FreeCalypso > hg > leo2moko-debug
comparison chipsetsw/drivers/drv_app/sim/sim.c @ 0:509db1a7b7b8
initial import: leo2moko-r1
| author | Space Falcon <falcon@ivan.Harhan.ORG> |
|---|---|
| date | Mon, 01 Jun 2015 03:24:05 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:509db1a7b7b8 |
|---|---|
| 1 /* | |
| 2 * SIM.C | |
| 3 * | |
| 4 * Pole Star SIM | |
| 5 * | |
| 6 * Target : ARM | |
| 7 * | |
| 8 * | |
| 9 * SIM card driver. This module contents all functions | |
| 10 * included in specifications GSM 11.11 V4.10 | |
| 11 * | |
| 12 * | |
| 13 * Copyright (c) Texas Instruments 1995-1997 | |
| 14 * | |
| 15 */ | |
| 16 | |
| 17 #define SIM_C 1 | |
| 18 | |
| 19 #ifndef _WINDOWS | |
| 20 #include "l1sw.cfg" | |
| 21 #include "chipset.cfg" | |
| 22 #endif | |
| 23 | |
| 24 #include "main/sys_types.h" | |
| 25 | |
| 26 #include "memif/mem.h" | |
| 27 | |
| 28 //#include "assert.h" | |
| 29 #if (CHIPSET == 12) | |
| 30 #include "inth/sys_inth.h" | |
| 31 #else | |
| 32 #include "inth/iq.h" | |
| 33 #endif | |
| 34 #include "sim.h" | |
| 35 #include <string.h> | |
| 36 #include "armio/armio.h" | |
| 37 #include "ind_os.h" | |
| 38 #include "abb/abb.h" //controls level shifter of ABB | |
| 39 | |
| 40 | |
| 41 //current voltage mode 3V or 5V, or 1.8V | |
| 42 SYS_UWORD8 CurrentVolt; | |
| 43 | |
| 44 | |
| 45 | |
| 46 #ifdef SIM_DEBUG_TRACE | |
| 47 | |
| 48 #ifdef SIM_RETRY | |
| 49 /* one byte more to trace the number of retry for each functions */ | |
| 50 #define SIM_DBG_NULL 5 | |
| 51 #else | |
| 52 /* size of buffer tracing the reception of NULL byte */ | |
| 53 #define SIM_DBG_NULL 4 | |
| 54 #endif | |
| 55 | |
| 56 /* working buffer for NULL BYTE and number of RETRY */ | |
| 57 SYS_UWORD8 SIM_dbg_null[SIM_DBG_NULL]; | |
| 58 /* size of buffer tracing the chronology of calls */ | |
| 59 #define SIM_DBG_CMD 7500 | |
| 60 /* working buffer for chronology calls */ | |
| 61 SYS_UWORD8 SIM_dbg_cmd[SIM_DBG_CMD]; | |
| 62 /* index for positionning in working buffer for chronology calls */ | |
| 63 SYS_UWORD16 SIM_dbg_cmd_cmpt; | |
| 64 /* working variable to calculate the TDMA ecart */ | |
| 65 SYS_UWORD16 SIM_dbg_tdma_diff; | |
| 66 /* working variable to store the maximum TDMA frame between two characters */ | |
| 67 SYS_UWORD16 SIM_dbg_max_interchardelay; | |
| 68 /* working variable used in each L2/L3 access function */ | |
| 69 SYS_UWORD8 SIM_dbg_tmp[10]; | |
| 70 /* internal function due to factorization of use of traces */ | |
| 71 void SIM_dbg_write_trace(SYS_UWORD8 *ptr, SYS_UWORD16 len); | |
| 72 | |
| 73 #endif | |
| 74 | |
| 75 #ifdef SIM_RETRY | |
| 76 /* number of retry */ | |
| 77 #define NUM_SIM_RETRIES 10 | |
| 78 /* Add variables to support sim retry */ | |
| 79 SYS_UWORD8 SimRetries; | |
| 80 #endif | |
| 81 | |
| 82 | |
| 83 | |
| 84 | |
| 85 | |
| 86 | |
| 87 /* | |
| 88 * Low level routines : mapped to hardware | |
| 89 * SIM_WriteBuffer | |
| 90 * SIM_Command | |
| 91 * SIM_Reset | |
| 92 * | |
| 93 */ | |
| 94 | |
| 95 | |
| 96 | |
| 97 /* | |
| 98 * SIM_WriteBuffer | |
| 99 * | |
| 100 * Write n bytes to SIM card in interrupt mode: | |
| 101 * return the line, write first byte and let interrupt handler do the rest | |
| 102 * return the line, write first byte and let interrupt handler do the rest | |
| 103 * | |
| 104 * Parameters : | |
| 105 * SIM_PORT *p : buffer for received chars | |
| 106 * offset : starting point for reading data. | |
| 107 * n : number of chars to read. | |
| 108 */ | |
| 109 void SIM_WriteBuffer(SIM_PORT *p, SYS_UWORD16 offset, SYS_UWORD16 n) | |
| 110 { | |
| 111 unsigned volatile i; | |
| 112 | |
| 113 // Set write direction | |
| 114 p->conf1 |= SIM_CONF1_TXRX; | |
| 115 p->c->conf1 = p->conf1; | |
| 116 | |
| 117 p->SWcount = 0; | |
| 118 p->rx_index = 0; | |
| 119 p->expected_data = 0; | |
| 120 | |
| 121 p->xOut = p->xbuf + offset; | |
| 122 p->xIn = p->xbuf + offset + n; | |
| 123 | |
| 124 if ((p->xIn - p->xOut) == 1) //if only one char is transmitted | |
| 125 { //need to wait a minimum of 1 ETU | |
| 126 ind_os_sleep (1); //for IO line to stay in TX mode | |
| 127 } | |
| 128 // Write first byte | |
| 129 p->c->tx = *(p->xOut); // transmit | |
| 130 | |
| 131 if ((p->xIn - p->xOut) == 1) //if only one char to transmit | |
| 132 { // return the direction to rx | |
| 133 p->conf1 &= ~SIM_CONF1_TXRX; //to be able to receive ACK char | |
| 134 p->c->conf1 = p->conf1; | |
| 135 | |
| 136 } | |
| 137 } | |
| 138 | |
| 139 /* | |
| 140 * SIM_Result | |
| 141 * | |
| 142 * Parameters : SIM port, buffer for received chars, pointer to receive size | |
| 143 * | |
| 144 * Return the result code (SW1/SW2) at the end of the string | |
| 145 */ | |
| 146 SYS_UWORD16 SIM_Result(SIM_PORT *p, SYS_UWORD8 *rP, SYS_UWORD16 *lenP, SYS_UWORD8 offset) | |
| 147 { | |
| 148 SYS_UWORD8 sw1, sw2; | |
| 149 SYS_UWORD8 verdict; | |
| 150 SYS_UWORD16 len; | |
| 151 | |
| 152 // Check if all characters were transmitted | |
| 153 if (p->xIn - 1 != p->xOut) | |
| 154 return (SIM_ERR_XMIT); | |
| 155 | |
| 156 len = p->rx_index; | |
| 157 *lenP = len - offset; | |
| 158 if ((*lenP == 0) && (p->apdu_ans_length == 256)) | |
| 159 *lenP = 256; | |
| 160 | |
| 161 if (p->expected_data == 256) | |
| 162 { | |
| 163 verdict = SIM_Memcpy(rP, ((p->rbuf) + offset), 256 - offset); | |
| 164 if (verdict != 0) | |
| 165 { | |
| 166 return (verdict); | |
| 167 } | |
| 168 } | |
| 169 else if ((len != 0) && (len >= offset)) | |
| 170 { | |
| 171 verdict = SIM_Memcpy(rP, ((p->rbuf) + offset), len - offset); | |
| 172 if (verdict != 0) | |
| 173 { | |
| 174 return (verdict); | |
| 175 } | |
| 176 } | |
| 177 | |
| 178 // change to remove SW1 and SW2 bytes from the receive buffer of data | |
| 179 sw1 = p->rSW12[0]; | |
| 180 sw2 = p->rSW12[1]; | |
| 181 | |
| 182 return((sw1 << 8) | sw2); | |
| 183 } | |
| 184 | |
| 185 | |
| 186 | |
| 187 | |
| 188 | |
| 189 /* | |
| 190 * SIM_Command_base | |
| 191 * | |
| 192 * Perform a command with the SIM T=0 protocol | |
| 193 * | |
| 194 * Arguments : pointer to SIM port structure | |
| 195 * number of characters above 5 | |
| 196 * expected command time in TDMA | |
| 197 * | |
| 198 * Returns an error code : | |
| 199 * SIM_ERR_READ : no answer from the card to a command | |
| 200 * SIM_ERR_LEN : the answer is not corresponding to a | |
| 201 * correct answer of T=0 protocol | |
| 202 * 06/11/2002 JYT | |
| 203 * Modified to be base command function. New SIM_Command() created to call it | |
| 204 * with wrapper. Created to manage retries on Internals errors of the driver. | |
| 205 */ | |
| 206 | |
| 207 SYS_UWORD16 SIM_Command_Base(SIM_PORT *p, SYS_UWORD16 n, SYS_UWORD8 *dP, SYS_UWORD16 *lP) | |
| 208 { | |
| 209 SYS_UWORD16 res; | |
| 210 SYS_UWORD8 err; | |
| 211 SYS_UWORD8 ins; | |
| 212 SYS_UWORD8 nack; | |
| 213 SYS_UWORD8 nack1; | |
| 214 SYS_UWORD16 offset; | |
| 215 | |
| 216 if (SIM_sleep_status == SIM_SLEEP_DESACT) | |
| 217 { //freeze the timer | |
| 218 status_os_sim = NU_Control_Timer (&SIM_timer, NU_DISABLE_TIMER); | |
| 219 } | |
| 220 else if (SIM_sleep_status == SIM_SLEEP_ACT) | |
| 221 { //get out sleep mode | |
| 222 status_os_sim = NU_Control_Timer (&SIM_timer, NU_DISABLE_TIMER); | |
| 223 SIM_SleepMode_Out (p); //get up SIM card of sleep mode before executing the command | |
| 224 } | |
| 225 | |
| 226 SIM_WriteBuffer(p, 0, 5); | |
| 227 | |
| 228 //adaptative driver | |
| 229 | |
| 230 if (n > 0) //need to send data to the card, TX mode | |
| 231 { | |
| 232 offset = 0; | |
| 233 // protocol T=0 returns a acknowledge char which is | |
| 234 // ins or (ins+1) : transmit the rest of the command in one time | |
| 235 // ~ins or ~(ins+1) : transmit the rest of the command char by char | |
| 236 ins = p->xbuf[1] & p->hw_mask; | |
| 237 nack = (~p->xbuf[1]) & p->hw_mask;; | |
| 238 | |
| 239 p->moderx = 6; //mode of wait for ACK char | |
| 240 | |
| 241 NEXT_CHAR_PROC: | |
| 242 | |
| 243 if (err = SIM_Waitforchars(p, p->etu9600)) | |
| 244 { | |
| 245 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
| 246 { //enable to count 2.5s before entering in sleep mode | |
| 247 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
| 248 SIM_SLEEP_WAITING_TIME, | |
| 249 0, NU_ENABLE_TIMER); | |
| 250 } | |
| 251 return (err); | |
| 252 } | |
| 253 | |
| 254 if (p->moderx == 5) //return SW1/SW2 | |
| 255 { | |
| 256 res = SIM_Result(p, dP, lP, 0); | |
| 257 | |
| 258 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
| 259 { //enable to count 2.5s before entering in sleep mode | |
| 260 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
| 261 SIM_SLEEP_WAITING_TIME, | |
| 262 0, NU_ENABLE_TIMER); | |
| 263 } | |
| 264 | |
| 265 return(res); | |
| 266 } | |
| 267 else if ((p->ack & p->hw_mask) == ins) | |
| 268 { | |
| 269 // Write the rest of the command if needed | |
| 270 // if more than 5 characters, the ack character will disappear | |
| 271 | |
| 272 SIM_WriteBuffer(p, 5 + offset, n - offset); | |
| 273 } | |
| 274 // special transmission mode if ACK = ~INS or ~(INS + 1). | |
| 275 // refer to ISO/CEI 7816-3 [8.2.2] | |
| 276 // need to send char by char | |
| 277 else if ((p->ack & p->hw_mask) == nack) | |
| 278 { | |
| 279 SIM_WriteBuffer(p, 5 + offset, 1); | |
| 280 offset++; | |
| 281 goto NEXT_CHAR_PROC; | |
| 282 } | |
| 283 | |
| 284 p->moderx = 5; | |
| 285 if (err = SIM_Waitforchars (p, p->etu9600)) //wait SW1 / SW2 | |
| 286 { | |
| 287 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
| 288 { //enable to count 2.5s before entering in sleep mode | |
| 289 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
| 290 SIM_SLEEP_WAITING_TIME, | |
| 291 0, NU_ENABLE_TIMER); | |
| 292 } | |
| 293 return (err); | |
| 294 } | |
| 295 | |
| 296 } | |
| 297 else //receive mode | |
| 298 { | |
| 299 if (err = SIM_WaitReception(p)) //wait for next procedure character | |
| 300 { | |
| 301 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
| 302 { //enable to count 2.5s before entering in sleep mode | |
| 303 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
| 304 SIM_SLEEP_WAITING_TIME, | |
| 305 0, NU_ENABLE_TIMER); | |
| 306 } | |
| 307 return (err); | |
| 308 } | |
| 309 } | |
| 310 | |
| 311 res = SIM_Result(p, dP, lP, 0); | |
| 312 | |
| 313 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
| 314 { //enable to count 2.5s before entering in sleep mode | |
| 315 status_os_sim = NU_Reset_Timer (&SIM_timer, SIM_SleepMode_In, | |
| 316 SIM_SLEEP_WAITING_TIME, | |
| 317 0, NU_ENABLE_TIMER); | |
| 318 } | |
| 319 | |
| 320 return(res); | |
| 321 } | |
| 322 | |
| 323 | |
| 324 /* Main function to manage the retry mechanism */ | |
| 325 SYS_UWORD16 SIM_Command(SIM_PORT *p, SYS_UWORD16 n, SYS_UWORD8 *dP, SYS_UWORD16 *lP) { | |
| 326 int res; | |
| 327 | |
| 328 #ifdef SIM_DEBUG_TRACE | |
| 329 memset(SIM_dbg_null, 0x00, SIM_DBG_NULL); | |
| 330 SIM_dbg_tdma_diff = 0; | |
| 331 #endif | |
| 332 | |
| 333 // Issue initial SIM_Command() call | |
| 334 res = SIM_Command_Base(p, n, dP, lP); | |
| 335 /* Change from to 10 to 15 for specific SIM card (Racal) */ | |
| 336 | |
| 337 #ifdef SIM_RETRY | |
| 338 // While there is an error then retry NUM_SIM_RETRIES times | |
| 339 while ((res & 0xFF00) == 0) { // Reissue command | |
| 340 p->errorSIM = 0; | |
| 341 if(++SimRetries > NUM_SIM_RETRIES) { // return special retry failure | |
| 342 res = SIM_ERR_RETRY_FAILURE; | |
| 343 break; | |
| 344 } | |
| 345 res = SIM_Command_Base(p, n, dP, lP); | |
| 346 } | |
| 347 | |
| 348 #ifdef SIM_DEBUG_TRACE | |
| 349 SIM_dbg_null[SIM_DBG_NULL-1] = SimRetries; | |
| 350 #endif | |
| 351 | |
| 352 SimRetries = 0; | |
| 353 #endif | |
| 354 | |
| 355 return(res); | |
| 356 } | |
| 357 | |
| 358 | |
| 359 | |
| 360 | |
| 361 | |
| 362 | |
| 363 /* | |
| 364 * SIM_ByteReverse | |
| 365 * | |
| 366 * Reverse a byte, both up/down (1 <> 0) and left/right (0001 <> 1000) | |
| 367 * | |
| 368 */ | |
| 369 SYS_UWORD8 SIM_ByteReverse(SYS_UWORD8 b) | |
| 370 { | |
| 371 SYS_UWORD8 bh, bl; | |
| 372 int i; | |
| 373 const SYS_UWORD8 Reverse[] = {0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, | |
| 374 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF }; | |
| 375 | |
| 376 // Up/Down | |
| 377 b = ~ b; | |
| 378 | |
| 379 // left / right (by nibble) | |
| 380 bh = (b >> 4) & 0xF; | |
| 381 bl = b & 0xF; | |
| 382 | |
| 383 b = (Reverse[bl]) << 4 | Reverse[bh]; | |
| 384 return(b); | |
| 385 | |
| 386 } | |
| 387 | |
| 388 /* | |
| 389 * SIM_TxParityErrors | |
| 390 * | |
| 391 * return number of transmit parity errors occured since the last reset | |
| 392 * of the SIM card | |
| 393 * | |
| 394 */ | |
| 395 SYS_UWORD16 SIM_TxParityErrors(void) | |
| 396 { | |
| 397 SIM_PORT *p; | |
| 398 | |
| 399 p= &(Sim[0]); | |
| 400 | |
| 401 return(p->txParityErr); | |
| 402 } | |
| 403 | |
| 404 | |
| 405 /* | |
| 406 * SIM_Reset | |
| 407 * | |
| 408 * Reset SIM card | |
| 409 * Call-back SIM insert if successful | |
| 410 * or SIM remove otherwise | |
| 411 * | |
| 412 * Returns 0 for success, or | |
| 413 * SIM_ERR_NOCARD : no card | |
| 414 * SIM_ERR_NATR : no answer to reset | |
| 415 * SIM_ERR_NOINT : no | |
| 416 * SIM_ERR_READ : unknown data return by the card | |
| 417 * SIM_ERR_CARDREJECT : card not accepted | |
| 418 * | |
| 419 * 29/01/02, JYT, adding of low voltage managment for IOTA device | |
| 420 * 06/10/03, JYT, Split of Reset to handle Restart | |
| 421 */ | |
| 422 SYS_UWORD16 SIM_Reset(SIM_CARD *cP) | |
| 423 { | |
| 424 return(SIM_Reset_Restart_Internal(cP, 1)); | |
| 425 } | |
| 426 | |
| 427 | |
| 428 | |
| 429 | |
| 430 | |
| 431 | |
| 432 | |
| 433 /* | |
| 434 * SIM_Restart | |
| 435 * | |
| 436 * Restart SIM card | |
| 437 * | |
| 438 * Returns 0 for success, or | |
| 439 * SIM_ERR_NOCARD : no card | |
| 440 * SIM_ERR_NATR : no answer to reset | |
| 441 * SIM_ERR_NOINT : no | |
| 442 * SIM_ERR_READ : unknown data return by the card | |
| 443 * SIM_ERR_CARDREJECT : card not accepted | |
| 444 * | |
| 445 * 06/10/03, JYT, Split of Reset to handle Restart | |
| 446 */ | |
| 447 SYS_UWORD16 SIM_Restart(SIM_CARD *cP) | |
| 448 { | |
| 449 return(SIM_Reset_Restart_Internal(cP, 0)); | |
| 450 } | |
| 451 | |
| 452 | |
| 453 /* | |
| 454 * SIM_Reset_Restart_Internal | |
| 455 * | |
| 456 * Reset SIM card | |
| 457 * Call-back SIM insert if successful | |
| 458 * or SIM remove otherwise | |
| 459 * | |
| 460 * Returns 0 for success, or | |
| 461 * SIM_ERR_NOCARD : no card | |
| 462 * SIM_ERR_NATR : no answer to reset | |
| 463 * SIM_ERR_NOINT : no | |
| 464 * SIM_ERR_READ : unknown data return by the card | |
| 465 * SIM_ERR_CARDREJECT : card not accepted | |
| 466 * | |
| 467 * 29/01/02, JYT, adding of low voltage managment for IOTA device | |
| 468 * 06/10/03, JYT, Split of Reset to handle Restart, ResetFlag added. | |
| 469 */ | |
| 470 SYS_UWORD16 SIM_Reset_Restart_Internal(SIM_CARD *cP, SYS_UWORD8 ResetFlag) | |
| 471 { | |
| 472 SIM_PORT *p; | |
| 473 unsigned int ATR_Attempt; | |
| 474 SYS_UWORD8 BackValue; | |
| 475 SYS_UWORD8 Result_ATR; | |
| 476 | |
| 477 #ifdef SIM_DEBUG_TRACE | |
| 478 memset(SIM_dbg_null, 0x00, SIM_DBG_NULL); | |
| 479 SIM_dbg_cmd_cmpt = 0; | |
| 480 memset(SIM_dbg_cmd, 0x00, SIM_DBG_CMD); | |
| 481 #endif | |
| 482 | |
| 483 // Initialize pointers | |
| 484 p = &(Sim[0]); | |
| 485 | |
| 486 // begin of JYT modifications | |
| 487 if ( (BackValue = SIM_StartVolt(ResetFlag)) != SIM_OK) | |
| 488 return((SYS_UWORD16)BackValue); | |
| 489 // end of JYT modifications | |
| 490 | |
| 491 p->etu9600 = 867; // old = 239, increase of 363% | |
| 492 p->etu400 = 20; | |
| 493 p->hw_mask = MASK_INS; | |
| 494 | |
| 495 ATR_Attempt = 1; | |
| 496 | |
| 497 COLD_RESET: | |
| 498 | |
| 499 p->SWcount = 0; | |
| 500 p->Freq_Algo = 0; | |
| 501 p->PTS_Try = 0; //use to calculate how many PTS try were already done | |
| 502 | |
| 503 // Initialize pointers | |
| 504 p->xIn = p->xOut = p->xbuf; | |
| 505 p->rx_index = 0; | |
| 506 p->errorSIM = 0; | |
| 507 p->moderx = 0; | |
| 508 p->null_received = 0; | |
| 509 | |
| 510 BackValue = SIM_ManualStart(p); | |
| 511 if (BackValue != 0) | |
| 512 return ((SYS_UWORD16)BackValue); | |
| 513 | |
| 514 | |
| 515 p->c->conf1 = p->conf1 &= ~SIM_CONF1_BYPASS; //switch to automatic mode | |
| 516 | |
| 517 //#else //SW_WRK_AROUND_H_S == 0 // Automatic procedure -> fails with test 27.11.2.1 | |
| 518 // | |
| 519 // // Mask all interrupts | |
| 520 // p->c->maskit = SIM_MASK_NATR | SIM_MASK_WT | SIM_MASK_OV | | |
| 521 // SIM_MASK_TX | SIM_MASK_RX | SIM_MASK_CD; | |
| 522 // | |
| 523 // | |
| 524 // IQ_Unmask (IQ_SIM); // Unmask interrupt controller | |
| 525 // | |
| 526 // | |
| 527 // p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_STOP; | |
| 528 // ind_os_sleep(1); | |
| 529 // | |
| 530 // p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_SWRST; // Set START bit and wait a while | |
| 531 // ind_os_sleep(1); | |
| 532 // // Unmask all sources of interrupts except WT, OV, and NATR | |
| 533 // p->c->maskit = SIM_MASK_OV | SIM_MASK_WT | SIM_MASK_NATR; | |
| 534 // | |
| 535 // // Set Configuration bits | |
| 536 // p->c->conf1 = p->conf1 = SIM_CONF1_SRSTLEV | SIM_CONF1_SCLKEN; | |
| 537 // p->c->conf2 = 0x0940; | |
| 538 // | |
| 539 // //enable VCC | |
| 540 // #if(ANLG_FAM == 1) | |
| 541 // SPIABB_wa_VRPC (SPIRead_ABB_Register (PAGE1,VRPCCTRL1) | MODE_ENA_VCC); | |
| 542 // #elif(ANLG_FAM == 2) | |
| 543 // SPIABB_wa_VRPC (SPIRead_ABB_Register (PAGE1,VRPCSIM) | MODE_ENA_VCC); | |
| 544 // #endif | |
| 545 // p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_START; | |
| 546 // | |
| 547 //#endif | |
| 548 | |
| 549 /*-----------------------------------------------------------*/ | |
| 550 | |
| 551 while (p->PTS_Try != 5) | |
| 552 { | |
| 553 while (ATR_Attempt != 0) | |
| 554 { | |
| 555 // Treat ATR response | |
| 556 BackValue = SIM_ATRdynamictreatement (p, cP); | |
| 557 | |
| 558 if (BackValue == SIM_ERR_NOCARD) | |
| 559 { | |
| 560 SIM_PowerOff (); | |
| 561 return (SIM_ERR_NOCARD); | |
| 562 } | |
| 563 // ATR received but wrong characters value | |
| 564 // Comply with Test 27.11.2.4.5 and Test 27.11.1.3 | |
| 565 else if (BackValue == SIM_ERR_CARDREJECT) | |
| 566 { | |
| 567 if (ATR_Attempt >= 3) | |
| 568 { | |
| 569 SIM_PowerOff (); | |
| 570 return ((SYS_UWORD16)BackValue); | |
| 571 } | |
| 572 | |
| 573 ATR_Attempt++; | |
| 574 SIM_WARMReset(p); // assert a reset during at least 400 ETU | |
| 575 } | |
| 576 else if (BackValue != 0) //SIM_ERR_WAIT | |
| 577 { | |
| 578 if (ATR_Attempt == 3) | |
| 579 { // switch to 5V (ANALOG1) or 3V (ANALOG2) if card send wrong ATR 3 consecutive times | |
| 580 // Apply 3 consecutive resets at 5V (ANALOG1) or 3V (ANALOG2) | |
| 581 // fix prb for old chinese card not GSM compliant | |
| 582 | |
| 583 if ((BackValue = SIM_SwitchVolt(ResetFlag)) != SIM_OK) | |
| 584 { | |
| 585 // SIM cannot be supplied at 3V (ANALOG2), because of an Hardware failure | |
| 586 SIM_PowerOff (); | |
| 587 return((SYS_UWORD16)BackValue); | |
| 588 } | |
| 589 | |
| 590 ATR_Attempt++; | |
| 591 goto COLD_RESET; | |
| 592 } | |
| 593 if (ATR_Attempt >= 6) | |
| 594 { | |
| 595 SIM_PowerOff (); | |
| 596 return ((SYS_UWORD16)BackValue); | |
| 597 } | |
| 598 | |
| 599 ATR_Attempt++; | |
| 600 SIM_WARMReset(p); // assert a reset during at least 400 ETU | |
| 601 } | |
| 602 | |
| 603 else | |
| 604 { | |
| 605 ATR_Attempt = 0; | |
| 606 } | |
| 607 } | |
| 608 /*-----------------------------------------------------------*/ | |
| 609 // PTS procedure | |
| 610 BackValue = SIM_PTSprocedure(cP,p); //assert PTS if needed | |
| 611 // need upgrade with FIFO use to avoid CPU overloading | |
| 612 | |
| 613 if (BackValue) | |
| 614 { | |
| 615 if (BackValue == SIM_ERR_CARDREJECT) | |
| 616 { | |
| 617 SIM_PowerOff (); //must be done by protocol stack | |
| 618 return (SIM_ERR_CARDREJECT); | |
| 619 } | |
| 620 if (p->PTS_Try <= 4) //else error treatement | |
| 621 { | |
| 622 SIM_WARMReset(p); // assert a reset during at least 400 ETU | |
| 623 } | |
| 624 } | |
| 625 else | |
| 626 { | |
| 627 p->PTS_Try = 5; | |
| 628 } | |
| 629 } | |
| 630 /*-----------------------------------------------------------*/ | |
| 631 | |
| 632 //interpret SIM coding concerning SIM supply voltage | |
| 633 | |
| 634 if (SIM_GetFileCharacteristics(p)) | |
| 635 { | |
| 636 #if ((SIM_TYPE == SIM_TYPE_3V) || (SIM_TYPE == SIM_TYPE_1_8V)) | |
| 637 SIM_PowerOff(); // Needed for tests 27.17.1.5.1 and 27.17.1.5.5 | |
| 638 #endif | |
| 639 return (SIM_ERR_READ); | |
| 640 } | |
| 641 | |
| 642 // JYT, certainly unused because of previous test | |
| 643 if(p->errorSIM) | |
| 644 { | |
| 645 return(p->errorSIM); | |
| 646 } | |
| 647 | |
| 648 if ((p->FileC & SIM_MASK_INFO_VOLT) == SIM_5V) | |
| 649 { | |
| 650 #if ((SIM_TYPE == SIM_TYPE_3V ) || (SIM_TYPE == SIM_TYPE_1_8_3V) || (SIM_TYPE == SIM_TYPE_1_8V)) | |
| 651 SIM_PowerOff (); // required by ETSI if 5V only card is detected and 3V only ME chosen | |
| 652 return (SIM_ERR_CARDREJECT); // Test 27.17.1.5.2 | |
| 653 #elif (SIM_TYPE == SIM_TYPE_3_5V) | |
| 654 if (CurrentVolt == SIM_3V) //if 5V only SIM present -> the ME may switch to 5V operation | |
| 655 { | |
| 656 if ((BackValue = SIM_SwitchVolt(ResetFlag)) != SIM_OK) // switch to 5V | |
| 657 { | |
| 658 SIM_PowerOff (); | |
| 659 return ((SYS_UWORD16)BackValue); | |
| 660 } | |
| 661 ATR_Attempt = 1; | |
| 662 goto COLD_RESET; // Test 27.17.1.5.3 | |
| 663 } | |
| 664 #endif | |
| 665 } | |
| 666 else | |
| 667 { | |
| 668 if ((p->FileC & SIM_MASK_INFO_VOLT) == SIM_3V) | |
| 669 { | |
| 670 #if (SIM_TYPE == SIM_TYPE_1_8V) | |
| 671 SIM_PowerOff (); // required by ETSI if 3V only card is detected and 1.8V only ME chosen | |
| 672 return (SIM_ERR_CARDREJECT); // Test 27.17.1.5.2 | |
| 673 #elif (SIM_TYPE == SIM_TYPE_1_8_3V) | |
| 674 if (CurrentVolt == SIM_1_8V) //if 3V only SIM present -> the ME may switch to 3V operation | |
| 675 { | |
| 676 if ((BackValue = SIM_SwitchVolt(ResetFlag)) != SIM_OK) // switch to 3V | |
| 677 { | |
| 678 SIM_PowerOff (); | |
| 679 return ((SYS_UWORD16)BackValue); | |
| 680 } | |
| 681 ATR_Attempt = 1; | |
| 682 goto COLD_RESET; // Test 27.17.1.5.3 | |
| 683 } | |
| 684 #endif | |
| 685 } | |
| 686 else | |
| 687 { | |
| 688 if ((p->FileC & SIM_MASK_INFO_VOLT) == SIM_1_8V) | |
| 689 { | |
| 690 #if (SIM_TYPE == SIM_TYPE_5V) | |
| 691 SIM_PowerOff (); // required by ETSI if 5V only card is detected and 3V only ME chosen | |
| 692 return (SIM_ERR_CARDREJECT); // Test 27.17.1.5.2 | |
| 693 #endif | |
| 694 } | |
| 695 else | |
| 696 { | |
| 697 // future class of sim card voltage !!!!!! never use it | |
| 698 SIM_PowerOff (); // Rec. 11.18 | |
| 699 return (SIM_ERR_CARDREJECT); | |
| 700 } | |
| 701 } | |
| 702 } | |
| 703 | |
| 704 SIM_Interpret_FileCharacteristics(p); //find which frequency (13/4 or 13/8 Mhz) | |
| 705 | |
| 706 if(p->errorSIM) | |
| 707 { | |
| 708 return(p->errorSIM); | |
| 709 } | |
| 710 | |
| 711 status_os_sim = NU_Control_Timer (&SIM_timer, NU_ENABLE_TIMER); | |
| 712 //enable starting of the os timer for sleep mode | |
| 713 if (ResetFlag) { | |
| 714 if (p->InsertFunc != NULL) | |
| 715 (p->InsertFunc)(cP); | |
| 716 } | |
| 717 | |
| 718 return(0); | |
| 719 } | |
| 720 | |
| 721 | |
| 722 | |
| 723 | |
| 724 | |
| 725 | |
| 726 | |
| 727 | |
| 728 | |
| 729 | |
| 730 | |
| 731 /* SIM manual start | |
| 732 * | |
| 733 * purpose : manage manual start of the SIM interface | |
| 734 * input : pointer on sim structure SIM_PORT | |
| 735 * output : none | |
| 736 */ | |
| 737 | |
| 738 SYS_UWORD16 SIM_ManualStart (SIM_PORT *p) | |
| 739 { | |
| 740 volatile int i; | |
| 741 | |
| 742 //!! | |
| 743 p->c->conf1 = p->conf1 = 0x8004; //set conf1 to automatic mode SIO low | |
| 744 //enable sim interface clock module | |
| 745 p->c->cmd = SIM_CMD_CLKEN; | |
| 746 | |
| 747 //#if (SW_WRK_AROUND_H_S == 1) | |
| 748 | |
| 749 // Mask all interrupts | |
| 750 p->c->maskit = SIM_MASK_NATR | SIM_MASK_WT | SIM_MASK_OV | | |
| 751 SIM_MASK_TX | SIM_MASK_RX | SIM_MASK_CD; | |
| 752 | |
| 753 // Unmask interrupt controller | |
| 754 IQ_Unmask (IQ_SIM); | |
| 755 | |
| 756 p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_STOP; | |
| 757 ind_os_sleep (4); //wait 5 TDMA due to SVCC falling down duration | |
| 758 | |
| 759 p->c->cmd = (p->c->cmd & MASK_CMD) | SIM_CMD_SWRST; | |
| 760 ind_os_sleep (1); //wait 5 TDMA due to SVCC falling down duration | |
| 761 | |
| 762 | |
| 763 p->c->conf2 = 0x0940; | |
| 764 | |
| 765 i = p->c->it; | |
| 766 // Unmask all sources of interrupts except WT and OV and NATR | |
| 767 p->c->maskit = SIM_MASK_WT | SIM_MASK_OV | SIM_MASK_NATR; | |
| 768 | |
| 769 | |
| 770 //enter in manual mode to start the ATR sequence | |
| 771 p->c->conf1 = p->conf1 |= SIM_CONF1_BYPASS; | |
| 772 ind_os_sleep(1); | |
| 773 | |
| 774 p->c->conf1 = p->conf1 |= SIM_CONF1_SVCCLEV; | |
| 775 ind_os_sleep(1); | |
| 776 | |
| 777 #if(ANLG_FAM == 1) | |
| 778 //set OMEGA to 3V mode | |
| 779 //enable VCC | |
| 780 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) | MODE_ENA_SIMLDOEN); | |
| 781 ind_os_sleep(1); | |
| 782 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) | MODE_ENA_SIMEN); | |
| 783 ind_os_sleep(1); | |
| 784 #elif(ANLG_FAM == 2) | |
| 785 //set IOTA to 3V mode | |
| 786 //enable VCC | |
| 787 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIM) | MODE_ENA_SIMEN); | |
| 788 ind_os_sleep(1); | |
| 789 #elif(ANLG_FAM == 3) | |
| 790 //set SYREN to 3V mode | |
| 791 //enable VCC | |
| 792 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) | MODE_ENA_SIMEN); | |
| 793 ind_os_sleep(1); | |
| 794 #endif | |
| 795 | |
| 796 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SIOLOW; | |
| 797 | |
| 798 ind_os_sleep(1); | |
| 799 | |
| 800 p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKEN; | |
| 801 | |
| 802 p->c->conf1 = p->conf1 &= ~SIM_CONF1_TXRX; //set to receive mode | |
| 803 | |
| 804 | |
| 805 if(p->errorSIM) //check for card detection | |
| 806 { | |
| 807 return(p->errorSIM); | |
| 808 } | |
| 809 | |
| 810 i = 0; | |
| 811 while ((p->rx_index == 0) && (i < 3)) //wait 40000*Tsclk | |
| 812 { | |
| 813 ind_os_sleep (1); | |
| 814 i++; | |
| 815 } | |
| 816 | |
| 817 if ((p->rx_index == 0) && (i >= 3)) //external reset card ATR treatement | |
| 818 { | |
| 819 i = 0; | |
| 820 | |
| 821 p->c->conf1 = p->conf1 |= SIM_CONF1_SRSTLEV;//set reset level to high level | |
| 822 | |
| 823 while ((p->rx_index == 0) && (i < 3)) //wait 40000*Tsclk | |
| 824 { | |
| 825 ind_os_sleep (1); | |
| 826 i++; | |
| 827 } | |
| 828 } | |
| 829 | |
| 830 return (0); | |
| 831 } | |
| 832 | |
| 833 /* SIM manual stop | |
| 834 * | |
| 835 * purpose : manage manual start of the SIM interface | |
| 836 * input : pointer on sim structure SIM_PORT | |
| 837 * output : none | |
| 838 */ | |
| 839 | |
| 840 void SIM_ManualStop (SIM_PORT *p) | |
| 841 { | |
| 842 // to write | |
| 843 } | |
| 844 | |
| 845 /* Power off SIM == SIM_CMD_STOP | |
| 846 * input : none | |
| 847 * output : none | |
| 848 */ | |
| 849 | |
| 850 void SIM_PowerOff(void) | |
| 851 { | |
| 852 SIM_PORT *p; | |
| 853 volatile SYS_UWORD16 cmd; | |
| 854 | |
| 855 | |
| 856 | |
| 857 // Initialize pointers | |
| 858 p = &(Sim[0]); | |
| 859 | |
| 860 | |
| 861 // Reset and wait a while | |
| 862 cmd = p->c->cmd; | |
| 863 p->c->cmd = (cmd & MASK_CMD) | SIM_CMD_STOP; | |
| 864 | |
| 865 ind_os_sleep(5); //wait for falling of SIM signals (RESET/CLK/IO) | |
| 866 | |
| 867 #if(ANLG_FAM == 1) | |
| 868 //disable VCC : disable level shifter then SVDD | |
| 869 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & MODE_DIS_SIMEN); | |
| 870 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & MODE_DIS_SIMLDOEN); | |
| 871 #elif(ANLG_FAM == 2) | |
| 872 //disable VCC : disable level shifter then SVDD | |
| 873 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & MODE_DIS_SIMEN); | |
| 874 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & MODE_DIS_SIMLDOEN); | |
| 875 #elif(ANLG_FAM == 3) | |
| 876 //disable VCC : disable level shifter then SVDD | |
| 877 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & MODE_DIS_SIMEN); | |
| 878 ABB_wa_VRPC (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & MODE_DIS_SIMLDOEN); | |
| 879 #endif | |
| 880 | |
| 881 ind_os_sleep(10); //wait for falling of VCC commanf by ABB | |
| 882 | |
| 883 p->c->cmd = 0x0000; //disable clock of sim module | |
| 884 | |
| 885 if ((SIM_sleep_status == SIM_SLEEP_DESACT) || (SIM_sleep_status == SIM_SLEEP_ACT)) | |
| 886 { //SIM sleep timer is not more needed | |
| 887 status_os_sim = NU_Delete_Timer (&SIM_timer); | |
| 888 } | |
| 889 } | |
| 890 | |
| 891 | |
| 892 /* | |
| 893 * SIM_Init | |
| 894 * | |
| 895 * Function for backward compatibility only | |
| 896 * | |
| 897 */ | |
| 898 | |
| 899 void SIM_Init(void (Insert(SIM_CARD *cP)), void (Remove(void))) | |
| 900 { | |
| 901 // Call SIM Registration function. | |
| 902 (void) SIM_Register (Insert, Remove); | |
| 903 } | |
| 904 | |
| 905 /* | |
| 906 * SIM_Initialize | |
| 907 * | |
| 908 * Initialize data structures. | |
| 909 * | |
| 910 */ | |
| 911 | |
| 912 void SIM_Initialize(void) | |
| 913 { | |
| 914 int n; | |
| 915 SIM_PORT *p; | |
| 916 volatile SYS_UWORD32 dum; | |
| 917 | |
| 918 // Initialize registers | |
| 919 p = &(Sim[0]); | |
| 920 p->c = (SIM_CONTROLLER *) SIM_CMD; | |
| 921 | |
| 922 p->errorSIM = 0; | |
| 923 dum = (volatile SYS_UWORD32) SIM_Dummy; // to force linking SIM32 | |
| 924 | |
| 925 status_os_sim = NU_Create_Timer (&SIM_timer, "SIM_sleep_timer", &SIM_SleepMode_In, | |
| 926 0, SIM_SLEEP_WAITING_TIME, 0, NU_DISABLE_TIMER); | |
| 927 //timer start only with NU_Control_Timer function | |
| 928 //waiting time set to 2.3s | |
| 929 SIM_sleep_status = SIM_SLEEP_NONE; | |
| 930 | |
| 931 #ifdef SIM_RETRY | |
| 932 SimRetries = 0; | |
| 933 #endif | |
| 934 } | |
| 935 | |
| 936 /* | |
| 937 * SIM_Register | |
| 938 * | |
| 939 * SIM Registration function: Initialize callback functions | |
| 940 * | |
| 941 * Insert(void) : pointer to the function called when a card is inserted | |
| 942 * Remove(void) : pointer to the function called when the card is removed | |
| 943 * | |
| 944 */ | |
| 945 | |
| 946 SYS_UWORD16 SIM_Register(void (Insert(SIM_CARD *cP)), void (Remove(void))) | |
| 947 { | |
| 948 SIM_PORT *p; | |
| 949 | |
| 950 // Initialize pointers | |
| 951 p = &(Sim[0]); | |
| 952 | |
| 953 p->InsertFunc = Insert; | |
| 954 p->RemoveFunc = Remove; | |
| 955 | |
| 956 return (SIM_OK); | |
| 957 } | |
| 958 | |
| 959 | |
| 960 /* | |
| 961 * High level routines : mapped to GSM 11.11 function calls | |
| 962 * | |
| 963 * Uses a Nucleus semaphore to ensure no simultaneous access to SIM and buffer | |
| 964 * | |
| 965 * Each routine does : | |
| 966 * write command | |
| 967 * sleep long enough for the expected transmission and reception | |
| 968 * return rest code | |
| 969 * | |
| 970 * SYS_UWORD8 *result : pointer to the string return by the SIM card | |
| 971 * SYS_UWORD8 *rcvSize : size of the string return by the SIM card | |
| 972 * | |
| 973 * other parameters : parameters needed by the SIM card to | |
| 974 * execute the function. | |
| 975 * | |
| 976 */ | |
| 977 //unsigned char SIM_flag = 0; | |
| 978 | |
| 979 | |
| 980 /* | |
| 981 * SIM_Select | |
| 982 * | |
| 983 * Select a DF or a EF | |
| 984 */ | |
| 985 SYS_UWORD16 SIM_Select(SYS_UWORD16 id, SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) | |
| 986 { | |
| 987 SIM_PORT *p; | |
| 988 int res; | |
| 989 | |
| 990 p = &(Sim[0]); | |
| 991 | |
| 992 p->xbuf[0] = GSM_CLASS; | |
| 993 p->xbuf[1] = SIM_SELECT; | |
| 994 p->xbuf[2] = 0; | |
| 995 p->xbuf[3] = 0; | |
| 996 p->xbuf[4] = 2; | |
| 997 p->xbuf[5] = id >> 8; // high byte | |
| 998 p->xbuf[6] = id & 0xFF; // low byte | |
| 999 | |
| 1000 | |
| 1001 res = SIM_Command(p, 2, dat, rcvSize); | |
| 1002 /* Change from to 10 to 15 for specific SIM card (Racal) */ | |
| 1003 | |
| 1004 // if (id == 0x6F07) | |
| 1005 // SIM_flag = 1; | |
| 1006 | |
| 1007 #ifdef SIM_DEBUG_TRACE | |
| 1008 SIM_dbg_write_trace((SYS_UWORD8 *)"AACMD", 5); | |
| 1009 SIM_dbg_write_trace(p->xbuf, 7); | |
| 1010 SIM_dbg_write_trace((SYS_UWORD8 *)"AAANS", 5); | |
| 1011 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1012 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1013 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1014 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1015 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1016 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1017 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1018 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1019 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1020 #endif | |
| 1021 | |
| 1022 return(res); | |
| 1023 } | |
| 1024 | |
| 1025 | |
| 1026 /* | |
| 1027 * SIM_Status | |
| 1028 * | |
| 1029 * Returns data received from card and number of bytes received | |
| 1030 */ | |
| 1031 SYS_UWORD16 SIM_Status(SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) | |
| 1032 { | |
| 1033 SIM_PORT *p; | |
| 1034 | |
| 1035 short len = 0x16; // length specified in GSM 11.11 | |
| 1036 int res; | |
| 1037 | |
| 1038 p = &(Sim[0]); | |
| 1039 | |
| 1040 p->xbuf[0] = GSM_CLASS; | |
| 1041 p->xbuf[1] = SIM_STATUS; | |
| 1042 p->xbuf[2] = 0; | |
| 1043 p->xbuf[3] = 0; | |
| 1044 p->xbuf[4] = len; | |
| 1045 | |
| 1046 res = SIM_Command(p, 0, dat, rcvSize); | |
| 1047 | |
| 1048 #ifdef SIM_DEBUG_TRACE | |
| 1049 SIM_dbg_write_trace((SYS_UWORD8 *)"ABCMD", 5); | |
| 1050 SIM_dbg_write_trace(p->xbuf, 5); | |
| 1051 SIM_dbg_write_trace((SYS_UWORD8 *)"ABANS", 5); | |
| 1052 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1053 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1054 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1055 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1056 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1057 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1058 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1059 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1060 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1061 #endif | |
| 1062 | |
| 1063 return(res); | |
| 1064 } | |
| 1065 | |
| 1066 /* | |
| 1067 * SIM_Status_Extended | |
| 1068 * | |
| 1069 * Returns data received from card and number of bytes received | |
| 1070 * Add extra parameter len : number of returned byte | |
| 1071 */ | |
| 1072 SYS_UWORD16 SIM_Status_Extended(SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 1073 { | |
| 1074 SIM_PORT *p; | |
| 1075 int res; | |
| 1076 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 1077 | |
| 1078 p = &(Sim[0]); | |
| 1079 | |
| 1080 p->xbuf[0] = GSM_CLASS; | |
| 1081 p->xbuf[1] = SIM_STATUS; | |
| 1082 p->xbuf[2] = 0; | |
| 1083 p->xbuf[3] = 0; | |
| 1084 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 1085 | |
| 1086 res = SIM_Command(p, 0, dat, rcvSize); | |
| 1087 | |
| 1088 #ifdef SIM_DEBUG_TRACE | |
| 1089 SIM_dbg_write_trace((SYS_UWORD8 *)"ACCMD", 5); | |
| 1090 SIM_dbg_write_trace(p->xbuf, 5); | |
| 1091 SIM_dbg_write_trace((SYS_UWORD8 *)"ACANS", 5); | |
| 1092 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1093 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1094 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1095 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1096 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1097 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1098 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1099 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1100 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1101 #endif | |
| 1102 | |
| 1103 return(res); | |
| 1104 } | |
| 1105 | |
| 1106 | |
| 1107 /* | |
| 1108 * SIM_ReadBinary | |
| 1109 * | |
| 1110 * Read data from the current EF | |
| 1111 */ | |
| 1112 SYS_UWORD16 SIM_ReadBinary(SYS_UWORD8 *dat, SYS_UWORD16 offset, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 1113 { | |
| 1114 SIM_PORT *p; | |
| 1115 int res; | |
| 1116 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 1117 | |
| 1118 p = &(Sim[0]); | |
| 1119 | |
| 1120 p->xbuf[0] = GSM_CLASS; | |
| 1121 p->xbuf[1] = SIM_READ_BINARY; | |
| 1122 p->xbuf[2] = offset >> 8; | |
| 1123 p->xbuf[3] = offset & 0xFF; | |
| 1124 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 1125 | |
| 1126 res = SIM_Command(p, 0, dat, rcvSize); | |
| 1127 | |
| 1128 // if (SIM_flag) { | |
| 1129 // SIM_flag = 0; | |
| 1130 // dat[0] = 0x08; | |
| 1131 // } | |
| 1132 | |
| 1133 #ifdef SIM_DEBUG_TRACE | |
| 1134 SIM_dbg_write_trace((SYS_UWORD8 *)"ADCMD", 5); | |
| 1135 SIM_dbg_write_trace(p->xbuf, 5); | |
| 1136 SIM_dbg_write_trace((SYS_UWORD8 *)"ADANS", 5); | |
| 1137 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize>>8); | |
| 1138 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 1139 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1140 SIM_dbg_write_trace(dat, *rcvSize); | |
| 1141 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1142 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1143 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1144 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1145 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1146 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1147 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1148 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1149 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1150 #endif | |
| 1151 | |
| 1152 return(res); | |
| 1153 | |
| 1154 } | |
| 1155 | |
| 1156 | |
| 1157 /* | |
| 1158 * SIM_VerifyChv | |
| 1159 * | |
| 1160 * Verify the specified CHV (chvType) | |
| 1161 */ | |
| 1162 SYS_UWORD16 SIM_VerifyCHV(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD8 chvType, SYS_UWORD16 *rcvSize) | |
| 1163 { | |
| 1164 SIM_PORT *p; | |
| 1165 SYS_UWORD8 len; | |
| 1166 int i; | |
| 1167 int res; | |
| 1168 | |
| 1169 p = &(Sim[0]); | |
| 1170 len = 8; | |
| 1171 | |
| 1172 p->xbuf[0] = GSM_CLASS; | |
| 1173 p->xbuf[1] = SIM_VERIFY_CHV; | |
| 1174 p->xbuf[2] = 0; | |
| 1175 p->xbuf[3] = chvType; | |
| 1176 p->xbuf[4] = len; | |
| 1177 for (i=0;i<8;i++) | |
| 1178 { | |
| 1179 p->xbuf[5+i] = *(dat+i); | |
| 1180 } | |
| 1181 res = SIM_Command(p, 8, result, rcvSize); | |
| 1182 | |
| 1183 #ifdef SIM_DEBUG_TRACE | |
| 1184 SIM_dbg_write_trace((SYS_UWORD8 *)"AECMD", 5); | |
| 1185 SIM_dbg_write_trace(p->xbuf, len+5); | |
| 1186 SIM_dbg_write_trace((SYS_UWORD8 *)"AEANS", 5); | |
| 1187 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 1188 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 1189 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1190 SIM_dbg_write_trace(result, *rcvSize); | |
| 1191 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1192 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1193 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1194 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1195 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1196 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1197 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1198 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1199 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1200 #endif | |
| 1201 | |
| 1202 return(res); | |
| 1203 } | |
| 1204 | |
| 1205 | |
| 1206 /* | |
| 1207 * SIM_RunGSMAlgo | |
| 1208 * | |
| 1209 * Authentication procedure | |
| 1210 */ | |
| 1211 SYS_UWORD16 SIM_RunGSMAlgo(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) | |
| 1212 { | |
| 1213 SIM_PORT *p; | |
| 1214 int len; | |
| 1215 int i; | |
| 1216 int res; | |
| 1217 | |
| 1218 p = &(Sim[0]); | |
| 1219 | |
| 1220 if(p->Freq_Algo) //13/4 Mhz mandatory ?? | |
| 1221 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SCLKDIV; | |
| 1222 | |
| 1223 len = 16; | |
| 1224 | |
| 1225 p->xbuf[0] = GSM_CLASS; | |
| 1226 p->xbuf[1] = SIM_RUN_GSM_ALGO; | |
| 1227 p->xbuf[2] = 0; | |
| 1228 p->xbuf[3] = 0; | |
| 1229 p->xbuf[4] = len; | |
| 1230 | |
| 1231 for (i=0;i<len;i++) | |
| 1232 { | |
| 1233 p->xbuf[5+i] = *(dat+i); | |
| 1234 } | |
| 1235 res = SIM_Command(p, len, result, rcvSize); | |
| 1236 | |
| 1237 #ifdef SIM_DEBUG_TRACE | |
| 1238 SIM_dbg_write_trace((SYS_UWORD8 *)"AFCMD", 5); | |
| 1239 SIM_dbg_write_trace(p->xbuf, len+5); | |
| 1240 SIM_dbg_write_trace((SYS_UWORD8 *)"AFANS", 5); | |
| 1241 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 1242 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 1243 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1244 SIM_dbg_write_trace(result, *rcvSize); | |
| 1245 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1246 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1247 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1248 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1249 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1250 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1251 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1252 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1253 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1254 #endif | |
| 1255 | |
| 1256 if(p->Freq_Algo) | |
| 1257 p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKDIV; | |
| 1258 | |
| 1259 | |
| 1260 return(res); | |
| 1261 } | |
| 1262 | |
| 1263 | |
| 1264 /* | |
| 1265 * SIM_GetResponse | |
| 1266 * | |
| 1267 * Get data from the card | |
| 1268 * | |
| 1269 * SYS_UWORD8 len : length of the data to get | |
| 1270 */ | |
| 1271 SYS_UWORD16 SIM_GetResponse(SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 1272 { | |
| 1273 SIM_PORT *p; | |
| 1274 int res; | |
| 1275 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 1276 | |
| 1277 p = &(Sim[0]); | |
| 1278 | |
| 1279 p->xbuf[0] = GSM_CLASS; | |
| 1280 p->xbuf[1] = SIM_GET_RESPONSE; | |
| 1281 p->xbuf[2] = 0; | |
| 1282 p->xbuf[3] = 0; | |
| 1283 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 1284 | |
| 1285 res = SIM_Command(p, 0, dat, rcvSize); | |
| 1286 | |
| 1287 #ifdef SIM_DEBUG_TRACE | |
| 1288 SIM_dbg_write_trace((SYS_UWORD8 *)"AGCMD", 5); | |
| 1289 SIM_dbg_write_trace(p->xbuf, 5); | |
| 1290 SIM_dbg_write_trace((SYS_UWORD8 *)"AGANS", 5); | |
| 1291 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 1292 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 1293 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1294 SIM_dbg_write_trace(dat, *rcvSize); | |
| 1295 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1296 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1297 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1298 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1299 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1300 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1301 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1302 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1303 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1304 #endif | |
| 1305 | |
| 1306 return(res); | |
| 1307 } | |
| 1308 | |
| 1309 | |
| 1310 /* | |
| 1311 * SIM_ChangeCHV | |
| 1312 * | |
| 1313 * Change the specified CHV (chvType) | |
| 1314 */ | |
| 1315 SYS_UWORD16 SIM_ChangeCHV(SYS_UWORD8 *result,SYS_UWORD8 *oldChv, SYS_UWORD8 *newChv, SYS_UWORD8 chvType, SYS_UWORD16 *lP) | |
| 1316 { | |
| 1317 SIM_PORT *p; | |
| 1318 SYS_UWORD16 len; | |
| 1319 int i; | |
| 1320 SYS_UWORD16 res; | |
| 1321 | |
| 1322 p = &(Sim[0]); | |
| 1323 len = 16; | |
| 1324 | |
| 1325 p->xbuf[0] = GSM_CLASS; | |
| 1326 p->xbuf[1] = SIM_CHANGE_CHV; | |
| 1327 p->xbuf[2] = 0; | |
| 1328 p->xbuf[3] = chvType; | |
| 1329 p->xbuf[4] = (SYS_UWORD8)len; | |
| 1330 | |
| 1331 // Copy bytes to buffer | |
| 1332 for (i=0;i<8;i++) | |
| 1333 { | |
| 1334 p->xbuf[5+i] = *(oldChv+i); | |
| 1335 } | |
| 1336 for (i=0;i<8;i++) | |
| 1337 { | |
| 1338 p->xbuf[13+i] = *(newChv+i); | |
| 1339 } | |
| 1340 res = SIM_Command(p, len, result, lP); | |
| 1341 | |
| 1342 #ifdef SIM_DEBUG_TRACE | |
| 1343 SIM_dbg_write_trace((SYS_UWORD8 *)"AHCMD", 5); | |
| 1344 SIM_dbg_write_trace(p->xbuf, len+5); | |
| 1345 SIM_dbg_write_trace((SYS_UWORD8 *)"AHANS", 5); | |
| 1346 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
| 1347 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
| 1348 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1349 SIM_dbg_write_trace(result, *lP); | |
| 1350 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1351 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1352 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1353 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1354 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1355 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1356 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1357 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1358 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1359 #endif | |
| 1360 | |
| 1361 return(res); | |
| 1362 } | |
| 1363 | |
| 1364 | |
| 1365 /* | |
| 1366 * SIM_DisableCHV | |
| 1367 * | |
| 1368 * Disable CHV 1 | |
| 1369 */ | |
| 1370 SYS_UWORD16 SIM_DisableCHV(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *lP) | |
| 1371 { | |
| 1372 SIM_PORT *p; | |
| 1373 int len; | |
| 1374 int i; | |
| 1375 int res; | |
| 1376 | |
| 1377 p = &(Sim[0]); | |
| 1378 | |
| 1379 len = 8; | |
| 1380 p->xbuf[0] = GSM_CLASS; | |
| 1381 p->xbuf[1] = SIM_DISABLE_CHV; | |
| 1382 p->xbuf[2] = 0; | |
| 1383 p->xbuf[3] = 1; | |
| 1384 p->xbuf[4] = 8; | |
| 1385 for (i=0;i<8;i++) | |
| 1386 { | |
| 1387 p->xbuf[5+i] = *(dat+i); | |
| 1388 } | |
| 1389 res = SIM_Command(p, len, result, lP); | |
| 1390 | |
| 1391 #ifdef SIM_DEBUG_TRACE | |
| 1392 SIM_dbg_write_trace((SYS_UWORD8 *)"AICMD", 5); | |
| 1393 SIM_dbg_write_trace(p->xbuf, 8+5); | |
| 1394 SIM_dbg_write_trace((SYS_UWORD8 *)"AIANS", 5); | |
| 1395 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
| 1396 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
| 1397 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1398 SIM_dbg_write_trace(result, *lP); | |
| 1399 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1400 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1401 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1402 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1403 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1404 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1405 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1406 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1407 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1408 #endif | |
| 1409 | |
| 1410 return(res); | |
| 1411 | |
| 1412 } | |
| 1413 | |
| 1414 | |
| 1415 /* | |
| 1416 * SIM_EnableCHV | |
| 1417 * | |
| 1418 * Enable CHV 1 | |
| 1419 */ | |
| 1420 SYS_UWORD16 SIM_EnableCHV(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *lP) | |
| 1421 { | |
| 1422 SIM_PORT *p; | |
| 1423 int len; | |
| 1424 int i; | |
| 1425 int res; | |
| 1426 | |
| 1427 p = &(Sim[0]); | |
| 1428 | |
| 1429 len = 8; | |
| 1430 | |
| 1431 p->xbuf[0] = GSM_CLASS; | |
| 1432 p->xbuf[1] = SIM_ENABLE_CHV; | |
| 1433 p->xbuf[2] = 0; | |
| 1434 p->xbuf[3] = 1; | |
| 1435 p->xbuf[4] = (SYS_UWORD8)len; | |
| 1436 | |
| 1437 for (i=0;i<len;i++) | |
| 1438 { | |
| 1439 p->xbuf[5+i] = *(dat+i); | |
| 1440 } | |
| 1441 | |
| 1442 res = SIM_Command(p, len, result, lP); | |
| 1443 | |
| 1444 #ifdef SIM_DEBUG_TRACE | |
| 1445 SIM_dbg_write_trace((SYS_UWORD8 *)"AJCMD", 5); | |
| 1446 SIM_dbg_write_trace(p->xbuf, len+5); | |
| 1447 SIM_dbg_write_trace((SYS_UWORD8 *)"AJANS", 5); | |
| 1448 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
| 1449 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
| 1450 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1451 SIM_dbg_write_trace(result, *lP); | |
| 1452 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1453 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1454 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1455 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1456 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1457 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1458 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1459 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1460 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1461 #endif | |
| 1462 | |
| 1463 return(res); | |
| 1464 } | |
| 1465 | |
| 1466 | |
| 1467 | |
| 1468 /* | |
| 1469 * SIM_UnblockCHV | |
| 1470 * | |
| 1471 * Unblock the specified CHV (chvType) and store a new CHV | |
| 1472 */ | |
| 1473 SYS_UWORD16 SIM_UnblockCHV(SYS_UWORD8 *result, SYS_UWORD8 *unblockChv, SYS_UWORD8 *newChv, | |
| 1474 SYS_UWORD8 chvType, SYS_UWORD16 *lP) | |
| 1475 { | |
| 1476 SIM_PORT *p; | |
| 1477 int len; | |
| 1478 int i; | |
| 1479 int res; | |
| 1480 | |
| 1481 p = &(Sim[0]); | |
| 1482 len = 16; | |
| 1483 | |
| 1484 p->xbuf[0] = GSM_CLASS; | |
| 1485 p->xbuf[1] = SIM_UNBLOCK_CHV; | |
| 1486 p->xbuf[2] = 0; | |
| 1487 p->xbuf[3] = chvType; | |
| 1488 p->xbuf[4] = (SYS_UWORD8)len; | |
| 1489 for (i=0;i<8;i++) | |
| 1490 { | |
| 1491 p->xbuf[5+i] = *(unblockChv+i); | |
| 1492 } | |
| 1493 for (i=0;i<8;i++) | |
| 1494 { | |
| 1495 p->xbuf[13+i] = *(newChv+i); | |
| 1496 } | |
| 1497 | |
| 1498 res = SIM_Command(p, len, result, lP); | |
| 1499 | |
| 1500 #ifdef SIM_DEBUG_TRACE | |
| 1501 SIM_dbg_write_trace((SYS_UWORD8 *)"AKCMD", 5); | |
| 1502 SIM_dbg_write_trace(p->xbuf, len+5); | |
| 1503 SIM_dbg_write_trace((SYS_UWORD8 *)"AKANS", 5); | |
| 1504 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
| 1505 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
| 1506 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1507 SIM_dbg_write_trace(result, *lP); | |
| 1508 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1509 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1510 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1511 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1512 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1513 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1514 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1515 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1516 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1517 #endif | |
| 1518 | |
| 1519 return(res); | |
| 1520 } | |
| 1521 /* | |
| 1522 * SIM_Invalidate | |
| 1523 * | |
| 1524 * Invalidate the current EF | |
| 1525 */ | |
| 1526 SYS_UWORD16 SIM_Invalidate(SYS_UWORD8 *rP, SYS_UWORD16 *lP) | |
| 1527 { | |
| 1528 SIM_PORT *p; | |
| 1529 int i; | |
| 1530 int res; | |
| 1531 | |
| 1532 p = &(Sim[0]); | |
| 1533 | |
| 1534 p->xbuf[0] = GSM_CLASS; | |
| 1535 p->xbuf[1] = SIM_INVALIDATE; | |
| 1536 p->xbuf[2] = 0; | |
| 1537 p->xbuf[3] = 0; | |
| 1538 p->xbuf[4] = 0; | |
| 1539 | |
| 1540 res = SIM_Command(p, 0, rP, lP); | |
| 1541 | |
| 1542 #ifdef SIM_DEBUG_TRACE | |
| 1543 SIM_dbg_write_trace((SYS_UWORD8 *)"ALCMD", 5); | |
| 1544 SIM_dbg_write_trace(p->xbuf, 5); | |
| 1545 SIM_dbg_write_trace((SYS_UWORD8 *)"ALANS", 5); | |
| 1546 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
| 1547 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
| 1548 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1549 SIM_dbg_write_trace(rP, *lP); | |
| 1550 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1551 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1552 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1553 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1554 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1555 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1556 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1557 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1558 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1559 #endif | |
| 1560 | |
| 1561 return(res); | |
| 1562 } | |
| 1563 /* | |
| 1564 * SIM_Rehabilitate | |
| 1565 * | |
| 1566 * Rehabilitate the current EF | |
| 1567 */ | |
| 1568 SYS_UWORD16 SIM_Rehabilitate(SYS_UWORD8 *rP, SYS_UWORD16 *lP) | |
| 1569 { | |
| 1570 SIM_PORT *p; | |
| 1571 int len; | |
| 1572 int res; | |
| 1573 | |
| 1574 p = &(Sim[0]); | |
| 1575 | |
| 1576 p->xbuf[0] = GSM_CLASS; | |
| 1577 p->xbuf[1] = SIM_REHABILITATE; | |
| 1578 p->xbuf[2] = 0; | |
| 1579 p->xbuf[3] = 0; | |
| 1580 p->xbuf[4] = 0; | |
| 1581 | |
| 1582 res = SIM_Command(p, 0, rP, lP); | |
| 1583 | |
| 1584 #ifdef SIM_DEBUG_TRACE | |
| 1585 SIM_dbg_write_trace((SYS_UWORD8 *)"AMCMD", 5); | |
| 1586 SIM_dbg_write_trace(p->xbuf, 5); | |
| 1587 SIM_dbg_write_trace((SYS_UWORD8 *)"AMANS", 5); | |
| 1588 SIM_dbg_tmp[0] = (SYS_UWORD8)(*lP >> 8); | |
| 1589 SIM_dbg_tmp[1] = (SYS_UWORD8)(*lP); | |
| 1590 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1591 SIM_dbg_write_trace(rP, *lP); | |
| 1592 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1593 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1594 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1595 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1596 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1597 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1598 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1599 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1600 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1601 #endif | |
| 1602 | |
| 1603 return(res); | |
| 1604 | |
| 1605 } | |
| 1606 | |
| 1607 | |
| 1608 /* | |
| 1609 * SIM_UpdateBinary | |
| 1610 * | |
| 1611 * Store data in the current transparent EF | |
| 1612 */ | |
| 1613 SYS_UWORD16 SIM_UpdateBinary(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 offset, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 1614 { | |
| 1615 SIM_PORT *p; | |
| 1616 int i; | |
| 1617 int res; | |
| 1618 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 1619 | |
| 1620 p = &(Sim[0]); | |
| 1621 | |
| 1622 p->xbuf[0] = GSM_CLASS; | |
| 1623 p->xbuf[1] = SIM_UPDATE_BINARY; | |
| 1624 p->xbuf[2] = offset >> 8; | |
| 1625 p->xbuf[3] = offset & 0xFF; | |
| 1626 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 1627 | |
| 1628 for (i=0;i<llen;i++) | |
| 1629 { | |
| 1630 p->xbuf[5+i] = *(dat+i); | |
| 1631 } | |
| 1632 res = SIM_Command(p, llen, result, rcvSize); | |
| 1633 | |
| 1634 #ifdef SIM_DEBUG_TRACE | |
| 1635 SIM_dbg_write_trace((SYS_UWORD8 *)"ANCMD", 5); | |
| 1636 SIM_dbg_write_trace(p->xbuf, llen+5); | |
| 1637 SIM_dbg_write_trace((SYS_UWORD8 *)"ANANS", 5); | |
| 1638 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 1639 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 1640 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1641 SIM_dbg_write_trace(result, *rcvSize); | |
| 1642 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1643 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1644 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1645 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1646 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1647 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1648 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1649 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1650 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1651 #endif | |
| 1652 | |
| 1653 return(res); | |
| 1654 | |
| 1655 } | |
| 1656 | |
| 1657 | |
| 1658 /* | |
| 1659 * SIM_ReadRecord | |
| 1660 * | |
| 1661 * Read a record (recNum) from the current linear fixed or cyclic EF | |
| 1662 */ | |
| 1663 SYS_UWORD16 SIM_ReadRecord(SYS_UWORD8 *dat, SYS_UWORD8 mode, SYS_UWORD8 recNum, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 1664 { | |
| 1665 SIM_PORT *p; | |
| 1666 int res; | |
| 1667 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 1668 | |
| 1669 p = &(Sim[0]); | |
| 1670 | |
| 1671 p->xbuf[0] = GSM_CLASS; | |
| 1672 p->xbuf[1] = SIM_READ_RECORD; | |
| 1673 p->xbuf[2] = recNum; | |
| 1674 p->xbuf[3] = mode; | |
| 1675 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 1676 | |
| 1677 res = SIM_Command(p, 0, dat, rcvSize); | |
| 1678 | |
| 1679 #ifdef SIM_DEBUG_TRACE | |
| 1680 SIM_dbg_write_trace((SYS_UWORD8 *)"AOCMD", 5); | |
| 1681 SIM_dbg_write_trace(p->xbuf, llen+5); | |
| 1682 SIM_dbg_write_trace((SYS_UWORD8 *)"AOANS", 5); | |
| 1683 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 1684 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 1685 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1686 SIM_dbg_write_trace(dat, *rcvSize); | |
| 1687 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1688 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1689 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1690 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1691 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1692 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1693 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1694 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1695 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1696 #endif | |
| 1697 | |
| 1698 return(res); | |
| 1699 | |
| 1700 } | |
| 1701 | |
| 1702 #ifdef SIM_APDU_TEST | |
| 1703 SYS_UWORD8 snd[270]; | |
| 1704 SYS_UWORD8 rec[270]; | |
| 1705 SYS_UWORD8 logchan; | |
| 1706 SYS_UWORD16 recl; | |
| 1707 unsigned short resopen, resclose, rescmd; | |
| 1708 #endif | |
| 1709 | |
| 1710 #ifdef SIM_SAT_REFRESH_TEST | |
| 1711 SIM_CARD ptr; | |
| 1712 SYS_UWORD16 lrcvSize; | |
| 1713 SYS_UWORD8 ldat[20]; | |
| 1714 #endif | |
| 1715 | |
| 1716 /* | |
| 1717 * SIM_UpdateRecord | |
| 1718 * | |
| 1719 * Store a record (recNum) in the current linear fixed or cyclic EF | |
| 1720 */ | |
| 1721 SYS_UWORD16 SIM_UpdateRecord(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD8 mode, SYS_UWORD8 recNum, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 1722 { | |
| 1723 SIM_PORT *p; | |
| 1724 int i; | |
| 1725 int res; | |
| 1726 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 1727 | |
| 1728 #ifdef SIM_SAT_REFRESH_TEST | |
| 1729 // do 1000 times the following sequence | |
| 1730 for (i=0;i<1000;i++) { | |
| 1731 SIM_PowerOff(); | |
| 1732 SIM_Restart(&ptr); | |
| 1733 SIM_Select((SYS_UWORD16)0x7f10, ldat, &lrcvSize); | |
| 1734 SIM_Select((SYS_UWORD16)0x6f3a, ldat, &lrcvSize); | |
| 1735 } | |
| 1736 #endif | |
| 1737 #ifdef SIM_APDU_TEST | |
| 1738 // send OPEN LOGICAL CHANNEL | |
| 1739 snd[0] = 0x00; | |
| 1740 snd[1] = 0x70; | |
| 1741 snd[2] = 0x00; | |
| 1742 snd[3] = 0x00; | |
| 1743 snd[4] = 0x01; | |
| 1744 resopen = SIM_XchTPDU(&snd[0], 5, &rec[0], 1, &recl); | |
| 1745 if (resopen == 0x9000) { | |
| 1746 logchan = rec[0]; | |
| 1747 | |
| 1748 // Select AID PKCS | |
| 1749 snd[0] = logchan; | |
| 1750 snd[1] = 0xA4; | |
| 1751 snd[2] = 0x04; | |
| 1752 snd[3] = 0x00; | |
| 1753 snd[4] = 0x0C; | |
| 1754 snd[5] = 0xA0; | |
| 1755 snd[6] = 0x00; | |
| 1756 snd[7] = 0x00; | |
| 1757 snd[8] = 0x00; | |
| 1758 snd[9] = 0x63; | |
| 1759 snd[10] = 0x50; | |
| 1760 snd[11] = 0x4B; | |
| 1761 snd[12] = 0x43; | |
| 1762 snd[13] = 0x53; | |
| 1763 snd[14] = 0x2D; | |
| 1764 snd[15] = 0x31; | |
| 1765 snd[16] = 0x35; | |
| 1766 rescmd = SIM_XchTPDU(&snd[0], 17, &rec[0], 0, &recl); | |
| 1767 | |
| 1768 // Select file EF odf | |
| 1769 snd[0] = 0x80 | logchan; | |
| 1770 snd[1] = 0xA4; | |
| 1771 snd[2] = 0x00; | |
| 1772 snd[3] = 0x00; | |
| 1773 snd[4] = 0x02; | |
| 1774 snd[5] = 0x50; | |
| 1775 snd[6] = 0x31; | |
| 1776 rescmd = SIM_XchTPDU(&snd[0], 7, &rec[0], 0, &recl); | |
| 1777 | |
| 1778 // get response EF odf | |
| 1779 snd[0] = logchan; | |
| 1780 snd[1] = 0xC0; | |
| 1781 snd[2] = 0x00; | |
| 1782 snd[3] = 0x00; | |
| 1783 snd[4] = rescmd; | |
| 1784 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); | |
| 1785 | |
| 1786 // read binary EF odf | |
| 1787 snd[0] = 0x80 | logchan; | |
| 1788 snd[1] = 0xB0; | |
| 1789 snd[2] = 0x00; | |
| 1790 snd[3] = 0x00; | |
| 1791 snd[4] = rec[3]-16; | |
| 1792 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); | |
| 1793 | |
| 1794 // Select file EF cdf | |
| 1795 snd[0] = 0x80 | logchan; | |
| 1796 snd[1] = 0xA4; | |
| 1797 snd[2] = 0x00; | |
| 1798 snd[3] = 0x00; | |
| 1799 snd[4] = 0x02; | |
| 1800 snd[5] = 0x51; | |
| 1801 snd[6] = 0x03; | |
| 1802 rescmd = SIM_XchTPDU(&snd[0], 7, &rec[0], 0, &recl); | |
| 1803 | |
| 1804 // get response EF odf | |
| 1805 snd[0] = logchan; | |
| 1806 snd[1] = 0xC0; | |
| 1807 snd[2] = 0x00; | |
| 1808 snd[3] = 0x00; | |
| 1809 snd[4] = rescmd; | |
| 1810 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); | |
| 1811 | |
| 1812 // read binary EF cdf | |
| 1813 snd[0] = 0x80 | logchan; | |
| 1814 snd[1] = 0xB0; | |
| 1815 snd[2] = 0x00; | |
| 1816 snd[3] = 0x00; | |
| 1817 snd[4] = 0xff; | |
| 1818 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], snd[4], &recl); | |
| 1819 | |
| 1820 // read binary EF cdf | |
| 1821 snd[0] = 0x80 | logchan; | |
| 1822 snd[1] = 0xB0; | |
| 1823 snd[2] = 0x00; | |
| 1824 snd[3] = 0x00; | |
| 1825 snd[4] = 0x00; | |
| 1826 rescmd = SIM_XchTPDU(&snd[0], 5, &rec[0], 256, &recl); | |
| 1827 | |
| 1828 | |
| 1829 } | |
| 1830 | |
| 1831 #endif | |
| 1832 | |
| 1833 | |
| 1834 p = &(Sim[0]); | |
| 1835 | |
| 1836 p->xbuf[0] = GSM_CLASS; | |
| 1837 p->xbuf[1] = SIM_UPDATE_RECORD; | |
| 1838 p->xbuf[2] = recNum; | |
| 1839 p->xbuf[3] = mode; | |
| 1840 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 1841 | |
| 1842 for (i=0;i<llen;i++) | |
| 1843 { | |
| 1844 p->xbuf[5+i] = *(dat+i); | |
| 1845 } | |
| 1846 | |
| 1847 res = SIM_Command(p, llen, result, rcvSize); | |
| 1848 | |
| 1849 #ifdef SIM_DEBUG_TRACE | |
| 1850 SIM_dbg_write_trace((SYS_UWORD8 *)"APCMD", 5); | |
| 1851 SIM_dbg_write_trace(p->xbuf, llen+5); | |
| 1852 SIM_dbg_write_trace((SYS_UWORD8 *)"APANS", 5); | |
| 1853 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 1854 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 1855 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1856 SIM_dbg_write_trace(result, *rcvSize); | |
| 1857 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1858 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1859 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1860 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1861 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1862 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1863 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1864 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1865 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1866 #endif | |
| 1867 | |
| 1868 | |
| 1869 #ifdef SIM_APDU_TEST | |
| 1870 | |
| 1871 // send CLOSE LOGICAL CHANNEL | |
| 1872 snd[0] = 0x00; | |
| 1873 snd[1] = 0x70; | |
| 1874 snd[2] = 0x80; | |
| 1875 snd[3] = logchan; | |
| 1876 snd[4] = 0x00; | |
| 1877 resclose = SIM_XchTPDU(&snd[0], 5, &rec[0], 0, &recl); | |
| 1878 | |
| 1879 #endif | |
| 1880 | |
| 1881 return(res); | |
| 1882 } | |
| 1883 | |
| 1884 /* | |
| 1885 * SIM_Seek | |
| 1886 * | |
| 1887 * Search data in a linear fixed or cyclic EF. | |
| 1888 * return the first record number in which it found the data. | |
| 1889 */ | |
| 1890 SYS_UWORD16 SIM_Seek(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD8 mode, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 1891 { | |
| 1892 SIM_PORT *p; | |
| 1893 int i; | |
| 1894 int res; | |
| 1895 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 1896 | |
| 1897 p = &(Sim[0]); | |
| 1898 | |
| 1899 p->xbuf[0] = GSM_CLASS; | |
| 1900 p->xbuf[1] = SIM_SEEK; | |
| 1901 p->xbuf[2] = 0; | |
| 1902 p->xbuf[3] = mode; | |
| 1903 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 1904 | |
| 1905 for (i=0;i<llen;i++) | |
| 1906 { | |
| 1907 p->xbuf[5+i] = *(dat+i); | |
| 1908 } | |
| 1909 | |
| 1910 res = SIM_Command(p, llen, result, rcvSize); | |
| 1911 | |
| 1912 #ifdef SIM_DEBUG_TRACE | |
| 1913 SIM_dbg_write_trace((SYS_UWORD8 *)"AQCMD", 5); | |
| 1914 SIM_dbg_write_trace(p->xbuf, llen+5); | |
| 1915 SIM_dbg_write_trace((SYS_UWORD8 *)"AQANS", 5); | |
| 1916 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 1917 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 1918 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1919 SIM_dbg_write_trace(result, *rcvSize); | |
| 1920 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1921 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1922 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1923 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1924 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1925 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1926 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1927 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1928 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1929 #endif | |
| 1930 | |
| 1931 return(res); | |
| 1932 } | |
| 1933 | |
| 1934 /* | |
| 1935 * SIM_Increase | |
| 1936 * | |
| 1937 * Add value to a record of a cyclic EF | |
| 1938 */ | |
| 1939 SYS_UWORD16 SIM_Increase(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 *rcvSize) | |
| 1940 { | |
| 1941 SIM_PORT *p; | |
| 1942 int len; | |
| 1943 int i; | |
| 1944 int res; | |
| 1945 | |
| 1946 p = &(Sim[0]); | |
| 1947 | |
| 1948 len = 3; | |
| 1949 | |
| 1950 p->xbuf[0] = GSM_CLASS; | |
| 1951 p->xbuf[1] = SIM_INCREASE; | |
| 1952 p->xbuf[2] = 0; | |
| 1953 p->xbuf[3] = 0; | |
| 1954 p->xbuf[4] = 3; | |
| 1955 | |
| 1956 for (i=0;i<3;i++) | |
| 1957 { | |
| 1958 p->xbuf[5+i] = *(dat+i); | |
| 1959 } | |
| 1960 | |
| 1961 res = SIM_Command(p, len, result, rcvSize); | |
| 1962 | |
| 1963 #ifdef SIM_DEBUG_TRACE | |
| 1964 SIM_dbg_write_trace((SYS_UWORD8 *)"ARCMD", 5); | |
| 1965 SIM_dbg_write_trace(p->xbuf, 3+5); | |
| 1966 SIM_dbg_write_trace((SYS_UWORD8 *)"ARANS", 5); | |
| 1967 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 1968 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 1969 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1970 SIM_dbg_write_trace(result, *rcvSize); | |
| 1971 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 1972 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 1973 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1974 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 1975 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 1976 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 1977 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 1978 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 1979 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 1980 #endif | |
| 1981 | |
| 1982 return(res); | |
| 1983 } | |
| 1984 | |
| 1985 /* | |
| 1986 * SIM_TerminalProfile | |
| 1987 * | |
| 1988 * Used by ME to send its toolkit capabilities to SIM | |
| 1989 */ | |
| 1990 SYS_UWORD16 SIM_TerminalProfile(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 1991 { | |
| 1992 SIM_PORT *p; | |
| 1993 int i; | |
| 1994 int res; | |
| 1995 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 1996 | |
| 1997 p = &(Sim[0]); | |
| 1998 | |
| 1999 p->xbuf[0] = GSM_CLASS; | |
| 2000 p->xbuf[1] = SIM_TERMINAL_PROFILE; | |
| 2001 p->xbuf[2] = 0; | |
| 2002 p->xbuf[3] = 0; | |
| 2003 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 2004 | |
| 2005 for (i=0;i<llen;i++) | |
| 2006 { | |
| 2007 p->xbuf[5+i] = *(dat+i); | |
| 2008 } | |
| 2009 | |
| 2010 res = SIM_Command(p, llen, result, rcvSize); | |
| 2011 | |
| 2012 #ifdef SIM_DEBUG_TRACE | |
| 2013 SIM_dbg_write_trace((SYS_UWORD8 *)"ASCMD", 5); | |
| 2014 SIM_dbg_write_trace(p->xbuf, llen+5); | |
| 2015 SIM_dbg_write_trace((SYS_UWORD8 *)"ASANS", 5); | |
| 2016 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 2017 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 2018 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2019 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 2020 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 2021 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 2022 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 2023 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 2024 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2025 #endif | |
| 2026 | |
| 2027 return(res); | |
| 2028 } | |
| 2029 | |
| 2030 | |
| 2031 /* | |
| 2032 * SIM_FETCH | |
| 2033 * | |
| 2034 * Used by ME to inquiry of what SIM toolkit need to do | |
| 2035 */ | |
| 2036 SYS_UWORD16 SIM_Fetch(SYS_UWORD8 *result, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 2037 { | |
| 2038 SIM_PORT *p; | |
| 2039 int i; | |
| 2040 int res; | |
| 2041 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 2042 | |
| 2043 p = &(Sim[0]); | |
| 2044 | |
| 2045 p->xbuf[0] = GSM_CLASS; | |
| 2046 p->xbuf[1] = SIM_FETCH; | |
| 2047 p->xbuf[2] = 0; | |
| 2048 p->xbuf[3] = 0; | |
| 2049 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 2050 | |
| 2051 | |
| 2052 res = SIM_Command(p, 0, result, rcvSize); | |
| 2053 | |
| 2054 #ifdef SIM_DEBUG_TRACE | |
| 2055 SIM_dbg_write_trace((SYS_UWORD8 *)"ATCMD", 5); | |
| 2056 SIM_dbg_write_trace(p->xbuf, 5); | |
| 2057 SIM_dbg_write_trace((SYS_UWORD8 *)"ATANS", 5); | |
| 2058 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 2059 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 2060 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2061 SIM_dbg_write_trace(result, *rcvSize); | |
| 2062 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 2063 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 2064 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2065 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 2066 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 2067 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 2068 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 2069 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 2070 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2071 #endif | |
| 2072 | |
| 2073 return(res); | |
| 2074 } | |
| 2075 | |
| 2076 | |
| 2077 /* | |
| 2078 * SIM_TerminalResponse * | |
| 2079 * Used for ME to respond at a SIM toolkit command | |
| 2080 */ | |
| 2081 SYS_UWORD16 SIM_TerminalResponse(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 2082 { | |
| 2083 SIM_PORT *p; | |
| 2084 int i; | |
| 2085 int res; | |
| 2086 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 2087 | |
| 2088 p = &(Sim[0]); | |
| 2089 | |
| 2090 p->xbuf[0] = GSM_CLASS; | |
| 2091 p->xbuf[1] = SIM_TERMINAL_RESPONSE; | |
| 2092 p->xbuf[2] = 0; | |
| 2093 p->xbuf[3] = 0; | |
| 2094 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 2095 | |
| 2096 for (i=0;i<llen;i++) | |
| 2097 { | |
| 2098 p->xbuf[5+i] = *(dat+i); | |
| 2099 } | |
| 2100 | |
| 2101 res = SIM_Command(p, llen, result, rcvSize); | |
| 2102 | |
| 2103 #ifdef SIM_DEBUG_TRACE | |
| 2104 SIM_dbg_write_trace((SYS_UWORD8 *)"AUCMD", 5); | |
| 2105 SIM_dbg_write_trace(p->xbuf, llen+5); | |
| 2106 SIM_dbg_write_trace((SYS_UWORD8 *)"AUANS", 5); | |
| 2107 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 2108 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 2109 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2110 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 2111 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 2112 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 2113 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 2114 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 2115 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2116 #endif | |
| 2117 | |
| 2118 return(res); | |
| 2119 } | |
| 2120 | |
| 2121 | |
| 2122 /* | |
| 2123 * SIM_Envelope | |
| 2124 * | |
| 2125 * Used by Network to tansfert data download to the SIM in a transparent way for user | |
| 2126 */ | |
| 2127 SYS_UWORD16 SIM_Envelope(SYS_UWORD8 *result, SYS_UWORD8 *dat, SYS_UWORD16 len, SYS_UWORD16 *rcvSize) | |
| 2128 { | |
| 2129 SIM_PORT *p; | |
| 2130 int i; | |
| 2131 int res; | |
| 2132 SYS_UWORD16 llen = len & SIM_UWORD16_MASK; | |
| 2133 | |
| 2134 p = &(Sim[0]); | |
| 2135 | |
| 2136 p->xbuf[0] = GSM_CLASS; | |
| 2137 p->xbuf[1] = SIM_ENVELOPE; | |
| 2138 p->xbuf[2] = 0; | |
| 2139 p->xbuf[3] = 0; | |
| 2140 p->xbuf[4] = (SYS_UWORD8)llen; | |
| 2141 | |
| 2142 for (i=0;i<llen;i++) | |
| 2143 { | |
| 2144 p->xbuf[5+i] = *(dat+i); | |
| 2145 } | |
| 2146 | |
| 2147 res = SIM_Command(p, llen, result, rcvSize); | |
| 2148 | |
| 2149 #ifdef SIM_DEBUG_TRACE | |
| 2150 SIM_dbg_write_trace((SYS_UWORD8 *)"AVCMD", 5); | |
| 2151 SIM_dbg_write_trace(p->xbuf, llen+5); | |
| 2152 SIM_dbg_write_trace((SYS_UWORD8 *)"AVANS", 5); | |
| 2153 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 2154 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 2155 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2156 SIM_dbg_write_trace(result, *rcvSize); | |
| 2157 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 2158 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 2159 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2160 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 2161 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 2162 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 2163 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 2164 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 2165 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2166 #endif | |
| 2167 | |
| 2168 return(res); | |
| 2169 } | |
| 2170 | |
| 2171 | |
| 2172 | |
| 2173 | |
| 2174 | |
| 2175 | |
| 2176 | |
| 2177 | |
| 2178 | |
| 2179 /* | |
| 2180 * SIM_XchTPDU * | |
| 2181 * Used for ME to send generic command to WIM Card | |
| 2182 */ | |
| 2183 SYS_UWORD16 SIM_XchTPDU(SYS_UWORD8 *dat, SYS_UWORD16 trxLen, SYS_UWORD8 *result, | |
| 2184 SYS_UWORD16 rcvLen, SYS_UWORD16 *rcvSize) | |
| 2185 { | |
| 2186 SIM_PORT *p; | |
| 2187 int i; | |
| 2188 int res; | |
| 2189 | |
| 2190 p = &(Sim[0]); | |
| 2191 | |
| 2192 p->xbuf[0] = dat[0]; | |
| 2193 p->xbuf[1] = dat[1]; | |
| 2194 p->xbuf[2] = dat[2]; | |
| 2195 p->xbuf[3] = dat[3]; | |
| 2196 p->xbuf[4] = dat[4]; | |
| 2197 | |
| 2198 for (i=5;i<trxLen;i++) | |
| 2199 { | |
| 2200 p->xbuf[i] = dat[i]; | |
| 2201 } | |
| 2202 | |
| 2203 // enable the WIM behavior of the sim driver | |
| 2204 p->apdu_ans_length = rcvLen; | |
| 2205 | |
| 2206 res = SIM_Command(p, (trxLen - 5), result, rcvSize); | |
| 2207 | |
| 2208 // disable the WIM behavior of the sim driver | |
| 2209 p->apdu_ans_length = 0; | |
| 2210 | |
| 2211 #ifdef SIM_DEBUG_TRACE | |
| 2212 SIM_dbg_write_trace((SYS_UWORD8 *)"AWCMD", 5); | |
| 2213 SIM_dbg_write_trace(p->xbuf, trxLen); | |
| 2214 SIM_dbg_write_trace((SYS_UWORD8 *)"AWANS", 5); | |
| 2215 SIM_dbg_tmp[0] = (SYS_UWORD8)(*rcvSize >> 8); | |
| 2216 SIM_dbg_tmp[1] = (SYS_UWORD8)(*rcvSize); | |
| 2217 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2218 SIM_dbg_write_trace(result, *rcvSize); | |
| 2219 SIM_dbg_tmp[0] = (SYS_WORD8)(res>>8); | |
| 2220 SIM_dbg_tmp[1] = (SYS_WORD8)res; | |
| 2221 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2222 SIM_dbg_write_trace(SIM_dbg_null, SIM_DBG_NULL); | |
| 2223 if (SIM_dbg_tdma_diff > SIM_dbg_max_interchardelay) | |
| 2224 SIM_dbg_max_interchardelay = SIM_dbg_tdma_diff; | |
| 2225 SIM_dbg_tmp[0] = (SYS_UWORD8)(SIM_dbg_tdma_diff >> 8); | |
| 2226 SIM_dbg_tmp[1] = (SYS_UWORD8)(SIM_dbg_tdma_diff); | |
| 2227 SIM_dbg_write_trace(SIM_dbg_tmp, 2); | |
| 2228 #endif | |
| 2229 | |
| 2230 return(res); | |
| 2231 } | |
| 2232 | |
| 2233 | |
| 2234 | |
| 2235 | |
| 2236 | |
| 2237 | |
| 2238 | |
| 2239 | |
| 2240 /* | |
| 2241 * Use to detect end of characters reception | |
| 2242 * input: p pointer on sim structure | |
| 2243 * n number of extra character to send | |
| 2244 * | |
| 2245 * output: return 0 if sucess | |
| 2246 * SIM_ERR_x in case of error | |
| 2247 * | |
| 2248 */ | |
| 2249 | |
| 2250 SYS_UWORD16 SIM_WaitReception(SIM_PORT *p) | |
| 2251 { | |
| 2252 SYS_UWORD16 returncode; | |
| 2253 | |
| 2254 | |
| 2255 //analyse the nature of the command to execute | |
| 2256 | |
| 2257 if ( | |
| 2258 (p->xbuf[1] == 0x12) || | |
| 2259 (p->xbuf[1] == 0xB2) || | |
| 2260 (p->xbuf[1] == 0xB0) || | |
| 2261 (p->xbuf[1] == 0xF2) || | |
| 2262 (p->xbuf[1] == 0xC0) || | |
| 2263 (p->apdu_ans_length != 0) | |
| 2264 ) | |
| 2265 //FETCH, READ_RECORD, READ_BINARY, STATUS, GET_RESPONSE commands == receive command | |
| 2266 { | |
| 2267 if (p->xbuf[4] == 0) //if P3 == 0 when sending receive command | |
| 2268 { | |
| 2269 p->expected_data = 256; | |
| 2270 } | |
| 2271 else | |
| 2272 { | |
| 2273 p->expected_data = p->xbuf[4]; | |
| 2274 } | |
| 2275 | |
| 2276 p->moderx = 1; //wait for procedure byte | |
| 2277 | |
| 2278 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
| 2279 { | |
| 2280 return returncode; | |
| 2281 } | |
| 2282 } | |
| 2283 else //direct command : INVALIDATE, REHABILITATE, SLEEP | |
| 2284 { | |
| 2285 p->moderx = 5; //mode reception of SW1/SW2 | |
| 2286 | |
| 2287 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
| 2288 { | |
| 2289 return returncode; | |
| 2290 } | |
| 2291 } | |
| 2292 return (0); | |
| 2293 } | |
| 2294 | |
| 2295 | |
| 2296 | |
| 2297 /* | |
| 2298 * Use to read file characteristics information | |
| 2299 * input: p pointer on sim structure | |
| 2300 * | |
| 2301 * output: return 0 if sucess | |
| 2302 * 1 in case of error | |
| 2303 * | |
| 2304 */ | |
| 2305 | |
| 2306 | |
| 2307 SYS_UWORD8 SIM_GetFileCharacteristics(SIM_PORT *p) | |
| 2308 { | |
| 2309 int res; | |
| 2310 SYS_UWORD8 ubuf[40]; | |
| 2311 SYS_UWORD16 sz; | |
| 2312 | |
| 2313 res = SIM_Select(DF_GSM, ubuf, &sz); | |
| 2314 if ((res & 0xFF00) != 0x9F00) | |
| 2315 { | |
| 2316 res = SIM_Select(DF_DCS1800, ubuf, &sz); | |
| 2317 if ((res & 0xFF00) != 0x9F00) | |
| 2318 { | |
| 2319 return (1); | |
| 2320 } | |
| 2321 } | |
| 2322 res = SIM_GetResponse( ubuf, res & 0x00FF , &sz); | |
| 2323 if (res != 0x9000) | |
| 2324 return (1); | |
| 2325 | |
| 2326 p->FileC = ubuf[13]; | |
| 2327 return (0); | |
| 2328 } | |
| 2329 | |
| 2330 /* | |
| 2331 * Use to determine value of b2 in file caracteristics contained in response | |
| 2332 * of SELECT Master File command | |
| 2333 * return 0 if no preferred speed during authentication | |
| 2334 * 1 if 13/4Mhz mandatory | |
| 2335 * | |
| 2336 * | |
| 2337 */ | |
| 2338 | |
| 2339 void SIM_Interpret_FileCharacteristics(SIM_PORT *p) | |
| 2340 { | |
| 2341 //interpret b2 bit for operating authentication speed | |
| 2342 if((p->conf1 & 0x0020) && (p->FileC & 0x02)) | |
| 2343 { | |
| 2344 p->Freq_Algo = 1; | |
| 2345 } | |
| 2346 | |
| 2347 //interpret Clock stop behavior | |
| 2348 // modified by J. Yp-Tcha to integrate all the behaviors required by ETSI. | |
| 2349 // 18/11/2002 : TI Chip always allowed low level, high level is hard dependant | |
| 2350 | |
| 2351 if ((p->FileC & SIM_CLK_STOP_MASK) == SIM_CLK_STOP_NOT_ALLWD) { | |
| 2352 /* Sim Clock Stop Not Allowed */ | |
| 2353 SIM_sleep_status = SIM_SLEEP_NOT_ALLOWED; | |
| 2354 /* There is not need to modifiy p->conf1 */ | |
| 2355 status_os_sim = NU_Delete_Timer (&SIM_timer); | |
| 2356 } | |
| 2357 else { | |
| 2358 if ((p->FileC & SIM_CLK_STOP_MASK) == SIM_CLK_STOP_ALLWD) { | |
| 2359 /* Sim Clock Stop Allowed, no prefered level */ | |
| 2360 /* Default value for TI Chip shall always be Low Level */ | |
| 2361 SIM_sleep_status = SIM_SLEEP_DESACT; | |
| 2362 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SCLKLEV; | |
| 2363 } | |
| 2364 else { | |
| 2365 /* Clock Stop is allowed, the level shall be checked */ | |
| 2366 if ((p->FileC & SIM_CLK_STOP_HIGH) == SIM_CLK_STOP_HIGH) { | |
| 2367 /* high level is mandatory */ | |
| 2368 /* OMEGA/NAUSICA can not handle sim stop clock at high level */ | |
| 2369 #ifndef ANALOG1 | |
| 2370 SIM_sleep_status = SIM_SLEEP_DESACT; | |
| 2371 p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKLEV; | |
| 2372 #else | |
| 2373 /* Sim Clock Stop Not Allowed because the interface do not support this level */ | |
| 2374 SIM_sleep_status = SIM_SLEEP_NOT_ALLOWED; | |
| 2375 /* There is not need to modifiy p->conf1 */ | |
| 2376 status_os_sim = NU_Delete_Timer (&SIM_timer); | |
| 2377 #endif | |
| 2378 } | |
| 2379 else { | |
| 2380 /* by default, Low Level is allowed */ | |
| 2381 SIM_sleep_status = SIM_SLEEP_DESACT; | |
| 2382 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SCLKLEV; | |
| 2383 } | |
| 2384 } | |
| 2385 } | |
| 2386 if (SIM_sleep_status == SIM_SLEEP_NONE) | |
| 2387 { | |
| 2388 status_os_sim = NU_Delete_Timer (&SIM_timer); | |
| 2389 } | |
| 2390 } | |
| 2391 | |
| 2392 /* | |
| 2393 * Use to evaluate need of sending PTS procedure regarding | |
| 2394 * the ATR. If default not used, PTS initiates F and D adequate values | |
| 2395 * for speed enhancement. | |
| 2396 * In case of 2 wrong PTS answer (speed enhanced), a third PTS with default value | |
| 2397 * is used. If the third PTS attempt failed, the ME reset the SIM and use default | |
| 2398 * value. | |
| 2399 * Return Value : SIM_ERR_READ, SIM_ERRCARDREJECT, SIM_ERR_WAIT | |
| 2400 * | |
| 2401 */ | |
| 2402 | |
| 2403 | |
| 2404 SYS_UWORD16 SIM_PTSprocedure(SIM_CARD *cP, SIM_PORT *p) | |
| 2405 { | |
| 2406 | |
| 2407 SYS_UWORD8 TA1; | |
| 2408 SYS_UWORD8 n; | |
| 2409 SYS_UWORD8 err; | |
| 2410 | |
| 2411 p->xbuf[0] = 0xFF; //character of PTS proc to send | |
| 2412 p->xbuf[1] = 0; | |
| 2413 p->xbuf[2] = 0xFF; | |
| 2414 p->xbuf[3] = 0x7B; | |
| 2415 | |
| 2416 //TA1,TB1,TC1,TD1 present in ATR ? | |
| 2417 | |
| 2418 n = 3; | |
| 2419 | |
| 2420 p->PTS_Try++; | |
| 2421 | |
| 2422 if (p->PTS_Try > 4) | |
| 2423 { | |
| 2424 return (SIM_ERR_CARDREJECT); | |
| 2425 } // at the fourth attempt, PTS procedure is unusefull. Use default value. | |
| 2426 //TA1 present? Test 27.11.2.6 | |
| 2427 else if ( p->PTS_Try == 4) | |
| 2428 { | |
| 2429 SIM_Calcetu (p); | |
| 2430 return (0); | |
| 2431 } | |
| 2432 | |
| 2433 if(cP->AtrData[1] & 0x10) | |
| 2434 { | |
| 2435 TA1 = cP->AtrData[2]; | |
| 2436 } | |
| 2437 else //if TA1 not present, return | |
| 2438 { | |
| 2439 SIM_Calcetu (p); | |
| 2440 return (0); | |
| 2441 } | |
| 2442 | |
| 2443 #if 0 // Dmitriy: removed by TI patch | |
| 2444 if (TA1 >= 0x94) //speed enhancement | |
| 2445 { | |
| 2446 // JYT 26/9/2003 to check correct behavior of the SIM Driver vs the PPS. | |
| 2447 //#ifdef NOTTOLOADBECAUSENOTTESTED | |
| 2448 // SIM_Calcetu (p); | |
| 2449 // return (0); //temporary disabling of speed enhancement feature | |
| 2450 | |
| 2451 if (p->PTS_Try <= 2) | |
| 2452 { | |
| 2453 n = 4; | |
| 2454 p->xbuf[1] = 0x10; | |
| 2455 p->xbuf[2] = 0x94; // if speed enhancement, then at least (and at most) F = 512 and D = 8 is supported | |
| 2456 } | |
| 2457 //#endif | |
| 2458 } | |
| 2459 #endif | |
| 2460 | |
| 2461 if ((TA1 == 0x11) || (TA1 == 0x01)) | |
| 2462 { | |
| 2463 SIM_Calcetu (p); | |
| 2464 return (0); | |
| 2465 } //if TA1 != 0x11 and 0x94, need to send PTS request | |
| 2466 //transmit request of speed enhancement : PTS | |
| 2467 SIM_WriteBuffer(p, 0, n); | |
| 2468 | |
| 2469 p->moderx = 0; //mode of normal reception | |
| 2470 p->expected_data = n; | |
| 2471 | |
| 2472 if (err = SIM_Waitforchars (p, p->etu9600)) | |
| 2473 { | |
| 2474 return (err); | |
| 2475 } | |
| 2476 //should received same chars as PTS request | |
| 2477 if ((p->rbuf[0] != p->xbuf[0]) || (p->rbuf[1] != p->xbuf[1]) || | |
| 2478 (p->rbuf[2] != p->xbuf[2])) | |
| 2479 { | |
| 2480 return(SIM_ERR_READ); | |
| 2481 } | |
| 2482 | |
| 2483 | |
| 2484 if (n == 4) | |
| 2485 { | |
| 2486 if (p->rbuf[3] != p->xbuf[3]) | |
| 2487 { | |
| 2488 return(SIM_ERR_READ); | |
| 2489 } | |
| 2490 | |
| 2491 //correct response from SIM : with speed enhanced | |
| 2492 p->c->conf1 = p->conf1 |= SIM_CONF1_ETU; //set F=512 D=8 | |
| 2493 } | |
| 2494 | |
| 2495 SIM_Calcetu (p); | |
| 2496 return (0); | |
| 2497 | |
| 2498 } | |
| 2499 | |
| 2500 /* | |
| 2501 * procedure of WARM reset consists on asserting | |
| 2502 * reset signal at 0 during at least 400 ETU | |
| 2503 * input p pointer of type SIM_PORT | |
| 2504 */ | |
| 2505 | |
| 2506 void SIM_WARMReset (SIM_PORT *p) | |
| 2507 { | |
| 2508 | |
| 2509 p->c->conf1 = p->conf1 &= ~SIM_CONF1_SRSTLEV; | |
| 2510 ind_os_sleep (p->etu400); /// wait 400 ETU | |
| 2511 p->c->conf1 = p->conf1 |= SIM_CONF1_SRSTLEV; | |
| 2512 p->rx_index = 0; | |
| 2513 | |
| 2514 } | |
| 2515 | |
| 2516 | |
| 2517 /* | |
| 2518 * procedure use to get out sleepMode | |
| 2519 * input p pointer of type SIM_PORT | |
| 2520 */ | |
| 2521 | |
| 2522 void SIM_SleepMode_In (SYS_UWORD32 param) | |
| 2523 { | |
| 2524 if (SIM_sleep_status == SIM_SLEEP_DESACT) | |
| 2525 { | |
| 2526 (&(Sim[0]))->c->conf1 &= ~SIM_CONF1_SCLKEN; //disabled the clock for the SIM card | |
| 2527 SIM_sleep_status = SIM_SLEEP_ACT; | |
| 2528 } | |
| 2529 status_os_sim = NU_Control_Timer (&SIM_timer, NU_DISABLE_TIMER); | |
| 2530 } | |
| 2531 | |
| 2532 | |
| 2533 | |
| 2534 | |
| 2535 /* | |
| 2536 * procedure use to get out sleepMode | |
| 2537 * input p pointer of type SIM_PORT | |
| 2538 */ | |
| 2539 | |
| 2540 void SIM_SleepMode_Out (SIM_PORT *p) | |
| 2541 { | |
| 2542 if (SIM_sleep_status == SIM_SLEEP_ACT) | |
| 2543 { | |
| 2544 p->c->conf1 = p->conf1 |= SIM_CONF1_SCLKEN; | |
| 2545 // WCS patch for NU_Sleep(0) bug | |
| 2546 if (p->startclock > 0) | |
| 2547 ind_os_sleep (p->startclock); | |
| 2548 // End WCS patch | |
| 2549 SIM_sleep_status = SIM_SLEEP_DESACT; | |
| 2550 } | |
| 2551 } | |
| 2552 | |
| 2553 /* | |
| 2554 * procedure to parse ATR dynamically | |
| 2555 * input p pointer of type SIM_PORT | |
| 2556 * output return error code | |
| 2557 * SIM_ERR_WAIT, p->errorSIM | |
| 2558 * SIM_ERR_CARDREJECT, | |
| 2559 * | |
| 2560 * | |
| 2561 */ | |
| 2562 | |
| 2563 | |
| 2564 SYS_UWORD16 SIM_ATRdynamictreatement (SIM_PORT *p, SIM_CARD *cP) | |
| 2565 { | |
| 2566 | |
| 2567 volatile SYS_UWORD8 HistChar; | |
| 2568 volatile SYS_UWORD8 InterfChar; | |
| 2569 SYS_UWORD16 countT; | |
| 2570 SYS_UWORD16 mask; | |
| 2571 SYS_UWORD16 returncode; | |
| 2572 SYS_UWORD8 i; | |
| 2573 SYS_UWORD8 firstprotocol; | |
| 2574 SYS_UWORD8 Tx,T; | |
| 2575 SYS_UWORD8 TDi; | |
| 2576 SYS_UWORD8 position_of_TC1, position_of_TB1; | |
| 2577 SYS_UWORD8 another_protocol_present; | |
| 2578 SYS_UWORD16 wait80000clk; | |
| 2579 | |
| 2580 i = 0; | |
| 2581 //wait for TS and T0 | |
| 2582 p->moderx = 0; | |
| 2583 p->expected_data= 1; | |
| 2584 firstprotocol = 0; | |
| 2585 position_of_TC1 = 0; | |
| 2586 position_of_TB1 = 0; | |
| 2587 another_protocol_present = 0; | |
| 2588 wait80000clk = 6; // > 24 ms | |
| 2589 | |
| 2590 //wait for first character TS of ATR sequence. It should arrive before 80000sclk | |
| 2591 if (returncode = SIM_Waitforchars (p, wait80000clk)) | |
| 2592 { | |
| 2593 return returncode; | |
| 2594 } | |
| 2595 | |
| 2596 //wait for T0 | |
| 2597 p->expected_data++; | |
| 2598 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
| 2599 { | |
| 2600 return returncode; | |
| 2601 } | |
| 2602 | |
| 2603 ind_os_sleep(220); | |
| 2604 | |
| 2605 if (((p->rbuf[0] & 0xF0) == 0x30) && (p->rx_index != 0)) | |
| 2606 { | |
| 2607 cP->Inverse = 0; | |
| 2608 } | |
| 2609 /*-----------------------------------------------------------*/ | |
| 2610 /* Inverse convention card */ | |
| 2611 // If first byte is correct for inverse card, return success | |
| 2612 else if (((p->rbuf[0] & 0x0F) == 0x03) && (p->rx_index != 0)) | |
| 2613 { | |
| 2614 cP->Inverse = 1; | |
| 2615 } | |
| 2616 else | |
| 2617 { | |
| 2618 return (SIM_ERR_CARDREJECT); //Test 27.11.2.4.5 | |
| 2619 } | |
| 2620 | |
| 2621 countT = 0; | |
| 2622 mask = 0x10; | |
| 2623 InterfChar = 2; | |
| 2624 TDi = 1; | |
| 2625 | |
| 2626 | |
| 2627 Tx = SIM_Translate_atr_char (p->rbuf[1], cP); | |
| 2628 | |
| 2629 HistChar = Tx & 0x0F; //get K, number of transmitted historical character | |
| 2630 | |
| 2631 | |
| 2632 while (TDi != 0) | |
| 2633 { | |
| 2634 while (mask < 0x100) //monitors interface chars | |
| 2635 { | |
| 2636 if ((Tx & mask) == mask) //monitors if interface character TAx,TBx,TCx,TDc present | |
| 2637 { | |
| 2638 InterfChar++; | |
| 2639 } | |
| 2640 //wait for TC1 and save its position | |
| 2641 if ((firstprotocol == 0) && ((Tx & 0x40) == mask)) | |
| 2642 { | |
| 2643 position_of_TC1 = InterfChar - 1; | |
| 2644 } | |
| 2645 if ((firstprotocol == 0) && ((Tx & 0x20) == mask)) | |
| 2646 { | |
| 2647 position_of_TB1 = InterfChar - 1; | |
| 2648 } | |
| 2649 | |
| 2650 mask = mask << 1; | |
| 2651 } | |
| 2652 | |
| 2653 p->expected_data = InterfChar; //wait for TAi,TBi,TCi,TDi if present | |
| 2654 | |
| 2655 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
| 2656 { | |
| 2657 return returncode; | |
| 2658 } | |
| 2659 | |
| 2660 //need to monitor if TC1 present and if equal to 0 or 255 on first protocol | |
| 2661 if ((firstprotocol == 0) && (position_of_TC1 != 0)) | |
| 2662 { | |
| 2663 T = SIM_Translate_atr_char (p->rbuf[position_of_TC1], cP); | |
| 2664 | |
| 2665 if ((T != 0) && (T != 255)) //test 27.11.1.3 | |
| 2666 { //return Error in case of bad TC1 value | |
| 2667 return (SIM_ERR_CARDREJECT); | |
| 2668 } | |
| 2669 } | |
| 2670 //need to monitor if TB1 present and if differente from 0 on first protocol | |
| 2671 if ((firstprotocol == 0) && (position_of_TB1 != 0)) | |
| 2672 { | |
| 2673 T = SIM_Translate_atr_char (p->rbuf[position_of_TB1], cP); | |
| 2674 | |
| 2675 if (T != 0) //ITU | |
| 2676 { //return Error in case of bad TB1 value | |
| 2677 return (SIM_ERR_CARDREJECT); | |
| 2678 } | |
| 2679 } | |
| 2680 | |
| 2681 if ((Tx & 0x80) == 0x80) //TDi byte on first protocol must be 0 | |
| 2682 { //get new TD char | |
| 2683 Tx = SIM_Translate_atr_char (p->rbuf[InterfChar - 1], cP); | |
| 2684 | |
| 2685 if ((Tx & 0x0F) != 0) | |
| 2686 { | |
| 2687 if (firstprotocol == 0) //if first protocol received is not T=0, card is rejected | |
| 2688 { | |
| 2689 return (SIM_ERR_CARDREJECT); //protocol other than T=0 | |
| 2690 } | |
| 2691 else | |
| 2692 { //if an another protocol T != 0 present, need to wait for TCK char | |
| 2693 another_protocol_present = 1; | |
| 2694 } | |
| 2695 } | |
| 2696 mask = 0x10; | |
| 2697 firstprotocol++; //indicate another protocol T | |
| 2698 } | |
| 2699 else | |
| 2700 { | |
| 2701 TDi = 0; | |
| 2702 } | |
| 2703 } | |
| 2704 //add TCK if necessary | |
| 2705 p->expected_data = HistChar + InterfChar + another_protocol_present; | |
| 2706 | |
| 2707 if (returncode = SIM_Waitforchars (p, p->etu9600)) | |
| 2708 { | |
| 2709 return returncode; | |
| 2710 } | |
| 2711 | |
| 2712 cP->AtrSize = p->rx_index; | |
| 2713 | |
| 2714 if (cP->Inverse) //inverse card | |
| 2715 { | |
| 2716 // Copy ATR data | |
| 2717 for (i=0;i<cP->AtrSize;i++) | |
| 2718 { | |
| 2719 cP->AtrData[i] = SIM_ByteReverse(p->rbuf[i]); | |
| 2720 } | |
| 2721 p->c->conf1 = p->conf1 |= SIM_CONF1_CONV | SIM_CONF1_CHKPAR; | |
| 2722 } | |
| 2723 else //direct card | |
| 2724 { | |
| 2725 p->c->conf1 = p->conf1 |= SIM_CONF1_CHKPAR; //0x0409 | |
| 2726 // Copy ATR data | |
| 2727 for (i=0;i<cP->AtrSize;i++) | |
| 2728 { | |
| 2729 cP->AtrData[i] = p->rbuf[i]; | |
| 2730 } | |
| 2731 } | |
| 2732 | |
| 2733 return (0); | |
| 2734 } | |
| 2735 | |
| 2736 /* | |
| 2737 ** SIM_Translate_atr_char | |
| 2738 * | |
| 2739 * FILENAME: sim.c | |
| 2740 * | |
| 2741 * PARAMETERS: input char to translate | |
| 2742 * cP sim structure (indicates if inverse card present) | |
| 2743 * DESCRIPTION: return the correct value of input for inverse card | |
| 2744 * | |
| 2745 * RETURNS: character after parsing | |
| 2746 * stays the same if direct card | |
| 2747 */ | |
| 2748 | |
| 2749 SYS_UWORD8 SIM_Translate_atr_char (SYS_UWORD8 input, SIM_CARD *cP) | |
| 2750 { | |
| 2751 SYS_UWORD8 translated; | |
| 2752 | |
| 2753 if (cP->Inverse) | |
| 2754 { | |
| 2755 translated = SIM_ByteReverse(input); | |
| 2756 } | |
| 2757 else | |
| 2758 { | |
| 2759 translated = input; //get character next char T0 | |
| 2760 } | |
| 2761 return (translated); | |
| 2762 } | |
| 2763 | |
| 2764 | |
| 2765 | |
| 2766 /* | |
| 2767 * SIM_Waitforchars is used for waiting nbchar characters from SIM | |
| 2768 * input p sim port | |
| 2769 * max_wait max number of TDMA to wait between 2 characters | |
| 2770 * output | |
| 2771 * error code 0 if OK | |
| 2772 */ | |
| 2773 | |
| 2774 | |
| 2775 SYS_UWORD16 SIM_Waitforchars (SIM_PORT *p, SYS_UWORD16 max_wait) | |
| 2776 { | |
| 2777 volatile SYS_UWORD8 old_nb_char; | |
| 2778 volatile SYS_UWORD16 countT; | |
| 2779 | |
| 2780 if (p->moderx == 6) //use for reception of ACK when command need to transmit rest of data | |
| 2781 { | |
| 2782 p->ack = 0; | |
| 2783 countT = 0; | |
| 2784 | |
| 2785 while((p->ack == 0) && (p->moderx == 6)) | |
| 2786 { //if p->moderx change from 6 to 5, need to wait for SW1 and SW2 | |
| 2787 | |
| 2788 ind_os_sleep(1); | |
| 2789 countT++; //implementation of software Waiting time overflow | |
| 2790 | |
| 2791 if (p->null_received) //if NULL char received, wait for next procedure char | |
| 2792 { | |
| 2793 countT = 0; | |
| 2794 p->null_received = 0; | |
| 2795 } | |
| 2796 | |
| 2797 if (countT > max_wait) | |
| 2798 { | |
| 2799 return (SIM_ERR_WAIT); | |
| 2800 } | |
| 2801 if (p->errorSIM) | |
| 2802 { | |
| 2803 return(p->errorSIM); | |
| 2804 } | |
| 2805 } | |
| 2806 if (p->moderx == 6) //if transition to moderx = 5 in synchronous part | |
| 2807 { //need to quit for SW1/SW2 reception | |
| 2808 return (0); | |
| 2809 } | |
| 2810 } | |
| 2811 | |
| 2812 if ((p->moderx != 6) && (p->moderx != 5)) //treatement of mode 0, 1, 2, 3, 4 | |
| 2813 { | |
| 2814 countT = 0; | |
| 2815 old_nb_char = p->rx_index; | |
| 2816 //leave while if moderx == 5 | |
| 2817 while((p->rx_index < p->expected_data) && (p->moderx != 5)) | |
| 2818 { | |
| 2819 ind_os_sleep(1); | |
| 2820 countT++; //implementation of software Waiting time overflow | |
| 2821 | |
| 2822 if (p->null_received) //if NULL char received, wait for next procedure char | |
| 2823 { | |
| 2824 countT = 0; | |
| 2825 p->null_received = 0; | |
| 2826 } | |
| 2827 | |
| 2828 if (countT > max_wait) | |
| 2829 { | |
| 2830 return (SIM_ERR_WAIT); | |
| 2831 } | |
| 2832 if (p->errorSIM) | |
| 2833 { | |
| 2834 return(p->errorSIM); | |
| 2835 } | |
| 2836 if (p->rx_index > old_nb_char) | |
| 2837 { | |
| 2838 old_nb_char = p->rx_index; //if char received before max_wait TDMA, reset the counter | |
| 2839 countT = 0; | |
| 2840 } | |
| 2841 } //end while | |
| 2842 if (p->moderx == 0) | |
| 2843 { | |
| 2844 return (0); | |
| 2845 } | |
| 2846 } | |
| 2847 | |
| 2848 if (p->moderx == 5) //use for reception of SW1 SW2 | |
| 2849 { | |
| 2850 countT = 0; | |
| 2851 old_nb_char = p->SWcount; | |
| 2852 | |
| 2853 while(p->SWcount < 2) | |
| 2854 { //if p->moderx change from 6 to 5, need to wait for SW1 and SW2 | |
| 2855 | |
| 2856 ind_os_sleep(1); | |
| 2857 countT++; //implementation of software Waiting time overflow | |
| 2858 | |
| 2859 if (p->null_received) //if NULL char received, wait for next procedure char | |
| 2860 { | |
| 2861 countT = 0; | |
| 2862 p->null_received = 0; | |
| 2863 } | |
| 2864 | |
| 2865 if (countT > max_wait) | |
| 2866 { | |
| 2867 return (SIM_ERR_WAIT); | |
| 2868 } | |
| 2869 if (p->errorSIM) | |
| 2870 { | |
| 2871 return(p->errorSIM); | |
| 2872 } | |
| 2873 if (p->SWcount > old_nb_char) | |
| 2874 { | |
| 2875 old_nb_char = p->SWcount; //if char received before max_wait TDMA, reset the counter | |
| 2876 countT = 0; | |
| 2877 } | |
| 2878 } | |
| 2879 p->SWcount = 0; //reset SWcount buffer index when SW1 SW2 received | |
| 2880 return (0); | |
| 2881 } | |
| 2882 else //treatement of abnormal case of the asynchronous state machine | |
| 2883 { | |
| 2884 return (SIM_ERR_ABNORMAL_CASE1); | |
| 2885 } | |
| 2886 | |
| 2887 } | |
| 2888 | |
| 2889 | |
| 2890 | |
| 2891 /* | |
| 2892 * SIM_Calcetu is used for calculating 9600 etu and 400 etu depending on sim clock freq | |
| 2893 * and etu period | |
| 2894 * input p sim port | |
| 2895 */ | |
| 2896 | |
| 2897 void SIM_Calcetu (SIM_PORT *p) | |
| 2898 { | |
| 2899 if (p->conf1 & SIM_CONF1_SCLKDIV) //clock input is 13/8 Mhz | |
| 2900 { | |
| 2901 if (p->conf1 & SIM_CONF1_ETU) //etu period is 512/8*Tsclk | |
| 2902 { | |
| 2903 p->etu9600 = 319; // old = 88, increase of 363% | |
| 2904 p->etu400 = 6; | |
| 2905 p->stopclock = 18; | |
| 2906 p->startclock = 8; | |
| 2907 } | |
| 2908 else //etu period is 372/1*Tsclk | |
| 2909 { | |
| 2910 p->etu9600 = 1815; // old = 500, increase of 363% | |
| 2911 p->etu400 = 28; | |
| 2912 p->stopclock = 94; | |
| 2913 p->startclock = 38; | |
| 2914 } | |
| 2915 } | |
| 2916 else //clock input is 13/4 Mhz | |
| 2917 { | |
| 2918 if (p->conf1 & SIM_CONF1_ETU) //etu period is 512/8*Tsclk | |
| 2919 { | |
| 2920 p->etu9600 = 159; // old = 44, increase of 363% | |
| 2921 p->etu400 = 3; | |
| 2922 p->stopclock = 9; | |
| 2923 p->startclock = 4; | |
| 2924 } | |
| 2925 else //etu period is 372/1*Tsclk | |
| 2926 { | |
| 2927 p->etu9600 = 907; // old = 250, increase of 363% | |
| 2928 p->etu400 = 14; | |
| 2929 p->stopclock = 47; | |
| 2930 p->startclock = 19; | |
| 2931 } | |
| 2932 } | |
| 2933 } | |
| 2934 | |
| 2935 | |
| 2936 | |
| 2937 | |
| 2938 | |
| 2939 /* | |
| 2940 * Set the level shifter voltage for start up sequence | |
| 2941 * | |
| 2942 */ | |
| 2943 | |
| 2944 SYS_UWORD8 SIM_StartVolt (SYS_UWORD8 ResetFlag) | |
| 2945 { | |
| 2946 SYS_UWORD8 abbmask; | |
| 2947 | |
| 2948 #if(ANLG_FAM == 1) | |
| 2949 // we assume that in SIM_TYPE_5V there is nothing to do because it is the reset value | |
| 2950 #if ((SIM_TYPE == SIM_TYPE_3V) || (SIM_TYPE == SIM_TYPE_3_5V)) // { shut down VCC from ABB and prepare to start at 3V mode | |
| 2951 if (ResetFlag) { | |
| 2952 abbmask = MODE_INIT_OMEGA_3V; | |
| 2953 CurrentVolt = SIM_3V; // we assume the sim is 3v tech. from beginning. | |
| 2954 } | |
| 2955 else { | |
| 2956 if (CurrentVolt == SIM_3V) | |
| 2957 abbmask = MODE_INIT_OMEGA_3V; | |
| 2958 else | |
| 2959 abbmask = MODE5V_OMEGA; | |
| 2960 } | |
| 2961 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & 0xC0) | abbmask); | |
| 2962 ind_os_sleep(1); //wait for charge pump regulation | |
| 2963 return(SIM_OK); | |
| 2964 #endif | |
| 2965 #endif | |
| 2966 | |
| 2967 #if(ANLG_FAM == 2) | |
| 2968 SYS_UWORD8 count = 0; | |
| 2969 // code for Iota | |
| 2970 // reset value for IOTA is for 1.8V, but specific procedure is needed | |
| 2971 #if ((SIM_TYPE == SIM_TYPE_1_8V) || (SIM_TYPE == SIM_TYPE_1_8_3V)) // shut down VCC from ABB and prepare to start at 1.8V mode | |
| 2972 if (ResetFlag) { | |
| 2973 abbmask = MODE_INIT_IOTA_1_8V; | |
| 2974 CurrentVolt = SIM_1_8V; // we assume the sim is 1.8v tech. from beginning. | |
| 2975 } | |
| 2976 else { | |
| 2977 if (CurrentVolt == SIM_1_8V) | |
| 2978 abbmask = MODE_INIT_IOTA_1_8V; | |
| 2979 else | |
| 2980 abbmask = MODE_INIT_IOTA_3V; | |
| 2981 } | |
| 2982 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0xF4) | abbmask); | |
| 2983 while(count++ < 5) | |
| 2984 { | |
| 2985 if (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0x04) // test RSIMRSU | |
| 2986 return(SIM_OK); | |
| 2987 ind_os_sleep(1); | |
| 2988 } | |
| 2989 // IOTA failure activation | |
| 2990 return(SIM_ERR_HARDWARE_FAIL); | |
| 2991 #endif | |
| 2992 // 3V only | |
| 2993 #if (SIM_TYPE == SIM_TYPE_3V) | |
| 2994 abbmask = MODE_INIT_IOTA_3V; | |
| 2995 CurrentVolt = SIM_3V; // we assume the sim is 3v tech. from beginning. | |
| 2996 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0xF4) | abbmask); | |
| 2997 while(count++ < 5) | |
| 2998 { | |
| 2999 if (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0x04) // test RSIMRSU | |
| 3000 return(SIM_OK); | |
| 3001 ind_os_sleep(1); | |
| 3002 } | |
| 3003 // IOTA failure activation | |
| 3004 return(SIM_ERR_HARDWARE_FAIL); | |
| 3005 #endif | |
| 3006 #endif | |
| 3007 | |
| 3008 #if(ANLG_FAM == 3) | |
| 3009 SYS_UWORD8 count = 0; | |
| 3010 // code for Syren | |
| 3011 // reset value for SYREN is for 1.8V, but specific procedure is needed | |
| 3012 #if ((SIM_TYPE == SIM_TYPE_1_8V) || (SIM_TYPE == SIM_TYPE_1_8_3V)) // { shut down VCC from ABB and prepare to start at 1.8V mode | |
| 3013 if (ResetFlag) { | |
| 3014 abbmask = MODE_INIT_SYREN_1_8V; | |
| 3015 CurrentVolt = SIM_1_8V; // we assume the sim is 1.8v tech. from beginning. | |
| 3016 } | |
| 3017 else { | |
| 3018 if (CurrentVolt == SIM_1_8V) | |
| 3019 abbmask = MODE_INIT_SYREN_1_8V; | |
| 3020 else | |
| 3021 abbmask = MODE_INIT_SYREN_3V; | |
| 3022 } | |
| 3023 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x1F4) | abbmask); | |
| 3024 while(count++ < 5) | |
| 3025 { | |
| 3026 if (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x04) // test RSIMRSU | |
| 3027 return(SIM_OK); | |
| 3028 ind_os_sleep(1); | |
| 3029 } | |
| 3030 // SYREN failure activation | |
| 3031 return(SIM_ERR_HARDWARE_FAIL); | |
| 3032 #endif | |
| 3033 | |
| 3034 // 3V only | |
| 3035 #if (SIM_TYPE == SIM_TYPE_3V) | |
| 3036 abbmask = MODE_INIT_SYREN_3V; | |
| 3037 CurrentVolt = SIM_3V; // we assume the sim is 3v tech. from beginning. | |
| 3038 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x1F4) | abbmask); | |
| 3039 while(count++ < 5) | |
| 3040 { | |
| 3041 if (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x04) // test RSIMRSU | |
| 3042 return(SIM_OK); | |
| 3043 ind_os_sleep(1); | |
| 3044 } | |
| 3045 // SYREN failure activation | |
| 3046 return(SIM_ERR_HARDWARE_FAIL); | |
| 3047 #endif | |
| 3048 #endif | |
| 3049 } | |
| 3050 | |
| 3051 | |
| 3052 /* | |
| 3053 * Set the level shifter to switch from 3V to 5V | |
| 3054 * | |
| 3055 */ | |
| 3056 | |
| 3057 | |
| 3058 SYS_UWORD8 SIM_SwitchVolt (SYS_UWORD8 ResetFlag) | |
| 3059 { | |
| 3060 SYS_UWORD8 count = 0; | |
| 3061 SYS_UWORD8 abbmask; | |
| 3062 | |
| 3063 SIM_PowerOff(); | |
| 3064 | |
| 3065 #if(ANLG_FAM == 1) | |
| 3066 #if (SIM_TYPE == SIM_TYPE_3_5V) // shut down VCC from ABB and prepare to start at 5V mode | |
| 3067 if (ResetFlag) { | |
| 3068 abbmask = MODE5V_OMEGA; | |
| 3069 CurrentVolt = SIM_5V; | |
| 3070 } | |
| 3071 else { | |
| 3072 if (CurrentVolt == SIM_3V) | |
| 3073 abbmask = MODE_INIT_OMEGA_3V; | |
| 3074 else | |
| 3075 abbmask = MODE5V_OMEGA; | |
| 3076 } | |
| 3077 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCCTRL1) & 0xC0) | abbmask); | |
| 3078 return(SIM_OK); | |
| 3079 #endif | |
| 3080 #elif(ANLG_FAM == 2) | |
| 3081 #if (SIM_TYPE == SIM_TYPE_1_8_3V) // shut down VCC from ABB and prepare to start at 3V mode | |
| 3082 if (ResetFlag) { | |
| 3083 abbmask = MODE_INIT_IOTA_3V; | |
| 3084 CurrentVolt = SIM_3V; | |
| 3085 } | |
| 3086 else { | |
| 3087 if (CurrentVolt == SIM_1_8V) | |
| 3088 abbmask = MODE_INIT_IOTA_1_8V; | |
| 3089 else | |
| 3090 abbmask = MODE_INIT_IOTA_3V; | |
| 3091 } | |
| 3092 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0xF4) | abbmask); | |
| 3093 while(count++ < 5) | |
| 3094 { | |
| 3095 if (ABB_Read_Register_on_page(PAGE1,VRPCSIM) & 0x04) | |
| 3096 return(SIM_OK); | |
| 3097 ind_os_sleep(1); | |
| 3098 } | |
| 3099 // IOTA failure activation | |
| 3100 return(SIM_ERR_HARDWARE_FAIL); | |
| 3101 #endif | |
| 3102 #elif(ANLG_FAM == 3) | |
| 3103 #if (SIM_TYPE == SIM_TYPE_1_8_3V) // shut down VCC from ABB and prepare to start at 3V mode | |
| 3104 if (ResetFlag) { | |
| 3105 abbmask = MODE_INIT_SYREN_3V; | |
| 3106 CurrentVolt = SIM_3V; | |
| 3107 } | |
| 3108 else { | |
| 3109 if (CurrentVolt == SIM_1_8V) | |
| 3110 abbmask = MODE_INIT_SYREN_1_8V; | |
| 3111 else | |
| 3112 abbmask = MODE_INIT_SYREN_3V; | |
| 3113 } | |
| 3114 ABB_wa_VRPC ((ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x1F4) | abbmask); | |
| 3115 while(count++ < 5) | |
| 3116 { | |
| 3117 if (ABB_Read_Register_on_page(PAGE1,VRPCSIMR) & 0x04) | |
| 3118 return(SIM_OK); | |
| 3119 ind_os_sleep(1); | |
| 3120 } | |
| 3121 // SYREN failure activation | |
| 3122 return(SIM_ERR_HARDWARE_FAIL); | |
| 3123 #endif | |
| 3124 #endif // ANLG_FAM == 1, 2, 3 | |
| 3125 | |
| 3126 } | |
| 3127 | |
| 3128 | |
| 3129 | |
| 3130 SYS_UWORD8 SIM_Memcpy(SYS_UWORD8 *Buff_target, SYS_UWORD8 Buff_source[], SYS_UWORD16 len) | |
| 3131 { | |
| 3132 SYS_UWORD16 i; //unsigned short type counter chosen for copy of 256 bytes | |
| 3133 | |
| 3134 for (i = 0; i < len; i++) | |
| 3135 { | |
| 3136 if (i == RSIMBUFSIZE) | |
| 3137 { | |
| 3138 return (SIM_ERR_BUFF_OVERFL); | |
| 3139 } | |
| 3140 else | |
| 3141 { | |
| 3142 (*(Buff_target+i)) = Buff_source[i]; | |
| 3143 } | |
| 3144 } | |
| 3145 return (0); | |
| 3146 } | |
| 3147 | |
| 3148 | |
| 3149 | |
| 3150 /* | |
| 3151 * SIM_SleepStatus | |
| 3152 * | |
| 3153 * Return SIM status for sleep manager | |
| 3154 * | |
| 3155 */ | |
| 3156 SYS_BOOL SIM_SleepStatus(void) | |
| 3157 { | |
| 3158 if ((SIM_sleep_status == SIM_SLEEP_ACT) || (SIM_sleep_status == SIM_SLEEP_NONE)) | |
| 3159 return(1); // SIM is ready for deep sleep | |
| 3160 else | |
| 3161 return(0); | |
| 3162 } | |
| 3163 | |
| 3164 | |
| 3165 | |
| 3166 | |
| 3167 /* | |
| 3168 * Special lock function to force SIM entity to use adequat SIM Driver | |
| 3169 */ | |
| 3170 void SIM_lock_cr17689(void) { | |
| 3171 } | |
| 3172 | |
| 3173 | |
| 3174 #ifdef SIM_DEBUG_TRACE | |
| 3175 void SIM_dbg_write_trace(SYS_UWORD8 *ptr, SYS_UWORD16 len) { | |
| 3176 SYS_UWORD16 i; | |
| 3177 for(i=0;i<len;i++) { | |
| 3178 if (SIM_dbg_cmd_cmpt == SIM_DBG_CMD) | |
| 3179 SIM_dbg_cmd_cmpt = 0; | |
| 3180 SIM_dbg_cmd[SIM_dbg_cmd_cmpt++] = ptr[i]; | |
| 3181 } | |
| 3182 } | |
| 3183 #endif | |
| 3184 | |
| 3185 | |
| 3186 | |
| 3187 |
