FreeCalypso > hg > gsm-codec-lib
comparison libgsmhr1/sp_dec.c @ 594:83d46a16db1b
libgsmhr1/sp_dec.[ch]: import original
| author | Mychaela Falconia <falcon@freecalypso.org> |
|---|---|
| date | Thu, 04 Dec 2025 01:45:00 +0000 |
| parents | |
| children | c7c03231002d |
comparison
equal
deleted
inserted
replaced
| 593:fd6a394ab4cd | 594:83d46a16db1b |
|---|---|
| 1 /*************************************************************************** | |
| 2 * | |
| 3 * File Name: sp_dec.c | |
| 4 * | |
| 5 * Purpose: | |
| 6 * Contains all functions for decoding speech. It does not | |
| 7 * include those routines needed to decode channel information. | |
| 8 * | |
| 9 * Since the GSM half-rate speech coder is an analysis-by-synthesis | |
| 10 * coder, many of the routines in this file are also called by the | |
| 11 * encoder. Functions are included for coded-parameter lookup, | |
| 12 * LPC filter coefficient interpolation, excitation vector lookup | |
| 13 * and construction, vector quantized gain lookup, and LPC synthesis | |
| 14 * filtering. In addition, some post-processing functions are | |
| 15 * included. | |
| 16 * | |
| 17 * Below is a listing of all the functions appearing in the file. | |
| 18 * The functions are arranged according to their purpose. Under | |
| 19 * each heading, the ordering is hierarchical. | |
| 20 * | |
| 21 * The entire speech decoder, under which all these routines fall, | |
| 22 * except were noted: | |
| 23 * speechDecoder() | |
| 24 * | |
| 25 * Spectral Smoothing of LPC: | |
| 26 * a_sst() | |
| 27 * aFlatRcDp() | |
| 28 * rcToCorrDpL() | |
| 29 * aToRc() | |
| 30 * rcToADp() | |
| 31 * VSELP codevector construction: | |
| 32 * b_con() | |
| 33 * v_con() | |
| 34 * LTP vector contruction: | |
| 35 * fp_ex() | |
| 36 * get_ipjj() | |
| 37 * lagDecode() | |
| 38 * LPC contruction | |
| 39 * getSfrmLpc() | |
| 40 * interpolateCheck() | |
| 41 * res_eng() | |
| 42 * lookupVq() | |
| 43 * Excitation scaling: | |
| 44 * rs_rr() | |
| 45 * g_corr1() (no scaling) | |
| 46 * rs_rrNs() | |
| 47 * g_corr1s() (g_corr1 with scaling) | |
| 48 * scaleExcite() | |
| 49 * Post filtering: | |
| 50 * pitchPreFilt() | |
| 51 * agcGain() | |
| 52 * lpcIir() | |
| 53 * r0BasedEnergyShft() | |
| 54 * spectralPostFilter() | |
| 55 * lpcFir() | |
| 56 * | |
| 57 * | |
| 58 * Routines not referenced by speechDecoder() | |
| 59 * Filtering routines: | |
| 60 * lpcIrZsIir() | |
| 61 * lpcZiIir() | |
| 62 * lpcZsFir() | |
| 63 * lpcZsIir() | |
| 64 * lpcZsIirP() | |
| 65 * Square root: | |
| 66 * sqroot() | |
| 67 * | |
| 68 **************************************************************************/ | |
| 69 | |
| 70 /*_________________________________________________________________________ | |
| 71 | | | |
| 72 | Include Files | | |
| 73 |_________________________________________________________________________| | |
| 74 */ | |
| 75 | |
| 76 #include "typedefs.h" | |
| 77 #include "mathhalf.h" | |
| 78 #include "sp_rom.h" | |
| 79 #include "sp_dec.h" | |
| 80 #include "err_conc.h" | |
| 81 #include "dtx.h" | |
| 82 | |
| 83 | |
| 84 /*_________________________________________________________________________ | |
| 85 | | | |
| 86 | Local Functions (scope is limited to this file) | | |
| 87 |_________________________________________________________________________| | |
| 88 */ | |
| 89 | |
| 90 static void a_sst(Shortword swAshift, Shortword swAscale, | |
| 91 Shortword pswDirectFormCoefIn[], | |
| 92 Shortword pswDirectFormCoefOut[]); | |
| 93 | |
| 94 static short aToRc(Shortword swAshift, Shortword pswAin[], | |
| 95 Shortword pswRc[]); | |
| 96 | |
| 97 static Shortword agcGain(Shortword pswStateCurr[], | |
| 98 struct NormSw snsInSigEnergy, | |
| 99 Shortword swEngyRShft); | |
| 100 | |
| 101 static Shortword lagDecode(Shortword swDeltaLag); | |
| 102 | |
| 103 static void lookupVq(Shortword pswVqCodeWds[], Shortword pswRCOut[]); | |
| 104 | |
| 105 static void pitchPreFilt(Shortword pswExcite[], | |
| 106 Shortword swRxGsp0, | |
| 107 Shortword swRxLag, | |
| 108 Shortword swUvCode, | |
| 109 Shortword swSemiBeta, | |
| 110 struct NormSw snsSqrtRs, | |
| 111 Shortword pswExciteOut[], | |
| 112 Shortword pswPPreState[]); | |
| 113 | |
| 114 static void spectralPostFilter(Shortword pswSPFIn[], | |
| 115 Shortword pswNumCoef[], Shortword pswDenomCoef[], | |
| 116 Shortword pswSPFOut[]); | |
| 117 | |
| 118 /*_________________________________________________________________________ | |
| 119 | | | |
| 120 | Local Defines | | |
| 121 |_________________________________________________________________________| | |
| 122 */ | |
| 123 | |
| 124 #define P_INT_MACS 10 | |
| 125 #define ASCALE 0x0800 | |
| 126 #define ASHIFT 4 | |
| 127 #define DELTA_LEVELS 16 | |
| 128 #define GSP0_SCALE 1 | |
| 129 #define C_BITS_V 9 /* number of bits in any voiced VSELP | |
| 130 * codeword */ | |
| 131 #define C_BITS_UV 7 /* number of bits in a unvoiced VSELP | |
| 132 * codeword */ | |
| 133 #define MAXBITS C_BITS_V /* max number of bits in any VSELP | |
| 134 * codeword */ | |
| 135 #define LTP_LEN 147 /* 147==0x93 length of LTP history */ | |
| 136 #define SQRT_ONEHALF 0x5a82 /* the 0.5 ** 0.5 */ | |
| 137 #define LPC_ROUND 0x00000800L /* 0x8000 >> ASHIFT */ | |
| 138 #define AFSHIFT 2 /* number of right shifts to be | |
| 139 * applied to the autocorrelation | |
| 140 * sequence in aFlatRcDp */ | |
| 141 | |
| 142 /*_________________________________________________________________________ | |
| 143 | | | |
| 144 | State variables (globals) | | |
| 145 |_________________________________________________________________________| | |
| 146 */ | |
| 147 | |
| 148 Shortword gswPostFiltAgcGain, | |
| 149 gpswPostFiltStateNum[NP], | |
| 150 gpswPostFiltStateDenom[NP], | |
| 151 swPostEmphasisState, | |
| 152 pswSynthFiltState[NP], | |
| 153 pswOldFrmKsDec[NP], | |
| 154 pswOldFrmAsDec[NP], | |
| 155 pswOldFrmPFNum[NP], | |
| 156 pswOldFrmPFDenom[NP], | |
| 157 swOldR0Dec, | |
| 158 pswLtpStateBaseDec[LTP_LEN + S_LEN], | |
| 159 pswPPreState[LTP_LEN + S_LEN]; | |
| 160 | |
| 161 | |
| 162 Shortword swMuteFlagOld; /* error concealment */ | |
| 163 | |
| 164 | |
| 165 /* DTX state variables */ | |
| 166 /* ------------------- */ | |
| 167 | |
| 168 Shortword swRxDTXState = CNINTPER - 1; /* DTX State at the rx. | |
| 169 * Modulo */ | |
| 170 | |
| 171 /* counter [0,11]. */ | |
| 172 | |
| 173 Shortword swDecoMode = SPEECH; | |
| 174 Shortword swDtxMuting = 0; | |
| 175 Shortword swDtxBfiCnt = 0; | |
| 176 | |
| 177 Shortword swOldR0IndexDec = 0; | |
| 178 | |
| 179 Shortword swRxGsHistPtr = 0; | |
| 180 Longword pL_RxGsHist[(OVERHANG - 1) * N_SUB]; | |
| 181 | |
| 182 | |
| 183 /*_________________________________________________________________________ | |
| 184 | | | |
| 185 | Global Data | | |
| 186 | (scope is global to this file) | | |
| 187 |_________________________________________________________________________| | |
| 188 */ | |
| 189 | |
| 190 Shortword swR0Dec; | |
| 191 | |
| 192 Shortword swVoicingMode, /* MODE */ | |
| 193 pswVq[3], /* LPC1, LPC2, LPC3 */ | |
| 194 swSi, /* INT_LPC */ | |
| 195 swEngyRShift; /* for use by spectral postfilter */ | |
| 196 | |
| 197 | |
| 198 Shortword swR0NewCN; /* DTX mode */ | |
| 199 | |
| 200 extern LongwordRom ppLr_gsTable[4][32]; /* DTX mode */ | |
| 201 | |
| 202 | |
| 203 /*************************************************************************** | |
| 204 * | |
| 205 * FUNCTION NAME: aFlatRcDp | |
| 206 * | |
| 207 * PURPOSE: | |
| 208 * | |
| 209 * Given a Longword autocorrelation sequence, representing LPC | |
| 210 * information, aFlatRcDp converts the vector to one of NP | |
| 211 * Shortword reflection coefficients. | |
| 212 * | |
| 213 * INPUT: | |
| 214 * | |
| 215 * | |
| 216 * pL_R[0:NP] - An input Longword autocorrelation sequence, (pL_R[0] = | |
| 217 * not necessarily 0x7fffffffL). pL_R is altered in the | |
| 218 * call, by being right shifted by global constant | |
| 219 * AFSHIFT bits. | |
| 220 * | |
| 221 * The input array pL_R[] should be shifted left as much | |
| 222 * as possible to improve precision. | |
| 223 * | |
| 224 * AFSHIFT - The number of right shifts to be applied to the | |
| 225 * normalized autocorrelation sequence pL_R. | |
| 226 * | |
| 227 * OUTPUT: | |
| 228 * | |
| 229 * pswRc[0:NP-1] - A Shortword output vector of NP reflection | |
| 230 * coefficients. | |
| 231 * | |
| 232 * RETURN VALUE: | |
| 233 * | |
| 234 * None | |
| 235 * | |
| 236 * DESCRIPTION: | |
| 237 * | |
| 238 * This routine transforms LPC information from one set of | |
| 239 * parameters to another. It is better suited for fixed point | |
| 240 * implementations than the Levinson-Dubin recursion. | |
| 241 * | |
| 242 * The function is called by a_sst(), and getNWCoefs(). In a_sst() | |
| 243 * direct form coefficients are converted to autocorrelations, | |
| 244 * and smoothed in that domain. Conversion back to direct form | |
| 245 * coefficients is done by calling aFlatRc(), followed by rcToADp(). | |
| 246 * | |
| 247 * In getNwCoefs() again the conversion back to direct form | |
| 248 * coefficients is done by calling aFlatRc(), followed by rcToADp(). | |
| 249 * In getNwCoefs() an autocorrelation sequence is generated from the | |
| 250 * impulse response of the weighting filters. | |
| 251 * | |
| 252 * The fundamental recursion is derived from AFLAT, which is | |
| 253 * described in section 4.1.4.1. | |
| 254 * | |
| 255 * Unlike in AFLAT where the reflection coefficients are known, here | |
| 256 * they are the unknowns. PBar and VBar for j==0 are initially | |
| 257 * known, as is rSub1. From this information the next set of P's | |
| 258 * and V's are generated. At the end of the recursion the next, | |
| 259 * reflection coefficient rSubj (pswRc[j]) can be calcluated by | |
| 260 * dividing Vsubj by Psubj. | |
| 261 * | |
| 262 * Precision is crucial in this routine. At each stage, a | |
| 263 * normalization is performed prior to the reflection coefficient | |
| 264 * calculation. In addition, to prevent overflow, the | |
| 265 * autocorrelation sequence is scaled down by ASHIFT (4) right | |
| 266 * shifts. | |
| 267 * | |
| 268 * | |
| 269 * REFERENCES: Sub_Clause 4.1.9 and 4.2.1 of GSM Recomendation 06.20 | |
| 270 * | |
| 271 * KEYWORDS: reflection coefficients, AFLAT, aflat, recursion, LPC | |
| 272 * KEYWORDS: autocorrelation | |
| 273 * | |
| 274 *************************************************************************/ | |
| 275 | |
| 276 void aFlatRcDp(Longword *pL_R, Shortword *pswRc) | |
| 277 { | |
| 278 | |
| 279 /*_________________________________________________________________________ | |
| 280 | | | |
| 281 | Automatic Variables | | |
| 282 |_________________________________________________________________________| | |
| 283 */ | |
| 284 | |
| 285 Longword pL_pjNewSpace[NP]; | |
| 286 Longword pL_pjOldSpace[NP]; | |
| 287 Longword pL_vjNewSpace[2 * NP - 1]; | |
| 288 Longword pL_vjOldSpace[2 * NP - 1]; | |
| 289 | |
| 290 Longword *pL_pjOld; | |
| 291 Longword *pL_pjNew; | |
| 292 Longword *pL_vjOld; | |
| 293 Longword *pL_vjNew; | |
| 294 Longword *pL_swap; | |
| 295 | |
| 296 Longword L_temp; | |
| 297 Longword L_sum; | |
| 298 Shortword swRc, | |
| 299 swRcSq, | |
| 300 swTemp, | |
| 301 swTemp1, | |
| 302 swAbsTemp1, | |
| 303 swTemp2; | |
| 304 int i, | |
| 305 j; | |
| 306 | |
| 307 | |
| 308 /*_________________________________________________________________________ | |
| 309 | | | |
| 310 | Executable Code | | |
| 311 |_________________________________________________________________________| | |
| 312 */ | |
| 313 | |
| 314 pL_pjOld = pL_pjOldSpace; | |
| 315 pL_pjNew = pL_pjNewSpace; | |
| 316 pL_vjOld = pL_vjOldSpace + NP - 1; | |
| 317 pL_vjNew = pL_vjNewSpace + NP - 1; | |
| 318 | |
| 319 | |
| 320 /* Extract the 0-th reflection coefficient */ | |
| 321 /*-----------------------------------------*/ | |
| 322 | |
| 323 swTemp1 = round(pL_R[1]); | |
| 324 swTemp2 = round(pL_R[0]); | |
| 325 swAbsTemp1 = abs_s(swTemp1); | |
| 326 if (swTemp2 <= 0 || sub(swAbsTemp1, swTemp2) >= 0) | |
| 327 { | |
| 328 j = 0; | |
| 329 for (i = j; i < NP; i++) | |
| 330 { | |
| 331 pswRc[i] = 0; | |
| 332 } | |
| 333 return; | |
| 334 } | |
| 335 | |
| 336 swRc = divide_s(swAbsTemp1, swTemp2);/* return division result */ | |
| 337 | |
| 338 if (sub(swTemp1, swAbsTemp1) == 0) | |
| 339 swRc = negate(swRc); /* negate reflection Rc[j] */ | |
| 340 | |
| 341 pswRc[0] = swRc; /* copy into the output Rc array */ | |
| 342 | |
| 343 for (i = 0; i <= NP; i++) | |
| 344 { | |
| 345 pL_R[i] = L_shr(pL_R[i], AFSHIFT); | |
| 346 } | |
| 347 | |
| 348 /* Initialize the pjOld and vjOld recursion arrays */ | |
| 349 /*-------------------------------------------------*/ | |
| 350 | |
| 351 for (i = 0; i < NP; i++) | |
| 352 { | |
| 353 pL_pjOld[i] = pL_R[i]; | |
| 354 pL_vjOld[i] = pL_R[i + 1]; | |
| 355 } | |
| 356 for (i = -1; i > -NP; i--) | |
| 357 pL_vjOld[i] = pL_R[-(i + 1)]; | |
| 358 | |
| 359 | |
| 360 /* Compute the square of the j=0 reflection coefficient */ | |
| 361 /*------------------------------------------------------*/ | |
| 362 | |
| 363 swRcSq = mult_r(swRc, swRc); | |
| 364 | |
| 365 /* Update pjNew and vjNew arrays for lattice stage j=1 */ | |
| 366 /*-----------------------------------------------------*/ | |
| 367 | |
| 368 /* Updating pjNew: */ | |
| 369 /*-------------------*/ | |
| 370 | |
| 371 for (i = 0; i <= NP - 2; i++) | |
| 372 { | |
| 373 L_temp = L_mpy_ls(pL_vjOld[i], swRc); | |
| 374 L_sum = L_add(L_temp, pL_pjOld[i]); | |
| 375 L_temp = L_mpy_ls(pL_pjOld[i], swRcSq); | |
| 376 L_sum = L_add(L_temp, L_sum); | |
| 377 L_temp = L_mpy_ls(pL_vjOld[-i], swRc); | |
| 378 pL_pjNew[i] = L_add(L_sum, L_temp); | |
| 379 } | |
| 380 | |
| 381 /* Updating vjNew: */ | |
| 382 /*-------------------*/ | |
| 383 | |
| 384 for (i = -NP + 2; i <= NP - 2; i++) | |
| 385 { | |
| 386 L_temp = L_mpy_ls(pL_vjOld[-i - 1], swRcSq); | |
| 387 L_sum = L_add(L_temp, pL_vjOld[i + 1]); | |
| 388 L_temp = L_mpy_ls(pL_pjOld[(((i + 1) >= 0) ? i + 1 : -(i + 1))], swRc); | |
| 389 L_temp = L_shl(L_temp, 1); | |
| 390 pL_vjNew[i] = L_add(L_temp, L_sum); | |
| 391 } | |
| 392 | |
| 393 | |
| 394 | |
| 395 j = 0; | |
| 396 | |
| 397 /* Compute reflection coefficients Rc[1],...,Rc[9] */ | |
| 398 /*-------------------------------------------------*/ | |
| 399 | |
| 400 for (j = 1; j < NP; j++) | |
| 401 { | |
| 402 | |
| 403 /* Swap pjNew and pjOld buffers */ | |
| 404 /*------------------------------*/ | |
| 405 | |
| 406 pL_swap = pL_pjNew; | |
| 407 pL_pjNew = pL_pjOld; | |
| 408 pL_pjOld = pL_swap; | |
| 409 | |
| 410 /* Swap vjNew and vjOld buffers */ | |
| 411 /*------------------------------*/ | |
| 412 | |
| 413 pL_swap = pL_vjNew; | |
| 414 pL_vjNew = pL_vjOld; | |
| 415 pL_vjOld = pL_swap; | |
| 416 | |
| 417 /* Compute the j-th reflection coefficient */ | |
| 418 /*-----------------------------------------*/ | |
| 419 | |
| 420 swTemp = norm_l(pL_pjOld[0]); /* get shift count */ | |
| 421 swTemp1 = round(L_shl(pL_vjOld[0], swTemp)); /* normalize num. */ | |
| 422 swTemp2 = round(L_shl(pL_pjOld[0], swTemp)); /* normalize den. */ | |
| 423 | |
| 424 /* Test for invalid divide conditions: a) devisor < 0 b) abs(divident) > | |
| 425 * abs(devisor) If either of these conditions is true, zero out | |
| 426 * reflection coefficients for i=j,...,NP-1 and return. */ | |
| 427 | |
| 428 swAbsTemp1 = abs_s(swTemp1); | |
| 429 if (swTemp2 <= 0 || sub(swAbsTemp1, swTemp2) >= 0) | |
| 430 { | |
| 431 i = j; | |
| 432 for (i = j; i < NP; i++) | |
| 433 { | |
| 434 pswRc[i] = 0; | |
| 435 } | |
| 436 return; | |
| 437 } | |
| 438 | |
| 439 swRc = divide_s(swAbsTemp1, swTemp2); /* return division result */ | |
| 440 if (sub(swTemp1, swAbsTemp1) == 0) | |
| 441 swRc = negate(swRc); /* negate reflection Rc[j] */ | |
| 442 swRcSq = mult_r(swRc, swRc); /* compute Rc^2 */ | |
| 443 pswRc[j] = swRc; /* copy Rc[j] to output array */ | |
| 444 | |
| 445 /* Update pjNew and vjNew arrays for the next lattice stage if j < NP-1 */ | |
| 446 /*---------------------------------------------------------------------*/ | |
| 447 | |
| 448 /* Updating pjNew: */ | |
| 449 /*-----------------*/ | |
| 450 | |
| 451 for (i = 0; i <= NP - j - 2; i++) | |
| 452 { | |
| 453 L_temp = L_mpy_ls(pL_vjOld[i], swRc); | |
| 454 L_sum = L_add(L_temp, pL_pjOld[i]); | |
| 455 L_temp = L_mpy_ls(pL_pjOld[i], swRcSq); | |
| 456 L_sum = L_add(L_temp, L_sum); | |
| 457 L_temp = L_mpy_ls(pL_vjOld[-i], swRc); | |
| 458 pL_pjNew[i] = L_add(L_sum, L_temp); | |
| 459 } | |
| 460 | |
| 461 /* Updating vjNew: */ | |
| 462 /*-----------------*/ | |
| 463 | |
| 464 for (i = -NP + j + 2; i <= NP - j - 2; i++) | |
| 465 { | |
| 466 L_temp = L_mpy_ls(pL_vjOld[-i - 1], swRcSq); | |
| 467 L_sum = L_add(L_temp, pL_vjOld[i + 1]); | |
| 468 L_temp = L_mpy_ls(pL_pjOld[(((i + 1) >= 0) ? i + 1 : -(i + 1))], swRc); | |
| 469 L_temp = L_shl(L_temp, 1); | |
| 470 pL_vjNew[i] = L_add(L_temp, L_sum); | |
| 471 } | |
| 472 } | |
| 473 return; | |
| 474 } | |
| 475 | |
| 476 /*************************************************************************** | |
| 477 * | |
| 478 * FUNCTION NAME: aToRc | |
| 479 * | |
| 480 * PURPOSE: | |
| 481 * | |
| 482 * This subroutine computes a vector of reflection coefficients, given | |
| 483 * an input vector of direct form LPC filter coefficients. | |
| 484 * | |
| 485 * INPUTS: | |
| 486 * | |
| 487 * NP | |
| 488 * order of the LPC filter (global constant) | |
| 489 * | |
| 490 * swAshift | |
| 491 * The number of right shifts applied externally | |
| 492 * to the direct form filter coefficients. | |
| 493 * | |
| 494 * pswAin[0:NP-1] | |
| 495 * The input vector of direct form LPC filter | |
| 496 * coefficients. | |
| 497 * | |
| 498 * OUTPUTS: | |
| 499 * | |
| 500 * pswRc[0:NP-1] | |
| 501 * Array containing the reflection coefficients. | |
| 502 * | |
| 503 * RETURN VALUE: | |
| 504 * | |
| 505 * siUnstableFlt | |
| 506 * If stable reflection coefficients 0, 1 if unstable. | |
| 507 * | |
| 508 * | |
| 509 * DESCRIPTION: | |
| 510 * | |
| 511 * This function performs the conversion from direct form | |
| 512 * coefficients to reflection coefficients. It is used in a_sst() | |
| 513 * and interpolateCheck(). In a_sst() reflection coefficients used | |
| 514 * as a transitional data format. aToRc() is used for this | |
| 515 * conversion. | |
| 516 * | |
| 517 * When performing interpolation, a stability check must be | |
| 518 * performed. interpolateCheck() does this by calling aToRc(). | |
| 519 * | |
| 520 * First coefficients are shifted down by iAshift. NP, the filter | |
| 521 * order is 10. The a's and rc's each have NP elements in them. An | |
| 522 * elaborate algorithm description can be found on page 443, of | |
| 523 * "Digital Processing of Speech Signals" by L.R. Rabiner and R.W. | |
| 524 * Schafer; Prentice-Hall; Englewood Cliffs, NJ (USA). 1978. | |
| 525 * | |
| 526 * REFERENCES: Sub_Clause 4.1.6, and 4.2.3 of GSM Recomendation 06.20 | |
| 527 * | |
| 528 * KEYWORDS: reflectioncoefficients, parcors, conversion, atorc, ks, as | |
| 529 * KEYWORDS: parcorcoefficients, lpc, flat, vectorquantization | |
| 530 * | |
| 531 *************************************************************************/ | |
| 532 | |
| 533 static short aToRc(Shortword swAshift, Shortword pswAin[], | |
| 534 Shortword pswRc[]) | |
| 535 { | |
| 536 | |
| 537 /*_________________________________________________________________________ | |
| 538 | | | |
| 539 | Constants | | |
| 540 |_________________________________________________________________________| | |
| 541 */ | |
| 542 | |
| 543 /*_________________________________________________________________________ | |
| 544 | | | |
| 545 | Automatic Variables | | |
| 546 |_________________________________________________________________________| | |
| 547 */ | |
| 548 | |
| 549 Shortword pswTmpSpace[NP], | |
| 550 pswASpace[NP], | |
| 551 swNormShift, | |
| 552 swActShift, | |
| 553 swNormProd, | |
| 554 swRcOverE, | |
| 555 swDiv, | |
| 556 *pswSwap, | |
| 557 *pswTmp, | |
| 558 *pswA; | |
| 559 | |
| 560 Longword L_temp; | |
| 561 | |
| 562 short int siUnstableFlt, | |
| 563 i, | |
| 564 j; /* Loop control variables */ | |
| 565 | |
| 566 /*_________________________________________________________________________ | |
| 567 | | | |
| 568 | Executable Code | | |
| 569 |_________________________________________________________________________| | |
| 570 */ | |
| 571 | |
| 572 /* Initialize starting addresses for temporary buffers */ | |
| 573 /*-----------------------------------------------------*/ | |
| 574 | |
| 575 pswA = pswASpace; | |
| 576 pswTmp = pswTmpSpace; | |
| 577 | |
| 578 /* Copy the direct form filter coefficients to a temporary array */ | |
| 579 /*---------------------------------------------------------------*/ | |
| 580 | |
| 581 for (i = 0; i < NP; i++) | |
| 582 { | |
| 583 pswA[i] = pswAin[i]; | |
| 584 } | |
| 585 | |
| 586 /* Initialize the flag for filter stability check */ | |
| 587 /*------------------------------------------------*/ | |
| 588 | |
| 589 siUnstableFlt = 0; | |
| 590 | |
| 591 /* Start computation of the reflection coefficients, Rc[9],...,Rc[1] */ | |
| 592 /*-------------------------------------------------------------------*/ | |
| 593 | |
| 594 for (i = NP - 1; i >= 1; i--) | |
| 595 { | |
| 596 | |
| 597 pswRc[i] = shl(pswA[i], swAshift); /* write Rc[i] to output array */ | |
| 598 | |
| 599 /* Check the stability of i-th reflection coefficient */ | |
| 600 /*----------------------------------------------------*/ | |
| 601 | |
| 602 siUnstableFlt = siUnstableFlt | isSwLimit(pswRc[i]); | |
| 603 | |
| 604 /* Precompute intermediate variables for needed for the computation */ | |
| 605 /* of direct form filter of order i-1 */ | |
| 606 /*------------------------------------------------------------------*/ | |
| 607 | |
| 608 if (sub(pswRc[i], SW_MIN) == 0) | |
| 609 { | |
| 610 siUnstableFlt = 1; | |
| 611 swRcOverE = 0; | |
| 612 swDiv = 0; | |
| 613 swActShift = 2; | |
| 614 } | |
| 615 else | |
| 616 { | |
| 617 L_temp = LW_MAX; /* Load ~1.0 into accum */ | |
| 618 L_temp = L_msu(L_temp, pswRc[i], pswRc[i]); /* 1.-Rc[i]*Rc[i] */ | |
| 619 swNormShift = norm_l(L_temp); | |
| 620 L_temp = L_shl(L_temp, swNormShift); | |
| 621 swNormProd = extract_h(L_temp); | |
| 622 swActShift = add(2, swNormShift); | |
| 623 swDiv = divide_s(0x2000, swNormProd); | |
| 624 swRcOverE = mult_r(pswRc[i], swDiv); | |
| 625 } | |
| 626 /* Check stability */ | |
| 627 /*---------------------*/ | |
| 628 siUnstableFlt = siUnstableFlt | isSwLimit(swRcOverE); | |
| 629 | |
| 630 /* Compute direct form filter coefficients corresponding to */ | |
| 631 /* a direct form filter of order i-1 */ | |
| 632 /*----------------------------------------------------------*/ | |
| 633 | |
| 634 for (j = 0; j <= i - 1; j++) | |
| 635 { | |
| 636 L_temp = L_mult(pswA[j], swDiv); | |
| 637 L_temp = L_msu(L_temp, pswA[i - j - 1], swRcOverE); | |
| 638 L_temp = L_shl(L_temp, swActShift); | |
| 639 pswTmp[j] = round(L_temp); | |
| 640 siUnstableFlt = siUnstableFlt | isSwLimit(pswTmp[j]); | |
| 641 } | |
| 642 | |
| 643 /* Swap swA and swTmp buffers */ | |
| 644 /*----------------------------*/ | |
| 645 | |
| 646 pswSwap = pswA; | |
| 647 pswA = pswTmp; | |
| 648 pswTmp = pswSwap; | |
| 649 } | |
| 650 | |
| 651 /* Compute reflection coefficient Rc[0] */ | |
| 652 /*--------------------------------------*/ | |
| 653 | |
| 654 pswRc[0] = shl(pswA[0], swAshift); /* write Rc[0] to output array */ | |
| 655 | |
| 656 /* Check the stability of 0-th reflection coefficient */ | |
| 657 /*----------------------------------------------------*/ | |
| 658 | |
| 659 siUnstableFlt = siUnstableFlt | isSwLimit(pswRc[0]); | |
| 660 | |
| 661 return (siUnstableFlt); | |
| 662 } | |
| 663 | |
| 664 /*************************************************************************** | |
| 665 * | |
| 666 * FUNCTION NAME: a_sst | |
| 667 * | |
| 668 * PURPOSE: | |
| 669 * | |
| 670 * The purpose of this function is to perform spectral smoothing of the | |
| 671 * direct form filter coefficients | |
| 672 * | |
| 673 * INPUTS: | |
| 674 * | |
| 675 * swAshift | |
| 676 * number of shift for coefficients | |
| 677 * | |
| 678 * swAscale | |
| 679 * scaling factor for coefficients | |
| 680 * | |
| 681 * pswDirectFormCoefIn[0:NP-1] | |
| 682 * | |
| 683 * array of input direct form coefficients | |
| 684 * | |
| 685 * OUTPUTS: | |
| 686 * | |
| 687 * pswDirectFormCoefOut[0:NP-1] | |
| 688 * | |
| 689 * array of output direct form coefficients | |
| 690 * | |
| 691 * RETURN VALUE: | |
| 692 * | |
| 693 * none | |
| 694 * | |
| 695 * DESCRIPTION: | |
| 696 * | |
| 697 * In a_sst() direct form coefficients are converted to | |
| 698 * autocorrelations, and smoothed in that domain. The function is | |
| 699 * used in the spectral postfilter. A description can be found in | |
| 700 * section 3.2.4 as well as in the reference by Y. Tohkura et al. | |
| 701 * "Spectral Smoothing Technique in PARCOR Speech | |
| 702 * Analysis-Synthesis", IEEE Trans. ASSP, vol. ASSP-26, pp. 591-596, | |
| 703 * Dec. 1978. | |
| 704 * | |
| 705 * After smoothing is performed conversion back to direct form | |
| 706 * coefficients is done by calling aFlatRc(), followed by rcToADp(). | |
| 707 * | |
| 708 * The spectral smoothing filter coefficients with bandwidth set to 300 | |
| 709 * and a sampling rate of 8000 be : | |
| 710 * static ShortwordRom psrSST[NP+1] = { 0x7FFF, | |
| 711 * 0x7F5C, 0x7D76, 0x7A5B, 0x7622, 0x70EC, | |
| 712 * 0x6ADD, 0x641F, 0x5CDD, 0x5546, 0x4D86 | |
| 713 * } | |
| 714 * | |
| 715 * REFERENCES: Sub_Clause 4.2.4 of GSM Recomendation 06.20 | |
| 716 * | |
| 717 * KEYWORDS: spectral smoothing, direct form coef, sst, atorc, atocor | |
| 718 * KEYWORDS: levinson | |
| 719 * | |
| 720 *************************************************************************/ | |
| 721 | |
| 722 static void a_sst(Shortword swAshift, Shortword swAscale, | |
| 723 Shortword pswDirectFormCoefIn[], | |
| 724 Shortword pswDirectFormCoefOut[]) | |
| 725 { | |
| 726 | |
| 727 /*_________________________________________________________________________ | |
| 728 | | | |
| 729 | Local Static Variables | | |
| 730 |_________________________________________________________________________| | |
| 731 */ | |
| 732 | |
| 733 static ShortwordRom psrSST[NP + 1] = {0x7FFF, | |
| 734 0x7F5C, 0x7D76, 0x7A5B, 0x7622, 0x70EC, | |
| 735 0x6ADD, 0x641F, 0x5CDD, 0x5546, 0x4D86, | |
| 736 }; | |
| 737 | |
| 738 /*_________________________________________________________________________ | |
| 739 | | | |
| 740 | Automatic Variables | | |
| 741 |_________________________________________________________________________| | |
| 742 */ | |
| 743 | |
| 744 Longword pL_CorrTemp[NP + 1]; | |
| 745 | |
| 746 Shortword pswRCNum[NP], | |
| 747 pswRCDenom[NP]; | |
| 748 | |
| 749 short int siLoopCnt; | |
| 750 | |
| 751 /*_________________________________________________________________________ | |
| 752 | | | |
| 753 | Executable Code | | |
| 754 |_________________________________________________________________________| | |
| 755 */ | |
| 756 | |
| 757 /* convert direct form coefs to reflection coefs */ | |
| 758 /* --------------------------------------------- */ | |
| 759 | |
| 760 aToRc(swAshift, pswDirectFormCoefIn, pswRCDenom); | |
| 761 | |
| 762 /* convert to autocorrelation coefficients */ | |
| 763 /* --------------------------------------- */ | |
| 764 | |
| 765 rcToCorrDpL(swAshift, swAscale, pswRCDenom, pL_CorrTemp); | |
| 766 | |
| 767 /* do spectral smoothing technique */ | |
| 768 /* ------------------------------- */ | |
| 769 | |
| 770 for (siLoopCnt = 1; siLoopCnt <= NP; siLoopCnt++) | |
| 771 { | |
| 772 pL_CorrTemp[siLoopCnt] = L_mpy_ls(pL_CorrTemp[siLoopCnt], | |
| 773 psrSST[siLoopCnt]); | |
| 774 } | |
| 775 | |
| 776 /* Compute the reflection coefficients via AFLAT */ | |
| 777 /*-----------------------------------------------*/ | |
| 778 | |
| 779 aFlatRcDp(pL_CorrTemp, pswRCNum); | |
| 780 | |
| 781 | |
| 782 /* Convert reflection coefficients to direct form filter coefficients */ | |
| 783 /*-------------------------------------------------------------------*/ | |
| 784 | |
| 785 rcToADp(swAscale, pswRCNum, pswDirectFormCoefOut); | |
| 786 } | |
| 787 | |
| 788 /************************************************************************** | |
| 789 * | |
| 790 * FUNCTION NAME: agcGain | |
| 791 * | |
| 792 * PURPOSE: | |
| 793 * | |
| 794 * Figure out what the agc gain should be to make the energy in the | |
| 795 * output signal match that of the input signal. Used in the post | |
| 796 * filters. | |
| 797 * | |
| 798 * INPUT: | |
| 799 * | |
| 800 * pswStateCurr[0:39] | |
| 801 * Input signal into agc block whose energy is | |
| 802 * to be modified using the gain returned. Signal is not | |
| 803 * modified in this routine. | |
| 804 * | |
| 805 * snsInSigEnergy | |
| 806 * Normalized number with shift count - the energy in | |
| 807 * the input signal. | |
| 808 * | |
| 809 * swEngyRShft | |
| 810 * Number of right shifts to apply to the vectors energy | |
| 811 * to ensure that it remains less than 1.0 | |
| 812 * (swEngyRShft is always positive or zero) | |
| 813 * | |
| 814 * OUTPUT: | |
| 815 * | |
| 816 * none | |
| 817 * | |
| 818 * RETURN: | |
| 819 * | |
| 820 * the agc's gain/2 note DIVIDED by 2 | |
| 821 * | |
| 822 * | |
| 823 * REFERENCES: Sub_Clause 4.2.2 and 4.2.4 of GSM Recomendation 06.20 | |
| 824 * | |
| 825 * KEYWORDS: postfilter, agc, automaticgaincontrol, leveladjust | |
| 826 * | |
| 827 *************************************************************************/ | |
| 828 | |
| 829 static Shortword agcGain(Shortword pswStateCurr[], | |
| 830 struct NormSw snsInSigEnergy, Shortword swEngyRShft) | |
| 831 { | |
| 832 | |
| 833 /*_________________________________________________________________________ | |
| 834 | | | |
| 835 | Automatic Variables | | |
| 836 |_________________________________________________________________________| | |
| 837 */ | |
| 838 | |
| 839 Longword L_OutEnergy, | |
| 840 L_AgcGain; | |
| 841 | |
| 842 struct NormSw snsOutEnergy, | |
| 843 snsAgc; | |
| 844 | |
| 845 Shortword swAgcOut, | |
| 846 swAgcShftCnt; | |
| 847 | |
| 848 /*_________________________________________________________________________ | |
| 849 | | | |
| 850 | Executable Code | | |
| 851 |_________________________________________________________________________| | |
| 852 */ | |
| 853 | |
| 854 /* Calculate the energy in the output vector divided by 2 */ | |
| 855 /*--------------------------------------------------------*/ | |
| 856 | |
| 857 snsOutEnergy.sh = g_corr1s(pswStateCurr, swEngyRShft, &L_OutEnergy); | |
| 858 | |
| 859 /* reduce energy by a factor of 2 */ | |
| 860 snsOutEnergy.sh = add(snsOutEnergy.sh, 1); | |
| 861 | |
| 862 /* if waveform has nonzero energy, find AGC gain */ | |
| 863 /*-----------------------------------------------*/ | |
| 864 | |
| 865 if (L_OutEnergy == 0) | |
| 866 { | |
| 867 swAgcOut = 0; | |
| 868 } | |
| 869 else | |
| 870 { | |
| 871 | |
| 872 snsOutEnergy.man = round(L_OutEnergy); | |
| 873 | |
| 874 /* divide input energy by 2 */ | |
| 875 snsInSigEnergy.man = shr(snsInSigEnergy.man, 1); | |
| 876 | |
| 877 | |
| 878 /* Calculate AGC gain squared */ | |
| 879 /*----------------------------*/ | |
| 880 | |
| 881 snsAgc.man = divide_s(snsInSigEnergy.man, snsOutEnergy.man); | |
| 882 swAgcShftCnt = norm_s(snsAgc.man); | |
| 883 snsAgc.man = shl(snsAgc.man, swAgcShftCnt); | |
| 884 | |
| 885 /* find shift count for G^2 */ | |
| 886 /*--------------------------*/ | |
| 887 | |
| 888 snsAgc.sh = add(sub(snsInSigEnergy.sh, snsOutEnergy.sh), | |
| 889 swAgcShftCnt); | |
| 890 L_AgcGain = L_deposit_h(snsAgc.man); | |
| 891 | |
| 892 | |
| 893 /* Calculate AGC gain */ | |
| 894 /*--------------------*/ | |
| 895 | |
| 896 snsAgc.man = sqroot(L_AgcGain); | |
| 897 | |
| 898 | |
| 899 /* check if 1/2 sqrt(G^2) >= 1.0 */ | |
| 900 /* This is equivalent to checking if shiftCnt/2+1 < 0 */ | |
| 901 /*----------------------------------------------------*/ | |
| 902 | |
| 903 if (add(snsAgc.sh, 2) < 0) | |
| 904 { | |
| 905 swAgcOut = SW_MAX; | |
| 906 } | |
| 907 else | |
| 908 { | |
| 909 | |
| 910 if (0x1 & snsAgc.sh) | |
| 911 { | |
| 912 snsAgc.man = mult(snsAgc.man, SQRT_ONEHALF); | |
| 913 } | |
| 914 | |
| 915 snsAgc.sh = shr(snsAgc.sh, 1); /* shiftCnt/2 */ | |
| 916 snsAgc.sh = add(snsAgc.sh, 1); /* shiftCnt/2 + 1 */ | |
| 917 | |
| 918 if (snsAgc.sh > 0) | |
| 919 { | |
| 920 snsAgc.man = shr(snsAgc.man, snsAgc.sh); | |
| 921 } | |
| 922 swAgcOut = snsAgc.man; | |
| 923 } | |
| 924 } | |
| 925 | |
| 926 return (swAgcOut); | |
| 927 } | |
| 928 | |
| 929 /*************************************************************************** | |
| 930 * | |
| 931 * FUNCTION NAME: b_con | |
| 932 * | |
| 933 * PURPOSE: | |
| 934 * Expands codeword into an one dimensional array. The 0/1 input is | |
| 935 * changed to an element with magnitude +/- 0.5. | |
| 936 * | |
| 937 * input output | |
| 938 * | |
| 939 * 0 -0.5 | |
| 940 * 1 +0.5 | |
| 941 * | |
| 942 * INPUT: | |
| 943 * | |
| 944 * swCodeWord | |
| 945 * Input codeword, information in the LSB's | |
| 946 * | |
| 947 * siNumBits | |
| 948 * number of bits in the input codeword and number | |
| 949 * of elements in output vector | |
| 950 * | |
| 951 * pswVectOut[0:siNumBits] | |
| 952 * | |
| 953 * pointer to bit array | |
| 954 * | |
| 955 * OUTPUT: | |
| 956 * | |
| 957 * pswVectOut[0:siNumBits] | |
| 958 * | |
| 959 * signed bit array | |
| 960 * | |
| 961 * RETURN: | |
| 962 * | |
| 963 * none | |
| 964 * | |
| 965 * REFERENCES: Sub_Clause 4.1.10 and 4.2.1 of GSM Recomendation 06.20 | |
| 966 * | |
| 967 * KEYWORDS: b_con, codeword, expansion | |
| 968 * | |
| 969 *************************************************************************/ | |
| 970 | |
| 971 void b_con(Shortword swCodeWord, short siNumBits, | |
| 972 Shortword pswVectOut[]) | |
| 973 { | |
| 974 | |
| 975 /*_________________________________________________________________________ | |
| 976 | | | |
| 977 | Automatic Variables | | |
| 978 |_________________________________________________________________________| | |
| 979 */ | |
| 980 | |
| 981 short int siLoopCnt; | |
| 982 | |
| 983 /*_________________________________________________________________________ | |
| 984 | | | |
| 985 | Executable Code | | |
| 986 |_________________________________________________________________________| | |
| 987 */ | |
| 988 | |
| 989 for (siLoopCnt = 0; siLoopCnt < siNumBits; siLoopCnt++) | |
| 990 { | |
| 991 | |
| 992 if (swCodeWord & 1) /* temp accumulator get 0.5 */ | |
| 993 pswVectOut[siLoopCnt] = (Shortword) 0x4000; | |
| 994 else /* temp accumulator gets -0.5 */ | |
| 995 pswVectOut[siLoopCnt] = (Shortword) 0xc000; | |
| 996 | |
| 997 swCodeWord = shr(swCodeWord, 1); | |
| 998 } | |
| 999 } | |
| 1000 | |
| 1001 /*************************************************************************** | |
| 1002 * | |
| 1003 * FUNCTION NAME: fp_ex | |
| 1004 * | |
| 1005 * PURPOSE: | |
| 1006 * | |
| 1007 * Looks up a vector in the adaptive excitation codebook (long-term | |
| 1008 * predictor). | |
| 1009 * | |
| 1010 * INPUTS: | |
| 1011 * | |
| 1012 * swOrigLagIn | |
| 1013 * | |
| 1014 * Extended resolution lag (lag * oversampling factor) | |
| 1015 * | |
| 1016 * pswLTPState[-147:39] | |
| 1017 * | |
| 1018 * Adaptive codebook (with space at end for looked up | |
| 1019 * vector). Indicies [-147:-1] are the history, [0:39] | |
| 1020 * are for the looked up vector. | |
| 1021 * | |
| 1022 * psrPitchIntrpFirBase[0:59] | |
| 1023 * ppsrPVecIntFilt[0:9][0:5] ([tap][phase]) | |
| 1024 * | |
| 1025 * Interpolating FIR filter coefficients. | |
| 1026 * | |
| 1027 * OUTPUTS: | |
| 1028 * | |
| 1029 * pswLTPState[0:39] | |
| 1030 * | |
| 1031 * Array containing the contructed output vector | |
| 1032 * | |
| 1033 * RETURN VALUE: | |
| 1034 * none | |
| 1035 * | |
| 1036 * DESCRIPTION: | |
| 1037 * | |
| 1038 * The adaptive codebook consists of the history of the excitation. | |
| 1039 * The vector is looked up by going back into this history | |
| 1040 * by the amount of the input lag. If the input lag is fractional, | |
| 1041 * then the samples to be looked up are interpolated from the existing | |
| 1042 * samples in the history. | |
| 1043 * | |
| 1044 * If the lag is less than the length of the vector to be generated | |
| 1045 * (i.e. less than the subframe length), then the lag is doubled | |
| 1046 * after the first n samples have been looked up (n = input lag). | |
| 1047 * In this way, the samples being generated are not part of the | |
| 1048 * codebook. This is described in section 4.1.8. | |
| 1049 * | |
| 1050 * REFERENCES: Sub_Clause 4.1.8.5 and 4.2.1 of GSM Recomendation 06.20 | |
| 1051 * | |
| 1052 * Keywords: pitch, excitation vector, long term filter, history, | |
| 1053 * Keywords: fractional lag, get_ipjj | |
| 1054 * | |
| 1055 *************************************************************************/ | |
| 1056 | |
| 1057 | |
| 1058 | |
| 1059 void fp_ex(Shortword swOrigLagIn, | |
| 1060 Shortword pswLTPState[]) | |
| 1061 { | |
| 1062 | |
| 1063 /*_________________________________________________________________________ | |
| 1064 | | | |
| 1065 | Automatic Variables | | |
| 1066 |_________________________________________________________________________| | |
| 1067 */ | |
| 1068 | |
| 1069 Longword L_Temp; | |
| 1070 Shortword swIntLag, | |
| 1071 swRemain, | |
| 1072 swRunningLag; | |
| 1073 short int siSampsSoFar, | |
| 1074 siSampsThisPass, | |
| 1075 i, | |
| 1076 j; | |
| 1077 | |
| 1078 /*_________________________________________________________________________ | |
| 1079 | | | |
| 1080 | Executable Code | | |
| 1081 |_________________________________________________________________________| | |
| 1082 */ | |
| 1083 | |
| 1084 /* Loop: execute until all samples in the vector have been looked up */ | |
| 1085 /*-------------------------------------------------------------------*/ | |
| 1086 | |
| 1087 swRunningLag = swOrigLagIn; | |
| 1088 siSampsSoFar = 0; | |
| 1089 while (siSampsSoFar < S_LEN) | |
| 1090 { | |
| 1091 | |
| 1092 /* Get integer lag and remainder. These are used in addressing */ | |
| 1093 /* the LTP state and the interpolating filter, respectively */ | |
| 1094 /*--------------------------------------------------------------*/ | |
| 1095 | |
| 1096 get_ipjj(swRunningLag, &swIntLag, &swRemain); | |
| 1097 | |
| 1098 | |
| 1099 /* Get the number of samples to look up in this pass */ | |
| 1100 /*---------------------------------------------------*/ | |
| 1101 | |
| 1102 if (sub(swIntLag, S_LEN) < 0) | |
| 1103 siSampsThisPass = swIntLag - siSampsSoFar; | |
| 1104 else | |
| 1105 siSampsThisPass = S_LEN - siSampsSoFar; | |
| 1106 | |
| 1107 /* Look up samples by interpolating (fractional lag), or copying */ | |
| 1108 /* (integer lag). */ | |
| 1109 /*---------------------------------------------------------------*/ | |
| 1110 | |
| 1111 if (swRemain == 0) | |
| 1112 { | |
| 1113 | |
| 1114 /* Integer lag: copy samples from history */ | |
| 1115 /*----------------------------------------*/ | |
| 1116 | |
| 1117 for (i = siSampsSoFar; i < siSampsSoFar + siSampsThisPass; i++) | |
| 1118 pswLTPState[i] = pswLTPState[i - swIntLag]; | |
| 1119 } | |
| 1120 else | |
| 1121 { | |
| 1122 | |
| 1123 /* Fractional lag: interpolate to get samples */ | |
| 1124 /*--------------------------------------------*/ | |
| 1125 | |
| 1126 for (i = siSampsSoFar; i < siSampsSoFar + siSampsThisPass; i++) | |
| 1127 { | |
| 1128 | |
| 1129 /* first tap with rounding offset */ | |
| 1130 /*--------------------------------*/ | |
| 1131 L_Temp = L_mac((long) 32768, | |
| 1132 pswLTPState[i - swIntLag - P_INT_MACS / 2], | |
| 1133 ppsrPVecIntFilt[0][swRemain]); | |
| 1134 | |
| 1135 for (j = 1; j < P_INT_MACS - 1; j++) | |
| 1136 { | |
| 1137 | |
| 1138 L_Temp = L_mac(L_Temp, | |
| 1139 pswLTPState[i - swIntLag - P_INT_MACS / 2 + j], | |
| 1140 ppsrPVecIntFilt[j][swRemain]); | |
| 1141 | |
| 1142 } | |
| 1143 | |
| 1144 pswLTPState[i] = extract_h(L_mac(L_Temp, | |
| 1145 pswLTPState[i - swIntLag + P_INT_MACS / 2 - 1], | |
| 1146 ppsrPVecIntFilt[P_INT_MACS - 1][swRemain])); | |
| 1147 } | |
| 1148 } | |
| 1149 | |
| 1150 /* Done with this pass: update loop controls */ | |
| 1151 /*-------------------------------------------*/ | |
| 1152 | |
| 1153 siSampsSoFar += siSampsThisPass; | |
| 1154 swRunningLag = add(swRunningLag, swOrigLagIn); | |
| 1155 } | |
| 1156 } | |
| 1157 | |
| 1158 /*************************************************************************** | |
| 1159 * | |
| 1160 * FUNCTION NAME: g_corr1 (no scaling) | |
| 1161 * | |
| 1162 * PURPOSE: | |
| 1163 * | |
| 1164 * Calculates energy in subframe vector. Differs from g_corr1s, | |
| 1165 * in that there the estimate of the maximum possible | |
| 1166 * energy is < 1.0 | |
| 1167 * | |
| 1168 * | |
| 1169 * INPUT: | |
| 1170 * | |
| 1171 * pswIn[0:39] | |
| 1172 * A subframe vector. | |
| 1173 * | |
| 1174 * | |
| 1175 * OUTPUT: | |
| 1176 * | |
| 1177 * *pL_out | |
| 1178 * A Longword containing the normalized energy | |
| 1179 * in the input vector. | |
| 1180 * | |
| 1181 * RETURN: | |
| 1182 * | |
| 1183 * swOut | |
| 1184 * Number of right shifts which the accumulator was | |
| 1185 * shifted to normalize it. Negative number implies | |
| 1186 * a left shift, and therefore an energy larger than | |
| 1187 * 1.0. | |
| 1188 * | |
| 1189 * REFERENCES: Sub_Clause 4.1.10.2 and 4.2.1 of GSM Recomendation 06.20 | |
| 1190 * | |
| 1191 * KEYWORDS: energy, autocorrelation, correlation, g_corr1 | |
| 1192 * | |
| 1193 * | |
| 1194 *************************************************************************/ | |
| 1195 | |
| 1196 Shortword g_corr1(Shortword *pswIn, Longword *pL_out) | |
| 1197 { | |
| 1198 | |
| 1199 | |
| 1200 /*_________________________________________________________________________ | |
| 1201 | | | |
| 1202 | Automatic Variables | | |
| 1203 |_________________________________________________________________________| | |
| 1204 */ | |
| 1205 | |
| 1206 Longword L_sum; | |
| 1207 Shortword swEngyLShft; | |
| 1208 int i; | |
| 1209 | |
| 1210 | |
| 1211 /*_________________________________________________________________________ | |
| 1212 | | | |
| 1213 | Executable Code | | |
| 1214 |_________________________________________________________________________| | |
| 1215 */ | |
| 1216 | |
| 1217 | |
| 1218 /* Calculate energy in subframe vector (40 samples) */ | |
| 1219 /*--------------------------------------------------*/ | |
| 1220 | |
| 1221 L_sum = L_mult(pswIn[0], pswIn[0]); | |
| 1222 for (i = 1; i < S_LEN; i++) | |
| 1223 { | |
| 1224 L_sum = L_mac(L_sum, pswIn[i], pswIn[i]); | |
| 1225 } | |
| 1226 | |
| 1227 | |
| 1228 | |
| 1229 if (L_sum != 0) | |
| 1230 { | |
| 1231 | |
| 1232 /* Normalize the energy in the output Longword */ | |
| 1233 /*---------------------------------------------*/ | |
| 1234 | |
| 1235 swEngyLShft = norm_l(L_sum); | |
| 1236 *pL_out = L_shl(L_sum, swEngyLShft); /* normalize output | |
| 1237 * Longword */ | |
| 1238 } | |
| 1239 else | |
| 1240 { | |
| 1241 | |
| 1242 /* Special case: energy is zero */ | |
| 1243 /*------------------------------*/ | |
| 1244 | |
| 1245 *pL_out = L_sum; | |
| 1246 swEngyLShft = 0; | |
| 1247 } | |
| 1248 | |
| 1249 return (swEngyLShft); | |
| 1250 } | |
| 1251 | |
| 1252 /*************************************************************************** | |
| 1253 * | |
| 1254 * FUNCTION NAME: g_corr1s (g_corr1 with scaling) | |
| 1255 * | |
| 1256 * PURPOSE: | |
| 1257 * | |
| 1258 * Calculates energy in subframe vector. Differs from g_corr1, | |
| 1259 * in that there is an estimate of the maximum possible energy in the | |
| 1260 * vector. | |
| 1261 * | |
| 1262 * INPUT: | |
| 1263 * | |
| 1264 * pswIn[0:39] | |
| 1265 * A subframe vector. | |
| 1266 * | |
| 1267 * swEngyRShft | |
| 1268 * | |
| 1269 * Number of right shifts to apply to the vectors energy | |
| 1270 * to ensure that it remains less than 1.0 | |
| 1271 * (swEngyRShft is always positive or zero) | |
| 1272 * | |
| 1273 * OUTPUT: | |
| 1274 * | |
| 1275 * *pL_out | |
| 1276 * A Longword containing the normalized energy | |
| 1277 * in the input vector. | |
| 1278 * | |
| 1279 * RETURN: | |
| 1280 * | |
| 1281 * swOut | |
| 1282 * Number of right shifts which the accumulator was | |
| 1283 * shifted to normalize it. Negative number implies | |
| 1284 * a left shift, and therefore an energy larger than | |
| 1285 * 1.0. | |
| 1286 * | |
| 1287 * REFERENCES: Sub-Clause 4.1.8, 4.2.1, 4.2.2, and 4.2.4 | |
| 1288 * of GSM Recomendation 06.20 | |
| 1289 * | |
| 1290 * keywords: energy, autocorrelation, correlation, g_corr1 | |
| 1291 * | |
| 1292 * | |
| 1293 *************************************************************************/ | |
| 1294 | |
| 1295 Shortword g_corr1s(Shortword pswIn[], Shortword swEngyRShft, | |
| 1296 Longword *pL_out) | |
| 1297 { | |
| 1298 | |
| 1299 | |
| 1300 /*_________________________________________________________________________ | |
| 1301 | | | |
| 1302 | Automatic Variables | | |
| 1303 |_________________________________________________________________________| | |
| 1304 */ | |
| 1305 | |
| 1306 Longword L_sum; | |
| 1307 Shortword swTemp, | |
| 1308 swEngyLShft; | |
| 1309 Shortword swInputRShft; | |
| 1310 | |
| 1311 int i; | |
| 1312 | |
| 1313 | |
| 1314 /*_________________________________________________________________________ | |
| 1315 | | | |
| 1316 | Executable Code | | |
| 1317 |_________________________________________________________________________| | |
| 1318 */ | |
| 1319 | |
| 1320 | |
| 1321 /* Calculate energy in subframe vector (40 samples) */ | |
| 1322 /*--------------------------------------------------*/ | |
| 1323 | |
| 1324 if (sub(swEngyRShft, 1) <= 0) | |
| 1325 { | |
| 1326 | |
| 1327 /* use the energy shift factor, although it is an odd shift count */ | |
| 1328 /*----------------------------------------------------------------*/ | |
| 1329 | |
| 1330 swTemp = shr(pswIn[0], swEngyRShft); | |
| 1331 L_sum = L_mult(pswIn[0], swTemp); | |
| 1332 for (i = 1; i < S_LEN; i++) | |
| 1333 { | |
| 1334 swTemp = shr(pswIn[i], swEngyRShft); | |
| 1335 L_sum = L_mac(L_sum, pswIn[i], swTemp); | |
| 1336 } | |
| 1337 | |
| 1338 } | |
| 1339 else | |
| 1340 { | |
| 1341 | |
| 1342 /* convert energy shift factor to an input shift factor */ | |
| 1343 /*------------------------------------------------------*/ | |
| 1344 | |
| 1345 swInputRShft = shift_r(swEngyRShft, -1); | |
| 1346 swEngyRShft = shl(swInputRShft, 1); | |
| 1347 | |
| 1348 swTemp = shr(pswIn[0], swInputRShft); | |
| 1349 L_sum = L_mult(swTemp, swTemp); | |
| 1350 for (i = 1; i < S_LEN; i++) | |
| 1351 { | |
| 1352 swTemp = shr(pswIn[i], swInputRShft); | |
| 1353 L_sum = L_mac(L_sum, swTemp, swTemp); | |
| 1354 } | |
| 1355 } | |
| 1356 | |
| 1357 if (L_sum != 0) | |
| 1358 { | |
| 1359 | |
| 1360 /* Normalize the energy in the output Longword */ | |
| 1361 /*---------------------------------------------*/ | |
| 1362 | |
| 1363 swTemp = norm_l(L_sum); | |
| 1364 *pL_out = L_shl(L_sum, swTemp); /* normalize output Longword */ | |
| 1365 swEngyLShft = sub(swTemp, swEngyRShft); | |
| 1366 } | |
| 1367 else | |
| 1368 { | |
| 1369 | |
| 1370 /* Special case: energy is zero */ | |
| 1371 /*------------------------------*/ | |
| 1372 | |
| 1373 *pL_out = L_sum; | |
| 1374 swEngyLShft = 0; | |
| 1375 } | |
| 1376 | |
| 1377 return (swEngyLShft); | |
| 1378 } | |
| 1379 | |
| 1380 /*************************************************************************** | |
| 1381 * | |
| 1382 * FUNCTION NAME: getSfrmLpc | |
| 1383 * | |
| 1384 * PURPOSE: | |
| 1385 * | |
| 1386 * Given frame information from past and present frame, interpolate | |
| 1387 * (or copy) the frame based LPC coefficients into subframe | |
| 1388 * lpc coeffs, i.e. the ones which will be used by the subframe | |
| 1389 * as opposed to those coded and transmitted. | |
| 1390 * | |
| 1391 * INPUTS: | |
| 1392 * | |
| 1393 * siSoftInterpolation | |
| 1394 * | |
| 1395 * interpolate 1/0, a coded parameter. | |
| 1396 * | |
| 1397 * swPrevR0,swNewR0 | |
| 1398 * | |
| 1399 * Rq0 for the last frame and for this frame. | |
| 1400 * These are the decoded values, not the codewords. | |
| 1401 * | |
| 1402 * Previous lpc coefficients from the previous frame: | |
| 1403 * in all filters below array[0] is the t=-1 element array[9] | |
| 1404 * t=-10 element. | |
| 1405 * | |
| 1406 * pswPrevFrmKs[0:9] | |
| 1407 * | |
| 1408 * decoded version of the rc's tx'd last frame | |
| 1409 * | |
| 1410 * pswPrevFrmAs[0:9] | |
| 1411 * | |
| 1412 * the above K's converted to A's. i.e. direct | |
| 1413 * form coefficients. | |
| 1414 * | |
| 1415 * pswPrevFrmPFNum[0:9], pswPrevFrmPFDenom[0:9] | |
| 1416 * | |
| 1417 * numerator and denominator coefficients used in the | |
| 1418 * postfilter | |
| 1419 * | |
| 1420 * Current lpc coefficients from the current frame: | |
| 1421 * | |
| 1422 * pswNewFrmKs[0:9], pswNewFrmAs[0:9], | |
| 1423 * pswNewFrmPFNum[0:9], pswNewFrmPFDenom[0:9] same as above. | |
| 1424 * | |
| 1425 * OUTPUTS: | |
| 1426 * | |
| 1427 * psnsSqrtRs[0:3] | |
| 1428 * | |
| 1429 * a normalized number (struct NormSw) | |
| 1430 * containing an estimate of RS for each subframe. | |
| 1431 * (number and a shift) | |
| 1432 * | |
| 1433 * ppswSynthAs[0:3][0:9] | |
| 1434 * | |
| 1435 * filter coefficients used by the synthesis filter. | |
| 1436 * | |
| 1437 * ppswPFNumAs[0:3][0:9] | |
| 1438 * | |
| 1439 * filter coefficients used by the postfilters | |
| 1440 * numerator. | |
| 1441 * | |
| 1442 * ppswPFDenomAs[0:3][0:9] | |
| 1443 * | |
| 1444 * filter coefficients used by postfilters denominator. | |
| 1445 * | |
| 1446 * RETURN VALUE: | |
| 1447 * | |
| 1448 * None | |
| 1449 * | |
| 1450 * DESCRIPTION: | |
| 1451 * | |
| 1452 * For interpolated subframes, the direct form coefficients | |
| 1453 * are converted to reflection coeffiecients to check for | |
| 1454 * filter stability. If unstable, the uninterpolated coef. | |
| 1455 * are used for that subframe. | |
| 1456 * | |
| 1457 * Interpolation is described in section 4.1.6, "Soft Interpolation | |
| 1458 * of the Spectral Parameters" | |
| 1459 * | |
| 1460 * REFERENCES: Sub_clause 4.2.1 of GSM Recomendation 06.20 | |
| 1461 * | |
| 1462 * KEYWORDS: soft interpolation, int_lpc, interpolate, atorc,res_eng,i_mov | |
| 1463 * | |
| 1464 *************************************************************************/ | |
| 1465 | |
| 1466 void getSfrmLpc(short int siSoftInterpolation, | |
| 1467 Shortword swPrevR0, Shortword swNewR0, | |
| 1468 /* last frm */ Shortword pswPrevFrmKs[], Shortword pswPrevFrmAs[], | |
| 1469 Shortword pswPrevFrmPFNum[], | |
| 1470 Shortword pswPrevFrmPFDenom[], | |
| 1471 | |
| 1472 /* this frm */ Shortword pswNewFrmKs[], Shortword pswNewFrmAs[], | |
| 1473 Shortword pswNewFrmPFNum[], | |
| 1474 Shortword pswNewFrmPFDenom[], | |
| 1475 | |
| 1476 /* output */ struct NormSw *psnsSqrtRs, | |
| 1477 Shortword *ppswSynthAs[], Shortword *ppswPFNumAs[], | |
| 1478 Shortword *ppswPFDenomAs[]) | |
| 1479 { | |
| 1480 | |
| 1481 /*_________________________________________________________________________ | |
| 1482 | | | |
| 1483 | Local Static Variables | | |
| 1484 |_________________________________________________________________________| | |
| 1485 */ | |
| 1486 | |
| 1487 | |
| 1488 /*_________________________________________________________________________ | |
| 1489 | | | |
| 1490 | Automatic Variables | | |
| 1491 |_________________________________________________________________________| | |
| 1492 */ | |
| 1493 | |
| 1494 short int siSfrm, | |
| 1495 siStable, | |
| 1496 i; | |
| 1497 | |
| 1498 Longword L_Temp1, | |
| 1499 L_Temp2; | |
| 1500 | |
| 1501 /*_________________________________________________________________________ | |
| 1502 | | | |
| 1503 | Executable Code | | |
| 1504 |_________________________________________________________________________| | |
| 1505 */ | |
| 1506 | |
| 1507 if (siSoftInterpolation) | |
| 1508 { | |
| 1509 /* yes, interpolating */ | |
| 1510 /* ------------------ */ | |
| 1511 | |
| 1512 siSfrm = 0; | |
| 1513 | |
| 1514 siStable = interpolateCheck(pswPrevFrmKs, pswPrevFrmAs, | |
| 1515 pswPrevFrmAs, pswNewFrmAs, | |
| 1516 psrOldCont[siSfrm], psrNewCont[siSfrm], | |
| 1517 swPrevR0, | |
| 1518 &psnsSqrtRs[siSfrm], | |
| 1519 ppswSynthAs[siSfrm]); | |
| 1520 if (siStable) | |
| 1521 { | |
| 1522 | |
| 1523 /* interpolate between direct form coefficient sets */ | |
| 1524 /* for both numerator and denominator coefficients */ | |
| 1525 /* assume output will be stable */ | |
| 1526 /* ------------------------------------------------ */ | |
| 1527 | |
| 1528 for (i = 0; i < NP; i++) | |
| 1529 { | |
| 1530 L_Temp1 = L_mult(pswNewFrmPFNum[i], psrNewCont[siSfrm]); | |
| 1531 ppswPFNumAs[siSfrm][i] = mac_r(L_Temp1, pswPrevFrmPFNum[i], | |
| 1532 psrOldCont[siSfrm]); | |
| 1533 L_Temp2 = L_mult(pswNewFrmPFDenom[i], psrNewCont[siSfrm]); | |
| 1534 ppswPFDenomAs[siSfrm][i] = mac_r(L_Temp2, pswPrevFrmPFDenom[i], | |
| 1535 psrOldCont[siSfrm]); | |
| 1536 } | |
| 1537 } | |
| 1538 else | |
| 1539 { | |
| 1540 /* this subframe is unstable */ | |
| 1541 /* ------------------------- */ | |
| 1542 for (i = 0; i < NP; i++) | |
| 1543 { | |
| 1544 ppswPFNumAs[siSfrm][i] = pswPrevFrmPFNum[i]; | |
| 1545 ppswPFDenomAs[siSfrm][i] = pswPrevFrmPFDenom[i]; | |
| 1546 } | |
| 1547 } | |
| 1548 for (siSfrm = 1; siSfrm < N_SUB - 1; siSfrm++) | |
| 1549 { | |
| 1550 | |
| 1551 siStable = interpolateCheck(pswNewFrmKs, pswNewFrmAs, | |
| 1552 pswPrevFrmAs, pswNewFrmAs, | |
| 1553 psrOldCont[siSfrm], psrNewCont[siSfrm], | |
| 1554 swNewR0, | |
| 1555 &psnsSqrtRs[siSfrm], | |
| 1556 ppswSynthAs[siSfrm]); | |
| 1557 if (siStable) | |
| 1558 { | |
| 1559 | |
| 1560 /* interpolate between direct form coefficient sets */ | |
| 1561 /* for both numerator and denominator coefficients */ | |
| 1562 /* assume output will be stable */ | |
| 1563 /* ------------------------------------------------ */ | |
| 1564 | |
| 1565 for (i = 0; i < NP; i++) | |
| 1566 { | |
| 1567 L_Temp1 = L_mult(pswNewFrmPFNum[i], psrNewCont[siSfrm]); | |
| 1568 ppswPFNumAs[siSfrm][i] = mac_r(L_Temp1, pswPrevFrmPFNum[i], | |
| 1569 psrOldCont[siSfrm]); | |
| 1570 L_Temp2 = L_mult(pswNewFrmPFDenom[i], psrNewCont[siSfrm]); | |
| 1571 ppswPFDenomAs[siSfrm][i] = mac_r(L_Temp2, pswPrevFrmPFDenom[i], | |
| 1572 psrOldCont[siSfrm]); | |
| 1573 } | |
| 1574 } | |
| 1575 else | |
| 1576 { | |
| 1577 /* this subframe has unstable filter coeffs, would like to | |
| 1578 * interpolate but can not */ | |
| 1579 /* -------------------------------------- */ | |
| 1580 for (i = 0; i < NP; i++) | |
| 1581 { | |
| 1582 ppswPFNumAs[siSfrm][i] = pswNewFrmPFNum[i]; | |
| 1583 ppswPFDenomAs[siSfrm][i] = pswNewFrmPFDenom[i]; | |
| 1584 } | |
| 1585 } | |
| 1586 } | |
| 1587 /* the last subframe never interpolate */ | |
| 1588 /* ----------------------------------- */ | |
| 1589 siSfrm = 3; | |
| 1590 for (i = 0; i < NP; i++) | |
| 1591 { | |
| 1592 ppswPFNumAs[siSfrm][i] = pswNewFrmPFNum[i]; | |
| 1593 ppswPFDenomAs[siSfrm][i] = pswNewFrmPFDenom[i]; | |
| 1594 ppswSynthAs[siSfrm][i] = pswNewFrmAs[i]; | |
| 1595 } | |
| 1596 | |
| 1597 res_eng(pswNewFrmKs, swNewR0, &psnsSqrtRs[siSfrm]); | |
| 1598 | |
| 1599 } | |
| 1600 /* SoftInterpolation == 0 - no interpolation */ | |
| 1601 /* ------------------------------------------ */ | |
| 1602 else | |
| 1603 { | |
| 1604 siSfrm = 0; | |
| 1605 for (i = 0; i < NP; i++) | |
| 1606 { | |
| 1607 ppswPFNumAs[siSfrm][i] = pswPrevFrmPFNum[i]; | |
| 1608 ppswPFDenomAs[siSfrm][i] = pswPrevFrmPFDenom[i]; | |
| 1609 ppswSynthAs[siSfrm][i] = pswPrevFrmAs[i]; | |
| 1610 } | |
| 1611 | |
| 1612 res_eng(pswPrevFrmKs, swPrevR0, &psnsSqrtRs[siSfrm]); | |
| 1613 | |
| 1614 /* for subframe 1 and all subsequent sfrms, use result from new frm */ | |
| 1615 /* ---------------------------------------------------------------- */ | |
| 1616 | |
| 1617 | |
| 1618 res_eng(pswNewFrmKs, swNewR0, &psnsSqrtRs[1]); | |
| 1619 | |
| 1620 for (siSfrm = 1; siSfrm < N_SUB; siSfrm++) | |
| 1621 { | |
| 1622 | |
| 1623 | |
| 1624 psnsSqrtRs[siSfrm].man = psnsSqrtRs[1].man; | |
| 1625 psnsSqrtRs[siSfrm].sh = psnsSqrtRs[1].sh; | |
| 1626 | |
| 1627 for (i = 0; i < NP; i++) | |
| 1628 { | |
| 1629 ppswPFNumAs[siSfrm][i] = pswNewFrmPFNum[i]; | |
| 1630 ppswPFDenomAs[siSfrm][i] = pswNewFrmPFDenom[i]; | |
| 1631 ppswSynthAs[siSfrm][i] = pswNewFrmAs[i]; | |
| 1632 } | |
| 1633 } | |
| 1634 } | |
| 1635 } | |
| 1636 | |
| 1637 /*************************************************************************** | |
| 1638 * | |
| 1639 * FUNCTION NAME: get_ipjj | |
| 1640 * | |
| 1641 * PURPOSE: | |
| 1642 * | |
| 1643 * This subroutine calculates IP, the single-resolution lag rounded | |
| 1644 * down to the nearest integer, and JJ, the remainder when the | |
| 1645 * extended resolution lag is divided by the oversampling factor | |
| 1646 * | |
| 1647 * INPUTS: | |
| 1648 * | |
| 1649 * swLagIn | |
| 1650 * extended resolution lag as an integer, i.e. | |
| 1651 * fractional lag x oversampling factor | |
| 1652 * | |
| 1653 * OUTPUTS: | |
| 1654 * | |
| 1655 * *pswIp | |
| 1656 * fractional lag rounded down to nearest integer, IP | |
| 1657 * | |
| 1658 * *pswJj | |
| 1659 * the remainder JJ | |
| 1660 * | |
| 1661 * RETURN VALUE: | |
| 1662 * | |
| 1663 * none | |
| 1664 * | |
| 1665 * DESCRIPTION: | |
| 1666 * | |
| 1667 * ip = integer[lag/OS_FCTR] | |
| 1668 * jj = integer_round[((lag/OS_FCTR)-ip)*(OS_FCTR)] | |
| 1669 * if the rounding caused an 'overflow' | |
| 1670 * set remainder jj to 0 and add 'carry' to ip | |
| 1671 * | |
| 1672 * This routine is involved in the mechanics of fractional and | |
| 1673 * integer LTP searchs. The LTP is described in section 5. | |
| 1674 * | |
| 1675 * REFERENCES: Sub-clause 4.1.8 and 4.2.2 of GSM Recomendation 06.20 | |
| 1676 * | |
| 1677 * KEYWORDS: lag, fractional, remainder, ip, jj, get_ipjj | |
| 1678 * | |
| 1679 *************************************************************************/ | |
| 1680 | |
| 1681 void get_ipjj(Shortword swLagIn, | |
| 1682 Shortword *pswIp, Shortword *pswJj) | |
| 1683 { | |
| 1684 | |
| 1685 /*_________________________________________________________________________ | |
| 1686 | | | |
| 1687 | Local Constants | | |
| 1688 |_________________________________________________________________________| | |
| 1689 */ | |
| 1690 | |
| 1691 #define OS_FCTR_INV (Shortword)0x1555/* SW_MAX/OS_FCTR */ | |
| 1692 | |
| 1693 /*_________________________________________________________________________ | |
| 1694 | | | |
| 1695 | Automatic Variables | | |
| 1696 |_________________________________________________________________________| | |
| 1697 */ | |
| 1698 | |
| 1699 Longword L_Temp; | |
| 1700 | |
| 1701 Shortword swTemp, | |
| 1702 swTempIp, | |
| 1703 swTempJj; | |
| 1704 | |
| 1705 /*_________________________________________________________________________ | |
| 1706 | | | |
| 1707 | Executable Code | | |
| 1708 |_________________________________________________________________________| | |
| 1709 */ | |
| 1710 | |
| 1711 /* calculate ip */ | |
| 1712 /* ------------ */ | |
| 1713 | |
| 1714 L_Temp = L_mult(OS_FCTR_INV, swLagIn); /* lag/OS_FCTR */ | |
| 1715 swTempIp = extract_h(L_Temp); | |
| 1716 | |
| 1717 /* calculate jj */ | |
| 1718 /* ------------ */ | |
| 1719 | |
| 1720 swTemp = extract_l(L_Temp); /* loose ip */ | |
| 1721 swTemp = shr(swTemp, 1); /* isolate jj fraction */ | |
| 1722 swTemp = swTemp & SW_MAX; | |
| 1723 L_Temp = L_mult(swTemp, OS_FCTR); /* ((lag/OS_FCTR)-ip))*(OS_FCTR) */ | |
| 1724 swTemp = round(L_Temp); /* round and pick-off jj */ | |
| 1725 if (sub(swTemp, OS_FCTR) == 0) | |
| 1726 { /* if 'overflow ' */ | |
| 1727 swTempJj = 0; /* set remainder,jj to 0 */ | |
| 1728 swTempIp = add(swTempIp, 1); /* 'carry' overflow into ip */ | |
| 1729 } | |
| 1730 else | |
| 1731 { | |
| 1732 swTempJj = swTemp; /* read-off remainder,jj */ | |
| 1733 } | |
| 1734 | |
| 1735 /* return ip and jj */ | |
| 1736 /* ---------------- */ | |
| 1737 | |
| 1738 *pswIp = swTempIp; | |
| 1739 *pswJj = swTempJj; | |
| 1740 } | |
| 1741 | |
| 1742 /*************************************************************************** | |
| 1743 * | |
| 1744 * FUNCTION NAME: interpolateCheck | |
| 1745 * | |
| 1746 * PURPOSE: | |
| 1747 * | |
| 1748 * Interpolates between direct form coefficient sets. | |
| 1749 * Before releasing the interpolated coefficients, they are checked. | |
| 1750 * If unstable, the "old" parameters are used. | |
| 1751 * | |
| 1752 * INPUTS: | |
| 1753 * | |
| 1754 * pswRefKs[0:9] | |
| 1755 * decoded version of the rc's tx'd last frame | |
| 1756 * | |
| 1757 * pswRefCoefsA[0:9] | |
| 1758 * above K's converted to direct form coefficients | |
| 1759 * | |
| 1760 * pswOldCoefsA[0:9] | |
| 1761 * array of old Coefseters | |
| 1762 * | |
| 1763 * pswNewCoefsA[0:9] | |
| 1764 * array of new Coefseters | |
| 1765 * | |
| 1766 * swOldPer | |
| 1767 * amount old coefs supply to the output | |
| 1768 * | |
| 1769 * swNewPer | |
| 1770 * amount new coefs supply to the output | |
| 1771 * | |
| 1772 * ASHIFT | |
| 1773 * shift for reflection coef. conversion | |
| 1774 * | |
| 1775 * swRq | |
| 1776 * quantized energy to use for subframe | |
| 1777 * * | |
| 1778 * OUTPUTS: | |
| 1779 * | |
| 1780 * psnsSqrtRsOut | |
| 1781 * output pointer to sqrt(RS) normalized | |
| 1782 * | |
| 1783 * pswCoefOutA[0:9] | |
| 1784 * output coefficients | |
| 1785 * | |
| 1786 * RETURN VALUE: | |
| 1787 * | |
| 1788 * siInterp_flg | |
| 1789 * temporary subframe interpolation flag | |
| 1790 * 0 - coef. interpolated, 1 -coef. not interpolated | |
| 1791 * | |
| 1792 * DESCRIPTION: | |
| 1793 * | |
| 1794 * For interpolated subframes, the direct form coefficients | |
| 1795 * are converted to reflection coefficients to check for | |
| 1796 * filter stability. If unstable, the uninterpolated coef. | |
| 1797 * are used for that subframe. Section 4.1.6 describes | |
| 1798 * interpolation. | |
| 1799 * | |
| 1800 * REFERENCES: Sub-clause 4.1.6 and 4.2.3 of GSM Recomendation 06.20 | |
| 1801 * | |
| 1802 * KEYWORDS: soft interpolation, int_lpc, interpolate, atorc,res_eng,i_mov | |
| 1803 * | |
| 1804 *************************************************************************/ | |
| 1805 | |
| 1806 short int interpolateCheck(Shortword pswRefKs[], | |
| 1807 Shortword pswRefCoefsA[], | |
| 1808 Shortword pswOldCoefsA[], Shortword pswNewCoefsA[], | |
| 1809 Shortword swOldPer, Shortword swNewPer, | |
| 1810 Shortword swRq, | |
| 1811 struct NormSw *psnsSqrtRsOut, | |
| 1812 Shortword pswCoefOutA[]) | |
| 1813 { | |
| 1814 | |
| 1815 /*_________________________________________________________________________ | |
| 1816 | | | |
| 1817 | Automatic Variables | | |
| 1818 |_________________________________________________________________________| | |
| 1819 */ | |
| 1820 | |
| 1821 Shortword pswRcTemp[NP]; | |
| 1822 | |
| 1823 Longword L_Temp; | |
| 1824 | |
| 1825 short int siInterp_flg, | |
| 1826 i; | |
| 1827 | |
| 1828 /*_________________________________________________________________________ | |
| 1829 | | | |
| 1830 | Executable Code | | |
| 1831 |_________________________________________________________________________| | |
| 1832 */ | |
| 1833 | |
| 1834 /* Interpolation loop, NP is order of LPC filter */ | |
| 1835 /* --------------------------------------------- */ | |
| 1836 | |
| 1837 for (i = 0; i < NP; i++) | |
| 1838 { | |
| 1839 L_Temp = L_mult(pswNewCoefsA[i], swNewPer); | |
| 1840 pswCoefOutA[i] = mac_r(L_Temp, pswOldCoefsA[i], swOldPer); | |
| 1841 } | |
| 1842 | |
| 1843 /* Convert to reflection coefficients and check stability */ | |
| 1844 /* ------------------------------------------------------ */ | |
| 1845 | |
| 1846 if (aToRc(ASHIFT, pswCoefOutA, pswRcTemp) != 0) | |
| 1847 { | |
| 1848 | |
| 1849 /* Unstable, use uninterpolated parameters and compute RS update the | |
| 1850 * state with the frame data closest to this subfrm */ | |
| 1851 /* --------------------------------------------------------- */ | |
| 1852 | |
| 1853 res_eng(pswRefKs, swRq, psnsSqrtRsOut); | |
| 1854 | |
| 1855 for (i = 0; i < NP; i++) | |
| 1856 { | |
| 1857 pswCoefOutA[i] = pswRefCoefsA[i]; | |
| 1858 } | |
| 1859 siInterp_flg = 0; | |
| 1860 } | |
| 1861 else | |
| 1862 { | |
| 1863 | |
| 1864 /* Stable, compute RS */ | |
| 1865 /* ------------------ */ | |
| 1866 res_eng(pswRcTemp, swRq, psnsSqrtRsOut); | |
| 1867 | |
| 1868 /* Set temporary subframe interpolation flag */ | |
| 1869 /* ----------------------------------------- */ | |
| 1870 siInterp_flg = 1; | |
| 1871 } | |
| 1872 | |
| 1873 /* Return subframe interpolation flag */ | |
| 1874 /* ---------------------------------- */ | |
| 1875 return (siInterp_flg); | |
| 1876 } | |
| 1877 | |
| 1878 /*************************************************************************** | |
| 1879 * | |
| 1880 * FUNCTION NAME: lagDecode | |
| 1881 * | |
| 1882 * PURPOSE: | |
| 1883 * | |
| 1884 * The purpose of this function is to decode the lag received from the | |
| 1885 * speech encoder into a full resolution lag for the speech decoder | |
| 1886 * | |
| 1887 * INPUTS: | |
| 1888 * | |
| 1889 * swDeltaLag | |
| 1890 * | |
| 1891 * lag received from channel decoder | |
| 1892 * | |
| 1893 * giSfrmCnt | |
| 1894 * | |
| 1895 * current sub-frame count | |
| 1896 * | |
| 1897 * swLastLag | |
| 1898 * | |
| 1899 * previous lag to un-delta this sub-frame's lag | |
| 1900 * | |
| 1901 * psrLagTbl[0:255] | |
| 1902 * | |
| 1903 * table used to look up full resolution lag | |
| 1904 * | |
| 1905 * OUTPUTS: | |
| 1906 * | |
| 1907 * swLastLag | |
| 1908 * | |
| 1909 * new previous lag for next sub-frame | |
| 1910 * | |
| 1911 * RETURN VALUE: | |
| 1912 * | |
| 1913 * swLag | |
| 1914 * | |
| 1915 * decoded full resolution lag | |
| 1916 * | |
| 1917 * DESCRIPTION: | |
| 1918 * | |
| 1919 * If first subframe, use lag as index to look up table directly. | |
| 1920 * | |
| 1921 * If it is one of the other subframes, the codeword represents a | |
| 1922 * delta offset. The previously decoded lag is used as a starting | |
| 1923 * point for decoding the current lag. | |
| 1924 * | |
| 1925 * REFERENCES: Sub-clause 4.2.1 of GSM Recomendation 06.20 | |
| 1926 * | |
| 1927 * KEYWORDS: deltalags, lookup lag | |
| 1928 * | |
| 1929 *************************************************************************/ | |
| 1930 | |
| 1931 static Shortword lagDecode(Shortword swDeltaLag) | |
| 1932 { | |
| 1933 | |
| 1934 /*_________________________________________________________________________ | |
| 1935 | | | |
| 1936 | Local Constants | | |
| 1937 |_________________________________________________________________________| | |
| 1938 */ | |
| 1939 | |
| 1940 #define DELTA_LEVELS_D2 DELTA_LEVELS/2 | |
| 1941 #define MAX_LAG 0x00ff | |
| 1942 #define MIN_LAG 0x0000 | |
| 1943 | |
| 1944 /*_________________________________________________________________________ | |
| 1945 | | | |
| 1946 | Local Static Variables | | |
| 1947 |_________________________________________________________________________| | |
| 1948 */ | |
| 1949 | |
| 1950 static Shortword swLastLag; | |
| 1951 | |
| 1952 /*_________________________________________________________________________ | |
| 1953 | | | |
| 1954 | Automatic Variables | | |
| 1955 |_________________________________________________________________________| | |
| 1956 */ | |
| 1957 | |
| 1958 Shortword swLag; | |
| 1959 | |
| 1960 /*_________________________________________________________________________ | |
| 1961 | | | |
| 1962 | Executable Code | | |
| 1963 |_________________________________________________________________________| | |
| 1964 */ | |
| 1965 | |
| 1966 /* first sub-frame */ | |
| 1967 /* --------------- */ | |
| 1968 | |
| 1969 if (giSfrmCnt == 0) | |
| 1970 { | |
| 1971 swLastLag = swDeltaLag; | |
| 1972 } | |
| 1973 | |
| 1974 /* remaining sub-frames */ | |
| 1975 /* -------------------- */ | |
| 1976 | |
| 1977 else | |
| 1978 { | |
| 1979 | |
| 1980 /* get lag biased around 0 */ | |
| 1981 /* ----------------------- */ | |
| 1982 | |
| 1983 swLag = sub(swDeltaLag, DELTA_LEVELS_D2); | |
| 1984 | |
| 1985 /* get real lag relative to last */ | |
| 1986 /* ----------------------------- */ | |
| 1987 | |
| 1988 swLag = add(swLag, swLastLag); | |
| 1989 | |
| 1990 /* clip to max or min */ | |
| 1991 /* ------------------ */ | |
| 1992 | |
| 1993 if (sub(swLag, MAX_LAG) > 0) | |
| 1994 { | |
| 1995 swLastLag = MAX_LAG; | |
| 1996 } | |
| 1997 else if (sub(swLag, MIN_LAG) < 0) | |
| 1998 { | |
| 1999 swLastLag = MIN_LAG; | |
| 2000 } | |
| 2001 else | |
| 2002 { | |
| 2003 swLastLag = swLag; | |
| 2004 } | |
| 2005 } | |
| 2006 | |
| 2007 /* return lag after look up */ | |
| 2008 /* ------------------------ */ | |
| 2009 | |
| 2010 swLag = psrLagTbl[swLastLag]; | |
| 2011 return (swLag); | |
| 2012 } | |
| 2013 | |
| 2014 /*************************************************************************** | |
| 2015 * | |
| 2016 * FUNCTION NAME: lookupVq | |
| 2017 * | |
| 2018 * PURPOSE: | |
| 2019 * | |
| 2020 * The purpose of this function is to recover the reflection coeffs from | |
| 2021 * the received LPC codewords. | |
| 2022 * | |
| 2023 * INPUTS: | |
| 2024 * | |
| 2025 * pswVqCodeWds[0:2] | |
| 2026 * | |
| 2027 * the codewords for each of the segments | |
| 2028 * | |
| 2029 * OUTPUTS: | |
| 2030 * | |
| 2031 * pswRCOut[0:NP-1] | |
| 2032 * | |
| 2033 * the decoded reflection coefficients | |
| 2034 * | |
| 2035 * RETURN VALUE: | |
| 2036 * | |
| 2037 * none. | |
| 2038 * | |
| 2039 * DESCRIPTION: | |
| 2040 * | |
| 2041 * For each segment do the following: | |
| 2042 * setup the retrieval pointers to the correct vector | |
| 2043 * get that vector | |
| 2044 * | |
| 2045 * REFERENCES: Sub-clause 4.2.3 of GSM Recomendation 06.20 | |
| 2046 * | |
| 2047 * KEYWORDS: vq, vectorquantizer, lpc | |
| 2048 * | |
| 2049 *************************************************************************/ | |
| 2050 | |
| 2051 static void lookupVq(Shortword pswVqCodeWds[], Shortword pswRCOut[]) | |
| 2052 { | |
| 2053 /*_________________________________________________________________________ | |
| 2054 | | | |
| 2055 | Local Constants | | |
| 2056 |_________________________________________________________________________| | |
| 2057 */ | |
| 2058 | |
| 2059 #define LSP_MASK 0x00ff | |
| 2060 | |
| 2061 /*_________________________________________________________________________ | |
| 2062 | | | |
| 2063 | Automatic Variables | | |
| 2064 |_________________________________________________________________________| | |
| 2065 */ | |
| 2066 | |
| 2067 short int siSeg, | |
| 2068 siIndex, | |
| 2069 siVector, | |
| 2070 siVector1, | |
| 2071 siVector2, | |
| 2072 siWordPtr; | |
| 2073 | |
| 2074 ShortwordRom *psrQTable; | |
| 2075 | |
| 2076 /*_________________________________________________________________________ | |
| 2077 | | | |
| 2078 | Executable Code | | |
| 2079 |_________________________________________________________________________| | |
| 2080 */ | |
| 2081 | |
| 2082 /* for each segment */ | |
| 2083 /* ---------------- */ | |
| 2084 | |
| 2085 for (siSeg = 0; siSeg < QUANT_NUM_OF_TABLES; siSeg++) | |
| 2086 { | |
| 2087 | |
| 2088 siVector = pswVqCodeWds[siSeg]; | |
| 2089 siIndex = psvqIndex[siSeg].l; | |
| 2090 | |
| 2091 if (sub(siSeg, 2) == 0) | |
| 2092 { /* segment 3 */ | |
| 2093 | |
| 2094 /* set table */ | |
| 2095 /* --------- */ | |
| 2096 | |
| 2097 psrQTable = psrQuant3; | |
| 2098 | |
| 2099 /* set offset into table */ | |
| 2100 /* ---------------------- */ | |
| 2101 | |
| 2102 siWordPtr = add(siVector, siVector); | |
| 2103 | |
| 2104 /* look up coeffs */ | |
| 2105 /* -------------- */ | |
| 2106 | |
| 2107 siVector1 = psrQTable[siWordPtr]; | |
| 2108 siVector2 = psrQTable[siWordPtr + 1]; | |
| 2109 | |
| 2110 pswRCOut[siIndex - 1] = psrSQuant[shr(siVector1, 8) & LSP_MASK]; | |
| 2111 pswRCOut[siIndex] = psrSQuant[siVector1 & LSP_MASK]; | |
| 2112 pswRCOut[siIndex + 1] = psrSQuant[shr(siVector2, 8) & LSP_MASK]; | |
| 2113 pswRCOut[siIndex + 2] = psrSQuant[siVector2 & LSP_MASK]; | |
| 2114 } | |
| 2115 else | |
| 2116 { /* segments 1 and 2 */ | |
| 2117 | |
| 2118 /* set tables */ | |
| 2119 /* ---------- */ | |
| 2120 | |
| 2121 if (siSeg == 0) | |
| 2122 { | |
| 2123 psrQTable = psrQuant1; | |
| 2124 } | |
| 2125 else | |
| 2126 { | |
| 2127 psrQTable = psrQuant2; | |
| 2128 | |
| 2129 } | |
| 2130 | |
| 2131 /* set offset into table */ | |
| 2132 /* --------------------- */ | |
| 2133 | |
| 2134 siWordPtr = add(siVector, siVector); | |
| 2135 siWordPtr = add(siWordPtr, siVector); | |
| 2136 siWordPtr = shr(siWordPtr, 1); | |
| 2137 | |
| 2138 /* look up coeffs */ | |
| 2139 /* -------------- */ | |
| 2140 | |
| 2141 siVector1 = psrQTable[siWordPtr]; | |
| 2142 siVector2 = psrQTable[siWordPtr + 1]; | |
| 2143 | |
| 2144 if ((siVector & 0x0001) == 0) | |
| 2145 { | |
| 2146 pswRCOut[siIndex - 1] = psrSQuant[shr(siVector1, 8) & LSP_MASK]; | |
| 2147 pswRCOut[siIndex] = psrSQuant[siVector1 & LSP_MASK]; | |
| 2148 pswRCOut[siIndex + 1] = psrSQuant[shr(siVector2, 8) & LSP_MASK]; | |
| 2149 } | |
| 2150 else | |
| 2151 { | |
| 2152 pswRCOut[siIndex - 1] = psrSQuant[siVector1 & LSP_MASK]; | |
| 2153 pswRCOut[siIndex] = psrSQuant[shr(siVector2, 8) & LSP_MASK]; | |
| 2154 pswRCOut[siIndex + 1] = psrSQuant[siVector2 & LSP_MASK]; | |
| 2155 } | |
| 2156 } | |
| 2157 } | |
| 2158 } | |
| 2159 | |
| 2160 /*************************************************************************** | |
| 2161 * | |
| 2162 * FUNCTION NAME: lpcFir | |
| 2163 * | |
| 2164 * PURPOSE: | |
| 2165 * | |
| 2166 * The purpose of this function is to perform direct form fir filtering | |
| 2167 * assuming a NP order filter and given state, coefficients, and input. | |
| 2168 * | |
| 2169 * INPUTS: | |
| 2170 * | |
| 2171 * NP | |
| 2172 * order of the lpc filter | |
| 2173 * | |
| 2174 * S_LEN | |
| 2175 * number of samples to filter | |
| 2176 * | |
| 2177 * pswInput[0:S_LEN-1] | |
| 2178 * | |
| 2179 * input array of points to be filtered. | |
| 2180 * pswInput[0] is the oldest point (first to be filtered) | |
| 2181 * pswInput[siLen-1] is the last point filtered (newest) | |
| 2182 * | |
| 2183 * pswCoef[0:NP-1] | |
| 2184 * | |
| 2185 * array of direct form coefficients | |
| 2186 * pswCoef[0] = coeff for delay n = -1 | |
| 2187 * pswCoef[NP-1] = coeff for delay n = -NP | |
| 2188 * | |
| 2189 * ASHIFT | |
| 2190 * number of shifts input A's have been shifted down by | |
| 2191 * | |
| 2192 * LPC_ROUND | |
| 2193 * rounding constant | |
| 2194 * | |
| 2195 * pswState[0:NP-1] | |
| 2196 * | |
| 2197 * array of the filter state following form of pswCoef | |
| 2198 * pswState[0] = state of filter for delay n = -1 | |
| 2199 * pswState[NP-1] = state of filter for delay n = -NP | |
| 2200 * | |
| 2201 * OUTPUTS: | |
| 2202 * | |
| 2203 * pswState[0:NP-1] | |
| 2204 * | |
| 2205 * updated filter state, ready to filter | |
| 2206 * pswInput[siLen], i.e. the next point | |
| 2207 * | |
| 2208 * pswFiltOut[0:S_LEN-1] | |
| 2209 * | |
| 2210 * the filtered output | |
| 2211 * same format as pswInput, pswFiltOut[0] is oldest point | |
| 2212 * | |
| 2213 * RETURN VALUE: | |
| 2214 * | |
| 2215 * none | |
| 2216 * | |
| 2217 * DESCRIPTION: | |
| 2218 * | |
| 2219 * because of the default sign of the coefficients the | |
| 2220 * formula for the filter is : | |
| 2221 * i=0, i < S_LEN | |
| 2222 * out[i] = rounded(state[i]*coef[0]) | |
| 2223 * j=1, j < NP | |
| 2224 * out[i] += state[j]*coef[j] (state is taken from either input | |
| 2225 * state[] or input in[] arrays) | |
| 2226 * rescale(out[i]) | |
| 2227 * out[i] += in[i] | |
| 2228 * update final state array using in[] | |
| 2229 * | |
| 2230 * REFERENCES: Sub-clause 4.1.7 and 4.2.4 of GSM Recomendation 06.20 | |
| 2231 * | |
| 2232 * KEYWORDS: lpc, directform, fir, lpcFir, inversefilter, lpcFilt | |
| 2233 * KEYWORDS: dirForm, dir_mod, dir_clr, dir_neg, dir_set, i_dir_mod | |
| 2234 * | |
| 2235 *************************************************************************/ | |
| 2236 | |
| 2237 void lpcFir(Shortword pswInput[], Shortword pswCoef[], | |
| 2238 Shortword pswState[], Shortword pswFiltOut[]) | |
| 2239 { | |
| 2240 | |
| 2241 /*_________________________________________________________________________ | |
| 2242 | | | |
| 2243 | Automatic Variables | | |
| 2244 |_________________________________________________________________________| | |
| 2245 */ | |
| 2246 | |
| 2247 Longword L_Sum; | |
| 2248 short int siStage, | |
| 2249 siSmp; | |
| 2250 | |
| 2251 /*_________________________________________________________________________ | |
| 2252 | | | |
| 2253 | Executable Code | | |
| 2254 |_________________________________________________________________________| | |
| 2255 */ | |
| 2256 | |
| 2257 /* filter 1st sample */ | |
| 2258 /* ----------------- */ | |
| 2259 | |
| 2260 /* sum past state outputs */ | |
| 2261 /* ---------------------- */ | |
| 2262 /* 0th coef, with rounding */ | |
| 2263 L_Sum = L_mac(LPC_ROUND, pswState[0], pswCoef[0]); | |
| 2264 | |
| 2265 for (siStage = 1; siStage < NP; siStage++) | |
| 2266 { /* remaining coefs */ | |
| 2267 L_Sum = L_mac(L_Sum, pswState[siStage], pswCoef[siStage]); | |
| 2268 } | |
| 2269 | |
| 2270 /* add input to partial output */ | |
| 2271 /* --------------------------- */ | |
| 2272 | |
| 2273 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 2274 L_Sum = L_msu(L_Sum, pswInput[0], 0x8000); | |
| 2275 | |
| 2276 /* save 1st output sample */ | |
| 2277 /* ---------------------- */ | |
| 2278 | |
| 2279 pswFiltOut[0] = extract_h(L_Sum); | |
| 2280 | |
| 2281 /* filter remaining samples */ | |
| 2282 /* ------------------------ */ | |
| 2283 | |
| 2284 for (siSmp = 1; siSmp < S_LEN; siSmp++) | |
| 2285 { | |
| 2286 | |
| 2287 /* sum past outputs */ | |
| 2288 /* ---------------- */ | |
| 2289 /* 0th coef, with rounding */ | |
| 2290 L_Sum = L_mac(LPC_ROUND, pswInput[siSmp - 1], pswCoef[0]); | |
| 2291 /* remaining coefs */ | |
| 2292 for (siStage = 1; ((0 < (siSmp - siStage)) && siStage < NP); siStage++) | |
| 2293 { | |
| 2294 L_Sum = L_mac(L_Sum, pswInput[siSmp - siStage - 1], pswCoef[siStage]); | |
| 2295 } | |
| 2296 | |
| 2297 /* sum past states, if any */ | |
| 2298 /* ----------------------- */ | |
| 2299 | |
| 2300 for (siStage = siSmp; siStage < NP; siStage++) | |
| 2301 { | |
| 2302 L_Sum = L_mac(L_Sum, pswState[siStage - siSmp], pswCoef[siStage]); | |
| 2303 } | |
| 2304 | |
| 2305 /* add input to partial output */ | |
| 2306 /* --------------------------- */ | |
| 2307 | |
| 2308 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 2309 L_Sum = L_msu(L_Sum, pswInput[siSmp], 0x8000); | |
| 2310 | |
| 2311 /* save current output sample */ | |
| 2312 /* -------------------------- */ | |
| 2313 | |
| 2314 pswFiltOut[siSmp] = extract_h(L_Sum); | |
| 2315 } | |
| 2316 | |
| 2317 /* save final state */ | |
| 2318 /* ---------------- */ | |
| 2319 | |
| 2320 for (siStage = 0; siStage < NP; siStage++) | |
| 2321 { | |
| 2322 pswState[siStage] = pswInput[S_LEN - siStage - 1]; | |
| 2323 } | |
| 2324 | |
| 2325 } | |
| 2326 | |
| 2327 /*************************************************************************** | |
| 2328 * | |
| 2329 * FUNCTION NAME: lpcIir | |
| 2330 * | |
| 2331 * PURPOSE: | |
| 2332 * | |
| 2333 * The purpose of this function is to perform direct form IIR filtering | |
| 2334 * assuming a NP order filter and given state, coefficients, and input | |
| 2335 * | |
| 2336 * INPUTS: | |
| 2337 * | |
| 2338 * NP | |
| 2339 * order of the lpc filter | |
| 2340 * | |
| 2341 * S_LEN | |
| 2342 * number of samples to filter | |
| 2343 * | |
| 2344 * pswInput[0:S_LEN-1] | |
| 2345 * | |
| 2346 * input array of points to be filtered | |
| 2347 * pswInput[0] is the oldest point (first to be filtered) | |
| 2348 * pswInput[siLen-1] is the last point filtered (newest) | |
| 2349 * | |
| 2350 * pswCoef[0:NP-1] | |
| 2351 * array of direct form coefficients | |
| 2352 * pswCoef[0] = coeff for delay n = -1 | |
| 2353 * pswCoef[NP-1] = coeff for delay n = -NP | |
| 2354 * | |
| 2355 * ASHIFT | |
| 2356 * number of shifts input A's have been shifted down by | |
| 2357 * | |
| 2358 * LPC_ROUND | |
| 2359 * rounding constant | |
| 2360 * | |
| 2361 * pswState[0:NP-1] | |
| 2362 * | |
| 2363 * array of the filter state following form of pswCoef | |
| 2364 * pswState[0] = state of filter for delay n = -1 | |
| 2365 * pswState[NP-1] = state of filter for delay n = -NP | |
| 2366 * | |
| 2367 * OUTPUTS: | |
| 2368 * | |
| 2369 * pswState[0:NP-1] | |
| 2370 * | |
| 2371 * updated filter state, ready to filter | |
| 2372 * pswInput[siLen], i.e. the next point | |
| 2373 * | |
| 2374 * pswFiltOut[0:S_LEN-1] | |
| 2375 * | |
| 2376 * the filtered output | |
| 2377 * same format as pswInput, pswFiltOut[0] is oldest point | |
| 2378 * | |
| 2379 * RETURN VALUE: | |
| 2380 * | |
| 2381 * none | |
| 2382 * | |
| 2383 * DESCRIPTION: | |
| 2384 * | |
| 2385 * because of the default sign of the coefficients the | |
| 2386 * formula for the filter is : | |
| 2387 * i=0, i < S_LEN | |
| 2388 * out[i] = rounded(state[i]*coef[0]) | |
| 2389 * j=1, j < NP | |
| 2390 * out[i] -= state[j]*coef[j] (state is taken from either input | |
| 2391 * state[] or prior out[] arrays) | |
| 2392 * rescale(out[i]) | |
| 2393 * out[i] += in[i] | |
| 2394 * update final state array using out[] | |
| 2395 * | |
| 2396 * REFERENCES: Sub-clause 4.1.7 and 4.2.4 of GSM Recomendation 06.20 | |
| 2397 * | |
| 2398 * KEYWORDS: lpc, directform, iir, synthesisfilter, lpcFilt | |
| 2399 * KEYWORDS: dirForm, dir_mod, dir_clr, dir_neg, dir_set | |
| 2400 * | |
| 2401 *************************************************************************/ | |
| 2402 | |
| 2403 void lpcIir(Shortword pswInput[], Shortword pswCoef[], | |
| 2404 Shortword pswState[], Shortword pswFiltOut[]) | |
| 2405 { | |
| 2406 | |
| 2407 /*_________________________________________________________________________ | |
| 2408 | | | |
| 2409 | Automatic Variables | | |
| 2410 |_________________________________________________________________________| | |
| 2411 */ | |
| 2412 | |
| 2413 Longword L_Sum; | |
| 2414 short int siStage, | |
| 2415 siSmp; | |
| 2416 | |
| 2417 /*_________________________________________________________________________ | |
| 2418 | | | |
| 2419 | Executable Code | | |
| 2420 |_________________________________________________________________________| | |
| 2421 */ | |
| 2422 | |
| 2423 /* filter 1st sample */ | |
| 2424 /* ----------------- */ | |
| 2425 | |
| 2426 /* sum past state outputs */ | |
| 2427 /* ---------------------- */ | |
| 2428 /* 0th coef, with rounding */ | |
| 2429 L_Sum = L_msu(LPC_ROUND, pswState[0], pswCoef[0]); | |
| 2430 | |
| 2431 for (siStage = 1; siStage < NP; siStage++) | |
| 2432 { /* remaining coefs */ | |
| 2433 L_Sum = L_msu(L_Sum, pswState[siStage], pswCoef[siStage]); | |
| 2434 } | |
| 2435 | |
| 2436 /* add input to partial output */ | |
| 2437 /* --------------------------- */ | |
| 2438 | |
| 2439 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 2440 L_Sum = L_msu(L_Sum, pswInput[0], 0x8000); | |
| 2441 | |
| 2442 /* save 1st output sample */ | |
| 2443 /* ---------------------- */ | |
| 2444 | |
| 2445 pswFiltOut[0] = extract_h(L_Sum); | |
| 2446 | |
| 2447 /* filter remaining samples */ | |
| 2448 /* ------------------------ */ | |
| 2449 | |
| 2450 for (siSmp = 1; siSmp < S_LEN; siSmp++) | |
| 2451 { | |
| 2452 | |
| 2453 /* sum past outputs */ | |
| 2454 /* ---------------- */ | |
| 2455 /* 0th coef, with rounding */ | |
| 2456 L_Sum = L_msu(LPC_ROUND, pswFiltOut[siSmp - 1], pswCoef[0]); | |
| 2457 /* remaining coefs */ | |
| 2458 for (siStage = 1; ((0 < (siSmp - siStage)) && siStage < NP); siStage++) | |
| 2459 { | |
| 2460 L_Sum = L_msu(L_Sum, pswFiltOut[siSmp - siStage - 1], | |
| 2461 pswCoef[siStage]); | |
| 2462 } | |
| 2463 | |
| 2464 /* sum past states, if any */ | |
| 2465 /* ----------------------- */ | |
| 2466 | |
| 2467 for (siStage = siSmp; siStage < NP; siStage++) | |
| 2468 { | |
| 2469 L_Sum = L_msu(L_Sum, pswState[siStage - siSmp], pswCoef[siStage]); | |
| 2470 } | |
| 2471 | |
| 2472 /* add input to partial output */ | |
| 2473 /* --------------------------- */ | |
| 2474 | |
| 2475 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 2476 L_Sum = L_msu(L_Sum, pswInput[siSmp], 0x8000); | |
| 2477 | |
| 2478 /* save current output sample */ | |
| 2479 /* -------------------------- */ | |
| 2480 | |
| 2481 pswFiltOut[siSmp] = extract_h(L_Sum); | |
| 2482 } | |
| 2483 | |
| 2484 /* save final state */ | |
| 2485 /* ---------------- */ | |
| 2486 | |
| 2487 for (siStage = 0; siStage < NP; siStage++) | |
| 2488 { | |
| 2489 pswState[siStage] = pswFiltOut[S_LEN - siStage - 1]; | |
| 2490 } | |
| 2491 } | |
| 2492 | |
| 2493 /*************************************************************************** | |
| 2494 * | |
| 2495 * FUNCTION NAME: lpcIrZsIir | |
| 2496 * | |
| 2497 * PURPOSE: | |
| 2498 * | |
| 2499 * The purpose of this function is to calculate the impulse response | |
| 2500 * via direct form IIR filtering with zero state assuming a NP order | |
| 2501 * filter and given coefficients | |
| 2502 * | |
| 2503 * INPUTS: | |
| 2504 * | |
| 2505 * NP | |
| 2506 * order of the lpc filter | |
| 2507 * | |
| 2508 * S_LEN | |
| 2509 * number of samples to filter | |
| 2510 * | |
| 2511 * pswCoef[0:NP-1] | |
| 2512 * array of direct form coefficients | |
| 2513 * pswCoef[0] = coeff for delay n = -1 | |
| 2514 * pswCoef[NP-1] = coeff for delay n = -NP | |
| 2515 * | |
| 2516 * ASHIFT | |
| 2517 * number of shifts input A's have been shifted down by | |
| 2518 * | |
| 2519 * LPC_ROUND | |
| 2520 * rounding constant | |
| 2521 * | |
| 2522 * OUTPUTS: | |
| 2523 * | |
| 2524 * pswFiltOut[0:S_LEN-1] | |
| 2525 * | |
| 2526 * the filtered output | |
| 2527 * same format as pswInput, pswFiltOut[0] is oldest point | |
| 2528 * | |
| 2529 * RETURN VALUE: | |
| 2530 * | |
| 2531 * none | |
| 2532 * | |
| 2533 * DESCRIPTION: | |
| 2534 * | |
| 2535 * This routine is called by getNWCoefs(). | |
| 2536 * | |
| 2537 * Because of the default sign of the coefficients the | |
| 2538 * formula for the filter is : | |
| 2539 * i=0, i < S_LEN | |
| 2540 * out[i] = rounded(state[i]*coef[0]) | |
| 2541 * j=1, j < NP | |
| 2542 * out[i] -= state[j]*coef[j] (state taken from prior output[]) | |
| 2543 * rescale(out[i]) | |
| 2544 * | |
| 2545 * REFERENCES: Sub-clause 4.1.8 of GSM Recomendation 06.20 | |
| 2546 * | |
| 2547 * KEYWORDS: lpc, directform, iir, synthesisfilter, lpcFilt | |
| 2548 * KEYWORDS: dirForm, dir_mod, dir_clr, dir_neg, dir_set | |
| 2549 * | |
| 2550 *************************************************************************/ | |
| 2551 | |
| 2552 void lpcIrZsIir(Shortword pswCoef[], Shortword pswFiltOut[]) | |
| 2553 { | |
| 2554 | |
| 2555 /*_________________________________________________________________________ | |
| 2556 | | | |
| 2557 | Automatic Variables | | |
| 2558 |_________________________________________________________________________| | |
| 2559 */ | |
| 2560 | |
| 2561 Longword L_Sum; | |
| 2562 short int siStage, | |
| 2563 siSmp; | |
| 2564 | |
| 2565 /*_________________________________________________________________________ | |
| 2566 | | | |
| 2567 | Executable Code | | |
| 2568 |_________________________________________________________________________| | |
| 2569 */ | |
| 2570 | |
| 2571 /* output 1st sample */ | |
| 2572 /* ----------------- */ | |
| 2573 | |
| 2574 pswFiltOut[0] = 0x0400; | |
| 2575 | |
| 2576 /* filter remaining samples */ | |
| 2577 /* ------------------------ */ | |
| 2578 | |
| 2579 for (siSmp = 1; siSmp < S_LEN; siSmp++) | |
| 2580 { | |
| 2581 | |
| 2582 /* sum past outputs */ | |
| 2583 /* ---------------- */ | |
| 2584 /* 0th coef, with rounding */ | |
| 2585 L_Sum = L_msu(LPC_ROUND, pswFiltOut[siSmp - 1], pswCoef[0]); | |
| 2586 /* remaining coefs */ | |
| 2587 for (siStage = 1; ((0 < (siSmp - siStage)) && siStage < NP); siStage++) | |
| 2588 { | |
| 2589 L_Sum = L_msu(L_Sum, pswFiltOut[siSmp - siStage - 1], | |
| 2590 pswCoef[siStage]); | |
| 2591 } | |
| 2592 | |
| 2593 /* scale output */ | |
| 2594 /* ------------ */ | |
| 2595 | |
| 2596 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 2597 | |
| 2598 /* save current output sample */ | |
| 2599 /* -------------------------- */ | |
| 2600 | |
| 2601 pswFiltOut[siSmp] = extract_h(L_Sum); | |
| 2602 } | |
| 2603 } | |
| 2604 | |
| 2605 /*************************************************************************** | |
| 2606 * | |
| 2607 * FUNCTION NAME: lpcZiIir | |
| 2608 * | |
| 2609 * PURPOSE: | |
| 2610 * The purpose of this function is to perform direct form iir filtering | |
| 2611 * with zero input assuming a NP order filter, and given state and | |
| 2612 * coefficients | |
| 2613 * | |
| 2614 * INPUTS: | |
| 2615 * | |
| 2616 * NP | |
| 2617 * order of the lpc filter | |
| 2618 * | |
| 2619 * S_LEN | |
| 2620 * number of samples to filter MUST be <= MAX_ZIS | |
| 2621 * | |
| 2622 * pswCoef[0:NP-1] | |
| 2623 * | |
| 2624 * array of direct form coefficients. | |
| 2625 * pswCoef[0] = coeff for delay n = -1 | |
| 2626 * pswCoef[NP-1] = coeff for delay n = -NP | |
| 2627 * | |
| 2628 * ASHIFT | |
| 2629 * number of shifts input A's have been shifted down by | |
| 2630 * | |
| 2631 * LPC_ROUND | |
| 2632 * rounding constant | |
| 2633 * | |
| 2634 * pswState[0:NP-1] | |
| 2635 * | |
| 2636 * array of the filter state following form of pswCoef | |
| 2637 * pswState[0] = state of filter for delay n = -1 | |
| 2638 * pswState[NP-1] = state of filter for delay n = -NP | |
| 2639 * | |
| 2640 * OUTPUTS: | |
| 2641 * | |
| 2642 * pswFiltOut[0:S_LEN-1] | |
| 2643 * | |
| 2644 * the filtered output | |
| 2645 * same format as pswIn, pswFiltOut[0] is oldest point | |
| 2646 * | |
| 2647 * RETURN VALUE: | |
| 2648 * | |
| 2649 * none | |
| 2650 * | |
| 2651 * DESCRIPTION: | |
| 2652 * | |
| 2653 * The routine is called from sfrmAnalysis, and is used to let the | |
| 2654 * LPC filters ring out. | |
| 2655 * | |
| 2656 * because of the default sign of the coefficients the | |
| 2657 * formula for the filter is : | |
| 2658 * i=0, i < S_LEN | |
| 2659 * out[i] = rounded(state[i]*coef[0]) | |
| 2660 * j=1, j < NP | |
| 2661 * out[i] -= state[j]*coef[j] (state is taken from either input | |
| 2662 * state[] or prior output[] arrays) | |
| 2663 * rescale(out[i]) | |
| 2664 * | |
| 2665 * REFERENCES: Sub-clause 4.1.7 of GSM Recomendation 06.20 | |
| 2666 * | |
| 2667 * KEYWORDS: lpc, directform, iir, synthesisfilter, lpcFilt | |
| 2668 * KEYWORDS: dirForm, dir_mod, dir_clr, dir_neg, dir_set | |
| 2669 * | |
| 2670 *************************************************************************/ | |
| 2671 | |
| 2672 void lpcZiIir(Shortword pswCoef[], Shortword pswState[], | |
| 2673 Shortword pswFiltOut[]) | |
| 2674 { | |
| 2675 | |
| 2676 /*_________________________________________________________________________ | |
| 2677 | | | |
| 2678 | Automatic Variables | | |
| 2679 |_________________________________________________________________________| | |
| 2680 */ | |
| 2681 | |
| 2682 Longword L_Sum; | |
| 2683 short int siStage, | |
| 2684 siSmp; | |
| 2685 | |
| 2686 /*_________________________________________________________________________ | |
| 2687 | | | |
| 2688 | Executable Code | | |
| 2689 |_________________________________________________________________________| | |
| 2690 */ | |
| 2691 | |
| 2692 /* filter 1st sample */ | |
| 2693 /* ----------------- */ | |
| 2694 | |
| 2695 /* sum past state outputs */ | |
| 2696 /* ---------------------- */ | |
| 2697 /* 0th coef, with rounding */ | |
| 2698 L_Sum = L_msu(LPC_ROUND, pswState[0], pswCoef[0]); | |
| 2699 | |
| 2700 for (siStage = 1; siStage < NP; siStage++) | |
| 2701 { /* remaining coefs */ | |
| 2702 L_Sum = L_msu(L_Sum, pswState[siStage], pswCoef[siStage]); | |
| 2703 } | |
| 2704 | |
| 2705 /* scale output */ | |
| 2706 /* ------------ */ | |
| 2707 | |
| 2708 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 2709 | |
| 2710 /* save 1st output sample */ | |
| 2711 /* ---------------------- */ | |
| 2712 | |
| 2713 pswFiltOut[0] = extract_h(L_Sum); | |
| 2714 | |
| 2715 /* filter remaining samples */ | |
| 2716 /* ------------------------ */ | |
| 2717 | |
| 2718 for (siSmp = 1; siSmp < S_LEN; siSmp++) | |
| 2719 { | |
| 2720 | |
| 2721 /* sum past outputs */ | |
| 2722 /* ---------------- */ | |
| 2723 /* 0th coef, with rounding */ | |
| 2724 L_Sum = L_msu(LPC_ROUND, pswFiltOut[siSmp - 1], pswCoef[0]); | |
| 2725 /* remaining coefs */ | |
| 2726 for (siStage = 1; ((0 < (siSmp - siStage)) && siStage < NP); siStage++) | |
| 2727 { | |
| 2728 L_Sum = L_msu(L_Sum, pswFiltOut[siSmp - siStage - 1], | |
| 2729 pswCoef[siStage]); | |
| 2730 } | |
| 2731 | |
| 2732 /* sum past states, if any */ | |
| 2733 /* ----------------------- */ | |
| 2734 | |
| 2735 for (siStage = siSmp; siStage < NP; siStage++) | |
| 2736 { | |
| 2737 L_Sum = L_msu(L_Sum, pswState[siStage - siSmp], pswCoef[siStage]); | |
| 2738 } | |
| 2739 | |
| 2740 /* scale output */ | |
| 2741 /* ------------ */ | |
| 2742 | |
| 2743 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 2744 | |
| 2745 /* save current output sample */ | |
| 2746 /* -------------------------- */ | |
| 2747 | |
| 2748 pswFiltOut[siSmp] = extract_h(L_Sum); | |
| 2749 } | |
| 2750 } | |
| 2751 | |
| 2752 /*************************************************************************** | |
| 2753 * | |
| 2754 * FUNCTION NAME: lpcZsFir | |
| 2755 * | |
| 2756 * PURPOSE: | |
| 2757 * The purpose of this function is to perform direct form fir filtering | |
| 2758 * with zero state, assuming a NP order filter and given coefficients | |
| 2759 * and non-zero input. | |
| 2760 * | |
| 2761 * INPUTS: | |
| 2762 * | |
| 2763 * NP | |
| 2764 * order of the lpc filter | |
| 2765 * | |
| 2766 * S_LEN | |
| 2767 * number of samples to filter | |
| 2768 * | |
| 2769 * pswInput[0:S_LEN-1] | |
| 2770 * | |
| 2771 * input array of points to be filtered. | |
| 2772 * pswInput[0] is the oldest point (first to be filtered) | |
| 2773 * pswInput[siLen-1] is the last point filtered (newest) | |
| 2774 * | |
| 2775 * pswCoef[0:NP-1] | |
| 2776 * | |
| 2777 * array of direct form coefficients | |
| 2778 * pswCoef[0] = coeff for delay n = -1 | |
| 2779 * pswCoef[NP-1] = coeff for delay n = -NP | |
| 2780 * | |
| 2781 * ASHIFT | |
| 2782 * number of shifts input A's have been shifted down by | |
| 2783 * | |
| 2784 * LPC_ROUND | |
| 2785 * rounding constant | |
| 2786 * | |
| 2787 * OUTPUTS: | |
| 2788 * | |
| 2789 * pswFiltOut[0:S_LEN-1] | |
| 2790 * | |
| 2791 * the filtered output | |
| 2792 * same format as pswInput, pswFiltOut[0] is oldest point | |
| 2793 * | |
| 2794 * RETURN VALUE: | |
| 2795 * | |
| 2796 * none | |
| 2797 * | |
| 2798 * DESCRIPTION: | |
| 2799 * | |
| 2800 * This routine is used in getNWCoefs(). See section 4.1.7. | |
| 2801 * | |
| 2802 * because of the default sign of the coefficients the | |
| 2803 * formula for the filter is : | |
| 2804 * i=0, i < S_LEN | |
| 2805 * out[i] = rounded(state[i]*coef[0]) | |
| 2806 * j=1, j < NP | |
| 2807 * out[i] += state[j]*coef[j] (state taken from in[]) | |
| 2808 * rescale(out[i]) | |
| 2809 * out[i] += in[i] | |
| 2810 * | |
| 2811 * REFERENCES: Sub-clause 4.1.7 of GSM Recomendation 06.20 | |
| 2812 * | |
| 2813 * KEYWORDS: lpc, directform, fir, lpcFir, inversefilter, lpcFilt | |
| 2814 * KEYWORDS: dirForm, dir_mod, dir_clr, dir_neg, dir_set, i_dir_mod | |
| 2815 * | |
| 2816 *************************************************************************/ | |
| 2817 | |
| 2818 void lpcZsFir(Shortword pswInput[], Shortword pswCoef[], | |
| 2819 Shortword pswFiltOut[]) | |
| 2820 { | |
| 2821 | |
| 2822 /*_________________________________________________________________________ | |
| 2823 | | | |
| 2824 | Automatic Variables | | |
| 2825 |_________________________________________________________________________| | |
| 2826 */ | |
| 2827 | |
| 2828 Longword L_Sum; | |
| 2829 short int siStage, | |
| 2830 siSmp; | |
| 2831 | |
| 2832 /*_________________________________________________________________________ | |
| 2833 | | | |
| 2834 | Executable Code | | |
| 2835 |_________________________________________________________________________| | |
| 2836 */ | |
| 2837 | |
| 2838 /* output 1st sample */ | |
| 2839 /* ----------------- */ | |
| 2840 | |
| 2841 pswFiltOut[0] = pswInput[0]; | |
| 2842 | |
| 2843 /* filter remaining samples */ | |
| 2844 /* ------------------------ */ | |
| 2845 | |
| 2846 for (siSmp = 1; siSmp < S_LEN; siSmp++) | |
| 2847 { | |
| 2848 | |
| 2849 /* sum past outputs */ | |
| 2850 /* ---------------- */ | |
| 2851 /* 0th coef, with rounding */ | |
| 2852 L_Sum = L_mac(LPC_ROUND, pswInput[siSmp - 1], pswCoef[0]); | |
| 2853 /* remaining coefs */ | |
| 2854 for (siStage = 1; ((0 < (siSmp - siStage)) && siStage < NP); siStage++) | |
| 2855 { | |
| 2856 L_Sum = L_mac(L_Sum, pswInput[siSmp - siStage - 1], | |
| 2857 pswCoef[siStage]); | |
| 2858 } | |
| 2859 | |
| 2860 /* add input to partial output */ | |
| 2861 /* --------------------------- */ | |
| 2862 | |
| 2863 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 2864 L_Sum = L_msu(L_Sum, pswInput[siSmp], 0x8000); | |
| 2865 | |
| 2866 /* save current output sample */ | |
| 2867 /* -------------------------- */ | |
| 2868 | |
| 2869 pswFiltOut[siSmp] = extract_h(L_Sum); | |
| 2870 } | |
| 2871 } | |
| 2872 | |
| 2873 /*************************************************************************** | |
| 2874 * | |
| 2875 * FUNCTION NAME: lpcZsIir | |
| 2876 * | |
| 2877 * PURPOSE: | |
| 2878 * | |
| 2879 * The purpose of this function is to perform direct form IIR filtering | |
| 2880 * with zero state, assuming a NP order filter and given coefficients | |
| 2881 * and non-zero input. | |
| 2882 * | |
| 2883 * INPUTS: | |
| 2884 * | |
| 2885 * NP | |
| 2886 * order of the lpc filter | |
| 2887 * | |
| 2888 * S_LEN | |
| 2889 * number of samples to filter | |
| 2890 * | |
| 2891 * pswInput[0:S_LEN-1] | |
| 2892 * | |
| 2893 * input array of points to be filtered | |
| 2894 * pswInput[0] is the oldest point (first to be filtered) | |
| 2895 * pswInput[siLen-1] is the last point filtered (newest) | |
| 2896 * | |
| 2897 * pswCoef[0:NP-1] | |
| 2898 * array of direct form coefficients | |
| 2899 * pswCoef[0] = coeff for delay n = -1 | |
| 2900 * pswCoef[NP-1] = coeff for delay n = -NP | |
| 2901 * | |
| 2902 * ASHIFT | |
| 2903 * number of shifts input A's have been shifted down by | |
| 2904 * | |
| 2905 * LPC_ROUND | |
| 2906 * rounding constant | |
| 2907 * | |
| 2908 * OUTPUTS: | |
| 2909 * | |
| 2910 * pswFiltOut[0:S_LEN-1] | |
| 2911 * | |
| 2912 * the filtered output | |
| 2913 * same format as pswInput, pswFiltOut[0] is oldest point | |
| 2914 * | |
| 2915 * RETURN VALUE: | |
| 2916 * | |
| 2917 * none | |
| 2918 * | |
| 2919 * DESCRIPTION: | |
| 2920 * | |
| 2921 * This routine is used in the subframe analysis process. It is | |
| 2922 * called by sfrmAnalysis() and fnClosedLoop(). It is this function | |
| 2923 * which performs the weighting of the excitation vectors. | |
| 2924 * | |
| 2925 * because of the default sign of the coefficients the | |
| 2926 * formula for the filter is : | |
| 2927 * i=0, i < S_LEN | |
| 2928 * out[i] = rounded(state[i]*coef[0]) | |
| 2929 * j=1, j < NP | |
| 2930 * out[i] -= state[j]*coef[j] (state taken from prior out[]) | |
| 2931 * rescale(out[i]) | |
| 2932 * out[i] += in[i] | |
| 2933 * | |
| 2934 * REFERENCES: Sub-clause 4.1.8.5 of GSM Recomendation 06.20 | |
| 2935 * | |
| 2936 * KEYWORDS: lpc, directform, iir, synthesisfilter, lpcFilt | |
| 2937 * KEYWORDS: dirForm, dir_mod, dir_clr, dir_neg, dir_set | |
| 2938 * | |
| 2939 *************************************************************************/ | |
| 2940 | |
| 2941 void lpcZsIir(Shortword pswInput[], Shortword pswCoef[], | |
| 2942 Shortword pswFiltOut[]) | |
| 2943 { | |
| 2944 | |
| 2945 /*_________________________________________________________________________ | |
| 2946 | | | |
| 2947 | Automatic Variables | | |
| 2948 |_________________________________________________________________________| | |
| 2949 */ | |
| 2950 | |
| 2951 Longword L_Sum; | |
| 2952 short int siStage, | |
| 2953 siSmp; | |
| 2954 | |
| 2955 /*_________________________________________________________________________ | |
| 2956 | | | |
| 2957 | Executable Code | | |
| 2958 |_________________________________________________________________________| | |
| 2959 */ | |
| 2960 | |
| 2961 /* output 1st sample */ | |
| 2962 /* ----------------- */ | |
| 2963 | |
| 2964 pswFiltOut[0] = pswInput[0]; | |
| 2965 | |
| 2966 /* filter remaining samples */ | |
| 2967 /* ------------------------ */ | |
| 2968 | |
| 2969 for (siSmp = 1; siSmp < S_LEN; siSmp++) | |
| 2970 { | |
| 2971 | |
| 2972 /* sum past outputs */ | |
| 2973 /* ---------------- */ | |
| 2974 /* 0th coef, with rounding */ | |
| 2975 L_Sum = L_msu(LPC_ROUND, pswFiltOut[siSmp - 1], pswCoef[0]); | |
| 2976 /* remaining coefs */ | |
| 2977 for (siStage = 1; ((0 < (siSmp - siStage)) && siStage < NP); siStage++) | |
| 2978 { | |
| 2979 L_Sum = L_msu(L_Sum, pswFiltOut[siSmp - siStage - 1], | |
| 2980 pswCoef[siStage]); | |
| 2981 } | |
| 2982 | |
| 2983 /* add input to partial output */ | |
| 2984 /* --------------------------- */ | |
| 2985 | |
| 2986 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 2987 L_Sum = L_msu(L_Sum, pswInput[siSmp], 0x8000); | |
| 2988 | |
| 2989 /* save current output sample */ | |
| 2990 /* -------------------------- */ | |
| 2991 | |
| 2992 pswFiltOut[siSmp] = extract_h(L_Sum); | |
| 2993 } | |
| 2994 } | |
| 2995 | |
| 2996 /*************************************************************************** | |
| 2997 * | |
| 2998 * FUNCTION NAME: lpcZsIirP | |
| 2999 * | |
| 3000 * PURPOSE: | |
| 3001 * | |
| 3002 * The purpose of this function is to perform direct form iir filtering | |
| 3003 * with zero state, assuming a NP order filter and given coefficients | |
| 3004 * and input | |
| 3005 * | |
| 3006 * INPUTS: | |
| 3007 * | |
| 3008 * NP | |
| 3009 * order of the lpc filter | |
| 3010 * | |
| 3011 * S_LEN | |
| 3012 * number of samples to filter | |
| 3013 * | |
| 3014 * pswCommonIO[0:S_LEN-1] | |
| 3015 * | |
| 3016 * input array of points to be filtered | |
| 3017 * pswCommonIO[0] is oldest point (first to be filtered) | |
| 3018 * pswCommonIO[siLen-1] is last point filtered (newest) | |
| 3019 * | |
| 3020 * pswCoef[0:NP-1] | |
| 3021 * array of direct form coefficients | |
| 3022 * pswCoef[0] = coeff for delay n = -1 | |
| 3023 * pswCoef[NP-1] = coeff for delay n = -NP | |
| 3024 * | |
| 3025 * ASHIFT | |
| 3026 * number of shifts input A's have been shifted down by | |
| 3027 * | |
| 3028 * LPC_ROUND | |
| 3029 * rounding constant | |
| 3030 * | |
| 3031 * OUTPUTS: | |
| 3032 * | |
| 3033 * pswCommonIO[0:S_LEN-1] | |
| 3034 * | |
| 3035 * the filtered output | |
| 3036 * pswCommonIO[0] is oldest point | |
| 3037 * | |
| 3038 * RETURN VALUE: | |
| 3039 * | |
| 3040 * none | |
| 3041 * | |
| 3042 * DESCRIPTION: | |
| 3043 * | |
| 3044 * This function is called by geNWCoefs(). See section 4.1.7. | |
| 3045 * | |
| 3046 * because of the default sign of the coefficients the | |
| 3047 * formula for the filter is : | |
| 3048 * i=0, i < S_LEN | |
| 3049 * out[i] = rounded(state[i]*coef[0]) | |
| 3050 * j=1, j < NP | |
| 3051 * out[i] += state[j]*coef[j] (state taken from prior out[]) | |
| 3052 * rescale(out[i]) | |
| 3053 * out[i] += in[i] | |
| 3054 * | |
| 3055 * REFERENCES: Sub-clause 4.1.7 of GSM Recomendation 06.20 | |
| 3056 * | |
| 3057 * KEYWORDS: lpc, directform, iir, synthesisfilter, lpcFilt | |
| 3058 * KEYWORDS: dirForm, dir_mod, dir_clr, dir_neg, dir_set | |
| 3059 * | |
| 3060 *************************************************************************/ | |
| 3061 | |
| 3062 void lpcZsIirP(Shortword pswCommonIO[], Shortword pswCoef[]) | |
| 3063 { | |
| 3064 | |
| 3065 /*_________________________________________________________________________ | |
| 3066 | | | |
| 3067 | Automatic Variables | | |
| 3068 |_________________________________________________________________________| | |
| 3069 */ | |
| 3070 | |
| 3071 Longword L_Sum; | |
| 3072 short int siStage, | |
| 3073 siSmp; | |
| 3074 | |
| 3075 /*_________________________________________________________________________ | |
| 3076 | | | |
| 3077 | Executable Code | | |
| 3078 |_________________________________________________________________________| | |
| 3079 */ | |
| 3080 | |
| 3081 /* filter remaining samples */ | |
| 3082 /* ------------------------ */ | |
| 3083 | |
| 3084 for (siSmp = 1; siSmp < S_LEN; siSmp++) | |
| 3085 { | |
| 3086 | |
| 3087 /* sum past outputs */ | |
| 3088 /* ---------------- */ | |
| 3089 /* 0th coef, with rounding */ | |
| 3090 L_Sum = L_mac(LPC_ROUND, pswCommonIO[siSmp - 1], pswCoef[0]); | |
| 3091 /* remaining coefs */ | |
| 3092 for (siStage = 1; ((0 < (siSmp - siStage)) && siStage < NP); siStage++) | |
| 3093 { | |
| 3094 L_Sum = L_mac(L_Sum, pswCommonIO[siSmp - siStage - 1], | |
| 3095 pswCoef[siStage]); | |
| 3096 } | |
| 3097 | |
| 3098 /* add input to partial output */ | |
| 3099 /* --------------------------- */ | |
| 3100 | |
| 3101 L_Sum = L_shl(L_Sum, ASHIFT); | |
| 3102 L_Sum = L_msu(L_Sum, pswCommonIO[siSmp], 0x8000); | |
| 3103 | |
| 3104 /* save current output sample */ | |
| 3105 /* -------------------------- */ | |
| 3106 | |
| 3107 pswCommonIO[siSmp] = extract_h(L_Sum); | |
| 3108 } | |
| 3109 } | |
| 3110 | |
| 3111 /************************************************************************** | |
| 3112 * | |
| 3113 * FUNCTION NAME: pitchPreFilt | |
| 3114 * | |
| 3115 * PURPOSE: | |
| 3116 * | |
| 3117 * Performs pitch pre-filter on excitation in speech decoder. | |
| 3118 * | |
| 3119 * INPUTS: | |
| 3120 * | |
| 3121 * pswExcite[0:39] | |
| 3122 * | |
| 3123 * Synthetic residual signal to be filtered, a subframe- | |
| 3124 * length vector. | |
| 3125 * | |
| 3126 * ppsrPVecIntFilt[0:9][0:5] ([tap][phase]) | |
| 3127 * | |
| 3128 * Interpolation filter coefficients. | |
| 3129 * | |
| 3130 * ppsrSqtrP0[0:2][0:31] ([voicing level-1][gain code]) | |
| 3131 * | |
| 3132 * Sqrt(P0) look-up table, used to determine pitch | |
| 3133 * pre-filtering coefficient. | |
| 3134 * | |
| 3135 * swRxGsp0 | |
| 3136 * | |
| 3137 * Coded value from gain quantizer, used to look up | |
| 3138 * sqrt(P0). | |
| 3139 * | |
| 3140 * swRxLag | |
| 3141 * | |
| 3142 * Full-resolution lag value (fractional lag * | |
| 3143 * oversampling factor), used to index pitch pre-filter | |
| 3144 * state. | |
| 3145 * | |
| 3146 * swUvCode | |
| 3147 * | |
| 3148 * Coded voicing level, used to distinguish between | |
| 3149 * voiced and unvoiced conditions, and to look up | |
| 3150 * sqrt(P0). | |
| 3151 * | |
| 3152 * swSemiBeta | |
| 3153 * | |
| 3154 * The gain applied to the adaptive codebook excitation | |
| 3155 * (long-term predictor excitation) limited to a maximum | |
| 3156 * of 1.0, used to determine the pitch pre-filter | |
| 3157 * coefficient. | |
| 3158 * | |
| 3159 * snsSqrtRs | |
| 3160 * | |
| 3161 * The estimate of the energy in the residual, used only | |
| 3162 * for scaling. | |
| 3163 * | |
| 3164 * OUTPUTS: | |
| 3165 * | |
| 3166 * pswExciteOut[0:39] | |
| 3167 * | |
| 3168 * The output pitch pre-filtered excitation. | |
| 3169 * | |
| 3170 * pswPPreState[0:44] | |
| 3171 * | |
| 3172 * Contains the state of the pitch pre-filter | |
| 3173 * | |
| 3174 * RETURN VALUE: | |
| 3175 * | |
| 3176 * none | |
| 3177 * | |
| 3178 * DESCRIPTION: | |
| 3179 * | |
| 3180 * If the voicing mode for the frame is unvoiced, then the pitch pre- | |
| 3181 * filter state is updated with the input excitation, and the input | |
| 3182 * excitation is copied to the output. | |
| 3183 * | |
| 3184 * If voiced: first the energy in the input excitation is calculated. | |
| 3185 * Then, the coefficient of the pitch pre-filter is obtained: | |
| 3186 * | |
| 3187 * PpfCoef = POST_EPSILON * min(beta, sqrt(P0)). | |
| 3188 * | |
| 3189 * Then, the pitch pre-filter is performed: | |
| 3190 * | |
| 3191 * ex_p(n) = ex(n) + PpfCoef * ex_p(n-L) | |
| 3192 * | |
| 3193 * The ex_p(n-L) sample is interpolated from the surrounding samples, | |
| 3194 * even for integer values of L. | |
| 3195 * | |
| 3196 * Note: The coefficients of the interpolating filter are multiplied | |
| 3197 * by PpfCoef, rather multiplying ex_p(n_L) after interpolation. | |
| 3198 * | |
| 3199 * Finally, the energy in the output excitation is calculated, and | |
| 3200 * automatic gain control is applied to the output signal so that | |
| 3201 * its energy matches the original. | |
| 3202 * | |
| 3203 * The pitch pre-filter is described in section 4.2.2. | |
| 3204 * | |
| 3205 * REFERENCES: Sub-clause 4.2.2 of GSM Recomendation 06.20 | |
| 3206 * | |
| 3207 * KEYWORDS: prefilter, pitch, pitchprefilter, excitation, residual | |
| 3208 * | |
| 3209 *************************************************************************/ | |
| 3210 | |
| 3211 static void pitchPreFilt(Shortword pswExcite[], | |
| 3212 Shortword swRxGsp0, | |
| 3213 Shortword swRxLag, Shortword swUvCode, | |
| 3214 Shortword swSemiBeta, struct NormSw snsSqrtRs, | |
| 3215 Shortword pswExciteOut[], | |
| 3216 Shortword pswPPreState[]) | |
| 3217 { | |
| 3218 | |
| 3219 /*_________________________________________________________________________ | |
| 3220 | | | |
| 3221 | Local Constants | | |
| 3222 |_________________________________________________________________________| | |
| 3223 */ | |
| 3224 | |
| 3225 #define POST_EPSILON 0x2666 | |
| 3226 | |
| 3227 /*_________________________________________________________________________ | |
| 3228 | | | |
| 3229 | Local Static Variables | | |
| 3230 |_________________________________________________________________________| | |
| 3231 */ | |
| 3232 | |
| 3233 | |
| 3234 /*_________________________________________________________________________ | |
| 3235 | | | |
| 3236 | Automatic Variables | | |
| 3237 |_________________________________________________________________________| | |
| 3238 */ | |
| 3239 | |
| 3240 Longword L_1, | |
| 3241 L_OrigEnergy; | |
| 3242 | |
| 3243 Shortword swScale, | |
| 3244 swSqrtP0, | |
| 3245 swIntLag, | |
| 3246 swRemain, | |
| 3247 swEnergy, | |
| 3248 pswInterpCoefs[P_INT_MACS]; | |
| 3249 | |
| 3250 short int i, | |
| 3251 j; | |
| 3252 | |
| 3253 struct NormSw snsOrigEnergy; | |
| 3254 | |
| 3255 Shortword *pswPPreCurr = &pswPPreState[LTP_LEN]; | |
| 3256 | |
| 3257 /*_________________________________________________________________________ | |
| 3258 | | | |
| 3259 | Executable Code | | |
| 3260 |_________________________________________________________________________| | |
| 3261 */ | |
| 3262 | |
| 3263 /* Initialization */ | |
| 3264 /*----------------*/ | |
| 3265 | |
| 3266 swEnergy = 0; | |
| 3267 | |
| 3268 /* Check voicing level */ | |
| 3269 /*---------------------*/ | |
| 3270 | |
| 3271 if (swUvCode == 0) | |
| 3272 { | |
| 3273 | |
| 3274 /* Unvoiced: perform one subframe of delay on state, copy input to */ | |
| 3275 /* state, copy input to output (if not same) */ | |
| 3276 /*-----------------------------------------------------------------*/ | |
| 3277 | |
| 3278 for (i = 0; i < LTP_LEN - S_LEN; i++) | |
| 3279 pswPPreState[i] = pswPPreState[i + S_LEN]; | |
| 3280 | |
| 3281 for (i = 0; i < S_LEN; i++) | |
| 3282 pswPPreState[i + LTP_LEN - S_LEN] = pswExcite[i]; | |
| 3283 | |
| 3284 if (pswExciteOut != pswExcite) | |
| 3285 { | |
| 3286 | |
| 3287 for (i = 0; i < S_LEN; i++) | |
| 3288 pswExciteOut[i] = pswExcite[i]; | |
| 3289 } | |
| 3290 } | |
| 3291 else | |
| 3292 { | |
| 3293 | |
| 3294 /* Voiced: calculate energy in input, filter, calculate energy in */ | |
| 3295 /* output, scale */ | |
| 3296 /*----------------------------------------------------------------*/ | |
| 3297 | |
| 3298 /* Get energy in input excitation vector */ | |
| 3299 /*---------------------------------------*/ | |
| 3300 | |
| 3301 swEnergy = add(negate(shl(snsSqrtRs.sh, 1)), 3); | |
| 3302 | |
| 3303 if (swEnergy > 0) | |
| 3304 { | |
| 3305 | |
| 3306 /* High-energy residual: scale input vector during energy */ | |
| 3307 /* calculation. The shift count + 1 of the energy of the */ | |
| 3308 /* residual estimate is used as an estimate of the shift */ | |
| 3309 /* count needed for the excitation energy */ | |
| 3310 /*--------------------------------------------------------*/ | |
| 3311 | |
| 3312 | |
| 3313 snsOrigEnergy.sh = g_corr1s(pswExcite, swEnergy, &L_OrigEnergy); | |
| 3314 snsOrigEnergy.man = round(L_OrigEnergy); | |
| 3315 | |
| 3316 } | |
| 3317 else | |
| 3318 { | |
| 3319 | |
| 3320 /* set shift count to zero for AGC later */ | |
| 3321 /*---------------------------------------*/ | |
| 3322 | |
| 3323 swEnergy = 0; | |
| 3324 | |
| 3325 /* Lower-energy residual: no overflow protection needed */ | |
| 3326 /*------------------------------------------------------*/ | |
| 3327 | |
| 3328 L_OrigEnergy = 0; | |
| 3329 for (i = 0; i < S_LEN; i++) | |
| 3330 { | |
| 3331 | |
| 3332 L_OrigEnergy = L_mac(L_OrigEnergy, pswExcite[i], pswExcite[i]); | |
| 3333 } | |
| 3334 | |
| 3335 snsOrigEnergy.sh = norm_l(L_OrigEnergy); | |
| 3336 snsOrigEnergy.man = round(L_shl(L_OrigEnergy, snsOrigEnergy.sh)); | |
| 3337 } | |
| 3338 | |
| 3339 /* Determine pitch pre-filter coefficient, and scale the appropriate */ | |
| 3340 /* phase of the interpolating filter by it */ | |
| 3341 /*-------------------------------------------------------------------*/ | |
| 3342 | |
| 3343 swSqrtP0 = ppsrSqrtP0[swUvCode - 1][swRxGsp0]; | |
| 3344 | |
| 3345 if (sub(swSqrtP0, swSemiBeta) > 0) | |
| 3346 swScale = swSemiBeta; | |
| 3347 else | |
| 3348 swScale = swSqrtP0; | |
| 3349 | |
| 3350 swScale = mult_r(POST_EPSILON, swScale); | |
| 3351 | |
| 3352 get_ipjj(swRxLag, &swIntLag, &swRemain); | |
| 3353 | |
| 3354 for (i = 0; i < P_INT_MACS; i++) | |
| 3355 pswInterpCoefs[i] = mult_r(ppsrPVecIntFilt[i][swRemain], swScale); | |
| 3356 | |
| 3357 /* Perform filter */ | |
| 3358 /*----------------*/ | |
| 3359 | |
| 3360 for (i = 0; i < S_LEN; i++) | |
| 3361 { | |
| 3362 | |
| 3363 L_1 = L_deposit_h(pswExcite[i]); | |
| 3364 | |
| 3365 for (j = 0; j < P_INT_MACS - 1; j++) | |
| 3366 { | |
| 3367 | |
| 3368 L_1 = L_mac(L_1, pswPPreCurr[i - swIntLag - P_INT_MACS / 2 + j], | |
| 3369 pswInterpCoefs[j]); | |
| 3370 } | |
| 3371 | |
| 3372 pswPPreCurr[i] = mac_r(L_1, | |
| 3373 pswPPreCurr[i - swIntLag + P_INT_MACS / 2 - 1], | |
| 3374 pswInterpCoefs[P_INT_MACS - 1]); | |
| 3375 } | |
| 3376 | |
| 3377 /* Get energy in filtered vector, determine automatic-gain-control */ | |
| 3378 /* scale factor */ | |
| 3379 /*-----------------------------------------------------------------*/ | |
| 3380 | |
| 3381 swScale = agcGain(pswPPreCurr, snsOrigEnergy, swEnergy); | |
| 3382 | |
| 3383 /* Scale filtered vector by AGC, put out. NOTE: AGC scale returned */ | |
| 3384 /* by routine above is divided by two, hence the shift below */ | |
| 3385 /*------------------------------------------------------------------*/ | |
| 3386 | |
| 3387 for (i = 0; i < S_LEN; i++) | |
| 3388 { | |
| 3389 | |
| 3390 L_1 = L_mult(pswPPreCurr[i], swScale); | |
| 3391 L_1 = L_shl(L_1, 1); | |
| 3392 pswExciteOut[i] = round(L_1); | |
| 3393 } | |
| 3394 | |
| 3395 /* Update pitch pre-filter state */ | |
| 3396 /*-------------------------------*/ | |
| 3397 | |
| 3398 for (i = 0; i < LTP_LEN; i++) | |
| 3399 pswPPreState[i] = pswPPreState[i + S_LEN]; | |
| 3400 } | |
| 3401 } | |
| 3402 | |
| 3403 /*************************************************************************** | |
| 3404 * | |
| 3405 * FUNCTION NAME: r0BasedEnergyShft | |
| 3406 * | |
| 3407 * PURPOSE: | |
| 3408 * | |
| 3409 * Given an R0 voicing level, find the number of shifts to be | |
| 3410 * performed on the energy to ensure that the subframe energy does | |
| 3411 * not overflow. example if energy can maximally take the value | |
| 3412 * 4.0, then 2 shifts are required. | |
| 3413 * | |
| 3414 * INPUTS: | |
| 3415 * | |
| 3416 * swR0Index | |
| 3417 * R0 codeword (0-0x1f) | |
| 3418 * | |
| 3419 * OUTPUTS: | |
| 3420 * | |
| 3421 * none | |
| 3422 * | |
| 3423 * RETURN VALUE: | |
| 3424 * | |
| 3425 * swShiftDownSignal | |
| 3426 * | |
| 3427 * number of right shifts to apply to energy (0..6) | |
| 3428 * | |
| 3429 * DESCRIPTION: | |
| 3430 * | |
| 3431 * Based on the R0, the average frame energy, we can get an | |
| 3432 * upper bound on the energy any one subframe can take on. | |
| 3433 * Using this upper bound we can calculate what right shift is | |
| 3434 * needed to ensure an unsaturated output out of a subframe | |
| 3435 * energy calculation (g_corr). | |
| 3436 * | |
| 3437 * REFERENCES: Sub-clause 4.1.9 and 4.2.1 of GSM Recomendation 06.20 | |
| 3438 * | |
| 3439 * KEYWORDS: spectral postfilter | |
| 3440 * | |
| 3441 *************************************************************************/ | |
| 3442 | |
| 3443 Shortword r0BasedEnergyShft(Shortword swR0Index) | |
| 3444 { | |
| 3445 | |
| 3446 /*_________________________________________________________________________ | |
| 3447 | | | |
| 3448 | Automatic Variables | | |
| 3449 |_________________________________________________________________________| | |
| 3450 */ | |
| 3451 | |
| 3452 Shortword swShiftDownSignal; | |
| 3453 | |
| 3454 /*_________________________________________________________________________ | |
| 3455 | | | |
| 3456 | Executable Code | | |
| 3457 |_________________________________________________________________________| | |
| 3458 */ | |
| 3459 | |
| 3460 if (sub(swR0Index, 26) <= 0) | |
| 3461 { | |
| 3462 if (sub(swR0Index, 23) <= 0) | |
| 3463 { | |
| 3464 if (sub(swR0Index, 21) <= 0) | |
| 3465 swShiftDownSignal = 0; /* r0 [0, 21] */ | |
| 3466 else | |
| 3467 swShiftDownSignal = 1; /* r0 [22, 23] */ | |
| 3468 } | |
| 3469 else | |
| 3470 { | |
| 3471 if (sub(swR0Index, 24) <= 0) | |
| 3472 swShiftDownSignal = 2; /* r0 [23, 24] */ | |
| 3473 else | |
| 3474 swShiftDownSignal = 3; /* r0 [24, 26] */ | |
| 3475 } | |
| 3476 } | |
| 3477 else | |
| 3478 { /* r0 index > 26 */ | |
| 3479 if (sub(swR0Index, 28) <= 0) | |
| 3480 { | |
| 3481 swShiftDownSignal = 4; /* r0 [26, 28] */ | |
| 3482 } | |
| 3483 else | |
| 3484 { | |
| 3485 if (sub(swR0Index, 29) <= 0) | |
| 3486 swShiftDownSignal = 5; /* r0 [28, 29] */ | |
| 3487 else | |
| 3488 swShiftDownSignal = 6; /* r0 [29, 31] */ | |
| 3489 } | |
| 3490 } | |
| 3491 if (sub(swR0Index, 18) > 0) | |
| 3492 swShiftDownSignal = add(swShiftDownSignal, 2); | |
| 3493 | |
| 3494 return (swShiftDownSignal); | |
| 3495 } | |
| 3496 | |
| 3497 /*************************************************************************** | |
| 3498 * | |
| 3499 * FUNCTION NAME: rcToADp | |
| 3500 * | |
| 3501 * PURPOSE: | |
| 3502 * | |
| 3503 * This subroutine computes a vector of direct form LPC filter | |
| 3504 * coefficients, given an input vector of reflection coefficients. | |
| 3505 * Double precision is used internally, but 16 bit direct form | |
| 3506 * filter coefficients are returned. | |
| 3507 * | |
| 3508 * INPUTS: | |
| 3509 * | |
| 3510 * NP | |
| 3511 * order of the LPC filter (global constant) | |
| 3512 * | |
| 3513 * swAscale | |
| 3514 * The multiplier which scales down the direct form | |
| 3515 * filter coefficients. | |
| 3516 * | |
| 3517 * pswRc[0:NP-1] | |
| 3518 * The input vector of reflection coefficients. | |
| 3519 * | |
| 3520 * OUTPUTS: | |
| 3521 * | |
| 3522 * pswA[0:NP-1] | |
| 3523 * Array containing the scaled down direct form LPC | |
| 3524 * filter coefficients. | |
| 3525 * | |
| 3526 * RETURN VALUE: | |
| 3527 * | |
| 3528 * siLimit | |
| 3529 * 1 if limiting occured in computation, 0 otherwise. | |
| 3530 * | |
| 3531 * DESCRIPTION: | |
| 3532 * | |
| 3533 * This function performs the conversion from reflection coefficients | |
| 3534 * to direct form LPC filter coefficients. The direct form coefficients | |
| 3535 * are scaled by multiplication by swAscale. NP, the filter order is 10. | |
| 3536 * The a's and rc's each have NP elements in them. Double precision | |
| 3537 * calculations are used internally. | |
| 3538 * | |
| 3539 * The equations are: | |
| 3540 * for i = 0 to NP-1{ | |
| 3541 * | |
| 3542 * a(i)(i) = rc(i) (scaling by swAscale occurs here) | |
| 3543 * | |
| 3544 * for j = 0 to i-1 | |
| 3545 * a(i)(j) = a(i-1)(j) + rc(i)*a(i-1)(i-j-1) | |
| 3546 * } | |
| 3547 * | |
| 3548 * See page 443, of | |
| 3549 * "Digital Processing of Speech Signals" by L.R. Rabiner and R.W. | |
| 3550 * Schafer; Prentice-Hall; Englewood Cliffs, NJ (USA). 1978. | |
| 3551 * | |
| 3552 * REFERENCES: Sub-clause 4.1.7 and 4.2.3 of GSM Recomendation 06.20 | |
| 3553 * | |
| 3554 * KEYWORDS: reflectioncoefficients, parcors, conversion, rctoadp, ks, as | |
| 3555 * KEYWORDS: parcorcoefficients, lpc, flat, vectorquantization | |
| 3556 * | |
| 3557 *************************************************************************/ | |
| 3558 | |
| 3559 short rcToADp(Shortword swAscale, Shortword pswRc[], | |
| 3560 Shortword pswA[]) | |
| 3561 { | |
| 3562 | |
| 3563 /*_________________________________________________________________________ | |
| 3564 | | | |
| 3565 | Automatic Variables | | |
| 3566 |_________________________________________________________________________| | |
| 3567 */ | |
| 3568 | |
| 3569 Longword pL_ASpace[NP], | |
| 3570 pL_tmpSpace[NP], | |
| 3571 L_temp, | |
| 3572 *pL_A, | |
| 3573 *pL_tmp, | |
| 3574 *pL_swap; | |
| 3575 | |
| 3576 short int i, | |
| 3577 j, /* loop counters */ | |
| 3578 siLimit; | |
| 3579 | |
| 3580 /*_________________________________________________________________________ | |
| 3581 | | | |
| 3582 | Executable Code | | |
| 3583 |_________________________________________________________________________| | |
| 3584 */ | |
| 3585 | |
| 3586 /* Initialize starting addresses for temporary buffers */ | |
| 3587 /*-----------------------------------------------------*/ | |
| 3588 | |
| 3589 pL_A = pL_ASpace; | |
| 3590 pL_tmp = pL_tmpSpace; | |
| 3591 | |
| 3592 /* Initialize the flag for checking if limiting has occured */ | |
| 3593 /*----------------------------------------------------------*/ | |
| 3594 | |
| 3595 siLimit = 0; | |
| 3596 | |
| 3597 /* Compute direct form filter coefficients, pswA[0],...,pswA[9] */ | |
| 3598 /*-------------------------------------------------------------------*/ | |
| 3599 | |
| 3600 for (i = 0; i < NP; i++) | |
| 3601 { | |
| 3602 | |
| 3603 pL_tmp[i] = L_mult(swAscale, pswRc[i]); | |
| 3604 for (j = 0; j <= i - 1; j++) | |
| 3605 { | |
| 3606 L_temp = L_mpy_ls(pL_A[i - j - 1], pswRc[i]); | |
| 3607 pL_tmp[j] = L_add(L_temp, pL_A[j]); | |
| 3608 siLimit |= isLwLimit(pL_tmp[j]); | |
| 3609 } | |
| 3610 if (i != NP - 1) | |
| 3611 { | |
| 3612 /* Swap swA and swTmp buffers */ | |
| 3613 | |
| 3614 pL_swap = pL_tmp; | |
| 3615 pL_tmp = pL_A; | |
| 3616 pL_A = pL_swap; | |
| 3617 } | |
| 3618 } | |
| 3619 | |
| 3620 for (i = 0; i < NP; i++) | |
| 3621 { | |
| 3622 pswA[i] = round(pL_tmp[i]); | |
| 3623 siLimit |= isSwLimit(pswA[i]); | |
| 3624 } | |
| 3625 return (siLimit); | |
| 3626 } | |
| 3627 | |
| 3628 /*************************************************************************** | |
| 3629 * | |
| 3630 * FUNCTION NAME: rcToCorrDpL | |
| 3631 * | |
| 3632 * PURPOSE: | |
| 3633 * | |
| 3634 * This subroutine computes an autocorrelation vector, given a vector | |
| 3635 * of reflection coefficients as an input. Double precision calculations | |
| 3636 * are used internally, and a double precision (Longword) | |
| 3637 * autocorrelation sequence is returned. | |
| 3638 * | |
| 3639 * INPUTS: | |
| 3640 * | |
| 3641 * NP | |
| 3642 * LPC filter order passed in as a global constant. | |
| 3643 * | |
| 3644 * swAshift | |
| 3645 * Number of right shifts to be applied to the | |
| 3646 * direct form filter coefficients being computed | |
| 3647 * as an intermediate step to generating the | |
| 3648 * autocorrelation sequence. | |
| 3649 * | |
| 3650 * swAscale | |
| 3651 * A multiplicative scale factor corresponding to | |
| 3652 * swAshift; i.e. swAscale = 2 ^(-swAshift). | |
| 3653 * | |
| 3654 * pswRc[0:NP-1] | |
| 3655 * An input vector of reflection coefficients. | |
| 3656 * | |
| 3657 * OUTPUTS: | |
| 3658 * | |
| 3659 * pL_R[0:NP] | |
| 3660 * An output Longword array containing the | |
| 3661 * autocorrelation vector where | |
| 3662 * pL_R[0] = 0x7fffffff; (i.e., ~1.0). | |
| 3663 * | |
| 3664 * RETURN VALUE: | |
| 3665 * | |
| 3666 * none | |
| 3667 * | |
| 3668 * DESCRIPTION: | |
| 3669 * | |
| 3670 * The algorithm used for computing the correlation sequence is | |
| 3671 * described on page 232 of the book "Linear Prediction of Speech", | |
| 3672 * by J.D. Markel and A.H. Gray, Jr.; Springer-Verlag, Berlin, | |
| 3673 * Heidelberg, New York, 1976. | |
| 3674 * | |
| 3675 * REFERENCES: Sub_Clause 4.1.4 and 4.2.1 of GSM Recomendation 06.20 | |
| 3676 * | |
| 3677 * KEYWORDS: normalized autocorrelation, reflection coefficients | |
| 3678 * KEYWORDS: conversion | |
| 3679 * | |
| 3680 **************************************************************************/ | |
| 3681 | |
| 3682 void rcToCorrDpL(Shortword swAshift, Shortword swAscale, | |
| 3683 Shortword pswRc[], Longword pL_R[]) | |
| 3684 { | |
| 3685 | |
| 3686 /*_________________________________________________________________________ | |
| 3687 | | | |
| 3688 | Automatic Variables | | |
| 3689 |_________________________________________________________________________| | |
| 3690 */ | |
| 3691 | |
| 3692 Longword pL_ASpace[NP], | |
| 3693 pL_tmpSpace[NP], | |
| 3694 L_temp, | |
| 3695 L_sum, | |
| 3696 *pL_A, | |
| 3697 *pL_tmp, | |
| 3698 *pL_swap; | |
| 3699 | |
| 3700 short int i, | |
| 3701 j; /* loop control variables */ | |
| 3702 | |
| 3703 /*_________________________________________________________________________ | |
| 3704 | | | |
| 3705 | Executable Code | | |
| 3706 |_________________________________________________________________________| | |
| 3707 */ | |
| 3708 | |
| 3709 /* Set R[0] = 0x7fffffff, (i.e., R[0] = 1.0) */ | |
| 3710 /*-------------------------------------------*/ | |
| 3711 | |
| 3712 pL_R[0] = LW_MAX; | |
| 3713 | |
| 3714 /* Assign an address onto each of the two temporary buffers */ | |
| 3715 /*----------------------------------------------------------*/ | |
| 3716 | |
| 3717 pL_A = pL_ASpace; | |
| 3718 pL_tmp = pL_tmpSpace; | |
| 3719 | |
| 3720 /* Compute correlations R[1],...,R[10] */ | |
| 3721 /*------------------------------------*/ | |
| 3722 | |
| 3723 for (i = 0; i < NP; i++) | |
| 3724 { | |
| 3725 | |
| 3726 /* Compute, as an intermediate step, the filter coefficients for */ | |
| 3727 /* for an i-th order direct form filter (pL_tmp[j],j=0,i) */ | |
| 3728 /*---------------------------------------------------------------*/ | |
| 3729 | |
| 3730 pL_tmp[i] = L_mult(swAscale, pswRc[i]); | |
| 3731 for (j = 0; j <= i - 1; j++) | |
| 3732 { | |
| 3733 L_temp = L_mpy_ls(pL_A[i - j - 1], pswRc[i]); | |
| 3734 pL_tmp[j] = L_add(L_temp, pL_A[j]); | |
| 3735 } | |
| 3736 | |
| 3737 /* Swap pL_A and pL_tmp buffers */ | |
| 3738 /*------------------------------*/ | |
| 3739 | |
| 3740 pL_swap = pL_A; | |
| 3741 pL_A = pL_tmp; | |
| 3742 pL_tmp = pL_swap; | |
| 3743 | |
| 3744 /* Given the direct form filter coefficients for an i-th order filter */ | |
| 3745 /* and the autocorrelation vector computed up to and including stage i */ | |
| 3746 /* compute the autocorrelation coefficient R[i+1] */ | |
| 3747 /*---------------------------------------------------------------------*/ | |
| 3748 | |
| 3749 L_temp = L_mpy_ll(pL_A[0], pL_R[i]); | |
| 3750 L_sum = L_negate(L_temp); | |
| 3751 | |
| 3752 for (j = 1; j <= i; j++) | |
| 3753 { | |
| 3754 L_temp = L_mpy_ll(pL_A[j], pL_R[i - j]); | |
| 3755 L_sum = L_sub(L_sum, L_temp); | |
| 3756 } | |
| 3757 pL_R[i + 1] = L_shl(L_sum, swAshift); | |
| 3758 | |
| 3759 } | |
| 3760 } | |
| 3761 | |
| 3762 /*************************************************************************** | |
| 3763 * | |
| 3764 * FUNCTION NAME: res_eng | |
| 3765 * | |
| 3766 * PURPOSE: | |
| 3767 * | |
| 3768 * Calculates square root of subframe residual energy estimate: | |
| 3769 * | |
| 3770 * sqrt( R(0)(1-k1**2)...(1-k10**2) ) | |
| 3771 * | |
| 3772 * INPUTS: | |
| 3773 * | |
| 3774 * pswReflecCoefIn[0:9] | |
| 3775 * | |
| 3776 * Array of reflection coeffcients. | |
| 3777 * | |
| 3778 * swRq | |
| 3779 * | |
| 3780 * Subframe energy = sqrt(frame_energy * S_LEN/2**S_SH) | |
| 3781 * (quantized). | |
| 3782 * | |
| 3783 * OUTPUTS: | |
| 3784 * | |
| 3785 * psnsSqrtRsOut | |
| 3786 * | |
| 3787 * (Pointer to) the output residual energy estimate. | |
| 3788 * | |
| 3789 * RETURN VALUE: | |
| 3790 * | |
| 3791 * The shift count of the normalized residual energy estimate, as int. | |
| 3792 * | |
| 3793 * DESCRIPTION: | |
| 3794 * | |
| 3795 * First, the canonic product of the (1-ki**2) terms is calculated | |
| 3796 * (normalizations are done to maintain precision). Also, a factor of | |
| 3797 * 2**S_SH is applied to the product to offset this same factor in the | |
| 3798 * quantized square root of the subframe energy. | |
| 3799 * | |
| 3800 * Then the product is square-rooted, and multiplied by the quantized | |
| 3801 * square root of the subframe energy. This combined product is put | |
| 3802 * out as a normalized fraction and shift count (mantissa and exponent). | |
| 3803 * | |
| 3804 * REFERENCES: Sub-clause 4.1.7 and 4.2.1 of GSM Recomendation 06.20 | |
| 3805 * | |
| 3806 * KEYWORDS: residualenergy, res_eng, rs | |
| 3807 * | |
| 3808 *************************************************************************/ | |
| 3809 | |
| 3810 void res_eng(Shortword pswReflecCoefIn[], Shortword swRq, | |
| 3811 struct NormSw *psnsSqrtRsOut) | |
| 3812 { | |
| 3813 /*_________________________________________________________________________ | |
| 3814 | | | |
| 3815 | Local Constants | | |
| 3816 |_________________________________________________________________________| | |
| 3817 */ | |
| 3818 | |
| 3819 #define S_SH 6 /* ceiling(log2(S_LEN)) */ | |
| 3820 #define MINUS_S_SH -S_SH | |
| 3821 | |
| 3822 | |
| 3823 /*_________________________________________________________________________ | |
| 3824 | | | |
| 3825 | Automatic Variables | | |
| 3826 |_________________________________________________________________________| | |
| 3827 */ | |
| 3828 | |
| 3829 Longword L_Product, | |
| 3830 L_Shift, | |
| 3831 L_SqrtResEng; | |
| 3832 | |
| 3833 Shortword swPartialProduct, | |
| 3834 swPartialProductShift, | |
| 3835 swTerm, | |
| 3836 swShift, | |
| 3837 swSqrtPP, | |
| 3838 swSqrtPPShift, | |
| 3839 swSqrtResEng, | |
| 3840 swSqrtResEngShift; | |
| 3841 | |
| 3842 short int i; | |
| 3843 | |
| 3844 /*_________________________________________________________________________ | |
| 3845 | | | |
| 3846 | Executable Code | | |
| 3847 |_________________________________________________________________________| | |
| 3848 */ | |
| 3849 | |
| 3850 /* Form canonic product, maintain precision and shift count */ | |
| 3851 /*----------------------------------------------------------*/ | |
| 3852 | |
| 3853 /* (Start off with unity product (actually -1), and shift offset) */ | |
| 3854 /*----------------------------------------------------------------*/ | |
| 3855 swPartialProduct = SW_MIN; | |
| 3856 swPartialProductShift = MINUS_S_SH; | |
| 3857 | |
| 3858 for (i = 0; i < NP; i++) | |
| 3859 { | |
| 3860 | |
| 3861 /* Get next (-1 + k**2) term, form partial canonic product */ | |
| 3862 /*---------------------------------------------------------*/ | |
| 3863 | |
| 3864 | |
| 3865 swTerm = mac_r(LW_MIN, pswReflecCoefIn[i], pswReflecCoefIn[i]); | |
| 3866 | |
| 3867 L_Product = L_mult(swTerm, swPartialProduct); | |
| 3868 | |
| 3869 /* Normalize partial product, round */ | |
| 3870 /*----------------------------------*/ | |
| 3871 | |
| 3872 swShift = norm_s(extract_h(L_Product)); | |
| 3873 swPartialProduct = round(L_shl(L_Product, swShift)); | |
| 3874 swPartialProductShift = add(swPartialProductShift, swShift); | |
| 3875 } | |
| 3876 | |
| 3877 /* Correct sign of product, take square root */ | |
| 3878 /*-------------------------------------------*/ | |
| 3879 | |
| 3880 swPartialProduct = abs_s(swPartialProduct); | |
| 3881 | |
| 3882 swSqrtPP = sqroot(L_deposit_h(swPartialProduct)); | |
| 3883 | |
| 3884 L_Shift = L_shr(L_deposit_h(swPartialProductShift), 1); | |
| 3885 | |
| 3886 swSqrtPPShift = extract_h(L_Shift); | |
| 3887 | |
| 3888 if (extract_l(L_Shift) != 0) | |
| 3889 { | |
| 3890 | |
| 3891 /* Odd exponent: shr above needs to be compensated by multiplying */ | |
| 3892 /* mantissa by sqrt(0.5) */ | |
| 3893 /*----------------------------------------------------------------*/ | |
| 3894 | |
| 3895 swSqrtPP = mult_r(swSqrtPP, SQRT_ONEHALF); | |
| 3896 } | |
| 3897 | |
| 3898 /* Form final product, the residual energy estimate, and do final */ | |
| 3899 /* normalization */ | |
| 3900 /*----------------------------------------------------------------*/ | |
| 3901 | |
| 3902 L_SqrtResEng = L_mult(swRq, swSqrtPP); | |
| 3903 | |
| 3904 swShift = norm_l(L_SqrtResEng); | |
| 3905 swSqrtResEng = round(L_shl(L_SqrtResEng, swShift)); | |
| 3906 swSqrtResEngShift = add(swSqrtPPShift, swShift); | |
| 3907 | |
| 3908 /* Return */ | |
| 3909 /*--------*/ | |
| 3910 psnsSqrtRsOut->man = swSqrtResEng; | |
| 3911 psnsSqrtRsOut->sh = swSqrtResEngShift; | |
| 3912 | |
| 3913 return; | |
| 3914 } | |
| 3915 | |
| 3916 /*************************************************************************** | |
| 3917 * | |
| 3918 * FUNCTION NAME: rs_rr | |
| 3919 * | |
| 3920 * PURPOSE: | |
| 3921 * | |
| 3922 * Calculates sqrt(RS/R(x,x)) using floating point format, | |
| 3923 * where RS is the approximate residual energy in a given | |
| 3924 * subframe and R(x,x) is the power in each long term | |
| 3925 * predictor vector or in each codevector. | |
| 3926 * Used in the joint optimization of the gain and the long | |
| 3927 * term predictor coefficient. | |
| 3928 * | |
| 3929 * INPUTS: | |
| 3930 * | |
| 3931 * pswExcitation[0:39] - excitation signal array | |
| 3932 * snsSqrtRs - structure sqrt(RS) normalized with mantissa and shift | |
| 3933 * | |
| 3934 * OUTPUTS: | |
| 3935 * | |
| 3936 * snsSqrtRsRr - structure sqrt(RS/R(x,x)) with mantissa and shift | |
| 3937 * | |
| 3938 * RETURN VALUE: | |
| 3939 * | |
| 3940 * None | |
| 3941 * | |
| 3942 * DESCRIPTION: | |
| 3943 * | |
| 3944 * Implemented as sqrt(RS)/sqrt(R(x,x)) where both sqrts | |
| 3945 * are stored normalized (0.5<=x<1.0) and the associated | |
| 3946 * shift. See section 4.1.11.1 for details | |
| 3947 * | |
| 3948 * REFERENCES: Sub-clause 4.1.11.1 and 4.2.1 of GSM | |
| 3949 * Recomendation 06.20 | |
| 3950 * | |
| 3951 * KEYWORDS: rs_rr, sqroot | |
| 3952 * | |
| 3953 *************************************************************************/ | |
| 3954 | |
| 3955 void rs_rr(Shortword pswExcitation[], struct NormSw snsSqrtRs, | |
| 3956 struct NormSw *snsSqrtRsRr) | |
| 3957 { | |
| 3958 | |
| 3959 /*_________________________________________________________________________ | |
| 3960 | | | |
| 3961 | Automatic Variables | | |
| 3962 |_________________________________________________________________________| | |
| 3963 */ | |
| 3964 Longword L_Temp; | |
| 3965 Shortword swTemp, | |
| 3966 swTemp2, | |
| 3967 swEnergy, | |
| 3968 swNormShift, | |
| 3969 swShift; | |
| 3970 | |
| 3971 /*_________________________________________________________________________ | |
| 3972 | | | |
| 3973 | Executable Code | | |
| 3974 |_________________________________________________________________________| | |
| 3975 */ | |
| 3976 | |
| 3977 swEnergy = sub(shl(snsSqrtRs.sh, 1), 3); /* shift*2 + margin == | |
| 3978 * energy. */ | |
| 3979 | |
| 3980 | |
| 3981 if (swEnergy < 0) | |
| 3982 { | |
| 3983 | |
| 3984 /* High-energy residual: scale input vector during energy */ | |
| 3985 /* calculation. The shift count of the energy of the */ | |
| 3986 /* residual estimate is used as an estimate of the shift */ | |
| 3987 /* count needed for the excitation energy */ | |
| 3988 /*--------------------------------------------------------*/ | |
| 3989 | |
| 3990 swNormShift = g_corr1s(pswExcitation, negate(swEnergy), &L_Temp); | |
| 3991 | |
| 3992 } | |
| 3993 else | |
| 3994 { | |
| 3995 | |
| 3996 /* Lower-energy residual: no overflow protection needed */ | |
| 3997 /*------------------------------------------------------*/ | |
| 3998 | |
| 3999 swNormShift = g_corr1(pswExcitation, &L_Temp); | |
| 4000 } | |
| 4001 | |
| 4002 /* Compute single precision square root of energy sqrt(R(x,x)) */ | |
| 4003 /* ----------------------------------------------------------- */ | |
| 4004 swTemp = sqroot(L_Temp); | |
| 4005 | |
| 4006 /* If odd no. of shifts compensate by sqrt(0.5) */ | |
| 4007 /* -------------------------------------------- */ | |
| 4008 if (swNormShift & 1) | |
| 4009 { | |
| 4010 | |
| 4011 /* Decrement no. of shifts in accordance with sqrt(0.5) */ | |
| 4012 /* ---------------------------------------------------- */ | |
| 4013 swNormShift = sub(swNormShift, 1); | |
| 4014 | |
| 4015 /* sqrt(R(x,x) = sqrt(R(x,x)) * sqrt(0.5) */ | |
| 4016 /* -------------------------------------- */ | |
| 4017 L_Temp = L_mult(0x5a82, swTemp); | |
| 4018 } | |
| 4019 else | |
| 4020 { | |
| 4021 L_Temp = L_deposit_h(swTemp); | |
| 4022 } | |
| 4023 | |
| 4024 /* Normalize again and update shifts */ | |
| 4025 /* --------------------------------- */ | |
| 4026 swShift = norm_l(L_Temp); | |
| 4027 swNormShift = add(shr(swNormShift, 1), swShift); | |
| 4028 L_Temp = L_shl(L_Temp, swShift); | |
| 4029 | |
| 4030 /* Shift sqrt(RS) to make sure less than divisor */ | |
| 4031 /* --------------------------------------------- */ | |
| 4032 swTemp = shr(snsSqrtRs.man, 1); | |
| 4033 | |
| 4034 /* Divide sqrt(RS)/sqrt(R(x,x)) */ | |
| 4035 /* ---------------------------- */ | |
| 4036 swTemp2 = divide_s(swTemp, round(L_Temp)); | |
| 4037 | |
| 4038 /* Calculate shift for division, compensate for shift before division */ | |
| 4039 /* ------------------------------------------------------------------ */ | |
| 4040 swNormShift = sub(snsSqrtRs.sh, swNormShift); | |
| 4041 swNormShift = sub(swNormShift, 1); | |
| 4042 | |
| 4043 /* Normalize and get no. of shifts */ | |
| 4044 /* ------------------------------- */ | |
| 4045 swShift = norm_s(swTemp2); | |
| 4046 snsSqrtRsRr->sh = add(swNormShift, swShift); | |
| 4047 snsSqrtRsRr->man = shl(swTemp2, swShift); | |
| 4048 | |
| 4049 } | |
| 4050 | |
| 4051 /*************************************************************************** | |
| 4052 * | |
| 4053 * FUNCTION NAME: rs_rrNs | |
| 4054 * | |
| 4055 * PURPOSE: | |
| 4056 * | |
| 4057 * Calculates sqrt(RS/R(x,x)) using floating point format, | |
| 4058 * where RS is the approximate residual energy in a given | |
| 4059 * subframe and R(x,x) is the power in each long term | |
| 4060 * predictor vector or in each codevector. | |
| 4061 * | |
| 4062 * Used in the joint optimization of the gain and the long | |
| 4063 * term predictor coefficient. | |
| 4064 * | |
| 4065 * INPUTS: | |
| 4066 * | |
| 4067 * pswExcitation[0:39] - excitation signal array | |
| 4068 * snsSqrtRs - structure sqrt(RS) normalized with mantissa and shift | |
| 4069 * | |
| 4070 * OUTPUTS: | |
| 4071 * | |
| 4072 * snsSqrtRsRr - structure sqrt(RS/R(x,x)) with mantissa and shift | |
| 4073 * | |
| 4074 * RETURN VALUE: | |
| 4075 * | |
| 4076 * None | |
| 4077 * | |
| 4078 * DESCRIPTION: | |
| 4079 * | |
| 4080 * Implemented as sqrt(RS)/sqrt(R(x,x)) where both sqrts | |
| 4081 * are stored normalized (0.5<=x<1.0) and the associated | |
| 4082 * shift. | |
| 4083 * | |
| 4084 * REFERENCES: Sub-clause 4.1.11.1 and 4.2.1 of GSM | |
| 4085 * Recomendation 06.20 | |
| 4086 * | |
| 4087 * KEYWORDS: rs_rr, sqroot | |
| 4088 * | |
| 4089 *************************************************************************/ | |
| 4090 | |
| 4091 void rs_rrNs(Shortword pswExcitation[], struct NormSw snsSqrtRs, | |
| 4092 struct NormSw *snsSqrtRsRr) | |
| 4093 { | |
| 4094 | |
| 4095 /*_________________________________________________________________________ | |
| 4096 | | | |
| 4097 | Automatic Variables | | |
| 4098 |_________________________________________________________________________| | |
| 4099 */ | |
| 4100 Longword L_Temp; | |
| 4101 Shortword swTemp, | |
| 4102 swTemp2, | |
| 4103 swNormShift, | |
| 4104 swShift; | |
| 4105 | |
| 4106 /*_________________________________________________________________________ | |
| 4107 | | | |
| 4108 | Executable Code | | |
| 4109 |_________________________________________________________________________| | |
| 4110 */ | |
| 4111 | |
| 4112 /* Lower-energy residual: no overflow protection needed */ | |
| 4113 /*------------------------------------------------------*/ | |
| 4114 | |
| 4115 swNormShift = g_corr1(pswExcitation, &L_Temp); | |
| 4116 | |
| 4117 | |
| 4118 /* Compute single precision square root of energy sqrt(R(x,x)) */ | |
| 4119 /* ----------------------------------------------------------- */ | |
| 4120 swTemp = sqroot(L_Temp); | |
| 4121 | |
| 4122 /* If odd no. of shifts compensate by sqrt(0.5) */ | |
| 4123 /* -------------------------------------------- */ | |
| 4124 if (swNormShift & 1) | |
| 4125 { | |
| 4126 | |
| 4127 /* Decrement no. of shifts in accordance with sqrt(0.5) */ | |
| 4128 /* ---------------------------------------------------- */ | |
| 4129 swNormShift = sub(swNormShift, 1); | |
| 4130 | |
| 4131 /* sqrt(R(x,x) = sqrt(R(x,x)) * sqrt(0.5) */ | |
| 4132 /* -------------------------------------- */ | |
| 4133 L_Temp = L_mult(0x5a82, swTemp); | |
| 4134 } | |
| 4135 else | |
| 4136 { | |
| 4137 L_Temp = L_deposit_h(swTemp); | |
| 4138 } | |
| 4139 | |
| 4140 /* Normalize again and update shifts */ | |
| 4141 /* --------------------------------- */ | |
| 4142 | |
| 4143 swShift = norm_l(L_Temp); | |
| 4144 swNormShift = add(shr(swNormShift, 1), swShift); | |
| 4145 L_Temp = L_shl(L_Temp, swShift); | |
| 4146 | |
| 4147 /* Shift sqrt(RS) to make sure less than divisor */ | |
| 4148 /* --------------------------------------------- */ | |
| 4149 swTemp = shr(snsSqrtRs.man, 1); | |
| 4150 | |
| 4151 /* Divide sqrt(RS)/sqrt(R(x,x)) */ | |
| 4152 /* ---------------------------- */ | |
| 4153 swTemp2 = divide_s(swTemp, round(L_Temp)); | |
| 4154 | |
| 4155 /* Calculate shift for division, compensate for shift before division */ | |
| 4156 /* ------------------------------------------------------------------ */ | |
| 4157 swNormShift = sub(snsSqrtRs.sh, swNormShift); | |
| 4158 swNormShift = sub(swNormShift, 1); | |
| 4159 | |
| 4160 /* Normalize and get no. of shifts */ | |
| 4161 /* ------------------------------- */ | |
| 4162 swShift = norm_s(swTemp2); | |
| 4163 snsSqrtRsRr->sh = add(swNormShift, swShift); | |
| 4164 snsSqrtRsRr->man = shl(swTemp2, swShift); | |
| 4165 | |
| 4166 } | |
| 4167 | |
| 4168 | |
| 4169 /*************************************************************************** | |
| 4170 * | |
| 4171 * FUNCTION NAME: scaleExcite | |
| 4172 * | |
| 4173 * PURPOSE: | |
| 4174 * | |
| 4175 * Scale an arbitrary excitation vector (codevector or | |
| 4176 * pitch vector) | |
| 4177 * | |
| 4178 * INPUTS: | |
| 4179 * | |
| 4180 * pswVect[0:39] - the unscaled vector. | |
| 4181 * iGsp0Scale - an positive offset to compensate for the fact | |
| 4182 * that GSP0 table is scaled down. | |
| 4183 * swErrTerm - rather than a gain being passed in, (beta, gamma) | |
| 4184 * it is calculated from this error term - either | |
| 4185 * Gsp0[][][0] error term A or Gsp0[][][1] error | |
| 4186 * term B. Beta is calculated from error term A, | |
| 4187 * gamma from error term B. | |
| 4188 * snsRS - the RS_xx appropriate to pswVect. | |
| 4189 * | |
| 4190 * OUTPUTS: | |
| 4191 * | |
| 4192 * pswScldVect[0:39] - the output, scaled excitation vector. | |
| 4193 * | |
| 4194 * RETURN VALUE: | |
| 4195 * | |
| 4196 * swGain - One of two things. Either a clamped value of 0x7fff if the | |
| 4197 * gain's shift was > 0 or the rounded vector gain otherwise. | |
| 4198 * | |
| 4199 * DESCRIPTION: | |
| 4200 * | |
| 4201 * If gain > 1.0 then | |
| 4202 * (do not shift gain up yet) | |
| 4203 * partially scale vector element THEN shift and round save | |
| 4204 * else | |
| 4205 * shift gain correctly | |
| 4206 * scale vector element and round save | |
| 4207 * update state array | |
| 4208 * | |
| 4209 * REFERENCES: Sub-clause 4.1.10.2 and 4.2.1 of GSM | |
| 4210 * Recomendation 06.20 | |
| 4211 * | |
| 4212 * KEYWORDS: excite_vl, sc_ex, excitevl, scaleexcite, codevector, p_vec, | |
| 4213 * KEYWORDS: x_vec, pitchvector, gain, gsp0 | |
| 4214 * | |
| 4215 *************************************************************************/ | |
| 4216 | |
| 4217 Shortword scaleExcite(Shortword pswVect[], | |
| 4218 Shortword swErrTerm, struct NormSw snsRS, | |
| 4219 Shortword pswScldVect[]) | |
| 4220 { | |
| 4221 | |
| 4222 /*_________________________________________________________________________ | |
| 4223 | | | |
| 4224 | Automatic Variables | | |
| 4225 |_________________________________________________________________________| | |
| 4226 */ | |
| 4227 Longword L_GainUs, | |
| 4228 L_scaled, | |
| 4229 L_Round_off; | |
| 4230 Shortword swGain, | |
| 4231 swGainUs, | |
| 4232 swGainShift, | |
| 4233 i, | |
| 4234 swGainUsShft; | |
| 4235 | |
| 4236 /*_________________________________________________________________________ | |
| 4237 | | | |
| 4238 | Executable Code | | |
| 4239 |_________________________________________________________________________| | |
| 4240 */ | |
| 4241 | |
| 4242 | |
| 4243 L_GainUs = L_mult(swErrTerm, snsRS.man); | |
| 4244 swGainUsShft = norm_s(extract_h(L_GainUs)); | |
| 4245 L_GainUs = L_shl(L_GainUs, swGainUsShft); | |
| 4246 | |
| 4247 swGainShift = add(swGainUsShft, snsRS.sh); | |
| 4248 swGainShift = sub(swGainShift, GSP0_SCALE); | |
| 4249 | |
| 4250 | |
| 4251 /* gain > 1.0 */ | |
| 4252 /* ---------- */ | |
| 4253 | |
| 4254 if (swGainShift < 0) | |
| 4255 { | |
| 4256 swGainUs = round(L_GainUs); | |
| 4257 | |
| 4258 L_Round_off = L_shl((long) 32768, swGainShift); | |
| 4259 | |
| 4260 for (i = 0; i < S_LEN; i++) | |
| 4261 { | |
| 4262 L_scaled = L_mac(L_Round_off, swGainUs, pswVect[i]); | |
| 4263 L_scaled = L_shr(L_scaled, swGainShift); | |
| 4264 pswScldVect[i] = extract_h(L_scaled); | |
| 4265 } | |
| 4266 | |
| 4267 if (swGainShift == 0) | |
| 4268 swGain = swGainUs; | |
| 4269 else | |
| 4270 swGain = 0x7fff; | |
| 4271 } | |
| 4272 | |
| 4273 /* gain < 1.0 */ | |
| 4274 /* ---------- */ | |
| 4275 | |
| 4276 else | |
| 4277 { | |
| 4278 | |
| 4279 /* shift down or not at all */ | |
| 4280 /* ------------------------ */ | |
| 4281 if (swGainShift > 0) | |
| 4282 L_GainUs = L_shr(L_GainUs, swGainShift); | |
| 4283 | |
| 4284 /* the rounded actual vector gain */ | |
| 4285 /* ------------------------------ */ | |
| 4286 swGain = round(L_GainUs); | |
| 4287 | |
| 4288 /* now scale the vector (with rounding) */ | |
| 4289 /* ------------------------------------ */ | |
| 4290 | |
| 4291 for (i = 0; i < S_LEN; i++) | |
| 4292 { | |
| 4293 L_scaled = L_mac((long) 32768, swGain, pswVect[i]); | |
| 4294 pswScldVect[i] = extract_h(L_scaled); | |
| 4295 } | |
| 4296 } | |
| 4297 return (swGain); | |
| 4298 } | |
| 4299 | |
| 4300 /*************************************************************************** | |
| 4301 * | |
| 4302 * FUNCTION NAME: spectralPostFilter | |
| 4303 * | |
| 4304 * PURPOSE: | |
| 4305 * | |
| 4306 * Perform spectral post filter on the output of the | |
| 4307 * synthesis filter. | |
| 4308 * | |
| 4309 * | |
| 4310 * INPUT: | |
| 4311 * | |
| 4312 * S_LEN a global constant | |
| 4313 * | |
| 4314 * pswSPFIn[0:S_LEN-1] | |
| 4315 * | |
| 4316 * input to the routine. Unmodified | |
| 4317 * pswSPFIn[0] is the oldest point (first to be filtered), | |
| 4318 * pswSPFIn[iLen-1] is the last pointer filtered, | |
| 4319 * the newest. | |
| 4320 * | |
| 4321 * pswNumCoef[0:NP-1],pswDenomCoef[0:NP-1] | |
| 4322 * | |
| 4323 * numerator and denominator | |
| 4324 * direct form coeffs used by postfilter. | |
| 4325 * Exactly like lpc coefficients in format. Shifted down | |
| 4326 * by iAShift to ensure that they are < 1.0. | |
| 4327 * | |
| 4328 * gpswPostFiltStateNum[0:NP-1], gpswPostFiltStateDenom[0:NP-1] | |
| 4329 * | |
| 4330 * array of the filter state. | |
| 4331 * Same format as coefficients: *praState = state of | |
| 4332 * filter for delay n = -1 praState[NP] = state of | |
| 4333 * filter for delay n = -NP These numbers are not | |
| 4334 * shifted at all. These states are static to this | |
| 4335 * file. | |
| 4336 * | |
| 4337 * OUTPUT: | |
| 4338 * | |
| 4339 * gpswPostFiltStateNum[0:NP-1], gpswPostFiltStateDenom[0:NP-1] | |
| 4340 * | |
| 4341 * See above for description. These are updated. | |
| 4342 * | |
| 4343 * pswSPFOut[0:S_LEN-1] | |
| 4344 * | |
| 4345 * same format as pswSPFIn, | |
| 4346 * *pswSPFOut is oldest point. The filtered output. | |
| 4347 * Note this routine can handle pswSPFOut = pswSPFIn. | |
| 4348 * output can be the same as input. i.e. in place | |
| 4349 * calculation. | |
| 4350 * | |
| 4351 * RETURN: | |
| 4352 * | |
| 4353 * none | |
| 4354 * | |
| 4355 * DESCRIPTION: | |
| 4356 * | |
| 4357 * find energy in input, | |
| 4358 * perform the numerator fir | |
| 4359 * perform the denominator iir | |
| 4360 * perform the post emphasis | |
| 4361 * find energy in signal, | |
| 4362 * perform the agc using energy in and energy in signam after | |
| 4363 * post emphasis signal | |
| 4364 * | |
| 4365 * The spectral postfilter is described in section 4.2.4. | |
| 4366 * | |
| 4367 * REFERENCES: Sub-clause 4.2.4 of GSM Recomendation 06.20 | |
| 4368 * | |
| 4369 * KEYWORDS: postfilter, emphasis, postemphasis, brightness, | |
| 4370 * KEYWORDS: numerator, deminator, filtering, lpc, | |
| 4371 * | |
| 4372 *************************************************************************/ | |
| 4373 | |
| 4374 static void spectralPostFilter(Shortword pswSPFIn[], | |
| 4375 Shortword pswNumCoef[], | |
| 4376 Shortword pswDenomCoef[], Shortword pswSPFOut[]) | |
| 4377 { | |
| 4378 /*_________________________________________________________________________ | |
| 4379 | | | |
| 4380 | Local Constants | | |
| 4381 |_________________________________________________________________________| | |
| 4382 */ | |
| 4383 | |
| 4384 #define AGC_COEF (Shortword)0x19a /* (1.0 - POST_AGC_COEF) | |
| 4385 * 1.0-.9875 */ | |
| 4386 #define POST_EMPHASIS (Shortword)0x199a /* 0.2 */ | |
| 4387 | |
| 4388 /*_________________________________________________________________________ | |
| 4389 | | | |
| 4390 | Automatic Variables | | |
| 4391 |_________________________________________________________________________| | |
| 4392 */ | |
| 4393 | |
| 4394 short int i; | |
| 4395 | |
| 4396 Longword L_OrigEnergy, | |
| 4397 L_runningGain, | |
| 4398 L_Output; | |
| 4399 | |
| 4400 Shortword swAgcGain, | |
| 4401 swRunningGain, | |
| 4402 swTemp; | |
| 4403 | |
| 4404 struct NormSw snsOrigEnergy; | |
| 4405 | |
| 4406 /*_________________________________________________________________________ | |
| 4407 | | | |
| 4408 | Executable Code | | |
| 4409 |_________________________________________________________________________| | |
| 4410 */ | |
| 4411 | |
| 4412 /* calculate the energy in the input and save it */ | |
| 4413 /*-----------------------------------------------*/ | |
| 4414 | |
| 4415 snsOrigEnergy.sh = g_corr1s(pswSPFIn, swEngyRShift, &L_OrigEnergy); | |
| 4416 snsOrigEnergy.man = round(L_OrigEnergy); | |
| 4417 | |
| 4418 /* numerator of the postfilter */ | |
| 4419 /*-----------------------------*/ | |
| 4420 | |
| 4421 lpcFir(pswSPFIn, pswNumCoef, gpswPostFiltStateNum, pswSPFOut); | |
| 4422 | |
| 4423 /* denominator of the postfilter */ | |
| 4424 /*-------------------------------*/ | |
| 4425 | |
| 4426 lpcIir(pswSPFOut, pswDenomCoef, gpswPostFiltStateDenom, pswSPFOut); | |
| 4427 | |
| 4428 /* postemphasis section of postfilter */ | |
| 4429 /*------------------------------------*/ | |
| 4430 | |
| 4431 for (i = 0; i < S_LEN; i++) | |
| 4432 { | |
| 4433 swTemp = msu_r(L_deposit_h(pswSPFOut[i]), swPostEmphasisState, | |
| 4434 POST_EMPHASIS); | |
| 4435 swPostEmphasisState = pswSPFOut[i]; | |
| 4436 pswSPFOut[i] = swTemp; | |
| 4437 } | |
| 4438 | |
| 4439 swAgcGain = agcGain(pswSPFOut, snsOrigEnergy, swEngyRShift); | |
| 4440 | |
| 4441 /* scale the speech vector */ | |
| 4442 /*-----------------------------*/ | |
| 4443 | |
| 4444 swRunningGain = gswPostFiltAgcGain; | |
| 4445 L_runningGain = L_deposit_h(gswPostFiltAgcGain); | |
| 4446 for (i = 0; i < S_LEN; i++) | |
| 4447 { | |
| 4448 L_runningGain = L_msu(L_runningGain, swRunningGain, AGC_COEF); | |
| 4449 L_runningGain = L_mac(L_runningGain, swAgcGain, AGC_COEF); | |
| 4450 swRunningGain = extract_h(L_runningGain); | |
| 4451 | |
| 4452 /* now scale input with gain */ | |
| 4453 | |
| 4454 L_Output = L_mult(swRunningGain, pswSPFOut[i]); | |
| 4455 pswSPFOut[i] = extract_h(L_shl(L_Output, 2)); | |
| 4456 } | |
| 4457 gswPostFiltAgcGain = swRunningGain; | |
| 4458 | |
| 4459 } | |
| 4460 | |
| 4461 /*************************************************************************** | |
| 4462 * | |
| 4463 * FUNCTION NAME: speechDecoder | |
| 4464 * | |
| 4465 * PURPOSE: | |
| 4466 * The purpose of this function is to call all speech decoder | |
| 4467 * subroutines. This is the top level routine for the speech | |
| 4468 * decoder. | |
| 4469 * | |
| 4470 * INPUTS: | |
| 4471 * | |
| 4472 * pswParameters[0:21] | |
| 4473 * | |
| 4474 * pointer to this frame's parameters. See below for input | |
| 4475 * data format. | |
| 4476 * | |
| 4477 * OUTPUTS: | |
| 4478 * | |
| 4479 * pswDecodedSpeechFrame[0:159] | |
| 4480 * | |
| 4481 * this frame's decoded 16 bit linear pcm frame | |
| 4482 * | |
| 4483 * RETURN VALUE: | |
| 4484 * | |
| 4485 * none | |
| 4486 * | |
| 4487 * DESCRIPTION: | |
| 4488 * | |
| 4489 * The sequence of events in the decoder, and therefore this routine | |
| 4490 * follow a simple plan. First, the frame based parameters are | |
| 4491 * decoded. Second, on a subframe basis, the subframe based | |
| 4492 * parameters are decoded and the excitation is generated. Third, | |
| 4493 * on a subframe basis, the combined and scaled excitation is | |
| 4494 * passed through the synthesis filter, and then the pitch and | |
| 4495 * spectral postfilters. | |
| 4496 * | |
| 4497 * The in-line comments for the routine speechDecoder, are very | |
| 4498 * detailed. Here in a more consolidated form, are the main | |
| 4499 * points. | |
| 4500 * | |
| 4501 * The R0 parameter is decoded using the lookup table | |
| 4502 * psrR0DecTbl[]. The LPC codewords are looked up using lookupVQ(). | |
| 4503 * The decoded parameters are reflection coefficients | |
| 4504 * (pswFrmKs[]). | |
| 4505 * | |
| 4506 * The decoder does not use reflection coefficients directly. | |
| 4507 * Instead it converts them to direct form coeficients. This is | |
| 4508 * done using rcToADp(). If this conversion results in invalid | |
| 4509 * results, the previous frames parameters are used. | |
| 4510 * | |
| 4511 * The direct form coeficients are used to derive the spectal | |
| 4512 * postfilter's numerator and denominator coeficients. The | |
| 4513 * denominators coefficients are widened, and the numerators | |
| 4514 * coefficients are a spectrally smoothed version of the | |
| 4515 * denominator. The smoothing is done with a_sst(). | |
| 4516 * | |
| 4517 * The frame based LPC coefficients are either used directly as the | |
| 4518 * subframe coefficients, or are derived through interpolation. | |
| 4519 * The subframe based coeffiecients are calculated in getSfrmLpc(). | |
| 4520 * | |
| 4521 * Based on voicing mode, the decoder will construct and scale the | |
| 4522 * excitation in one of two ways. For the voiced mode the lag is | |
| 4523 * decoded using lagDecode(). The fractional pitch LTP lookup is | |
| 4524 * done by the function fp_ex(). In both voiced and unvoiced | |
| 4525 * mode, the VSELP codewords are decoded into excitation vectors | |
| 4526 * using b_con() and v_con(). | |
| 4527 * | |
| 4528 * rs_rr(), rs_rrNs(), and scaleExcite() are used to calculate | |
| 4529 * the gamma's, codevector gains, as well as beta, the LTP vector | |
| 4530 * gain. Description of this can be found in section 4.1.11. Once | |
| 4531 * the vectors have been scaled and combined, the excitation is | |
| 4532 * stored in the LTP history. | |
| 4533 * | |
| 4534 * The excitation, pswExcite[], passes through the pitch pre-filter | |
| 4535 * (pitchPreFilt()). Then the harmonically enhanced excitation | |
| 4536 * passes through the synthesis filter, lpcIir(), and finally the | |
| 4537 * reconstructed speech passes through the spectral post-filter | |
| 4538 * (spectalPostFilter()). The final output speech is passed back in | |
| 4539 * the array pswDecodedSpeechFrame[]. | |
| 4540 * | |
| 4541 * INPUT DATA FORMAT: | |
| 4542 * | |
| 4543 * The format/content of the input parameters is the so called | |
| 4544 * bit alloc format. | |
| 4545 * | |
| 4546 * voiced mode bit alloc format: | |
| 4547 * ----------------------------- | |
| 4548 * index number of bits parameter name | |
| 4549 * 0 5 R0 | |
| 4550 * 1 11 k1Tok3 | |
| 4551 * 2 9 k4Tok6 | |
| 4552 * 3 8 k7Tok10 | |
| 4553 * 4 1 softInterpolation | |
| 4554 * 5 2 voicingDecision | |
| 4555 * 6 8 frameLag | |
| 4556 * 7 9 code_1 | |
| 4557 * 8 5 gsp0_1 | |
| 4558 * 9 4 deltaLag_2 | |
| 4559 * 10 9 code_2 | |
| 4560 * 11 5 gsp0_2 | |
| 4561 * 12 4 deltaLag_3 | |
| 4562 * 13 9 code_3 | |
| 4563 * 14 5 gsp0_3 | |
| 4564 * 15 4 deltaLag_4 | |
| 4565 * 16 9 code_4 | |
| 4566 * 17 5 gsp0_4 | |
| 4567 * | |
| 4568 * 18 1 BFI | |
| 4569 * 19 1 UFI | |
| 4570 * 20 2 SID | |
| 4571 * 21 1 TAF | |
| 4572 * | |
| 4573 * | |
| 4574 * unvoiced mode bit alloc format: | |
| 4575 * ------------------------------- | |
| 4576 * | |
| 4577 * index number of bits parameter name | |
| 4578 * 0 5 R0 | |
| 4579 * 1 11 k1Tok3 | |
| 4580 * 2 9 k4Tok6 | |
| 4581 * 3 8 k7Tok10 | |
| 4582 * 4 1 softInterpolation | |
| 4583 * 5 2 voicingDecision | |
| 4584 * 6 7 code1_1 | |
| 4585 * 7 7 code2_1 | |
| 4586 * 8 5 gsp0_1 | |
| 4587 * 9 7 code1_2 | |
| 4588 * 10 7 code2_2 | |
| 4589 * 11 5 gsp0_2 | |
| 4590 * 12 7 code1_3 | |
| 4591 * 13 7 code2_3 | |
| 4592 * 14 5 gsp0_3 | |
| 4593 * 15 7 code1_4 | |
| 4594 * 16 7 code2_4 | |
| 4595 * 17 5 gsp0_4 | |
| 4596 * | |
| 4597 * 18 1 BFI | |
| 4598 * 19 1 UFI | |
| 4599 * 20 2 SID | |
| 4600 * 21 1 TAF | |
| 4601 * | |
| 4602 * | |
| 4603 * REFERENCES: Sub_Clause 4.2 of GSM Recomendation 06.20 | |
| 4604 * | |
| 4605 * KEYWORDS: synthesis, speechdecoder, decoding | |
| 4606 * KEYWORDS: codewords, lag, codevectors, gsp0 | |
| 4607 * | |
| 4608 *************************************************************************/ | |
| 4609 | |
| 4610 void speechDecoder(Shortword pswParameters[], | |
| 4611 Shortword pswDecodedSpeechFrame[]) | |
| 4612 { | |
| 4613 | |
| 4614 /*_________________________________________________________________________ | |
| 4615 | | | |
| 4616 | Local Static Variables | | |
| 4617 |_________________________________________________________________________| | |
| 4618 */ | |
| 4619 | |
| 4620 static Shortword | |
| 4621 *pswLtpStateOut = &pswLtpStateBaseDec[LTP_LEN], | |
| 4622 pswSythAsSpace[NP * N_SUB], | |
| 4623 pswPFNumAsSpace[NP * N_SUB], | |
| 4624 pswPFDenomAsSpace[NP * N_SUB], | |
| 4625 *ppswSynthAs[N_SUB] = { | |
| 4626 &pswSythAsSpace[0], | |
| 4627 &pswSythAsSpace[10], | |
| 4628 &pswSythAsSpace[20], | |
| 4629 &pswSythAsSpace[30], | |
| 4630 }, | |
| 4631 | |
| 4632 *ppswPFNumAs[N_SUB] = { | |
| 4633 &pswPFNumAsSpace[0], | |
| 4634 &pswPFNumAsSpace[10], | |
| 4635 &pswPFNumAsSpace[20], | |
| 4636 &pswPFNumAsSpace[30], | |
| 4637 }, | |
| 4638 *ppswPFDenomAs[N_SUB] = { | |
| 4639 &pswPFDenomAsSpace[0], | |
| 4640 &pswPFDenomAsSpace[10], | |
| 4641 &pswPFDenomAsSpace[20], | |
| 4642 &pswPFDenomAsSpace[30], | |
| 4643 }; | |
| 4644 | |
| 4645 static ShortwordRom | |
| 4646 psrSPFDenomWidenCf[NP] = { | |
| 4647 0x6000, 0x4800, 0x3600, 0x2880, 0x1E60, | |
| 4648 0x16C8, 0x1116, 0x0CD0, 0x099C, 0x0735, | |
| 4649 }; | |
| 4650 | |
| 4651 | |
| 4652 static Longword L_RxPNSeed; /* DTX mode */ | |
| 4653 static Shortword swRxDtxGsIndex; /* DTX mode */ | |
| 4654 | |
| 4655 | |
| 4656 /*_________________________________________________________________________ | |
| 4657 | | | |
| 4658 | Automatic Variables | | |
| 4659 |_________________________________________________________________________| | |
| 4660 */ | |
| 4661 | |
| 4662 short int i, | |
| 4663 j, | |
| 4664 siLagCode, | |
| 4665 siGsp0Code, | |
| 4666 psiVselpCw[2], | |
| 4667 siVselpCw, | |
| 4668 siNumBits, | |
| 4669 siCodeBook; | |
| 4670 | |
| 4671 Shortword pswFrmKs[NP], | |
| 4672 pswFrmAs[NP], | |
| 4673 pswFrmPFNum[NP], | |
| 4674 pswFrmPFDenom[NP], | |
| 4675 pswPVec[S_LEN], | |
| 4676 ppswVselpEx[2][S_LEN], | |
| 4677 pswExcite[S_LEN], | |
| 4678 pswPPFExcit[S_LEN], | |
| 4679 pswSynthFiltOut[S_LEN], | |
| 4680 swR0Index, | |
| 4681 swLag, | |
| 4682 swSemiBeta, | |
| 4683 pswBitArray[MAXBITS]; | |
| 4684 | |
| 4685 struct NormSw psnsSqrtRs[N_SUB], | |
| 4686 snsRs00, | |
| 4687 snsRs11, | |
| 4688 snsRs22; | |
| 4689 | |
| 4690 | |
| 4691 Shortword swMutePermit, | |
| 4692 swLevelMean, | |
| 4693 swLevelMax, /* error concealment */ | |
| 4694 swMuteFlag; /* error concealment */ | |
| 4695 | |
| 4696 | |
| 4697 Shortword swTAF, | |
| 4698 swSID, | |
| 4699 swBfiDtx; /* DTX mode */ | |
| 4700 Shortword swFrameType; /* DTX mode */ | |
| 4701 | |
| 4702 Longword L_RxDTXGs; /* DTX mode */ | |
| 4703 | |
| 4704 /*_________________________________________________________________________ | |
| 4705 | | | |
| 4706 | Executable Code | | |
| 4707 |_________________________________________________________________________| | |
| 4708 */ | |
| 4709 | |
| 4710 /* -------------------------------------------------------------------- */ | |
| 4711 /* do bad frame handling (error concealment) and comfort noise */ | |
| 4712 /* insertion */ | |
| 4713 /* -------------------------------------------------------------------- */ | |
| 4714 | |
| 4715 | |
| 4716 /* This flag indicates whether muting is performed in the actual frame */ | |
| 4717 /* ------------------------------------------------------------------- */ | |
| 4718 swMuteFlag = 0; | |
| 4719 | |
| 4720 | |
| 4721 /* This flag indicates whether muting is allowed in the actual frame */ | |
| 4722 /* ----------------------------------------------------------------- */ | |
| 4723 swMutePermit = 0; | |
| 4724 | |
| 4725 | |
| 4726 /* frame classification */ | |
| 4727 /* -------------------- */ | |
| 4728 | |
| 4729 swSID = pswParameters[20]; | |
| 4730 swTAF = pswParameters[21]; | |
| 4731 | |
| 4732 swBfiDtx = pswParameters[18] | pswParameters[19]; /* BFI | UFI */ | |
| 4733 | |
| 4734 if ((swSID == 2) && (swBfiDtx == 0)) | |
| 4735 swFrameType = VALIDSID; | |
| 4736 else if ((swSID == 0) && (swBfiDtx == 0)) | |
| 4737 swFrameType = GOODSPEECH; | |
| 4738 else if ((swSID == 0) && (swBfiDtx != 0)) | |
| 4739 swFrameType = UNUSABLE; | |
| 4740 else | |
| 4741 swFrameType = INVALIDSID; | |
| 4742 | |
| 4743 | |
| 4744 /* update of decoder state */ | |
| 4745 /* ----------------------- */ | |
| 4746 | |
| 4747 if (swDecoMode == SPEECH) | |
| 4748 { | |
| 4749 /* speech decoding mode */ | |
| 4750 /* -------------------- */ | |
| 4751 | |
| 4752 if (swFrameType == VALIDSID) | |
| 4753 swDecoMode = CNIFIRSTSID; | |
| 4754 else if (swFrameType == INVALIDSID) | |
| 4755 swDecoMode = CNIFIRSTSID; | |
| 4756 else if (swFrameType == UNUSABLE) | |
| 4757 swDecoMode = SPEECH; | |
| 4758 else if (swFrameType == GOODSPEECH) | |
| 4759 swDecoMode = SPEECH; | |
| 4760 } | |
| 4761 else | |
| 4762 { | |
| 4763 /* comfort noise insertion mode */ | |
| 4764 /* ---------------------------- */ | |
| 4765 | |
| 4766 if (swFrameType == VALIDSID) | |
| 4767 swDecoMode = CNICONT; | |
| 4768 else if (swFrameType == INVALIDSID) | |
| 4769 swDecoMode = CNICONT; | |
| 4770 else if (swFrameType == UNUSABLE) | |
| 4771 swDecoMode = CNIBFI; | |
| 4772 else if (swFrameType == GOODSPEECH) | |
| 4773 swDecoMode = SPEECH; | |
| 4774 } | |
| 4775 | |
| 4776 | |
| 4777 if (swDecoMode == SPEECH) | |
| 4778 { | |
| 4779 /* speech decoding mode */ | |
| 4780 /* -------------------- */ | |
| 4781 | |
| 4782 /* Perform parameter concealment, depending on BFI (pswParameters[18]) */ | |
| 4783 /* or UFI (pswParameters[19]) */ | |
| 4784 /* ------------------------------------------------------------------- */ | |
| 4785 para_conceal_speech_decoder(&pswParameters[18], | |
| 4786 pswParameters, &swMutePermit); | |
| 4787 | |
| 4788 | |
| 4789 /* copy the frame rate parameters */ | |
| 4790 /* ------------------------------ */ | |
| 4791 | |
| 4792 swR0Index = pswParameters[0]; /* R0 Index */ | |
| 4793 pswVq[0] = pswParameters[1]; /* LPC1 */ | |
| 4794 pswVq[1] = pswParameters[2]; /* LPC2 */ | |
| 4795 pswVq[2] = pswParameters[3]; /* LPC3 */ | |
| 4796 swSi = pswParameters[4]; /* INT_LPC */ | |
| 4797 swVoicingMode = pswParameters[5]; /* MODE */ | |
| 4798 | |
| 4799 | |
| 4800 /* lookup R0 and VQ parameters */ | |
| 4801 /* --------------------------- */ | |
| 4802 | |
| 4803 swR0Dec = psrR0DecTbl[swR0Index * 2]; /* R0 */ | |
| 4804 lookupVq(pswVq, pswFrmKs); | |
| 4805 | |
| 4806 | |
| 4807 /* save this frames GS values */ | |
| 4808 /* -------------------------- */ | |
| 4809 | |
| 4810 for (i = 0; i < N_SUB; i++) | |
| 4811 { | |
| 4812 pL_RxGsHist[swRxGsHistPtr] = | |
| 4813 ppLr_gsTable[swVoicingMode][pswParameters[(i * 3) + 8]]; | |
| 4814 swRxGsHistPtr++; | |
| 4815 if (swRxGsHistPtr > ((OVERHANG - 1) * N_SUB) - 1) | |
| 4816 swRxGsHistPtr = 0; | |
| 4817 } | |
| 4818 | |
| 4819 | |
| 4820 /* DTX variables */ | |
| 4821 /* ------------- */ | |
| 4822 | |
| 4823 swDtxBfiCnt = 0; | |
| 4824 swDtxMuting = 0; | |
| 4825 swRxDTXState = CNINTPER - 1; | |
| 4826 | |
| 4827 } | |
| 4828 else | |
| 4829 { | |
| 4830 /* comfort noise insertion mode */ | |
| 4831 /*----------------------------- */ | |
| 4832 | |
| 4833 /* copy the frame rate parameters */ | |
| 4834 /* ------------------------------ */ | |
| 4835 | |
| 4836 swR0Index = pswParameters[0]; /* R0 Index */ | |
| 4837 pswVq[0] = pswParameters[1]; /* LPC1 */ | |
| 4838 pswVq[1] = pswParameters[2]; /* LPC2 */ | |
| 4839 pswVq[2] = pswParameters[3]; /* LPC3 */ | |
| 4840 swSi = 1; /* INT_LPC */ | |
| 4841 swVoicingMode = 0; /* MODE */ | |
| 4842 | |
| 4843 | |
| 4844 /* bad frame handling in comfort noise insertion mode */ | |
| 4845 /* -------------------------------------------------- */ | |
| 4846 | |
| 4847 if (swDecoMode == CNIFIRSTSID) /* first SID frame */ | |
| 4848 { | |
| 4849 swDtxBfiCnt = 0; | |
| 4850 swDtxMuting = 0; | |
| 4851 swRxDTXState = CNINTPER - 1; | |
| 4852 | |
| 4853 if (swFrameType == VALIDSID) /* valid SID frame */ | |
| 4854 { | |
| 4855 swR0NewCN = psrR0DecTbl[swR0Index * 2]; | |
| 4856 lookupVq(pswVq, pswFrmKs); | |
| 4857 } | |
| 4858 else if (swFrameType == INVALIDSID) /* invalid SID frame */ | |
| 4859 { | |
| 4860 swR0NewCN = psrR0DecTbl[swOldR0IndexDec * 2]; | |
| 4861 swR0Index = swOldR0IndexDec; | |
| 4862 for (i = 0; i < NP; i++) | |
| 4863 pswFrmKs[i] = pswOldFrmKsDec[i]; | |
| 4864 } | |
| 4865 | |
| 4866 } | |
| 4867 else if (swDecoMode == CNICONT) /* SID frame detected, but */ | |
| 4868 { /* not the first SID */ | |
| 4869 swDtxBfiCnt = 0; | |
| 4870 swDtxMuting = 0; | |
| 4871 | |
| 4872 if (swFrameType == VALIDSID) /* valid SID frame */ | |
| 4873 { | |
| 4874 swRxDTXState = 0; | |
| 4875 swR0NewCN = psrR0DecTbl[swR0Index * 2]; | |
| 4876 lookupVq(pswVq, pswFrmKs); | |
| 4877 } | |
| 4878 else if (swFrameType == INVALIDSID) /* invalid SID frame */ | |
| 4879 { | |
| 4880 if (swRxDTXState < (CNINTPER - 1)) | |
| 4881 swRxDTXState = add(swRxDTXState, 1); | |
| 4882 swR0Index = swOldR0IndexDec; | |
| 4883 } | |
| 4884 | |
| 4885 } | |
| 4886 else if (swDecoMode == CNIBFI) /* bad frame received in */ | |
| 4887 { /* CNI mode */ | |
| 4888 if (swRxDTXState < (CNINTPER - 1)) | |
| 4889 swRxDTXState = add(swRxDTXState, 1); | |
| 4890 swR0Index = swOldR0IndexDec; | |
| 4891 | |
| 4892 if (swDtxMuting == 1) | |
| 4893 { | |
| 4894 swOldR0IndexDec = sub(swOldR0IndexDec, 2); /* attenuate | |
| 4895 * by 4 dB */ | |
| 4896 if (swOldR0IndexDec < 0) | |
| 4897 swOldR0IndexDec = 0; | |
| 4898 | |
| 4899 swR0Index = swOldR0IndexDec; | |
| 4900 | |
| 4901 swR0NewCN = psrR0DecTbl[swOldR0IndexDec * 2]; /* R0 */ | |
| 4902 | |
| 4903 } | |
| 4904 | |
| 4905 swDtxBfiCnt = add(swDtxBfiCnt, 1); | |
| 4906 if ((swTAF == 1) && (swDtxBfiCnt >= (2 * CNINTPER + 1))) /* 25 */ | |
| 4907 swDtxMuting = 1; | |
| 4908 | |
| 4909 } | |
| 4910 | |
| 4911 | |
| 4912 if (swDecoMode == CNIFIRSTSID) | |
| 4913 { | |
| 4914 | |
| 4915 /* the first SID frame is received */ | |
| 4916 /* ------------------------------- */ | |
| 4917 | |
| 4918 /* initialize the decoders pn-generator */ | |
| 4919 /* ------------------------------------ */ | |
| 4920 | |
| 4921 L_RxPNSeed = PN_INIT_SEED; | |
| 4922 | |
| 4923 | |
| 4924 /* using the stored rx history, generate averaged GS */ | |
| 4925 /* ------------------------------------------------- */ | |
| 4926 | |
| 4927 avgGsHistQntz(pL_RxGsHist, &L_RxDTXGs); | |
| 4928 swRxDtxGsIndex = gsQuant(L_RxDTXGs, 0); | |
| 4929 | |
| 4930 } | |
| 4931 | |
| 4932 | |
| 4933 /* Replace the "transmitted" subframe parameters with */ | |
| 4934 /* synthetic ones */ | |
| 4935 /* -------------------------------------------------- */ | |
| 4936 | |
| 4937 for (i = 0; i < 4; i++) | |
| 4938 { | |
| 4939 /* initialize the GSP0 parameter */ | |
| 4940 pswParameters[(i * 3) + 8] = swRxDtxGsIndex; | |
| 4941 | |
| 4942 /* CODE1 */ | |
| 4943 pswParameters[(i * 3) + 6] = getPnBits(7, &L_RxPNSeed); | |
| 4944 /* CODE2 */ | |
| 4945 pswParameters[(i * 3) + 7] = getPnBits(7, &L_RxPNSeed); | |
| 4946 } | |
| 4947 | |
| 4948 | |
| 4949 /* Interpolation of CN parameters */ | |
| 4950 /* ------------------------------ */ | |
| 4951 | |
| 4952 rxInterpR0Lpc(pswOldFrmKsDec, pswFrmKs, swRxDTXState, | |
| 4953 swDecoMode, swFrameType); | |
| 4954 | |
| 4955 } | |
| 4956 | |
| 4957 | |
| 4958 /* ------------------- */ | |
| 4959 /* do frame processing */ | |
| 4960 /* ------------------- */ | |
| 4961 | |
| 4962 /* generate the direct form coefs */ | |
| 4963 /* ------------------------------ */ | |
| 4964 | |
| 4965 if (!rcToADp(ASCALE, pswFrmKs, pswFrmAs)) | |
| 4966 { | |
| 4967 | |
| 4968 /* widen direct form coefficients using the widening coefs */ | |
| 4969 /* ------------------------------------------------------- */ | |
| 4970 | |
| 4971 for (i = 0; i < NP; i++) | |
| 4972 { | |
| 4973 pswFrmPFDenom[i] = mult_r(pswFrmAs[i], psrSPFDenomWidenCf[i]); | |
| 4974 } | |
| 4975 | |
| 4976 a_sst(ASHIFT, ASCALE, pswFrmPFDenom, pswFrmPFNum); | |
| 4977 } | |
| 4978 else | |
| 4979 { | |
| 4980 | |
| 4981 | |
| 4982 for (i = 0; i < NP; i++) | |
| 4983 { | |
| 4984 pswFrmKs[i] = pswOldFrmKsDec[i]; | |
| 4985 pswFrmAs[i] = pswOldFrmAsDec[i]; | |
| 4986 pswFrmPFDenom[i] = pswOldFrmPFDenom[i]; | |
| 4987 pswFrmPFNum[i] = pswOldFrmPFNum[i]; | |
| 4988 } | |
| 4989 } | |
| 4990 | |
| 4991 /* interpolate, or otherwise get sfrm reflection coefs */ | |
| 4992 /* --------------------------------------------------- */ | |
| 4993 | |
| 4994 getSfrmLpc(swSi, swOldR0Dec, swR0Dec, pswOldFrmKsDec, pswOldFrmAsDec, | |
| 4995 pswOldFrmPFNum, pswOldFrmPFDenom, pswFrmKs, pswFrmAs, | |
| 4996 pswFrmPFNum, pswFrmPFDenom, psnsSqrtRs, ppswSynthAs, | |
| 4997 ppswPFNumAs, ppswPFDenomAs); | |
| 4998 | |
| 4999 /* calculate shift for spectral postfilter */ | |
| 5000 /* --------------------------------------- */ | |
| 5001 | |
| 5002 swEngyRShift = r0BasedEnergyShft(swR0Index); | |
| 5003 | |
| 5004 | |
| 5005 /* ----------------------- */ | |
| 5006 /* do sub-frame processing */ | |
| 5007 /* ----------------------- */ | |
| 5008 | |
| 5009 for (giSfrmCnt = 0; giSfrmCnt < 4; giSfrmCnt++) | |
| 5010 { | |
| 5011 | |
| 5012 /* copy this sub-frame's parameters */ | |
| 5013 /* -------------------------------- */ | |
| 5014 | |
| 5015 if (sub(swVoicingMode, 0) == 0) | |
| 5016 { /* unvoiced */ | |
| 5017 psiVselpCw[0] = pswParameters[(giSfrmCnt * 3) + 6]; /* CODE_1 */ | |
| 5018 psiVselpCw[1] = pswParameters[(giSfrmCnt * 3) + 7]; /* CODE_2 */ | |
| 5019 siGsp0Code = pswParameters[(giSfrmCnt * 3) + 8]; /* GSP0 */ | |
| 5020 } | |
| 5021 else | |
| 5022 { /* voiced */ | |
| 5023 siLagCode = pswParameters[(giSfrmCnt * 3) + 6]; /* LAG */ | |
| 5024 psiVselpCw[0] = pswParameters[(giSfrmCnt * 3) + 7]; /* CODE */ | |
| 5025 siGsp0Code = pswParameters[(giSfrmCnt * 3) + 8]; /* GSP0 */ | |
| 5026 } | |
| 5027 | |
| 5028 /* for voiced mode, reconstruct the pitch vector */ | |
| 5029 /* --------------------------------------------- */ | |
| 5030 | |
| 5031 if (swVoicingMode) | |
| 5032 { | |
| 5033 | |
| 5034 /* convert delta lag to lag and convert to fractional lag */ | |
| 5035 /* ------------------------------------------------------ */ | |
| 5036 | |
| 5037 swLag = lagDecode(siLagCode); | |
| 5038 | |
| 5039 /* state followed by out */ | |
| 5040 /* --------------------- */ | |
| 5041 | |
| 5042 fp_ex(swLag, pswLtpStateOut); | |
| 5043 | |
| 5044 /* extract a piece of pswLtpStateOut into newly named vector pswPVec */ | |
| 5045 /* ----------------------------------------------------------------- */ | |
| 5046 | |
| 5047 for (i = 0; i < S_LEN; i++) | |
| 5048 { | |
| 5049 pswPVec[i] = pswLtpStateOut[i]; | |
| 5050 } | |
| 5051 } | |
| 5052 | |
| 5053 /* for unvoiced, do not reconstruct a pitch vector */ | |
| 5054 /* ----------------------------------------------- */ | |
| 5055 | |
| 5056 else | |
| 5057 { | |
| 5058 swLag = 0; /* indicates invalid lag | |
| 5059 * and unvoiced */ | |
| 5060 } | |
| 5061 | |
| 5062 /* now work on the VSELP codebook excitation output */ | |
| 5063 /* x_vec, x_a_vec here named ppswVselpEx[0] and [1] */ | |
| 5064 /* ------------------------------------------------ */ | |
| 5065 | |
| 5066 if (swVoicingMode) | |
| 5067 { /* voiced */ | |
| 5068 | |
| 5069 siNumBits = C_BITS_V; | |
| 5070 siVselpCw = psiVselpCw[0]; | |
| 5071 | |
| 5072 b_con(siVselpCw, siNumBits, pswBitArray); | |
| 5073 | |
| 5074 v_con(pppsrVcdCodeVec[0][0], ppswVselpEx[0], pswBitArray, siNumBits); | |
| 5075 } | |
| 5076 | |
| 5077 else | |
| 5078 { /* unvoiced */ | |
| 5079 | |
| 5080 siNumBits = C_BITS_UV; | |
| 5081 | |
| 5082 for (siCodeBook = 0; siCodeBook < 2; siCodeBook++) | |
| 5083 { | |
| 5084 | |
| 5085 siVselpCw = psiVselpCw[siCodeBook]; | |
| 5086 | |
| 5087 b_con(siVselpCw, siNumBits, (Shortword *) pswBitArray); | |
| 5088 | |
| 5089 v_con(pppsrUvCodeVec[siCodeBook][0], ppswVselpEx[siCodeBook], | |
| 5090 pswBitArray, siNumBits); | |
| 5091 } | |
| 5092 } | |
| 5093 | |
| 5094 /* all excitation vectors have been created: ppswVselpEx and pswPVec */ | |
| 5095 /* if voiced compute rs00 and rs11; if unvoiced cmpute rs11 and rs22 */ | |
| 5096 /* ------------------------------------------------------------------ */ | |
| 5097 | |
| 5098 if (swLag) | |
| 5099 { | |
| 5100 rs_rr(pswPVec, psnsSqrtRs[giSfrmCnt], &snsRs00); | |
| 5101 } | |
| 5102 | |
| 5103 rs_rrNs(ppswVselpEx[0], psnsSqrtRs[giSfrmCnt], &snsRs11); | |
| 5104 | |
| 5105 if (!swVoicingMode) | |
| 5106 { | |
| 5107 rs_rrNs(ppswVselpEx[1], psnsSqrtRs[giSfrmCnt], &snsRs22); | |
| 5108 } | |
| 5109 | |
| 5110 /* now implement synthesis - combine the excitations */ | |
| 5111 /* ------------------------------------------------- */ | |
| 5112 | |
| 5113 if (swVoicingMode) | |
| 5114 { /* voiced */ | |
| 5115 | |
| 5116 /* scale pitch and codebook excitations and get beta */ | |
| 5117 /* ------------------------------------------------- */ | |
| 5118 swSemiBeta = scaleExcite(pswPVec, | |
| 5119 pppsrGsp0[swVoicingMode][siGsp0Code][0], | |
| 5120 snsRs00, pswPVec); | |
| 5121 scaleExcite(ppswVselpEx[0], | |
| 5122 pppsrGsp0[swVoicingMode][siGsp0Code][1], | |
| 5123 snsRs11, ppswVselpEx[0]); | |
| 5124 | |
| 5125 /* combine the two scaled excitations */ | |
| 5126 /* ---------------------------------- */ | |
| 5127 for (i = 0; i < S_LEN; i++) | |
| 5128 { | |
| 5129 pswExcite[i] = add(pswPVec[i], ppswVselpEx[0][i]); | |
| 5130 } | |
| 5131 } | |
| 5132 else | |
| 5133 { /* unvoiced */ | |
| 5134 | |
| 5135 /* scale codebook excitations and set beta to 0 as not applicable */ | |
| 5136 /* -------------------------------------------------------------- */ | |
| 5137 swSemiBeta = 0; | |
| 5138 scaleExcite(ppswVselpEx[0], | |
| 5139 pppsrGsp0[swVoicingMode][siGsp0Code][0], | |
| 5140 snsRs11, ppswVselpEx[0]); | |
| 5141 scaleExcite(ppswVselpEx[1], | |
| 5142 pppsrGsp0[swVoicingMode][siGsp0Code][1], | |
| 5143 snsRs22, ppswVselpEx[1]); | |
| 5144 | |
| 5145 /* combine the two scaled excitations */ | |
| 5146 /* ---------------------------------- */ | |
| 5147 for (i = 0; i < S_LEN; i++) | |
| 5148 { | |
| 5149 pswExcite[i] = add(ppswVselpEx[1][i], ppswVselpEx[0][i]); | |
| 5150 } | |
| 5151 } | |
| 5152 | |
| 5153 /* now update the pitch state using the combined/scaled excitation */ | |
| 5154 /* --------------------------------------------------------------- */ | |
| 5155 | |
| 5156 for (i = 0; i < LTP_LEN; i++) | |
| 5157 { | |
| 5158 pswLtpStateBaseDec[i] = pswLtpStateBaseDec[i + S_LEN]; | |
| 5159 } | |
| 5160 | |
| 5161 /* add the current sub-frames data to the state */ | |
| 5162 /* -------------------------------------------- */ | |
| 5163 | |
| 5164 for (i = -S_LEN, j = 0; j < S_LEN; i++, j++) | |
| 5165 { | |
| 5166 pswLtpStateOut[i] = pswExcite[j];/* add new frame at t = -S_LEN */ | |
| 5167 } | |
| 5168 | |
| 5169 /* given the excitation perform pitch prefiltering */ | |
| 5170 /* ----------------------------------------------- */ | |
| 5171 | |
| 5172 pitchPreFilt(pswExcite, siGsp0Code, swLag, | |
| 5173 swVoicingMode, swSemiBeta, psnsSqrtRs[giSfrmCnt], | |
| 5174 pswPPFExcit, pswPPreState); | |
| 5175 | |
| 5176 | |
| 5177 /* Concealment on subframe signal level: */ | |
| 5178 /* ------------------------------------- */ | |
| 5179 level_estimator(0, &swLevelMean, &swLevelMax, | |
| 5180 &pswDecodedSpeechFrame[giSfrmCnt * S_LEN]); | |
| 5181 | |
| 5182 signal_conceal_sub(pswPPFExcit, ppswSynthAs[giSfrmCnt], pswSynthFiltState, | |
| 5183 &pswLtpStateOut[-S_LEN], &pswPPreState[LTP_LEN - S_LEN], | |
| 5184 swLevelMean, swLevelMax, | |
| 5185 pswParameters[19], swMuteFlagOld, | |
| 5186 &swMuteFlag, swMutePermit); | |
| 5187 | |
| 5188 | |
| 5189 /* synthesize the speech through the synthesis filter */ | |
| 5190 /* -------------------------------------------------- */ | |
| 5191 | |
| 5192 lpcIir(pswPPFExcit, ppswSynthAs[giSfrmCnt], pswSynthFiltState, | |
| 5193 pswSynthFiltOut); | |
| 5194 | |
| 5195 /* pass reconstructed speech through adaptive spectral postfilter */ | |
| 5196 /* -------------------------------------------------------------- */ | |
| 5197 | |
| 5198 spectralPostFilter(pswSynthFiltOut, ppswPFNumAs[giSfrmCnt], | |
| 5199 ppswPFDenomAs[giSfrmCnt], | |
| 5200 &pswDecodedSpeechFrame[giSfrmCnt * S_LEN]); | |
| 5201 | |
| 5202 level_estimator(1, &swLevelMean, &swLevelMax, | |
| 5203 &pswDecodedSpeechFrame[giSfrmCnt * S_LEN]); | |
| 5204 | |
| 5205 } | |
| 5206 | |
| 5207 /* Save muting information for next frame */ | |
| 5208 /* -------------------------------------- */ | |
| 5209 swMuteFlagOld = swMuteFlag; | |
| 5210 | |
| 5211 /* end of frame processing - save this frame's frame energy, */ | |
| 5212 /* reflection coefs, direct form coefs, and post filter coefs */ | |
| 5213 /* ---------------------------------------------------------- */ | |
| 5214 | |
| 5215 swOldR0Dec = swR0Dec; | |
| 5216 swOldR0IndexDec = swR0Index; /* DTX mode */ | |
| 5217 | |
| 5218 for (i = 0; i < NP; i++) | |
| 5219 { | |
| 5220 pswOldFrmKsDec[i] = pswFrmKs[i]; | |
| 5221 pswOldFrmAsDec[i] = pswFrmAs[i]; | |
| 5222 pswOldFrmPFNum[i] = pswFrmPFNum[i]; | |
| 5223 pswOldFrmPFDenom[i] = pswFrmPFDenom[i]; | |
| 5224 } | |
| 5225 } | |
| 5226 | |
| 5227 | |
| 5228 /*************************************************************************** | |
| 5229 * | |
| 5230 * FUNCTION NAME: sqroot | |
| 5231 * | |
| 5232 * PURPOSE: | |
| 5233 * | |
| 5234 * The purpose of this function is to perform a single precision square | |
| 5235 * root function on a Longword | |
| 5236 * | |
| 5237 * INPUTS: | |
| 5238 * | |
| 5239 * L_SqrtIn | |
| 5240 * input to square root function | |
| 5241 * | |
| 5242 * OUTPUTS: | |
| 5243 * | |
| 5244 * none | |
| 5245 * | |
| 5246 * RETURN VALUE: | |
| 5247 * | |
| 5248 * swSqrtOut | |
| 5249 * output to square root function | |
| 5250 * | |
| 5251 * DESCRIPTION: | |
| 5252 * | |
| 5253 * Input assumed to be normalized | |
| 5254 * | |
| 5255 * The algorithm is based around a six term Taylor expansion : | |
| 5256 * | |
| 5257 * y^0.5 = (1+x)^0.5 | |
| 5258 * ~= 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) | |
| 5259 * - 0.625*((x/2)^4) + 0.875*((x/2)^5) | |
| 5260 * | |
| 5261 * Max error less than 0.08 % for normalized input ( 0.5 <= x < 1 ) | |
| 5262 * | |
| 5263 * REFERENCES: Sub-clause 4.1.4.1, 4.1.7, 4.1.11.1, 4.2.1, | |
| 5264 * 4.2.2, 4.2.3 and 4.2.4 of GSM Recomendation 06.20 | |
| 5265 * | |
| 5266 * KEYWORDS: sqrt, squareroot, sqrt016 | |
| 5267 * | |
| 5268 *************************************************************************/ | |
| 5269 | |
| 5270 Shortword sqroot(Longword L_SqrtIn) | |
| 5271 { | |
| 5272 | |
| 5273 /*_________________________________________________________________________ | |
| 5274 | | | |
| 5275 | Local Constants | | |
| 5276 |_________________________________________________________________________| | |
| 5277 */ | |
| 5278 | |
| 5279 #define PLUS_HALF 0x40000000L /* 0.5 */ | |
| 5280 #define MINUS_ONE 0x80000000L /* -1 */ | |
| 5281 #define TERM5_MULTIPLER 0x5000 /* 0.625 */ | |
| 5282 #define TERM6_MULTIPLER 0x7000 /* 0.875 */ | |
| 5283 | |
| 5284 /*_________________________________________________________________________ | |
| 5285 | | | |
| 5286 | Automatic Variables | | |
| 5287 |_________________________________________________________________________| | |
| 5288 */ | |
| 5289 | |
| 5290 Longword L_Temp0, | |
| 5291 L_Temp1; | |
| 5292 | |
| 5293 Shortword swTemp, | |
| 5294 swTemp2, | |
| 5295 swTemp3, | |
| 5296 swTemp4, | |
| 5297 swSqrtOut; | |
| 5298 | |
| 5299 /*_________________________________________________________________________ | |
| 5300 | | | |
| 5301 | Executable Code | | |
| 5302 |_________________________________________________________________________| | |
| 5303 */ | |
| 5304 | |
| 5305 /* determine 2nd term x/2 = (y-1)/2 */ | |
| 5306 /* -------------------------------- */ | |
| 5307 | |
| 5308 L_Temp1 = L_shr(L_SqrtIn, 1); /* L_Temp1 = y/2 */ | |
| 5309 L_Temp1 = L_sub(L_Temp1, PLUS_HALF); /* L_Temp1 = (y-1)/2 */ | |
| 5310 swTemp = extract_h(L_Temp1); /* swTemp = x/2 */ | |
| 5311 | |
| 5312 /* add contribution of 2nd term */ | |
| 5313 /* ---------------------------- */ | |
| 5314 | |
| 5315 L_Temp1 = L_sub(L_Temp1, MINUS_ONE); /* L_Temp1 = 1 + x/2 */ | |
| 5316 | |
| 5317 /* determine 3rd term */ | |
| 5318 /* ------------------ */ | |
| 5319 | |
| 5320 L_Temp0 = L_msu(0L, swTemp, swTemp); /* L_Temp0 = -(x/2)^2 */ | |
| 5321 swTemp2 = extract_h(L_Temp0); /* swTemp2 = -(x/2)^2 */ | |
| 5322 L_Temp0 = L_shr(L_Temp0, 1); /* L_Temp0 = -0.5*(x/2)^2 */ | |
| 5323 | |
| 5324 /* add contribution of 3rd term */ | |
| 5325 /* ---------------------------- */ | |
| 5326 | |
| 5327 L_Temp0 = L_add(L_Temp1, L_Temp0); /* L_Temp0 = 1 + x/2 - 0.5*(x/2)^2 */ | |
| 5328 | |
| 5329 /* determine 4rd term */ | |
| 5330 /* ------------------ */ | |
| 5331 | |
| 5332 L_Temp1 = L_msu(0L, swTemp, swTemp2);/* L_Temp1 = (x/2)^3 */ | |
| 5333 swTemp3 = extract_h(L_Temp1); /* swTemp3 = (x/2)^3 */ | |
| 5334 L_Temp1 = L_shr(L_Temp1, 1); /* L_Temp1 = 0.5*(x/2)^3 */ | |
| 5335 | |
| 5336 /* add contribution of 4rd term */ | |
| 5337 /* ---------------------------- */ | |
| 5338 | |
| 5339 /* L_Temp1 = 1 + x/2 - 0.5*(x/2)^2 + 0.5*(x/2)^3 */ | |
| 5340 | |
| 5341 L_Temp1 = L_add(L_Temp0, L_Temp1); | |
| 5342 | |
| 5343 /* determine partial 5th term */ | |
| 5344 /* -------------------------- */ | |
| 5345 | |
| 5346 L_Temp0 = L_mult(swTemp, swTemp3); /* L_Temp0 = (x/2)^4 */ | |
| 5347 swTemp4 = round(L_Temp0); /* swTemp4 = (x/2)^4 */ | |
| 5348 | |
| 5349 /* determine partial 6th term */ | |
| 5350 /* -------------------------- */ | |
| 5351 | |
| 5352 L_Temp0 = L_msu(0L, swTemp2, swTemp3); /* L_Temp0 = (x/2)^5 */ | |
| 5353 swTemp2 = round(L_Temp0); /* swTemp2 = (x/2)^5 */ | |
| 5354 | |
| 5355 /* determine 5th term and add its contribution */ | |
| 5356 /* ------------------------------------------- */ | |
| 5357 | |
| 5358 /* L_Temp0 = -0.625*(x/2)^4 */ | |
| 5359 | |
| 5360 L_Temp0 = L_msu(0L, TERM5_MULTIPLER, swTemp4); | |
| 5361 | |
| 5362 /* L_Temp1 = 1 + x/2 - 0.5*(x/2)^2 + 0.5*(x/2)^3 - 0.625*(x/2)^4 */ | |
| 5363 | |
| 5364 L_Temp1 = L_add(L_Temp0, L_Temp1); | |
| 5365 | |
| 5366 /* determine 6th term and add its contribution */ | |
| 5367 /* ------------------------------------------- */ | |
| 5368 | |
| 5369 /* swSqrtOut = 1 + x/2 - 0.5*(x/2)^2 + 0.5*(x/2)^3 */ | |
| 5370 /* - 0.625*(x/2)^4 + 0.875*(x/2)^5 */ | |
| 5371 | |
| 5372 swSqrtOut = mac_r(L_Temp1, TERM6_MULTIPLER, swTemp2); | |
| 5373 | |
| 5374 /* return output */ | |
| 5375 /* ------------- */ | |
| 5376 | |
| 5377 return (swSqrtOut); | |
| 5378 } | |
| 5379 | |
| 5380 /*************************************************************************** | |
| 5381 * | |
| 5382 * FUNCTION NAME: v_con | |
| 5383 * | |
| 5384 * PURPOSE: | |
| 5385 * | |
| 5386 * This subroutine constructs a codebook excitation | |
| 5387 * vector from basis vectors | |
| 5388 * | |
| 5389 * INPUTS: | |
| 5390 * | |
| 5391 * pswBVects[0:siNumBVctrs*S_LEN-1] | |
| 5392 * | |
| 5393 * Array containing a set of basis vectors. | |
| 5394 * | |
| 5395 * pswBitArray[0:siNumBVctrs-1] | |
| 5396 * | |
| 5397 * Bit array dictating the polarity of the | |
| 5398 * basis vectors in the output vector. | |
| 5399 * Each element of the bit array is either -0.5 or +0.5 | |
| 5400 * | |
| 5401 * siNumBVctrs | |
| 5402 * Number of bits in codeword | |
| 5403 * | |
| 5404 * OUTPUTS: | |
| 5405 * | |
| 5406 * pswOutVect[0:39] | |
| 5407 * | |
| 5408 * Array containing the contructed output vector | |
| 5409 * | |
| 5410 * RETURN VALUE: | |
| 5411 * | |
| 5412 * none | |
| 5413 * | |
| 5414 * DESCRIPTION: | |
| 5415 * | |
| 5416 * The array pswBitArray is used to multiply each of the siNumBVctrs | |
| 5417 * basis vectors. The input pswBitArray[] is an array whose | |
| 5418 * elements are +/-0.5. These multiply the VSELP basis vectors and | |
| 5419 * when summed produce a VSELP codevector. b_con() is the function | |
| 5420 * used to translate a VSELP codeword into pswBitArray[]. | |
| 5421 * | |
| 5422 * | |
| 5423 * REFERENCES: Sub-clause 4.1.10 and 4.2.1 of GSM Recomendation 06.20 | |
| 5424 * | |
| 5425 * KEYWORDS: v_con, codeword, reconstruct, basis vector, excitation | |
| 5426 * | |
| 5427 *************************************************************************/ | |
| 5428 | |
| 5429 void v_con(Shortword pswBVects[], Shortword pswOutVect[], | |
| 5430 Shortword pswBitArray[], short int siNumBVctrs) | |
| 5431 { | |
| 5432 | |
| 5433 /*_________________________________________________________________________ | |
| 5434 | | | |
| 5435 | Automatic Variables | | |
| 5436 |_________________________________________________________________________| | |
| 5437 */ | |
| 5438 | |
| 5439 Longword L_Temp; | |
| 5440 | |
| 5441 short int siSampleCnt, | |
| 5442 siCVectCnt; | |
| 5443 | |
| 5444 /*_________________________________________________________________________ | |
| 5445 | | | |
| 5446 | Executable Code | | |
| 5447 |_________________________________________________________________________| | |
| 5448 */ | |
| 5449 | |
| 5450 /* Sample loop */ | |
| 5451 /*--------------*/ | |
| 5452 for (siSampleCnt = 0; siSampleCnt < S_LEN; siSampleCnt++) | |
| 5453 { | |
| 5454 | |
| 5455 /* First element of output vector */ | |
| 5456 L_Temp = L_mult(pswBitArray[0], pswBVects[0 * S_LEN + siSampleCnt]); | |
| 5457 | |
| 5458 /* Construct output vector */ | |
| 5459 /*-------------------------*/ | |
| 5460 for (siCVectCnt = 1; siCVectCnt < siNumBVctrs; siCVectCnt++) | |
| 5461 { | |
| 5462 L_Temp = L_mac(L_Temp, pswBitArray[siCVectCnt], | |
| 5463 pswBVects[siCVectCnt * S_LEN + siSampleCnt]); | |
| 5464 } | |
| 5465 | |
| 5466 /* store the output vector sample */ | |
| 5467 /*--------------------------------*/ | |
| 5468 L_Temp = L_shl(L_Temp, 1); | |
| 5469 pswOutVect[siSampleCnt] = extract_h(L_Temp); | |
| 5470 } | |
| 5471 } |
