the SW entity body
of a driver is spitted into 2 pieces:

SW ENT1
CUSTOM BODY

• A ‘common body’ : part of code
independent from HW

• A ‘custom body’ : part that needs to be
recoded when driver needs to be
modified. Compilation flags allow
support of different platforms

• API is kept unchanged in order to
guarantee backward compatibility with
the rest of the system

TI Proprietary information – Internal DataWTBU Chipset Department

SW Entity types
Type 1

PASSIVE

SWE1
(TYPE1)

API API is
composed
of functions

Body is
composed
of functions

SWE1
(TYPE4)

Messages sent to
SWE1

swe1_core(.
.)

Type 4
SELF-MADE

Host Task

SWE1 (TYPE2)

Transparent to
the developer

Messages sent to
SWE1, SWE2,

SWE3

swe1_handle_message(..)

SWE2 (TYPE 2)

SWE3 (TYPE 2)

swe2_handle_message(..)

swe3_handle_message(..)

Type 2
GROUP

MEMBER

SWE1
(TYPE3)

Transparent
to the
developer

Messages sent
to SWE1

swe1_handle_message(..)

Host Task

Type 3
SINGLE

TI Proprietary information – Internal DataWTBU Chipset Department

Creation / Destruction of SWE

• SW entity can be created and destroyed dynamically.
• Riviera Manager is in charge of the creation / destruction

of the SW entities.

• To create a new SWE, just call:
rvm_swe_start()

• and to destroy a SWE:
rvm_swe_stop()

TI Proprietary information – Internal DataWTBU Chipset Department

Linked SW Entities

• A SW entity can provide a list of other SW entities that need to be
available for it.

• Recursive Activation / Destruction.
SW Entity A requests the creation
of SW entity B to Riviera Manager

rvm_swe_start(SWB_USE_ID)

Riviera Manager start SW entity B creation

Creation of SW entities F,G Linked SW
entities

of SW entity D

SW Entity A

Riviera

Manager

Riviera Manager gets
information on SW entity
B’s linked SWE and starts
SW entities C,D and E B
creation

SW Entity B

SW Entity C

SW Entity D

SW Entity E

SW Entity F

SW Entity G

Linked SW
entities

of SW entity B

TI Proprietary information – Internal DataWTBU Chipset Department

Generic functions: For who?

get_info SWE1 SWE2 SWE3 SWE4

set_info SWE1 SWE2 SWE3 SWE4

init SWE1 SWE2 SWE3 SWE4

start SWE1 SWE2 SWE3

stop SWE1 SWE2 SWE3 SWE4

kill SWE1 SWE2 SWE3 SWE4

handle_message SWE2 SWE3

handle_timer SWE2 SWE3

core SWE4

TI Proprietary information – Internal DataWTBU Chipset Department

USE ID concept

• The USE ID is a unique static identifier of a SoftWare
Entity.

• It is allocated during the registration process.

• It is used to identify a SWE from a static point a view:
– To start it.
– To stop it.
– To retrieve information about it.
– To send debug messages to a PC tool.

TI Proprietary information – Internal DataWTBU Chipset Department

Address ID concepts

• The Address ID (ADDR_ID) is the unique path to a running
SWE, it is allocated dynamically and might change when a
SWE is started/stopped.

• It is allocated during the starting phase by RVM.
– parameter of the …_set_info() function.
– could be retrieved using the rvm_get_swe_information()

• It is used to identify a SWE from a dynamic point a view:
– To send messages to it.

TI Proprietary information – Internal DataWTBU Chipset Department

USE_ID

ADDR_ID

SW Entity concept summary

SWE XXX
BODY

xxx_get_info()

SW Entity

Riviera

Manager

SW Entity
SW Entity

SW Entity

Mailbox

SWE XXX API

xxx_set_info()

xxx_init()

xxx_start()

xxx_stop()

xxx_kill()

xxx_handle_message() xxx_handle_timer()

Timers

MSG

or
call back function

or functionMSG

TI Proprietary information – Internal Data
WTBU Chipset Department

Inter SW entity Inter SW entity
CommunicationCommunication

TI Proprietary information – Internal DataWTBU Chipset Department

Inter SWE communication: Service request

SWE1 requests a service to SWE2

The way the service has to be requested depends on the SWE2 API.

SWE 2

SWE1

Function
Call

fct()

• If SWE2 API is a set of messages: SWE1 should send service request
messages into SWE2 mailbox.

SWE 2

SWE1
SWE2
Mailbox
(addr_id)

Messages

• If SWE2 API is a set of functions: SWE1 should call SWE2 API function

The mailbox address is
provided by RVM and is
called the addr_id

TI Proprietary information – Internal DataWTBU Chipset Department

Inter SWE communication: Service answer

• Used by SWE1 (caller of the service) to indicate to SWE2 how it wants the
answer of this service request back

• SWE 1 provides a return path to SWE 2. It is a C structure with 2
fields:

– An address ID.
– A callback function pointer.

• Address ID specified: the answer is sent as a message to the
requester of the service.

– Applicable in most of the cases

• Callback pointer is specified: the answer is sent as a parameter of the
callback to the requester of the service.

– Very useful in some cases, especially when the requester is not a Riviera Entity.

SW Entity 1

SW Entity 2

Service
Request

Service
Results

The ‘Return-Path concept’

TI Proprietary information – Internal Data
WTBU Chipset Department

Memory handlingMemory handling

TI Proprietary information – Internal DataWTBU Chipset Department

Memory Bank concept

• Efficient memory allocation on a complex system is crucial:
– Memory implementation may differ from one target to another.
– Many different SW entities use the same system memory.
– Safe dynamic memory management is a MUST for a robust

implementation.

• A memory bank is a virtual amount of memory, allocated to a SW
entity.
– A memory bank is initialised with the maximum of memory that can be

requested on the memory bank.
– When a SW entity request memory, it indicates which memory bank the

memory should be taken from. For example to get a buffer:
return_flag = rvf_get_buf(XXX_MB, size_of_buffer, &pointer_on_buffer);

– To deallocate a buffer:
rvf_free_buf(pointer_on_buffer);

TI Proprietary information – Internal DataWTBU Chipset Department

Memory Bank Color Flag

Physical
Memory

SW Entity A

Riviera

Manager

MB A1

MB B1

Request a buffer
from memory Bank A1

Get Buffer
Flag is GREENGREEN

SW Entity A

Request a buffer
from memory Bank B1

Get Buffer
Flag is YELLOWYELLOW

Update MUC
&

Check flag

Update MUC
&

Check flag

If flag is GREEN or
YELLOW,

allocate Memory
and provide Pointer

Memory Used
Counter
(MUC_B1)

Memory Used
Counter
(MUC_B1)

TI Proprietary information – Internal Data
WTBU Chipset Department

SW files structureSW files structure

TI Proprietary information – Internal DataWTBU Chipset Department

SW entity File structure

SW Entity Name
(Root Directory)

…_env.h / …_env.c
(Generic function

related files)

…_api.h (s)
(API definition /
prototypes files)

…_handle_message.c
(Main function handling

SWE message reception)

…_handle_timer.c
(Main function handling

SWE time events)

…_cfg.h
(Configuration

constants of the SWE)

…….._i.h
(Internal definitions)…….._i.h

(Internal definitions)…….._i.h
(Internal definitions)…….._i.h

(Internal definitions)…….._i.h
(Internal definitions)…….._i.h

(Internal definitions)

…….. .c
(Internal Code)…….. .c

(Internal Code)…….. .c
(Internal Code)…….. .c

(Internal Code)…….. .c
(Internal Code)…….. .c

(Internal Code)…….. .c
(Internal Code)…….. .c

(Internal Code)

Visible by
the other
SW entity

Visible by
the Riviera
Manager

Used by the
integrator

TI Proprietary information – Internal DataWTBU Chipset Department

Today…

• Riviera Overview

• What is a SW environment

• Main concepts of Riviera Environment

• A few Riviera SW entities overview

• Riviera Coding Guidelines

• Riviera Integration with other SW environment

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera Manager - RVM

• RVM provides services related to SW entities
management (creation / destruction / information…)

• RVM is created at initialization (‘heart’ of Riviera based
system).

• API available depends of SWE type

• Main API functions are:
– rvm_swe_start(SW_ENTITY_USE_ID, return_path);

– rvm_swe_stop(SW_ENTITY_USE_ID, return_path);

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera Frame - RVF

• RVF provides services related to OS resource access
• RVF is created at initialization
• Communication:

– rvf_send_msg(addr_id,msg_p) all SWE TYPES
– rvf_read_mbox(…) TYPE 4
– rvf_send_event(…) TYPE 4
– rvf_lock_mutex(…) TYPE 3 and 4

• Memory Management:
– rvf_create_mb(…) all SWE TYPES
– rvf_get_buf(MB_ID,buf_size,&buf_p) all SWE TYPES
– rvf_free_buf(buf_p) all SWE TYPES

• Timers:
– rvf_delay(time) TYPE 3 and 4
– rvf_start_timer(…) TYPE 2,3 and 4

• Queue manipulation:
– rvf_enqueue(…) / rvf_dequeue(…) …

• Debug:
– rvf_send_trace / rvf_dump_mem(…) all SWE TYPES

TI Proprietary information – Internal DataWTBU Chipset Department

Flash File System - FFS

• FFS SW entity is providing services to handle file of
permanent information (permanent storage in Flash).

• Main functions of the API are:
– ffs_open(…)

– ffs_close (…)
– ffs_write (…)
– ffs_read (…)

– ffs_seek (…)
– ffs_stat (…)

– ffs_mkdir (…)
– ffs_opendir (…)

– …

TI Proprietary information – Internal DataWTBU Chipset Department

Audio - AUDIO

• AUDIO SW Entity is providing AUDIO services such as:
– melody (multi-channel/instruments) / tones generation
– voice memorization
– Voice dialing / speech recognition
– Audio speaker volume

• Main advantages:
– High level API: easy to handle / easy to program
– Handle directly FFS (long voice memo available with FFS chunked

access)
– Robust since add a layer of control and synchronization between

the MMI and the low level (LY1 / DSP)
– Transparent upgrade to other platforms (remove access to LY1 in

future)

TI Proprietary information – Internal DataWTBU Chipset Department

A few other SWEs
• RVT SWE (Riviera Tracer) provides a multiplexed access to a single

UART link
• DAR SWE (Diagnose and Recovery) provides services to recover from

scrach and get diagnose information on what happen just before the
scrach

• Keypad SWE for keypad services
• R2D (Riviera 2D) for 2D graphic services
• RGUI (Riviera Widgets) for building MMI interfaces
• RTC (Real Time Clock) services
• ATP (Agnostic TransPort) : generic access to transport layers
• RNET (Riviera NETwork) : TCP/IP API, 3 configuration to enable step

by step Software integration / validation.

TI Proprietary information – Internal DataWTBU Chipset Department

Example of Riviera SW Database

JAVA
(KVM

/
CLDC)

GSM/GPRS LY1

SIM

ATP

BT PS

2D

RGUI

SER

JAVA
Classes

LLS

SPI

RNET
(TCP/IP)

RVT

DAR

Storage (FFS)

Battery

RTC

A
U

D
IO

M
PM

KPD
BT

Profiles

RTOS

GSM/GPRS LY2-3

ACI – PPP - UDP

G
PF

NM

CM

SIM

SAT

PB

SS

CPHS SMS

J2N APIs

WAP
PS

EMS MMS

Msg
Server

Media
Library

WAP
Services

Cust.
Services

Main MMI – Template (Widget Based)

MSG
UI

JAM +
Midlets UI

Phone
UIs

… Customer
Application

Browser
UI

Games
UI

MMI

Services
M
A
N
A
G
E
R

F
R
A
M
E

DSP Schedul.

Voice Codecs

Melody Generator

Speech Recognition

Voice Memo

DSP Routine Libraries
Modem Algo

Generic
Services
Released

Debug
Services
Released

Core
Services
Released

Multi-Media
Services
Released

Low Level
Services
ReleasedTransport

Services
Released

High Level
Services

Under Integration

Application /
UI Services

Under Integration

TI Proprietary information – Internal DataWTBU Chipset Department

Today…

• Riviera Overview

• What is a SW environment

• Main concepts of Riviera Environment

• A few Riviera SW entities overview

• Riviera Coding Guidelines

• Riviera Integration with other SW environment

TI Proprietary information – Internal DataWTBU Chipset Department

Introduction

• In Riviera, next to the environment, the tools and the
database, are the coding guidelines.

• Goal: Make the code of many different developers work
together.

• Legend:
– CR = CRITICAL: to be strictly followed
– HR = HIGHLY RECOMMANDED: not critical but large influence on

robustness of the SWE / amount of work needed to integrate the
SWE

– OP = OPTIONAL: it is recommended to follow this rule as a nice-
to-have feature

TI Proprietary information – Internal DataWTBU Chipset Department

Naming conventions (1)

• File naming
– Every file name of a SW entity must start with the SWE nickname.

Example: rtc_process.c

– Every SW entity should provide the following files:
• …_api.h Declarations needed to use the service of the SWE
• …_env.h Riviera Generic Functions declarations
• …_env.c, …_handle_message.c, …_handle_timer.c

Coding of the Riviera Generic Functions
• …_cfg.h Constants that can be tuned by the integrator

– Other recommended file naming convention:
• Include filenames that are used only internally in the SWE should

finish with the ‘_i’ extension.
Example: rtc_messages_i.h

CR

HR

OP

TI Proprietary information – Internal DataWTBU Chipset Department

Naming conventions (2)

• External Information
– All the information that is visible outside the SW entity should start with the SW

entity nickname.
Examples:

• Extern functions: rvm_start_swe() and not start_swe(…)
• Types: T_RVM_NAME and not T_NAME
• Constants: #define RVF_MAX_TOTAL_MB (70)

• General naming convention
– Variable or function: lower case, underscore between words

rvf_get_buf (…)
– Constants: upper cases, underscore between words

RVF_GREEN
– Types: upper cases, underscore between words, start with ‘T_’
– Pointers: end with “_p” for single indirection, “_pp” for double…

• Message Naming Convention
– Depending the kind of SW, several naming convention may be used for message

naming.

HR

HR

OP

TI Proprietary information – Internal DataWTBU Chipset Department

Comments: Documentation Rules (1)

• Evident need of comments for:
– Using the SWE
– Integrating the SWE
– Maintaining the SWE

• Using formating rules
– Riviera uses Javadoc rules.
– Rules are compatible with automatic documentation generation

tools (= program creating automatically the documentation by
looking on the source code).

• Nice tool: Doxygen. Generates HTML, RTF and LaTeX format

HR

OP

TI Proprietary information – Internal DataWTBU Chipset Department

Comments: Documentation Rules (2)

• Documentation blocks have to be identified with special tags:
/**
* ... text ...
*/

• Content:
– brief description (first sentence)
– detailed description
– tags of the form @tag describing parameters, return values, etc.

• Interesting tags:
– @param
– @return
– @author
– @version
– @see
– @deprecated
– etc

OP

TI Proprietary information – Internal DataWTBU Chipset Department

Include Files

• An include file shall contain only definitions, declarations, macros,
function prototypes and conditional compilation statements.

• Every exported include file (such as …api.h) should start with:
#ifndef __NAME_OF_THE_FILE_

#define __NAME_OF_THE_FILE_

and end with:
#endif

• The …_api.h files should not include any internal …_i.h files.

CR

CR

CR

TI Proprietary information – Internal DataWTBU Chipset Department

Error Return

• Every function should return an error indication.

• Standard Riviera return-flag can be used.

The return type is T_RV_RET and can have following values:
– RV_OK Function processed successfully
– RV_NOT_SUPPORTED Requested process not supported
– RV_NOT_READY Requested process cannot be processed

now
– RV_MEMORY_ERR A memory error occurred
– RV_INTERNAL_ERR An internal error has occurred
– RV_INVALID_PARAMETER A parameters is invalid

HR

OP

TI Proprietary information – Internal DataWTBU Chipset Department

Standard Types and Libraries

• Standard Types
– The SW should not directly use the types of the compiler.
– It should rather use the standard Riviera types.

Example: (see general.h)
typedef unsigned char UINT8;
typedef unsigned short UINT16;

• Libraries Usage
– The use of libraries like maths, strings…. should be limited as much as

possible for portability and code size optimization.
• Special Functions use

– The following functions should not be used, especially in time critical part
of the code:
sprintf(…) mod(…) div(…)

– The following function use is recommended:
memcpy(…)

HR

CR

HR

HR

TI Proprietary information – Internal DataWTBU Chipset Department

State Machine Implementation

• A state machine is code, which receives stimuli (messages in Riviera) and
which reacts to the stimuli depending the current state.
One of the reaction can be the change of state.

• Implementation:
– first check the state

of the state machine

– then check the stimuli
it received

HR

HR

handle_message (message) {
switch (internal_state of the state_machine) {
case STATE_1:

switch (message_id) {
case MESSAGE_1:break;
case MESSAGE_2: break;
default: break;

} break;
case STATE_2:

switch (message_id) {
case MESSAGE_1: break;
case MESSAGE_2: break;
default: break;

} break;
default: break;
}

}

TI Proprietary information – Internal DataWTBU Chipset Department

Miscellaneous

• Avoid Global variables
– Use the Global Variable Buffer

• Braces {} and indentation
– Line-up code by braces (braces is place on a new line) whenever a loop or

conditional case is code.
– Conditional code should be surrounded by braces even if it contains only one

instruction.
– Example:

if (return == HCI_ERROR)
{

hci_error(error_parameters);
}

• Avoid if (x) Replace by if (x==NO_ERROR)
• Avoid litteral numbers Use constant or preprocessor definitions
• Use the default label in all switch statements.
• Put a numeric value of a define or a macro definition between brackets.

HR

OP

HR

TI Proprietary information – Internal DataWTBU Chipset Department

Summary: Riviera Coding guidelines

• Naming conventions:
– File names (start with SWE nickname, mandatory files, internal files)
– External information start with SWE nickname
– Naming recommendations for functions, constants, variables, pointers…

• Comments format (Javadoc) automatic documentation generation
• General guidelines:

– Error return, standard types, library usages, braces/indentation…
– State machine implementation
– No global variables Global Variable Buffer

TI Proprietary information – Internal DataWTBU Chipset Department

Today…

• Riviera Overview

• What is a SW environment

• Main concepts of Riviera Environment

• A few Riviera SW entities overview

• Riviera Coding Guidelines

• Riviera Integration with other SW environment

TI Proprietary information – Internal DataWTBU Chipset Department

Legacy Application Porting:
2 Different Options…

Flexibility for porting Applications:
All Riviera services accessible both inside and outside
Riviera Environment, thanks to:

- Function APIs
- “return_path” concept)

⇒ Riviera Environment can co-exist any other, Nucleus
based Environment
⇒ Any Customer Application, running on Customer
Environment, can access all Riviera Services.

TI Proprietary information – Internal DataWTBU Chipset Department

Legacy Application Porting:
Option 1: Keeping Customer’s Environment

• Customer Application, ported
with Customer Environment, on
top of Nucleus
(example of application using TCP/IP,
FFS, UI Services…)

• Drawbacks:
– Main is that no PC tool available to

ease porting

• Advantage:
– Easy and Fast porting, common

framework to port all existing
customer applications

Customer
Appli

1

Drivers

2D

RGUI

RNET (TCP/IP)

Debug

Storage (FFS)

RTC

A
U

D
IO

KPD

GSM
GPRS

PS

Main MMI (Widget Based)

M
A
N
A
G
E
R

F
R
A
M
E

RTOS

Customer
App UI

Customer
Appli

2

Customer
Environment

Ported to Nucleus

Bridge
To

Win
TCP/IP

Customer
Service

1

TI Proprietary information – Internal DataWTBU Chipset Department

Legacy Application Porting:
Option 2: Porting Customer’s Application in Riviera

• Customer Application, ported
with Customer Environment, on
top of Nucleus
(example of application using TCP/IP,
FFS, UI Services…)

• Advantage:
– Access to Riviera Tool Set (PC

porting and validation, all necessary
APIs available on PC)

– Access to Riviera abstraction of the
OS (ported to any TI chipset)

• Drawbacks:
– Higher porting work.

BUT: Customer defines intrusion
(modular or 1 block porting)

Drivers

2D

RGUI

RNET (TCP/IP)

Debug

Storage (FFS)

RTC

A
U

D
IO

KPD

GSM
GPRS

PS

Main MMI (Widget Based)

M
A
N
A
G
E
R

F
R
A
M
E

RTOS

Bridge
To

Win
TCP/IP

Customer
App

1

Customer
App

2

Customer
App UI

Customer
Modules

Ported to Riviera

Customer
Service

1

TI Proprietary information – Internal Data
WTBU Chipset Department

How can an external SWHow can an external SW
use Riviera Entity servicesuse Riviera Entity services

TI Proprietary information – Internal DataWTBU Chipset Department

Service request and answer example

Riviera SWE 1

• Riviera Only case

Riviera SWE 2
API

• External SW using services from a Riviera SW entity

Riviera SWE 1
SW XXX 1

Riviera SWE 2
API

TI Proprietary information – Internal DataWTBU Chipset Department

fct()

Non-Riviera SW Using Riviera Services

Riviera SWESW
XXX Function

Call
API

Services provided by Riviera to another environment are accessible through function call

• External Environment requesting a Riviera Service

• Riviera Service Answer provided to External Environment

Riviera SWESW
XXX

Thanks to the return path concept, Riviera message is sent to call back function provided

by the SW XXX, which can translate answer in the external environment format

API

TI Proprietary information – Internal Data
WTBU Chipset Department

How can a Riviera SW entityHow can a Riviera SW entity
use services from a external use services from a external

SWSW

TI Proprietary information – Internal DataWTBU Chipset Department

Service request and answer example

Riviera SWE 1

SW
XXX 2

• Riviera Only case

Riviera SWE 2
API

• Replacement of a Riviera SW entity by an external one

Riviera SWE 1

API

SW XXX 1
Riviera

Wrapping

TI Proprietary information – Internal Data
WTBU Chipset Department

ConclusionConclusion

TI Proprietary information – Internal DataWTBU Chipset Department

Riviera environment: Key features ?

• Easy to program:
– No need of wireless knowledge (abstraction layer)
– Independent on HW roadmap

• Safe:
– Modem resource are protected (memory available, real time constraints)
– Usual developers do not have access to critical parts of the SW

• Modular:
– SW components can easily be added / removed / changed, dynamically,

using only resources when activated
– Easy to integrate a new SWE and debug

• Cost Efficient:
– SW environment has a small footprint
– Optimal memory use in term of RAM and FLASH
– Data handling optimisation (zero copy mechanism)

