view dev/s2u-regen-plus4.c @ 242:f081a6850fb5

libgsmfrp: new refined implementation The previous implementation exhibited the following defects, which are now fixed: 1) The last received valid SID was cached forever for the purpose of handling future invalid SIDs - we could have received some valid SID ages ago, then lots of speech or NO_DATA, and if we then get an invalid SID, we would resurrect the last valid SID from ancient history - a bad design. In our new design, we handle invalid SID based on the current state, much like BFI. 2) GSM 06.11 spec says clearly that after the second lost SID (received BFI=1 && TAF=1 in CN state) we need to gradually decrease the output level, rather than jump directly to emitting silence frames - we previously failed to implement such logic. 3) Per GSM 06.12 section 5.2, Xmaxc should be the same in all 4 subframes in a SID frame. What should we do if we receive an otherwise valid SID frame with different Xmaxc? Our previous approach would replicate this Xmaxc oddity in every subsequent generated CN frame, which is rather bad. In our new design, the very first CN frame (which can be seen as a transformation of the SID frame itself) retains the original 4 distinct Xmaxc, but all subsequent CN frames are based on the Xmaxc from the last subframe of the most recent SID.
author Mychaela Falconia <falcon@freecalypso.org>
date Tue, 09 May 2023 05:16:31 +0000
parents 67d60915fbbe
children
line wrap: on
line source

/*
 * This program is a companion to s2u-regen.c: it computes a mu-law encoding
 * table with 13-bit input just like s2u-regen, but computes it as if the
 * lsb following the 13-bit part is always 1 rather than always 0.  The
 * purpose of this program is to illustrate the effect of that lsb on the
 * mu-law output.
 */

#include <stdio.h>
#include <stdlib.h>

static unsigned
ulaw_compress(input)
    unsigned input;
{
    short i;                    /* aux.var. */
    short absno;                /* absolute value of linear (input) sample */
    short segno;                /* segment (Table 2/G711, column 1) */
    short low_nibble;           /* low nibble of log companded sample */
    short high_nibble;          /* high nibble of log companded sample */
    unsigned output;

    /* -------------------------------------------------------------------- */
    /* Input is 14-bit right-justified in this version */
    /* Compute absolute value; adjust for easy processing */
    /* -------------------------------------------------------------------- */
    absno = input >= 0x2000     /* compute 1's complement in case of */
      ? (~input & 0x1FFF) + 33          /* negative samples */
      : input + 33;                     /* NB: 33 is the difference value */
    /* between the thresholds for */
    /* A-law and u-law. */
    if (absno > (0x1FFF))       /* limitation to "absno" < 8192 */
      absno = (0x1FFF);

    /* Determination of sample's segment */
    i = absno >> 6;
    segno = 1;
    while (i != 0) {
      segno++;
      i >>= 1;
    }

    /* Mounting the high-nibble of the log-PCM sample */
    high_nibble = (0x0008) - segno;

    /* Mounting the low-nibble of the log PCM sample */
    low_nibble = (absno >> segno)       /* right shift of mantissa and */
      &(0x000F);                /* masking away leading '1' */
    low_nibble = (0x000F) - low_nibble;

    /* Joining the high-nibble and the low-nibble of the log PCM sample */
    output = (high_nibble << 4) | low_nibble;

    /* Add sign bit */
    if (input < 0x2000)
      output = output | (0x0080);

    return output;
}

main(argc, argv)
	char **argv;
{
	unsigned input, output;

	for (input = 0; input < 8192; input++) {
		output = ulaw_compress((input << 1) + 1);
		printf("%04o,", output);
		if ((input % 15) == 14 || input == 8191)
			putchar('\n');
	}
	exit(0);
}