Rita Intro

July,2003

Texas Instruments Shanghai

Wireless Customer Integration & Design Center

Agenda

• Rita introduction

- 1. Rita architecture
- 2. Receiver
- 3. Transmitter
- 4. Synthesizer
- 5.Regulator

• **RF-BB** interface

- 1. RF-BB connection
- 2. RF controlling by BB

• **RF-SW programming and control** *Rita registers introduction*

• Q&A

Rita introduction

1. Rita architecture

2. Receiver

3. Transmitter

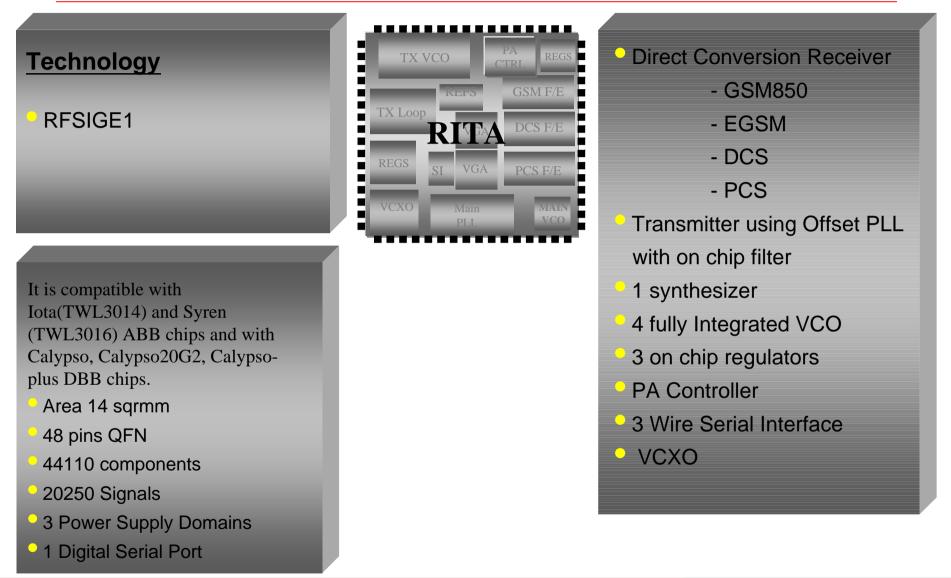
4. Synthesizer

5.Regulator

The World Leader In DSP And Analog

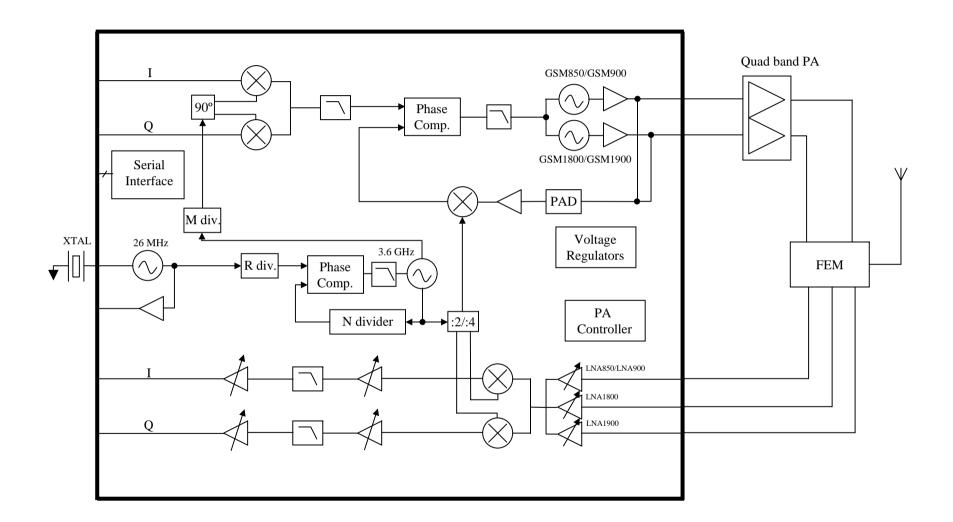
3

Migrating from CLARA to RITA

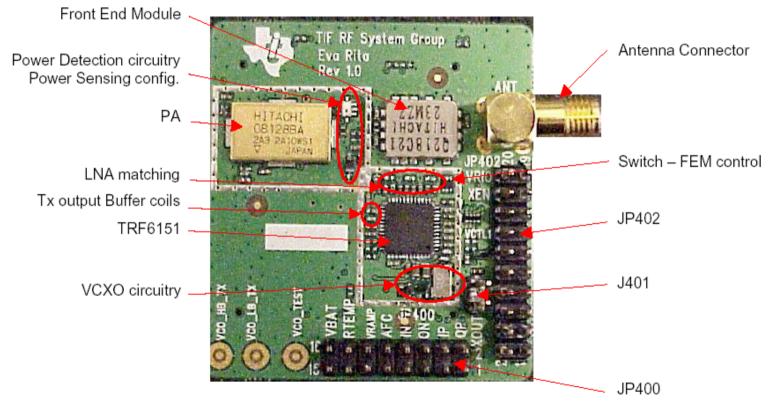

Clara

- Triple band
- 64Pin,TQFP64,12*12m m
- Need tank circuits
- Need 2 external VCOs
- Need external VCXO

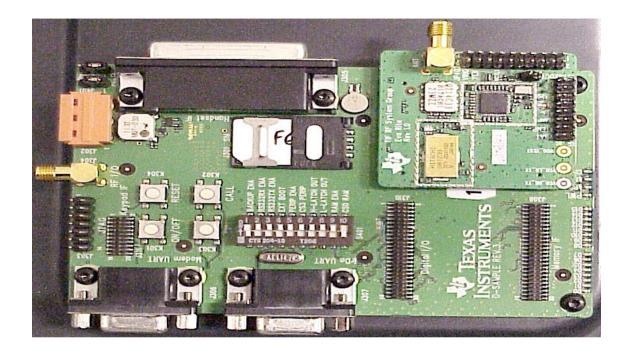
Rita


- Quad band
- 48Pin,QFN48,7*7mm
- Fully-integrated VCO, no need tank circuits
- Including loop filter and VCO
- Including a 26MHz
 VCXO with external varactor and crystal

RITA GSM-GPRS 850/900/1800/1900, RF single chip

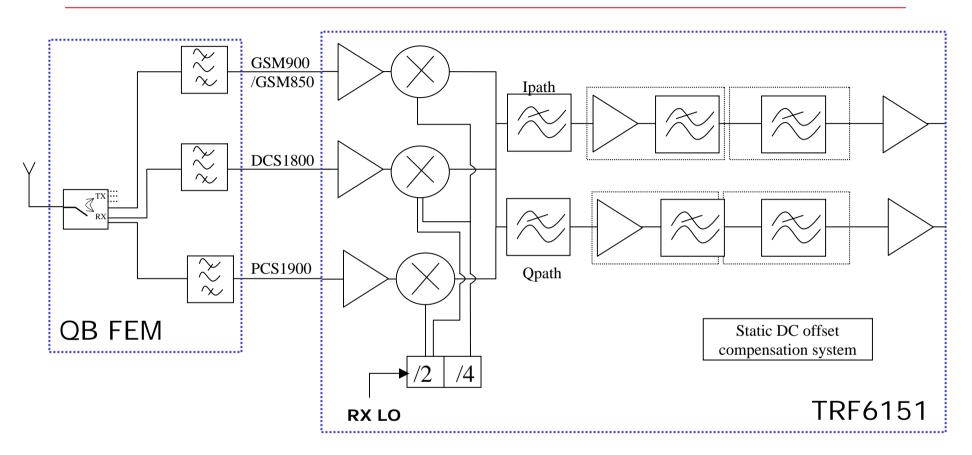


Architecture


Rita EVM

Can be plugged to: Modified D-Sample

Modified D-sample


Modifications are to be applied to D-Samples to handle EvaRita Modified D-Sample is dedicated to EvaRita Corresponds to Calypso/Iota/Rita TI chipset

Used to emulate EvaRita in real conditions (GSM TDMA)

Useful to run tests close to the ETSI spec. requirements.

Receiver

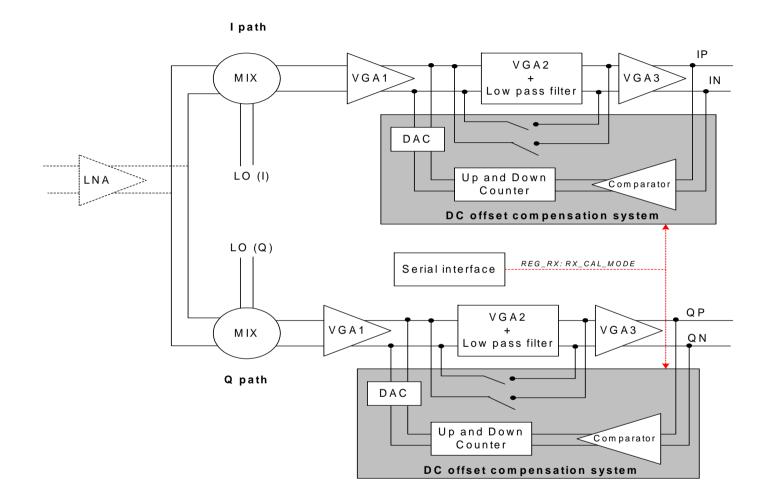
- Direct conversion receiver
- Quad band GSM850+EGSM + DCS + PCS

Receiver

Receive section:

- - three LNA(LNAGSM/LNADCS/LNAPCS) with switchable gain
- three quadrature demodulators for GSM900/GSM850 (MIXGSM),DCS1800 (MIXDCS) and PCS1900 (MIXPCS) bands with switchable gain
- - two base-band amplifiers with digitally programmable gain
- - two fully integrated base-band channel filters.
- - two DC offset compensation systems
- - a divider by 4 for the LO generation in GSM900 and GSM850 in order to minimize the DC offset generated by self mixing and the LO re-radiation
- - a divider by 2 for the LO generation in DCS1800 and PCS1900 in order to minimize the DC offset generated by self-mixing and the LO reradiation.

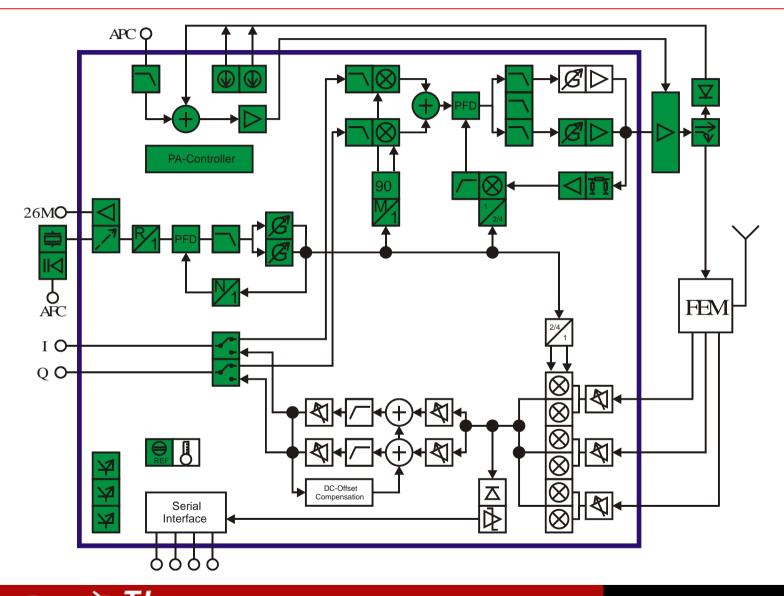
Receiver Performance


RECEIVER

Global performances

Global perior						
RF input	LNAGSMN/P pins		869	-	960	MHz
frequency	LNADCSN/P pins		1805	-	1880	MHz
frequency	LNAPCSN/P pins		1930	-	1990	MHz
Balanced RF input impedance	LNAGSMN/P, LNADCSN/P or LNAPCSN/P pins		-	100	-	Ω
RF input return	LNAGSMN/P, LNADCSN/P or LNAPCSN/P pins Receiver gain = G_HIGH or G_MID1		-	-	-10	dB
loss	LNAGSMN/P, LNADCSN/P or LNAPCSN/P pins Receiver gain = G_MID2 or G_LOW		-	-	-4	dB
	All bands Front end and VGA high gain mode	G_HIGH	63	66	69	dB
Voltage gain ²⁹	All bands Front end in intermediate gain mode and VGA in high gain mode	G_MID1	57	60	63	dB
, on age pain	All bands Front end in low gain mode and VGA in high gain mode	G_MID2	43	46	49	dB
	All bands Front end and VGA in low gain mode	G_LOW	17	20	23	dB
	LNAGSMN/P pins; G=G_HIGH GSM900 band [925,960Mhz]		-	-	5	dB
	LNAGSMN/P pins ³¹ ; G=G_HIGH GSM850 band [869,894Mhz]		-	-	5.2	dB
Noise figure ³⁰	LNADCSN/P pins; G=G_HIGH DCS band [1805,1880Mhz]		-	-	5	dB
	LNAPCSN/P pins; G=G_HIGH PCS band [1930,1990Mhz]		-	-	5	dB
	All bands; $G = G_MID2$		-	-	20.8	dB
Input 1dB	All bands Gain = G_HIGH		-50	-	-	dBm
compression	GSM850-GSM900 bands G= G_LOW		-19.5	-	-	dBm
	DCS1800 - PCS1900 bands $G=G_LOW$		-25	-	-	dBm
Input 3 rd order intercept point	All bands Gain = G_HIGH^{32}		-20	-18	-	dBm

DC offset compensation



- On both I and Q paths, a comparator evaluates the DC offset at receiver output:
- If a positive DC offset is detected, the Up and down counter increments the DCO_Loop_register#1.If a negative DC offset is detected, the Up and down counter decrements the DCO_Loop_register#1.
- The content of DCO_Loop_register#1 is converted to an analog value by the 8-bit DAC:compensation is done at the input of the 2nd stage of the variable gain amplifier and DC offset decreases.
- This compensation circuit acts as a closed loop: As long as a DC offset remains at the receiver output, the DAC reduces the DC offset at the demodulator output.

Texas Instruments

Transmitter

- Transmit section:
- - an offset PLL with post IQ modulator and post offset mixer filters fully integrated on chip
- - two TX VCOs fully integrated on chip
- - a TX loop filter fully integrated on chip
- a divider by 4 for the LO generation in GSM900 and GSM850
- a divider by 2 for the LO generation in DCS1800 and PCS1900
- - a programmable M divider for the IF generation
- - a power amplifier controller including all the functions required to design a power sensing control loop except the sensing diodes

Tx performance

TRANSMITTER

Transmitter inputs

I/Q inputs common mode voltage		1.215	1.35	1.485	V
I/Q inputs voltage swing	Single ended	0.44	0.47	0.49	Vpp
I/Q inputs resistance	Differential ended	10			kO
I/Q inputs capacitance	Differential ended			25	pF

Low Band Output

Dedicated to GSM850 and E-GSM900

GMSK modulated signal applied at the IQ inputs (unless otherwise specified)

Frequency range		fout	824.2 to			MHz
			914.8			
Output impedance		Zout		50		0
Output Return Loss					-10	dB
Output power level	into 50 O load	Pout	4	6	8	dBm
Phase error	Max. RMS phase error Max. Peak phase error				3 10	degree
TXVCOLB Pulling	VSWR= 2, all phases, open loop	PULL		tbd		MHz

Tx performance (cont.)

Spurious emissions²⁵

Specification at the antenna with the use of the TBD PA and the TBD FEM

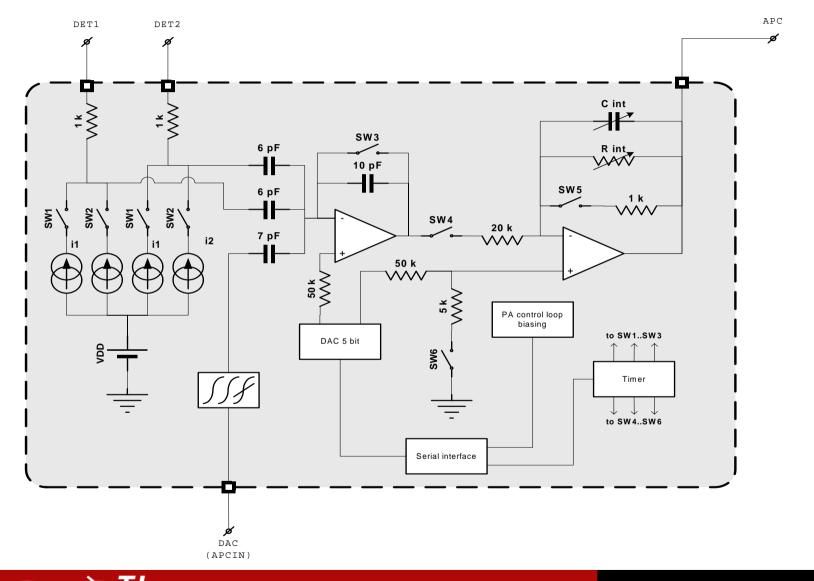
E-GSM 900

	from 9 kHz to 1 GHz		-69	dBe
level when allocated	from 1 GHz to 12.75 GHz		-63	dBe
channel	in the band [925 ~ 935 MHz]		-100	dBc
	in the band [935 ~ 960 MHz]		-112	dBc
	in the band [1805 ~ 1880		-104	dBc
	MHz]			
	in the bands [1900 ~1920		-99	dBc
	MHz], [1920 ~ 1980 MHz],			
	[2010 ~ 2025 MHz] and			
	[2110 ~ 2170 MHz]			

DCS 1800

	from 9 kHz to 1 GHz		-66	dBc
	from 1 GHz to 12.75 GHz		-60	dBc
channel	in the band [925 ~ 935 MHz]		-97	dBc
	in the band [935 ~ 960 MHz]		-109	dBc
	in the band [1805 ~ 1880		-101	dBc
	MHz]			
	in the bands [1900 ~1920		-96	dBe
	MHz], [1920 ~ 1980 MHz],			
	[2010 ~ 2025 MHz] and			
	[2110 ~ 2170 MHz]			

GSM 850


	from 9 kHz to 1 GHz		-69	dBe
level when allocated	from 1 GHz to 12.75 GHz		-63	dBe
channel	in the band [869 ~ 894 MHz]		-112	dBe
	in the band [1930 ~ 1990		-104	dBe
	MHz]			

PCS 1900

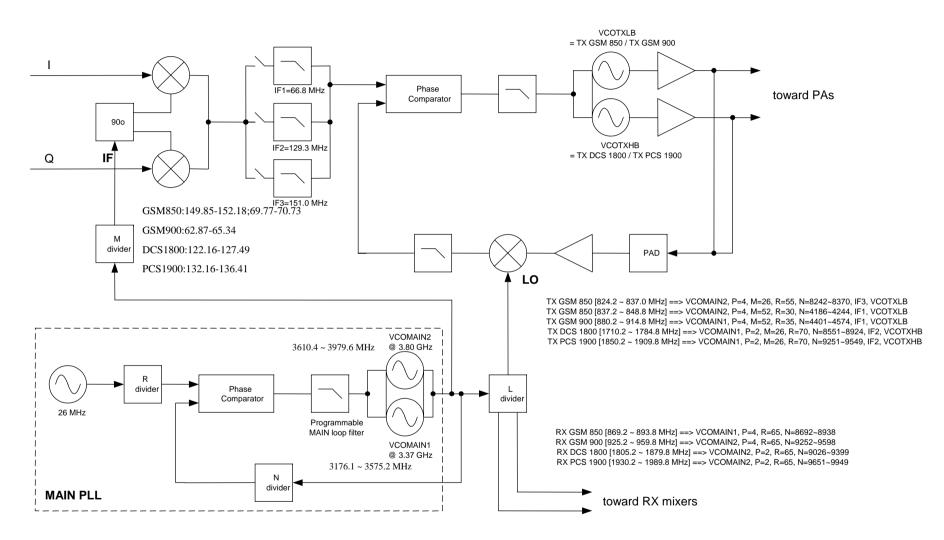
	from 9 kHz to 1 GHz		-66	dBc
level when allocated	from 1 GHz to 12.75 GHz		-60	dBe
channel	in the band [869 ~ 894 MHz]		-109	dBe
	in the band [1930 ~ 1990		-101	dBc
	MHz]			

PA Controller

The World Leader In DSP And Analog

PA controller register

REG_PWR register


Bit	Name	Description	Value at reset
15	PACTLR_APCEN	0: PA controller is disabled⁷⁵1: PA controller is enabled	0
14	PACTLR_APC	0: PA controller is OFF 1: PA controller is ON	0

REG_CFG register

13:12	PACTLR_CAP	00: 0 pF 01: 12.5 pF 11: 25 pF 10: 50 pF	10
11:10	PACTLR_RES	 00: open 01: 150 kΩ 10: 300 kΩ 11: not used 	10
9:5	PACTLR_VHOME	PA controller detection voltage setting: 1 00000:0*Vstep+Vlow ~ 0.46 V 00001:1*Vstep+Vlow ~ 0.49 V 00010: 2*Vstep+Vlow ~ 0.52 V 11111: 31*Vstep+Vlow ~ 1.39 V	01100
4	PACTLR_IDIOD	0: Diode bias current is low (30 uA)1: Diode bias current is high (300 uA)	0
3	PACTLR_TYPE	0: Power sensing1: Current sensing (for test purpose only)	0

Synthesizer

The World Leader In DSP And Analog

TEXAS INSTRUMENTS

Four VCOs are used :

- a TX LB VCO [824.2 ~ 914.8 MHz] to generate the TX GSM 850 / TX GSM 900,
- a TX HB VCO [1710.2 ~ 1909.8 MHz] to generate the TX DCS 1800 / TX PCS 1900,
- a MAIN VCO 1 [3176.1 ~ 3575.2 MHz] (see below) to generate the RX GSM 850 / LO

(and IF) for TX GSM 900, TX DCS 1800 and TX PCS 1900,

- a MAIN VCO 2 [3610.4 ~ 3979.6 MHz] (see below) to generate the RX GSM 900 / RXDCS 1800 / RX PCS 1900 / LO (and IF) for the two parts of TX GSM 850.

Synthesizer

Parameters	Test conditions	Symbol	Min.	Тур.	Max.	Unit
------------	-----------------	--------	------	------	------	------

Reference clock input¹⁷

Input frequency			26		MHz
Input sensitivity		0.5	1.0	2.0	Vpp
Reference phase noise	@ 1 kHz offset			-129	dBc/Hz
Duty cycle				40/60	
				to	
				60/40	
Input resistance		10			kΩ
Input capacitance				5	pF

VCXO buffer output (XOUT pin)¹⁸

Output frequency			26		MHz
Output level		0.5	1.0	2.0	Vpp

Crystal and External V			2.4	1	2.0	17
XEN supply pin	(a) I = 3.2mA		2.4		2.9	V
Crystal						
Nominal frequency				26.0		MHz
Frequency tolerance	at 25° C±3°C				±10.0	ppm
Temperature characteristics	in reference to $+25^{\circ}C$ over $-20 \sim +75^{\circ}C$				±10.0	ppm
Aging 1 st year after 5 years					±1.0 ±2.5	ppm ppm
Dips vs. temperature	−20 ~ +75°C				0.3	ppm/°C
Frequency versus temperature slope at 25°C	at 25° C \pm 7°C		-0.5		0	ppm/°C
Equivalent Series Resistance			0		40	Ω
Standard load capacitance				9.3 (tbc)	12.0	pF
Shunt capacitance				1.5	1.7	pF
Motional capacitance			5.4	6.3	7.2	fF
Drive level					150	μW
Varactor network						
Minimum voltage tuning		Vt	0		2.0	V
Tuning range	with $Vt = 0V$ to 2.0V		±26.0	±33.0	±41.0	ppm
Sensitivity accuracy ¹⁵	Over temp and over the tuning range				20 %	Hz/step^2
Frequency step					0.01	ppm/step

Crystal and External Varactor network ¹⁴

specification at the mix	leis LO port				
Prescaler input frequency		3476			MHz
range		to			
		3840			
PFD operating frequency			400		kHz
N divider ratio		8692			
		to			
		9598			
L divider by 4 output		869			MHz
frequency range		to			
1 9 8		960			
Close in phase noise	@ 1 kHz offset		-90	-81	dBc/Hz
	fcomp = 400 kHz				
	@ 960 MHz				
Phase noise	@ 600 kHz offset		-130	-120	dBc/Hz
	a 1.6 MHz offset			-135	
	a 3.0 MHz offset			-140	
	a 10 MHz offset			-142	
	@ 20 MHz offset			-145	
Reference feedthrough	@ 400 kHz offset		-80	-53	dBc
-	a 800 kHz offset		-94	-68	
	@ 1.6 MHz offset			-79	
Lock time	1) GSM850:		100	170	us
	From 869MHz to 894MHz				
	2) GSM900:				
	From 925MHz to 960MHz				
	3) PCS1900 → GSM850:				
	From 1990MHz to 869MHz				
	4) DCS1800 → GSM900:				
	From 1880MHz to 925MHz				
	@ 20 Hz averaged				
	frequency error over one				
	burst				

Main synthesizer in RX mode for GSM 850 and E-GSM 900

Specification at the mixers LO port

Voltage regulators

VOLTAGE REGULATION

C_{out}=1.0uF, C_{bandgap}=100nF unless otherwise specified.

Table specifies regulator and bandgap together unless otherwise specified.

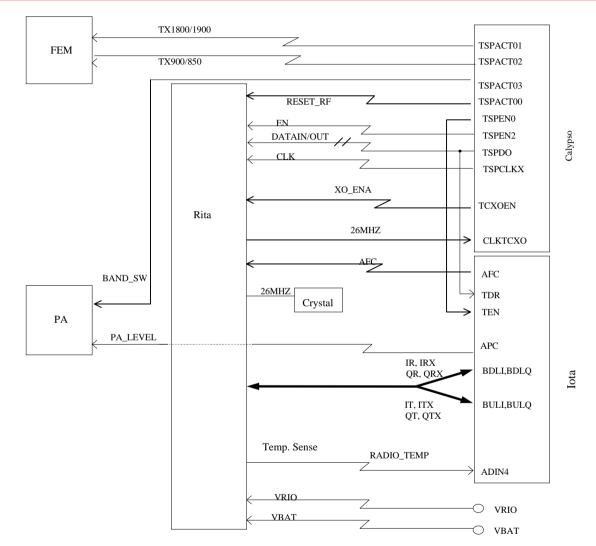
If an external regulation is desired, the internal voltage regulators can be bypassed (regulators shut down).

Band gap

Turn-on time	speed up mode active			25	ms
Consumption current			80		uA

Regulator R1

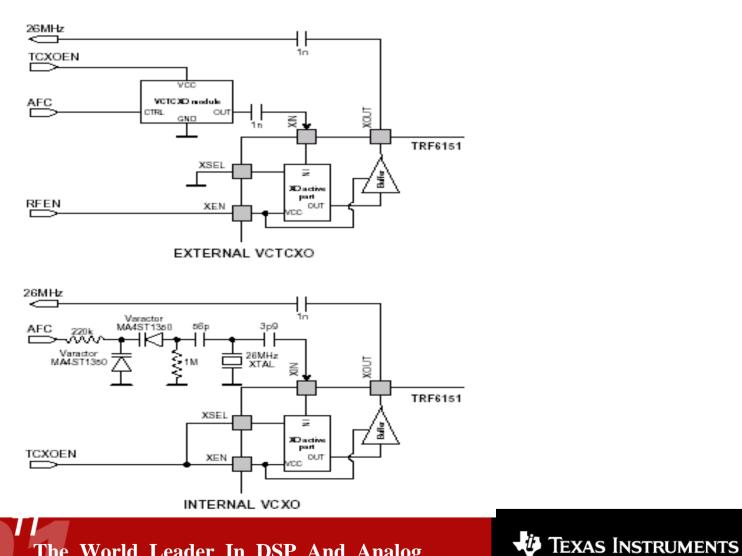
Input voltage		Vin	3.0 ⁴	3.6	5.5	V
Output voltage	@ Ioutmax	Vout	2.7	2.8	2.9	V
Max. output current		Ioutmax	60			mA
Ground pin current	@ Ioutmax				6.0	mA
	a Iout = 0 mA				0.3	
DC line regulation	From Vinmin to Vinmax				50	mV
	@ Ioutmax					
AC line regulation	Vin step from Vout + 0.1					mV
Overshoot	to Vout + 0.5 in 30 us				20	
Undershoot	Vin step from Vout + 0.5				20	
	to Vout + 0.1 in 30 us					
DC load regulation	Iout = 0 mA to Ioutmax				50	mV
AC load regulation	Iout step from Ioutmax to					mV
Overshoot	Ioutmax/2 in 5 us				30	
Undershoot	Iout step from Ioutmax/2 to				30	
	Ioutmax in 5 us					
Output voltage noise	f =10 Hz to 100 kHz			50		uVrms
	Iout = Ioutmax					
	Vin = Vout + 0.2 V					


RF-BB interface

- 1. RF-BB connection
- 2. RF controlling by BB

(grow)^{*TI*} The World Leader In DSP And Analog

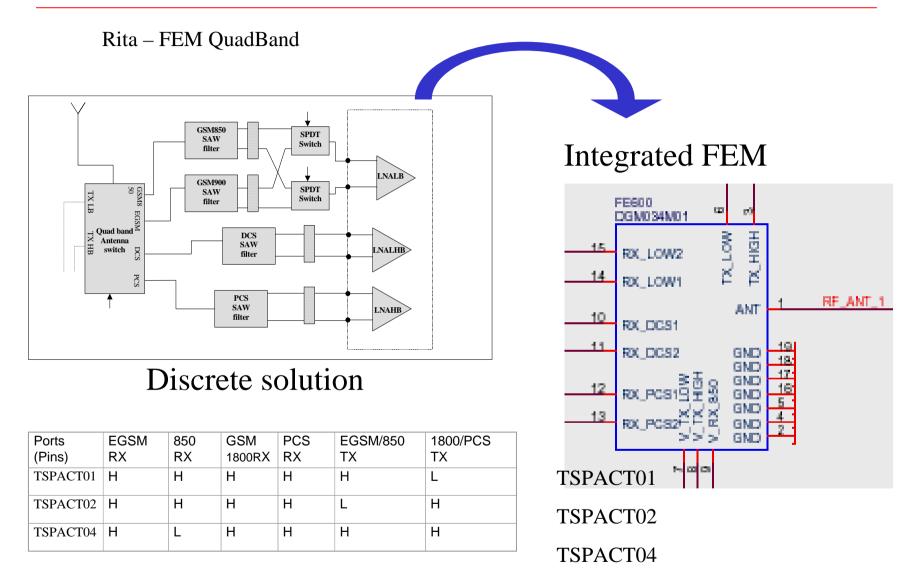
RF-BB connection


RF controlling by BB

- Auto Frequency Control
- Auto Power Control
- FEM control

AFC (Auto Frequency Control)

AFC's purpose is to correct frequency shifts of the voltage-controlled oscillator to ٠ maintain the master clock frequency in a 0.1-PPM range


APC(Automatic Power Control)

- The automatic power control (APC) generates an envelope signal to control the power ramp up, power ramp down, and power level of the radio burst. The APC structure is intended to support single-slot and multislot transmission with smooth power transition when consecutive bursts are transmitted at different power levels.
- Refer to the PA controller loop.

RF control-FEM Control

TEXAS INSTRUMENTS

RF-SW programming and control

1. Rita registers introduction

Rita registers introduction

SERIAL INTERFACE PROGRAMMING

Serial word format

٠

MS	SB													Ι	SB
FIF	RST	IN											L	AST	IN
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Registers table

Α	ddre	SS	Serial word format	Register name	Definition
0	0	0	16 bits	REG_RX	RF general settings
0	0	1	16 bits	REG_PLL	PLLs settings
0	1	0	16 bits	REG_PWR	Power on/off all functional block of the transceiver
0	1	1	16 bits	REG_CFG	Transceiver config, PA Controller setting
1	0	0	16 bits	REG_TEST1	
1	0	1	16 bits	REG_TEST2	Reserved for test ⁷⁰
1	1	0	16 bits	REG_TEST3	Reserved for test
1	1	1	16 bits	REG_TEST4	

REG_RX

This register is used to configure the receiver, to launch RX calibration process

Bit	Name	Description	Value at reset
15:11	VGA_GAIN	00000 - 00101: reserved 00110: VGA gain =14dB 00111: VGA gain =16 dB 01000: VGA gain =18 dB 01001: VGA gain =20 dB 01010: VGA gain =22 dB 01011: VGA gain =24 dB 01100: VGA gain =26 dB 01101: VGA gain =28 dB 01110: VGA gain =30 dB 01111: VGA gain =32 dB 10000: VGA gain =34 dB 10001: VGA gain =36 dB 10010: VGA gain =38 dB 10011: VGA gain =40 dB 10100 - 11111: reserved	10011
10:9	RF_GAIN	00: low RF gain (GRF_LOW) 01: reserved 10: reserved 11: high RF gain (GRF_HIGH)	11
8	RX_CAL_MODE ⁷⁶	 0: Stop RX calibration process 1: power on DC offset calibration system and start RX calibration process. 	0
7	READ_EN	0: Data serialized on SIOUT pin are 01: Data serialized on SIOUT pin are REG_RX content	0
6	Reserved	Reserved	0
5	Reserved	Reserved	0
4	Reserved	Reserved	0
3	Reserved	Reserved	0

REG_PLL

This register is used to program the synthesizer frequency according the desired

RX/TX channel.

	•	reset
15:9 PLL_REGB	$B = [64; 66; 67 \dots 155]^{69}$	0000000
8:3 PLL_REGA	A = [0; 1; 263]	000000

Useful formulas for synthesizers are:

Useful formul	as for	syntne	sizers	are:			
	Р	R	L	М	B range	A range	RX/TX RF Frequency (MHz)
RX Low band	64	65	4	-	[135; 150]	[0; 62]	$\frac{(B*P+A)}{26}$
RX High band	64	65	2	-	[141; 155]	[0; 63]	R*L 20
TX mode GSM850_1	64	55	4	26	[128; 130]	[0; 62]	$(\frac{1}{A} - \frac{1}{A}) * \frac{(B * P + A)}{A} * 26$
TX mode GSM850_2	64	30	4	52	[65; 66]	[0; 63]	$\left(\frac{1}{L} - \frac{1}{M}\right)^{-1} = \frac{1}{R}$
TX mode GSM900	64	35	4	52	[68; 71]	[0; 63]	$(\frac{1}{L} + \frac{1}{M}) * \frac{(B*P+A)}{R} * 26$
TX mode High band	64	70	2	26	[133; 149]	[0; 63]	$\left(\frac{1}{L}, \frac{1}{M}\right)^{\prime} = \frac{1}{R}$

REG_PWR

This register is used to power on/off all functional block of the transceiver and to choose the RX/TX band.

Bit	Name	Description	Value at reset
15	PACTLR_APCEN	0: PA controller is disabled ⁷⁰ 1: PA controller is enabled	0
14	PACTLR_APC	0: PA controller is OFF ⁷⁰ 1: PA controller is ON	0
13	TX_MODE	0: Transmitter is OFF 1: Transmitter is ON	0
12:11	RX_MODE	 00: Receiver +interferer detection system are OFF 01: Receiver is ON (RX mode A) 10: Receiver +interferer detection system is ON (RX mode B1) 11: Receiver +interferer detection system is ON (RX mode B2) 	00
10:9	SYNTHE_MODE ⁷¹	 00: Synthesizer, transmitter and receiver are off 01: RX Synthesizer is ON 10: TX Synthesizer is ON 11: not used 	00
8:6	BAND	000-001: GSM900 010-011: DCS 100: GSM850 (Low part) 101: GSM850 (High part) 110-111: PCS	000
5	REGUL_MODE	0: Regulators are OFF 1: Regulators are ON	0
4:3	BANDGAP_MODE	 00-01: Band gap is OFF 10: Band gap is ON; speed up mode is enabled 11: Band gap is ON; speed up mode is disabled 	00

REG_CFG

ΤΙ

This register is used to configure the transceiver and set the PA controller at mobile

initialization.

Bit	Name	Description	Value at reset
15		Not used	-
14	TEMP_SENSOR	0: Temperature sensor is OFF 1: Temperature sensor is ON	0
13:12	PACTLR_CAP	00:0 pF 01:12.5 pF 10:25 pF 11:50 pF	10
11:10	PACTLR_RES	00: open 01: 150 kΩ 10: 300 kΩ 11: not used	10
9:5	PACTLR_VHOME	PA controller detection voltage setting: ⁷² 00000:0*Vstep+Vlow ~ 0.46 V 00001:1*Vstep+Vlow ~ 0.49 V 00010: 2*Vstep+Vlow ~ 0.52 V 11111: 31*Vstep+Vlow ~ 1.39 V	01100
4	PACTLR_IDIOD	0: Diode bias current is low (30 uA) 1: Diode bias current is high (300 uA)	0
3	PACTLR_TYPE	0: Power sensing 1: Current sensing (for test purpose only)	0

Q&A

(grow)

Thank you!

