FreeCalypso > hg > freecalypso-citrine
comparison L1/cust0/l1_cust.c @ 0:75a11d740a02
initial import of gsm-fw from freecalypso-sw rev 1033:5ab737ac3ad7
| author | Mychaela Falconia <falcon@freecalypso.org> | 
|---|---|
| date | Thu, 09 Jun 2016 00:02:41 +0000 | 
| parents | |
| children | 12f6c51be7b3 | 
   comparison
  equal
  deleted
  inserted
  replaced
| -1:000000000000 | 0:75a11d740a02 | 
|---|---|
| 1 /* | |
| 2 * This FreeCalypso version of l1_cust.c is based on the LoCosto version; | |
| 3 * see ../cust1/l1_cust.c for the original. | |
| 4 */ | |
| 5 | |
| 6 #include <string.h> | |
| 7 #include "config.h" | |
| 8 #include "sys_types.h" | |
| 9 | |
| 10 #include "../../riviera/rv/general.h" | |
| 11 #include "../../nucleus/nucleus.h" | |
| 12 #include "../../nucleus/tm_defs.h" | |
| 13 #include "../../gpf/inc/cust_os.h" | |
| 14 | |
| 15 #include "l1_confg.h" | |
| 16 #include "l1_const.h" | |
| 17 #include "../../bsp/ulpd.h" | |
| 18 #include "l1_types.h" | |
| 19 #include "l1_time.h" | |
| 20 #include "l1_trace.h" | |
| 21 #include "l1_macro.h" | |
| 22 #include "../../serial/serialswitch.h" | |
| 23 #include "../../bsp/abb+spi/abb.h" | |
| 24 | |
| 25 #if CONFIG_INCLUDE_SIM | |
| 26 #include "../../bsp/sim.h" | |
| 27 #endif | |
| 28 | |
| 29 #if TESTMODE | |
| 30 #include "l1tm_defty.h" | |
| 31 #endif | |
| 32 | |
| 33 #if (AUDIO_TASK == 1) | |
| 34 #include "l1audio_const.h" | |
| 35 #include "l1audio_cust.h" | |
| 36 #include "l1audio_defty.h" | |
| 37 #endif | |
| 38 | |
| 39 #if (L1_GTT == 1) | |
| 40 #include "l1gtt_const.h" | |
| 41 #include "l1gtt_defty.h" | |
| 42 #endif | |
| 43 | |
| 44 #if (L1_MP3 == 1) | |
| 45 #include "l1mp3_defty.h" | |
| 46 #endif | |
| 47 | |
| 48 #if (L1_MIDI == 1) | |
| 49 #include "l1midi_defty.h" | |
| 50 #endif | |
| 51 | |
| 52 #include "l1_defty.h" | |
| 53 #include "l1_msgty.h" | |
| 54 #include "l1_tabs.h" | |
| 55 #include "l1_varex.h" | |
| 56 #include "l1_proto.h" | |
| 57 #if (VCXO_ALGO == 1) | |
| 58 #include "l1_ctl.h" | |
| 59 #endif | |
| 60 | |
| 61 | |
| 62 #if (RF_FAM == 61) | |
| 63 #include "drp_drive.h" | |
| 64 #include "tpudrv61.h" | |
| 65 #include "l1_rf61.h" | |
| 66 //#include "l1_rf61.c" | |
| 67 #endif | |
| 68 | |
| 69 | |
| 70 #if (RF_FAM == 60 ) | |
| 71 #include "drp_drive.h" | |
| 72 #include "tpudrv60.h" | |
| 73 #include "l1_rf60.h" | |
| 74 //#include "l1_rf60.c" | |
| 75 //#include "rf60.h" | |
| 76 #endif | |
| 77 | |
| 78 #if (RF_FAM == 43) | |
| 79 #include "tpudrv43.h" | |
| 80 #include "l1_rf43.h" | |
| 81 //#include "l1_rf43.c" | |
| 82 #endif | |
| 83 | |
| 84 #if (RF_FAM == 35) | |
| 85 #include "tpudrv35.h" | |
| 86 #include "l1_rf35.h" | |
| 87 //#include "l1_rf35.c" | |
| 88 #endif | |
| 89 | |
| 90 #if (RF_FAM == 12) | |
| 91 #include "tpudrv12.h" | |
| 92 #include "l1_rf12.h" | |
| 93 //#include "l1_rf12.c" | |
| 94 #endif | |
| 95 | |
| 96 #if (RF_FAM == 10) | |
| 97 #include "tpudrv10.h" | |
| 98 #include "l1_rf10.h" | |
| 99 //#include "l1_rf10.c" | |
| 100 #endif | |
| 101 | |
| 102 #if (RF_FAM == 8) | |
| 103 #include "tpudrv8.h" | |
| 104 #include "l1_rf8.h" | |
| 105 //#include "l1_rf8.c" | |
| 106 #endif | |
| 107 | |
| 108 #if (RF_FAM == 2) | |
| 109 #include "l1_rf2.h" | |
| 110 //#include "l1_rf2.c" | |
| 111 #endif | |
| 112 | |
| 113 #if (DRP_FW_EXT == 1) | |
| 114 #include "l1_drp_inc.h" | |
| 115 #include "l1_ver.h" | |
| 116 #endif | |
| 117 | |
| 118 /* | |
| 119 * FreeCalypso change: l1_rf12.c is now a separate compilation unit, | |
| 120 * so we need to extern the data objects defined therein. | |
| 121 */ | |
| 122 extern T_RF rf; | |
| 123 extern T_RF_BAND rf_band[GSM_BANDS]; | |
| 124 extern const T_RF_BAND rf_850, rf_900, rf_1800, rf_1900; | |
| 125 extern UWORD16 abb[ABB_TABLE_SIZE]; | |
| 126 extern UWORD16 AGC_TABLE[AGC_TABLE_SIZE]; | |
| 127 extern T_ADC adc; | |
| 128 extern T_ADCCAL adc_cal; | |
| 129 extern T_TEMP temperature[TEMP_TABLE_SIZE]; | |
| 130 | |
| 131 /* FreeCalypso configuration */ | |
| 132 #define STD DUALEXT | |
| 133 | |
| 134 // Nucleus functions | |
| 135 extern INT TMD_Timer_State; | |
| 136 extern UWORD32 TMD_Timer; // for big sleep | |
| 137 extern UWORD32 TCD_Priority_Groups; | |
| 138 extern VOID *TCD_Current_Thread; | |
| 139 extern TC_HCB *TCD_Active_HISR_Heads[TC_HISR_PRIORITIES]; | |
| 140 extern TC_HCB *TCD_Active_HISR_Tails[TC_HISR_PRIORITIES]; | |
| 141 extern TC_PROTECT TCD_System_Protect; | |
| 142 | |
| 143 #define FFS_WORKAROUND 0 | |
| 144 | |
| 145 #if 1 // (FFS_WORKAROUND == 1) | |
| 146 #include "../../services/ffs/ffs.h" | |
| 147 #else | |
| 148 /* typedef signed int int32; | |
| 149 typedef signed char effs_t;*/ | |
| 150 typedef signed int filesize_t; | |
| 151 effs_t ffs_fwrite(const char *name, void *addr, filesize_t size); | |
| 152 #if (DRP_FW_EXT == 0) | |
| 153 effs_t ffs_fread(const char *name, void *addr, filesize_t size); | |
| 154 #endif | |
| 155 #endif | |
| 156 | |
| 157 // Import band configuration from Flash module (need to replace by an access function) | |
| 158 //extern UWORD8 std; | |
| 159 extern T_L1_CONFIG l1_config; | |
| 160 extern T_L1S_GLOBAL l1s; | |
| 161 | |
| 162 #if 0 //(OP_L1_STANDALONE == 0) | |
| 163 extern SYS_BOOL cama_sleep_status(void); | |
| 164 #endif | |
| 165 | |
| 166 #if (CODE_VERSION != SIMULATION) | |
| 167 // Import serial switch configuration | |
| 168 #if (CHIPSET == 12) | |
| 169 extern char ser_cfg_info[3]; | |
| 170 #else | |
| 171 extern char ser_cfg_info[2]; | |
| 172 #endif | |
| 173 #endif | |
| 174 | |
| 175 #if(REL99 && FF_PRF) | |
| 176 T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band, | |
| 177 UWORD8 number_uplink_timeslot, | |
| 178 T_TX_LEVEL *p_tx_level); | |
| 179 #endif | |
| 180 | |
| 181 | |
| 182 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); | |
| 183 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id); | |
| 184 void config_rf_rw_band(char type, UWORD8 read); | |
| 185 void config_rf_read(char type); | |
| 186 void config_rf_write(char type); | |
| 187 | |
| 188 #if (RF_FAM == 61) | |
| 189 #include "drp_api.h" | |
| 190 | |
| 191 extern T_DRP_SW_DATA drp_sw_data_init; | |
| 192 extern T_DRP_SW_DATA drp_sw_data_calib; | |
| 193 extern T_DRP_SW_DATA drp_sw_data_calib_saved; | |
| 194 #endif | |
| 195 | |
| 196 enum { | |
| 197 RF_ID = 0, | |
| 198 ADC_ID = 1 | |
| 199 }; | |
| 200 | |
| 201 #if (L1_FF_MULTIBAND == 0) && !defined(RUN_INT_RAM) | |
| 202 /*-------------------------------------------------------*/ | |
| 203 /* Parameters: none */ | |
| 204 /* Return: none */ | |
| 205 /* Functionality: Defines the location of rf-struct */ | |
| 206 /* for each std. */ | |
| 207 /*-------------------------------------------------------*/ | |
| 208 //omaps00090550 #83 warinng removal | |
| 209 const T_BAND_CONFIG band_config[] = | |
| 210 { /*ffs name, default addr, max carrier, min tx pwr */ | |
| 211 {"",(T_RF_BAND *) 0,0,0},//undefined | |
| 212 {"900", (T_RF_BAND *)&rf_900, 174, 19 },//EGSM | |
| 213 {"1800",(T_RF_BAND *)&rf_1800, 374, 15 },//DCS | |
| 214 {"1900",(T_RF_BAND *)&rf_1900, 299, 15 },//PCS | |
| 215 {"850", (T_RF_BAND *)&rf_850, 124, 19 },//GSM850 | |
| 216 #if (RF_FAM == 10) | |
| 217 {"1900_us",(T_RF_BAND *)&rf_1900, 299, 15 },//usdual 1900 rf tables are the same as 3band 1900 rf tables at the moment | |
| 218 #endif | |
| 219 {"900", (T_RF_BAND *)&rf_900, 124, 19 } //GSM, this should be last entry | |
| 220 }; | |
| 221 | |
| 222 /*-------------------------------------------------------*/ | |
| 223 /* Parameters: none */ | |
| 224 /* Return: none */ | |
| 225 /* Functionality: Defines the indices into band_config */ | |
| 226 /* for each std. */ | |
| 227 /*-------------------------------------------------------*/ | |
| 228 const T_STD_CONFIG std_config[] = | |
| 229 { | |
| 230 /* band1 index, band2 index, txpwr turning point, first arfcn*/ | |
| 231 { 0, 0, 0, 0 }, // std = 0 not used | |
| 232 { BAND_GSM900, BAND_NONE, 0, 1 }, // std = 1 GSM | |
| 233 { BAND_EGSM900, BAND_NONE, 0, 1 }, // std = 2 EGSM | |
| 234 { BAND_PCS1900, BAND_NONE, 21, 512 }, // std = 3 PCS | |
| 235 { BAND_DCS1800, BAND_NONE, 28, 512 }, // std = 4 DCS | |
| 236 { BAND_GSM900, BAND_DCS1800, 28, 1 }, // std = 5 DUAL | |
| 237 { BAND_EGSM900, BAND_DCS1800, 28, 1 }, // std = 6 DUALEXT | |
| 238 { BAND_GSM850, BAND_NONE, 0, 128 }, // std = 7 850 | |
| 239 #if (RF_FAM == 10) | |
| 240 { BAND_GSM850, BAND_PCS1900_US, 21, 1 } // std = 8 850/1900 | |
| 241 #else | |
| 242 { BAND_GSM850, BAND_PCS1900, 21, 1 } // std = 8 850/1900 | |
| 243 #endif | |
| 244 }; | |
| 245 #endif //if (L1_FF_MULTIBAND == 0) | |
| 246 | |
| 247 #if (L1_FF_MULTIBAND == 0) && defined(RUN_INT_RAM) | |
| 248 extern const T_BAND_CONFIG band_config[]; | |
| 249 extern const T_STD_CONFIG std_config[]; | |
| 250 #endif | |
| 251 | |
| 252 /*-------------------------------------------------------*/ | |
| 253 /* Prototypes of external functions used in this file. */ | |
| 254 /*-------------------------------------------------------*/ | |
| 255 void l1_initialize(T_MMI_L1_CONFIG *mmi_l1_config); | |
| 256 #if (L1_FF_MULTIBAND == 0) | |
| 257 WORD16 Convert_l1_radio_freq (UWORD16 radio_freq); | |
| 258 #endif | |
| 259 | |
| 260 #ifndef RUN_FLASH | |
| 261 /*-------------------------------------------------------*/ | |
| 262 /* Cust_recover_Os() */ | |
| 263 /*-------------------------------------------------------*/ | |
| 264 /* */ | |
| 265 /* Description: adjust OS from sleep duration */ | |
| 266 /* ------------ */ | |
| 267 /* This function fix the : */ | |
| 268 /* - system clock */ | |
| 269 /* - Nucleus timers */ | |
| 270 /* - xxxxxx (customer dependant) */ | |
| 271 /*-------------------------------------------------------*/ | |
| 272 | |
| 273 UWORD8 Cust_recover_Os(void) | |
| 274 { | |
| 275 #if (CODE_VERSION != SIMULATION) | |
| 276 if (l1_config.pwr_mngt == PWR_MNGT) | |
| 277 { | |
| 278 UWORD32 current_system_clock; | |
| 279 | |
| 280 /***************************************************/ | |
| 281 // Fix System clock and Nucleus Timers if any.... */ | |
| 282 /***************************************************/ | |
| 283 // Fix System clock .... | |
| 284 current_system_clock = NU_Retrieve_Clock(); | |
| 285 current_system_clock += l1s.pw_mgr.sleep_duration; | |
| 286 NU_Set_Clock(current_system_clock); | |
| 287 | |
| 288 // Fix Nucleus timer (if needed) .... | |
| 289 if (TMD_Timer_State == TM_ACTIVE) | |
| 290 { | |
| 291 TMD_Timer -= l1s.pw_mgr.sleep_duration; | |
| 292 if (!TMD_Timer) TMD_Timer_State = TM_EXPIRED; | |
| 293 } | |
| 294 | |
| 295 /***************************************************/ | |
| 296 // Cust dependant part ... */ | |
| 297 /***************************************************/ | |
| 298 //............. | |
| 299 //............. | |
| 300 //.............. | |
| 301 return(TRUE); | |
| 302 | |
| 303 } | |
| 304 #endif | |
| 305 return(TRUE); //omaps00090550 | |
| 306 } | |
| 307 | |
| 308 | |
| 309 | |
| 310 /*-------------------------------------------------------*/ | |
| 311 /* Cust_check_system() */ | |
| 312 /*-------------------------------------------------------*/ | |
| 313 /* */ | |
| 314 /* Description: */ | |
| 315 /* ------------ */ | |
| 316 /* GSM 1.5 : */ | |
| 317 /* - authorize UWIRE clock to be stopped */ | |
| 318 /* and write value in l1s.pw_mgr.modules_status. */ | |
| 319 /* - authorize ARMIO clock to be stopped if the light is */ | |
| 320 /* off and write value in l1s.pw_mgr.modules_status. */ | |
| 321 /* - check if SIM clock have been stopped */ | |
| 322 /* before allowing DEEP SLEEP. */ | |
| 323 /* - check if UARTs are ready to enter deep sleep */ | |
| 324 /* - choose the sleep mode */ | |
| 325 /* */ | |
| 326 /* Return: */ | |
| 327 /* ------- */ | |
| 328 /* DO_NOT_SLEEP, FRAME_STOP or CLOCK_STOP */ | |
| 329 /*-------------------------------------------------------*/ | |
| 330 UWORD8 Cust_check_system(void) | |
| 331 { | |
| 332 | |
| 333 #if (CODE_VERSION != SIMULATION) | |
| 334 if (l1_config.pwr_mngt == PWR_MNGT) | |
| 335 { | |
| 336 | |
| 337 #if (L2_L3_SIMUL == 0) | |
| 338 // Forbid deep sleep if the light is on | |
| 339 /* FreeCalypso change: this LT_Status() function is defunct */ | |
| 340 #if 0 | |
| 341 if(LT_Status()) | |
| 342 { | |
| 343 //cut ARMIO and UWIRE clocks in big sleep | |
| 344 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; | |
| 345 l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_LIGHT_ON; | |
| 346 return(FRAME_STOP); // BIG sleep | |
| 347 } | |
| 348 #endif | |
| 349 | |
| 350 #if (OP_L1_STANDALONE == 0) | |
| 351 // Forbid deep sleep if the camera is working | |
| 352 /* FreeCalypso change: no camera */ | |
| 353 #if 0 | |
| 354 if(!cama_sleep_status()) | |
| 355 { | |
| 356 l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_CAMERA; | |
| 357 return(FRAME_STOP); // BIG sleep | |
| 358 } | |
| 359 #endif | |
| 360 | |
| 361 // Forbid deep sleep if the SIM and UARTs not ready | |
| 362 // FC note: this call to SIM_SleepStatus() *is* present in the Leonardo object | |
| 363 #if CONFIG_INCLUDE_SIM //(REQUIRED_FOR_ESAMPLE_LOCOSTO) | |
| 364 // Forbid deep sleep if the SIM and UARTs not ready | |
| 365 if(SIM_SleepStatus()) | |
| 366 #endif | |
| 367 { | |
| 368 #endif | |
| 369 #endif | |
| 370 if(SER_UartSleepStatus()) | |
| 371 { | |
| 372 return(CLOCK_STOP); // DEEP sleep | |
| 373 } | |
| 374 else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_UART; | |
| 375 #if (L2_L3_SIMUL == 0) | |
| 376 #if (OP_L1_STANDALONE == 0) | |
| 377 } | |
| 378 // Forbid deep sleep if the SIM and UARTs not ready | |
| 379 #if CONFIG_INCLUDE_SIM //(REQUIRED_FOR_ESAMPLE_LOCOSTO) | |
| 380 else l1s.pw_mgr.why_big_sleep = BIG_SLEEP_DUE_TO_SIM; | |
| 381 #endif | |
| 382 #endif | |
| 383 #endif | |
| 384 // cut ARMIO and UWIRE clocks in big sleep | |
| 385 l1s.pw_mgr.modules_status = ARMIO_CLK_CUT | UWIRE_CLK_CUT ; | |
| 386 return(FRAME_STOP); // BIG sleep | |
| 387 } | |
| 388 #else // Simulation part | |
| 389 return(CLOCK_STOP); // DEEP sleep | |
| 390 #endif | |
| 391 return(CLOCK_STOP); // omaps00090550 | |
| 392 } | |
| 393 #endif /* !RUN_FLASH */ | |
| 394 | |
| 395 #ifndef RUN_INT_RAM | |
| 396 /*-------------------------------------------------------*/ | |
| 397 /* Parameters: none */ | |
| 398 /* Return: none */ | |
| 399 /* Functionality: Read the RF configuration, tables etc. */ | |
| 400 /* from FFS files. */ | |
| 401 /*-------------------------------------------------------*/ | |
| 402 //omaps00090550 #83-d warnimg removal | |
| 403 static const T_CONFIG_FILE config_files_common[] = | |
| 404 { | |
| 405 #if (CODE_VERSION != SIMULATION) | |
| 406 | |
| 407 // The first char is NOT part of the filename. It is used for | |
| 408 // categorizing the ffs file contents: | |
| 409 // f=rf-cal, F=rf-config, | |
| 410 // t=tx-cal, T=tx-config, | |
| 411 // r=rx-cal, R=rx-config, | |
| 412 // s=sys-cal, S=sys-config, | |
| 413 "f/gsm/rf/afcdac", &rf.afc.eeprom_afc, sizeof(rf.afc.eeprom_afc), | |
| 414 "F/gsm/rf/stdmap", &rf.radio_band_support, sizeof(rf.radio_band_support), | |
| 415 #if (VCXO_ALGO == 1) | |
| 416 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32) + 4 * sizeof(WORD16), | |
| 417 #else | |
| 418 "F/gsm/rf/afcparams", &rf.afc.psi_sta_inv, 4 * sizeof(UWORD32), | |
| 419 #endif | |
| 420 | |
| 421 "R/gsm/rf/rx/agcglobals", &rf.rx.agc, 4 * sizeof(UWORD16), | |
| 422 "R/gsm/rf/rx/il2agc", &rf.rx.agc.il2agc_pwr[0], 3 * sizeof(rf.rx.agc.il2agc_pwr), | |
| 423 "R/gsm/rf/rx/agcwords", &AGC_TABLE, sizeof(AGC_TABLE), | |
| 424 | |
| 425 "s/sys/adccal", &adc_cal, sizeof(adc_cal), | |
| 426 | |
| 427 "S/sys/abb", &abb, sizeof(abb), | |
| 428 "S/sys/uartswitch", &ser_cfg_info, sizeof(ser_cfg_info), | |
| 429 | |
| 430 #if (RF_FAM ==61) | |
| 431 "S/sys/drp_wrapper", & drp_wrapper, sizeof(drp_wrapper), | |
| 432 #if (DRP_FW_EXT == 0) | |
| 433 "S/sys/drp_calibration", & drp_sw_data_calib, sizeof(drp_sw_data_calib), | |
| 434 #endif | |
| 435 #endif | |
| 436 | |
| 437 #endif | |
| 438 NULL, 0, 0 // terminator | |
| 439 }; | |
| 440 | |
| 441 /*-------------------------------------------------------*/ | |
| 442 /* Parameters: none */ | |
| 443 /* Return: none */ | |
| 444 /* Functionality: Read the RF configurations for */ | |
| 445 /* each band from FFS files. These files */ | |
| 446 /* are defined for one band, and and used */ | |
| 447 /* for all bands. */ | |
| 448 /*-------------------------------------------------------*/ | |
| 449 //omaps00090550 #83 warning removal | |
| 450 static const T_CONFIG_FILE config_files_band[] = | |
| 451 { | |
| 452 // The first char is NOT part of the filename. It is used for | |
| 453 // categorizing the ffs file contents: | |
| 454 // f=rf-cal, F=rf-config, | |
| 455 // t=tx-cal, T=tx-config, | |
| 456 // r=rx-cal, R=rx-config, | |
| 457 // s=sys-cal, S=sys-config, | |
| 458 | |
| 459 // generic for all bands | |
| 460 // band[0] is used as template for all bands. | |
| 461 "t/gsm/rf/tx/ramps", &rf_band[0].tx.ramp_tables, sizeof(rf_band[0].tx.ramp_tables), | |
| 462 "t/gsm/rf/tx/levels", &rf_band[0].tx.levels, sizeof(rf_band[0].tx.levels), | |
| 463 "t/gsm/rf/tx/calchan", &rf_band[0].tx.chan_cal_table, sizeof(rf_band[0].tx.chan_cal_table), | |
| 464 "T/gsm/rf/tx/caltemp", &rf_band[0].tx.temp, sizeof(rf_band[0].tx.temp), | |
| 465 | |
| 466 "r/gsm/rf/rx/calchan", &rf_band[0].rx.agc_bands, sizeof(rf_band[0].rx.agc_bands), | |
| 467 "R/gsm/rf/rx/caltemp", &rf_band[0].rx.temp, sizeof(rf_band[0].rx.temp), | |
| 468 "r/gsm/rf/rx/agcparams", &rf_band[0].rx.rx_cal_params, sizeof(rf_band[0].rx.rx_cal_params), | |
| 469 NULL, 0, 0 // terminator | |
| 470 }; | |
| 471 | |
| 472 #if CONFIG_TARGET_PIRELLI | |
| 473 extern int pirelli_cal_fread(const char *name, void *userbuf, T_FFS_SIZE size); | |
| 474 #define cal_fread pirelli_cal_fread | |
| 475 #else | |
| 476 #define cal_fread ffs_file_read | |
| 477 #endif | |
| 478 | |
| 479 void config_ffs_read(char type) | |
| 480 { | |
| 481 config_rf_read(type); | |
| 482 config_rf_rw_band(type, 1); | |
| 483 } | |
| 484 | |
| 485 void config_ffs_write(char type) | |
| 486 { | |
| 487 config_rf_write(type); | |
| 488 config_rf_rw_band(type, 0); | |
| 489 } | |
| 490 | |
| 491 void config_rf_read(char type) | |
| 492 { | |
| 493 const T_CONFIG_FILE *file = config_files_common; | |
| 494 | |
| 495 while (file->name != NULL) | |
| 496 { | |
| 497 if (type == '*' || type == file->name[0]) { | |
| 498 cal_fread(&file->name[1], file->addr, file->size); | |
| 499 } | |
| 500 file++; | |
| 501 } | |
| 502 } | |
| 503 | |
| 504 void config_rf_write(char type) | |
| 505 { | |
| 506 const T_CONFIG_FILE *file = config_files_common; | |
| 507 | |
| 508 while (file->name != NULL) | |
| 509 { | |
| 510 if (type == '*' || type == file->name[0]) { | |
| 511 ffs_fwrite(&file->name[1], file->addr, file->size); | |
| 512 } | |
| 513 file++; | |
| 514 } | |
| 515 } | |
| 516 | |
| 517 void config_rf_rw_band(char type, UWORD8 read) | |
| 518 { | |
| 519 const T_CONFIG_FILE *f1 = config_files_band; | |
| 520 UWORD8 i; | |
| 521 WORD32 offset; | |
| 522 char name[64]; | |
| 523 char *p; | |
| 524 #if (L1_FF_MULTIBAND == 0) | |
| 525 UWORD8 std = l1_config.std.id; | |
| 526 #endif | |
| 527 | |
| 528 #if FFS_WORKAROUND == 1 | |
| 529 struct stat_s stat; | |
| 530 UWORD16 time; | |
| 531 #endif | |
| 532 #if (L1_FF_MULTIBAND == 0) | |
| 533 for (i=0; i< GSM_BANDS; i++) | |
| 534 { | |
| 535 if(std_config[std].band[i] !=0 ) | |
| 536 { | |
| 537 #else | |
| 538 for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++) | |
| 539 { | |
| 540 #endif /*if (L1_FF_MULTIBAND == 0) */ | |
| 541 f1 = &config_files_band[0]; | |
| 542 while (f1->name != NULL) | |
| 543 { | |
| 544 offset = (WORD32) f1->addr - (WORD32) &rf_band[0]; //offset in bytes | |
| 545 p = ((char *) &rf_band[i]) + offset; | |
| 546 if (type == '*' || type == f1->name[0]) | |
| 547 { | |
| 548 strcpy(name, &f1->name[1]); | |
| 549 strcat(name, "."); | |
| 550 #if (L1_FF_MULTIBAND == 0) | |
| 551 strcat(name, band_config[std_config[std].band[i]].name); | |
| 552 #else | |
| 553 strcat(name, multiband_rf[i].name); | |
| 554 #endif /*if (L1_FF_MULTIBAND == 0)*/ | |
| 555 | |
| 556 if (read == 1) | |
| 557 cal_fread(name, p, f1->size); | |
| 558 else //write == 0 | |
| 559 { | |
| 560 ffs_fwrite(name, p, f1->size); | |
| 561 | |
| 562 // wait until ffs write has finished | |
| 563 #if FFS_WORKAROUND == 1 | |
| 564 stat.inode = 0; | |
| 565 time = 0; | |
| 566 | |
| 567 do { | |
| 568 rvf_delay(10); // in milliseconds | |
| 569 time += 10; | |
| 570 ffs_stat(name, &stat); | |
| 571 } while (stat.inode == 0 && time < 500); | |
| 572 #endif | |
| 573 } | |
| 574 } | |
| 575 f1++; | |
| 576 } | |
| 577 } | |
| 578 #if (L1_FF_MULTIBAND == 0) | |
| 579 } | |
| 580 #endif | |
| 581 } | |
| 582 | |
| 583 | |
| 584 /*-------------------------------------------------------*/ | |
| 585 /* Cust_init_std() */ | |
| 586 /*-------------------------------------------------------*/ | |
| 587 /* Parameters : */ | |
| 588 /* Return : */ | |
| 589 /* Functionality : Init Standard variable configuration */ | |
| 590 /*-------------------------------------------------------*/ | |
| 591 void Cust_init_std(void) | |
| 592 #if (L1_FF_MULTIBAND == 0) | |
| 593 { | |
| 594 UWORD8 std = l1_config.std.id; | |
| 595 UWORD8 band1, band2; | |
| 596 T_RF_BAND *pt1, *pt2; | |
| 597 | |
| 598 band1 = std_config[std].band[0]; | |
| 599 band2 = std_config[std].band[1]; | |
| 600 | |
| 601 //get these from std | |
| 602 pt1 = band_config[band1].addr; | |
| 603 pt2 = band_config[band2].addr; | |
| 604 | |
| 605 // copy rf-struct from default flash to ram | |
| 606 memcpy(&rf_band[0], pt1, sizeof(T_RF_BAND)); | |
| 607 | |
| 608 if(std_config[std].band[1] != BAND_NONE ) | |
| 609 memcpy(&rf_band[1], pt2, sizeof(T_RF_BAND)); | |
| 610 | |
| 611 // Read all RF and system configuration from FFS *before* we copy any of | |
| 612 // the rf structure variables to other places, like L1. | |
| 613 | |
| 614 config_ffs_read('*'); | |
| 615 | |
| 616 l1_config.std.first_radio_freq = std_config[std].first_arfcn; | |
| 617 | |
| 618 if(band2!=0) | |
| 619 l1_config.std.first_radio_freq_band2 = band_config[band1].max_carrier + 1; | |
| 620 else | |
| 621 l1_config.std.first_radio_freq_band2 = 0; //band1 carrier + 1 else 0 | |
| 622 | |
| 623 // if band2 is not used it is initialised with zeros | |
| 624 l1_config.std.nbmax_carrier = band_config[band1].max_carrier; | |
| 625 if(band2!=0) | |
| 626 l1_config.std.nbmax_carrier += band_config[band2].max_carrier; | |
| 627 | |
| 628 l1_config.std.max_txpwr_band1 = band_config[band1].max_txpwr; | |
| 629 l1_config.std.max_txpwr_band2 = band_config[band2].max_txpwr; | |
| 630 l1_config.std.txpwr_turning_point = std_config[std].txpwr_tp; | |
| 631 l1_config.std.cal_freq1_band1 = 0; | |
| 632 l1_config.std.cal_freq1_band2 = 0; | |
| 633 | |
| 634 l1_config.std.g_magic_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.g_magic; | |
| 635 l1_config.std.lna_att_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_att; | |
| 636 l1_config.std.lna_switch_thr_low_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_low; | |
| 637 l1_config.std.lna_switch_thr_high_band1 = rf_band[MULTI_BAND1].rx.rx_cal_params.lna_switch_thr_high; | |
| 638 l1_config.std.swap_iq_band1 = rf_band[MULTI_BAND1].swap_iq; | |
| 639 | |
| 640 l1_config.std.g_magic_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.g_magic; | |
| 641 l1_config.std.lna_att_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_att; | |
| 642 l1_config.std.lna_switch_thr_low_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_low; | |
| 643 l1_config.std.lna_switch_thr_high_band2 = rf_band[MULTI_BAND2].rx.rx_cal_params.lna_switch_thr_high; | |
| 644 l1_config.std.swap_iq_band2 = rf_band[MULTI_BAND2].swap_iq; | |
| 645 | |
| 646 l1_config.std.radio_freq_index_offset = l1_config.std.first_radio_freq-1; | |
| 647 | |
| 648 // init variable indicating which radio bands are supported by the chosen RF | |
| 649 l1_config.std.radio_band_support = rf.radio_band_support; | |
| 650 | |
| 651 //TBD: DRP Calib: Currently the Calib Data are only used for the routines, TBD add to l1_config. from saved Calibration | |
| 652 // on a need basis ? | |
| 653 } | |
| 654 #else | |
| 655 { | |
| 656 UWORD8 i; | |
| 657 | |
| 658 for (i = 0; i < RF_NB_SUPPORTED_BANDS; i++) | |
| 659 { | |
| 660 switch(multiband_rf[i].gsm_band_identifier) | |
| 661 { | |
| 662 case RF_GSM900: | |
| 663 rf_band[i]=rf_900; | |
| 664 break; | |
| 665 case RF_GSM850: | |
| 666 rf_band[i]=rf_850; | |
| 667 break; | |
| 668 case RF_DCS1800: | |
| 669 rf_band[i]=rf_1800; | |
| 670 break; | |
| 671 case RF_PCS1900: | |
| 672 rf_band[i]=rf_1900; | |
| 673 break; | |
| 674 default: | |
| 675 break; | |
| 676 } | |
| 677 } | |
| 678 config_ffs_read('*'); | |
| 679 } | |
| 680 #endif // if (L1_FF_MULTIBAND == 0) | |
| 681 | |
| 682 | |
| 683 /*-------------------------------------------------------*/ | |
| 684 /* Cust_init_params() */ | |
| 685 /*-------------------------------------------------------*/ | |
| 686 /* Parameters : */ | |
| 687 /* Return : */ | |
| 688 /* Functionality : Init RF dependent paramters (AGC, TX) */ | |
| 689 /*-------------------------------------------------------*/ | |
| 690 void Cust_init_params(void) | |
| 691 { | |
| 692 | |
| 693 #if (CODE_VERSION==SIMULATION) | |
| 694 extern UWORD16 simu_RX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file | |
| 695 extern UWORD16 simu_TX_SYNTH_SETUP_TIME; // set in xxx.txt l3 scenario file | |
| 696 | |
| 697 l1_config.params.rx_synth_setup_time = simu_RX_SYNTH_SETUP_TIME; | |
| 698 l1_config.params.tx_synth_setup_time = simu_TX_SYNTH_SETUP_TIME; | |
| 699 #else | |
| 700 l1_config.params.rx_synth_setup_time = RX_SYNTH_SETUP_TIME; | |
| 701 l1_config.params.tx_synth_setup_time = TX_SYNTH_SETUP_TIME; | |
| 702 #endif | |
| 703 | |
| 704 | |
| 705 // Convert SYNTH_SETUP_TIME into SPLIT. | |
| 706 // We have kept a margin of 20qbit (EPSILON_MEAS) to cover offset change and Scenario closing time + margin. | |
| 707 l1_config.params.rx_synth_load_split = 1L + (l1_config.params.rx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); | |
| 708 l1_config.params.tx_synth_load_split = 1L + (l1_config.params.tx_synth_setup_time + EPSILON_MEAS) / (BP_DURATION/BP_SPLIT); | |
| 709 | |
| 710 l1_config.params.rx_synth_start_time = TPU_CLOCK_RANGE + PROVISION_TIME - l1_config.params.rx_synth_setup_time; | |
| 711 l1_config.params.tx_synth_start_time = TPU_CLOCK_RANGE - l1_config.params.tx_synth_setup_time; | |
| 712 | |
| 713 l1_config.params.rx_change_synchro_time = l1_config.params.rx_synth_start_time - EPSILON_SYNC; | |
| 714 l1_config.params.rx_change_offset_time = l1_config.params.rx_synth_start_time - EPSILON_OFFS; | |
| 715 | |
| 716 l1_config.params.tx_change_offset_time = TIME_OFFSET_TX - | |
| 717 TA_MAX - | |
| 718 l1_config.params.tx_synth_setup_time - | |
| 719 EPSILON_OFFS; | |
| 720 | |
| 721 // TX duration = ramp up time + burst duration (data + tail bits) | |
| 722 l1_config.params.tx_nb_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + NB_BURST_DURATION_UL; | |
| 723 l1_config.params.tx_ra_duration = UL_ABB_DELAY + rf.tx.guard_bits*4 + RA_BURST_DURATION; | |
| 724 | |
| 725 l1_config.params.tx_nb_load_split = 1L + (l1_config.params.tx_nb_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); | |
| 726 l1_config.params.tx_ra_load_split = 1L + (l1_config.params.tx_ra_duration - rf.tx.prg_tx - NB_MARGIN) / (BP_DURATION/BP_SPLIT); | |
| 727 | |
| 728 // time for the end of RX and TX TPU scenarios | |
| 729 l1_config.params.rx_tpu_scenario_ending = RX_TPU_SCENARIO_ENDING; | |
| 730 l1_config.params.tx_tpu_scenario_ending = TX_TPU_SCENARIO_ENDING; | |
| 731 | |
| 732 // FB26 anchoring time is computed backward to leave only 6 qbit margin between | |
| 733 // FB26 window and next activity (RX time tracking). | |
| 734 // This margin is used as follow: | |
| 735 // Serving offset restore: 1 qbit (SERV_OFFS_REST_LOAD) | |
| 736 // Tpu Sleep: 2 qbit (TPU_SLEEP_LOAD) | |
| 737 // --------- | |
| 738 // Total: 3 qbit | |
| 739 | |
| 740 l1_config.params.fb26_anchoring_time = (l1_config.params.rx_synth_start_time - | |
| 741 #if (CODE_VERSION == SIMULATION) | |
| 742 // simulator: end of scenario not included in window (no serialization) | |
| 743 1 - | |
| 744 #else | |
| 745 // RF dependent end of RX TPU scenario | |
| 746 l1_config.params.rx_tpu_scenario_ending - | |
| 747 #endif | |
| 748 EPSILON_SYNC - | |
| 749 TPU_SLEEP_LOAD - | |
| 750 SERV_OFFS_REST_LOAD - | |
| 751 FB26_ACQUIS_DURATION - | |
| 752 PROVISION_TIME + | |
| 753 TPU_CLOCK_RANGE) % TPU_CLOCK_RANGE; | |
| 754 | |
| 755 l1_config.params.fb26_change_offset_time = l1_config.params.fb26_anchoring_time + | |
| 756 PROVISION_TIME - | |
| 757 l1_config.params.rx_synth_setup_time - | |
| 758 EPSILON_OFFS; | |
| 759 | |
| 760 l1_config.params.guard_bits = rf.tx.guard_bits; | |
| 761 | |
| 762 l1_config.params.prg_tx_gsm = rf.tx.prg_tx; | |
| 763 l1_config.params.prg_tx_dcs = rf.tx.prg_tx; //delay for dual band not implemented yet | |
| 764 | |
| 765 l1_config.params.low_agc_noise_thr = rf.rx.agc.low_agc_noise_thr; | |
| 766 l1_config.params.high_agc_sat_thr = rf.rx.agc.high_agc_sat_thr; | |
| 767 l1_config.params.low_agc = rf.rx.agc.low_agc; | |
| 768 l1_config.params.high_agc = rf.rx.agc.high_agc; | |
| 769 l1_config.params.il_min = IL_MIN; | |
| 770 | |
| 771 l1_config.params.fixed_txpwr = FIXED_TXPWR; | |
| 772 l1_config.params.eeprom_afc = rf.afc.eeprom_afc; | |
| 773 l1_config.params.setup_afc_and_rf = SETUP_AFC_AND_RF; | |
| 774 l1_config.params.rf_wakeup_tpu_scenario_duration = l1_config.params.setup_afc_and_rf + 1; //directly dependent of l1dmacro_RF_wakeup implementation | |
| 775 | |
| 776 l1_config.params.psi_sta_inv = rf.afc.psi_sta_inv; | |
| 777 l1_config.params.psi_st = rf.afc.psi_st; | |
| 778 l1_config.params.psi_st_32 = rf.afc.psi_st_32; | |
| 779 l1_config.params.psi_st_inv = rf.afc.psi_st_inv; | |
| 780 | |
| 781 #if (CODE_VERSION == SIMULATION) | |
| 782 #if (VCXO_ALGO == 1) | |
| 783 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm | |
| 784 #endif | |
| 785 #else | |
| 786 #if (VCXO_ALGO == 1) | |
| 787 l1_config.params.afc_dac_center = rf.afc.dac_center; // VCXO - assuming DAC linearity | |
| 788 l1_config.params.afc_dac_min = rf.afc.dac_min; // VCXO - assuming DAC linearity | |
| 789 l1_config.params.afc_dac_max = rf.afc.dac_max; // VCXO - assuming DAC linearity | |
| 790 #if (NEW_SNR_THRESHOLD == 0) | |
| 791 l1_config.params.afc_snr_thr = rf.afc.snr_thr; // VCXO - SNR threshold | |
| 792 #else | |
| 793 l1_config.params.afc_snr_thr = L1_TOA_SNR_THRESHOLD; | |
| 794 #endif /* NEW_SNR_THRESHOLD */ | |
| 795 l1_config.params.afc_algo = ALGO_AFC_LQG_PREDICTOR; // VCXO|VCTCXO - Choosing AFC algorithm | |
| 796 l1_config.params.afc_win_avg_size_M = C_WIN_AVG_SIZE_M; // VCXO - Average psi values with this value | |
| 797 l1_config.params.rgap_algo = ALGO_AFC_RXGAP; // VCXO - Choosing Reception Gap algorithm | |
| 798 l1_config.params.rgap_bad_snr_count_B = C_RGAP_BAD_SNR_COUNT_B; // VCXO - Prediction SNR count | |
| 799 #endif | |
| 800 #endif | |
| 801 | |
| 802 #if DCO_ALGO | |
| 803 #if (RF_FAM == 10) | |
| 804 // Enable DCO algorithm for direct conversion RFs | |
| 805 l1_config.params.dco_enabled = TRUE; | |
| 806 #else | |
| 807 l1_config.params.dco_enabled = FALSE; | |
| 808 #endif | |
| 809 #endif | |
| 810 | |
| 811 #if (ANALOG == 1) | |
| 812 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG | |
| 813 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset | |
| 814 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute | |
| 815 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB | |
| 816 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset | |
| 817 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset | |
| 818 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset | |
| 819 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset | |
| 820 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset | |
| 821 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset | |
| 822 l1_config.params.vbctrl = abb[ABB_VBCTRL]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 | |
| 823 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset | |
| 824 #endif | |
| 825 #if (ANALOG == 2) | |
| 826 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG | |
| 827 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset | |
| 828 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute | |
| 829 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB | |
| 830 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset | |
| 831 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset | |
| 832 l1_config.params.apcoff = abb[ABB_APCOFF]; // value at reset | |
| 833 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset | |
| 834 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset | |
| 835 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset | |
| 836 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset | |
| 837 l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0, VDLAUX=1, VDLEAR=1 | |
| 838 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 | |
| 839 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset | |
| 840 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset | |
| 841 #endif | |
| 842 #if (ANALOG == 3) | |
| 843 l1_config.params.debug1 = C_DEBUG1; // Enable f_tx delay of 400000 cyc DEBUG | |
| 844 l1_config.params.afcctladd = abb[ABB_AFCCTLADD]; // Value at reset | |
| 845 l1_config.params.vbuctrl = abb[ABB_VBUCTRL]; // Uplink gain amp 0dB, Sidetone gain to mute | |
| 846 l1_config.params.vbdctrl = abb[ABB_VBDCTRL]; // Downlink gain amp 0dB, Volume control 0 dB | |
| 847 l1_config.params.bbctrl = abb[ABB_BBCTRL]; // value at reset | |
| 848 l1_config.params.bulgcal = abb[ABB_BULGCAL]; // value at reset | |
| 849 l1_config.params.apcoff = abb[ABB_APCOFF]; // X2 Slope 128 and APCSWP disabled | |
| 850 l1_config.params.bulioff = abb[ABB_BULIOFF]; // value at reset | |
| 851 l1_config.params.bulqoff = abb[ABB_BULQOFF]; // value at reset | |
| 852 l1_config.params.dai_onoff = abb[ABB_DAI_ON_OFF]; // value at reset | |
| 853 l1_config.params.auxdac = abb[ABB_AUXDAC]; // value at reset | |
| 854 l1_config.params.vbctrl1 = abb[ABB_VBCTRL1]; // VULSWITCH=0 | |
| 855 l1_config.params.vbctrl2 = abb[ABB_VBCTRL2]; // MICBIASEL=0, VDLHSO=0, MICAUX=0 | |
| 856 l1_config.params.apcdel1 = abb[ABB_APCDEL1]; // value at reset | |
| 857 l1_config.params.apcdel2 = abb[ABB_APCDEL2]; // value at reset | |
| 858 l1_config.params.vbpop = abb[ABB_VBPOP]; // HSOAUTO enabled | |
| 859 l1_config.params.vau_delay_init = abb[ABB_VAUDINITD]; // 2 TDMA Frames between VDL "ON" and VDLHSO "ON" | |
| 860 l1_config.params.vaud_cfg = abb[ABB_VAUDCTRL]; // value at reset | |
| 861 l1_config.params.vauo_onoff = abb[ABB_VAUOCTRL]; // speech on AUX and EAR | |
| 862 l1_config.params.vaus_vol = abb[ABB_VAUSCTRL]; // value at reset | |
| 863 l1_config.params.vaud_pll = abb[ABB_VAUDPLL]; // value at reset | |
| 864 #endif | |
| 865 | |
| 866 #if (RF_FAM == 61) | |
| 867 l1_config.params.apcctrl2 = drp_wrapper[DRP_WRAPPER_APCCTRL2]; | |
| 868 l1_config.params.apcdel1 = drp_wrapper[DRP_WRAPPER_APCDEL1]; | |
| 869 l1_config.params.apcdel2 = drp_wrapper[DRP_WRAPPER_APCDEL2]; | |
| 870 #endif | |
| 871 #if (ANALOG == 11) | |
| 872 l1_config.params.vulgain = abb[ABB_VULGAIN]; | |
| 873 l1_config.params.vdlgain = abb[ABB_VDLGAIN]; | |
| 874 l1_config.params.sidetone = abb[ABB_SIDETONE]; | |
| 875 l1_config.params.ctrl1 = abb[ABB_CTRL1]; | |
| 876 l1_config.params.ctrl2 = abb[ABB_CTRL2]; | |
| 877 l1_config.params.ctrl3 = abb[ABB_CTRL3]; | |
| 878 l1_config.params.ctrl4 = abb[ABB_CTRL4]; | |
| 879 l1_config.params.ctrl5 = abb[ABB_CTRL5]; | |
| 880 l1_config.params.ctrl6 = abb[ABB_CTRL6]; | |
| 881 l1_config.params.popauto = abb[ABB_POPAUTO]; | |
| 882 l1_config.params.outen1 = abb[ABB_OUTEN1]; | |
| 883 l1_config.params.outen2 = abb[ABB_OUTEN2]; | |
| 884 l1_config.params.outen3 = abb[ABB_OUTEN3]; | |
| 885 l1_config.params.aulga = abb[ABB_AULGA]; | |
| 886 l1_config.params.aurga = abb[ABB_AURGA]; | |
| 887 #endif | |
| 888 } | |
| 889 #endif /* !RUN_INT_RAM */ | |
| 890 | |
| 891 #ifndef RUN_FLASH | |
| 892 /************************************/ | |
| 893 /* Automatic Gain Control */ | |
| 894 /************************************/ | |
| 895 | |
| 896 /*-------------------------------------------------------*/ | |
| 897 /* Cust_get_agc_from_IL() */ | |
| 898 /*-------------------------------------------------------*/ | |
| 899 /* Parameters : */ | |
| 900 /* Return : */ | |
| 901 /* Functionality : returns agc value */ | |
| 902 /*-------------------------------------------------------*/ | |
| 903 WORD8 Cust_get_agc_from_IL(UWORD16 radio_freq, UWORD16 agc_index, UWORD8 table_id,UWORD8 lna_off_val) | |
| 904 { | |
| 905 | |
| 906 UWORD16 agc_index_temp; | |
| 907 | |
| 908 // radio_freq currently not used | |
| 909 // this parameter is passed in order to allow band dependent tables for specific RFs | |
| 910 // (e.g. dual band RF with separate AGC H/W blocks for GSM and DCS) | |
| 911 | |
| 912 agc_index_temp = (agc_index<<1) + (lna_off_val * l1ctl_get_lna_att(radio_freq)); | |
| 913 agc_index= agc_index_temp>>1; | |
| 914 if (agc_index > 120) | |
| 915 agc_index = 120; // Clip agc_index | |
| 916 | |
| 917 switch (table_id) | |
| 918 { | |
| 919 case MAX_ID: return(rf.rx.agc.il2agc_max[agc_index]); | |
| 920 case AV_ID: return(rf.rx.agc.il2agc_av[agc_index]); | |
| 921 case PWR_ID: return(rf.rx.agc.il2agc_pwr[agc_index]); | |
| 922 } | |
| 923 return (0);//omaps00090550 | |
| 924 } | |
| 925 | |
| 926 /*-------------------------------------------------------*/ | |
| 927 /* Cust_get_agc_band */ | |
| 928 /*-------------------------------------------------------*/ | |
| 929 /* Parameters : radio_freq */ | |
| 930 /* Return : band number */ | |
| 931 /* Functionality : Computes the band for RF calibration */ | |
| 932 /*-------------------------------------------------------*/ | |
| 933 /*---------------------------------------------*/ | |
| 934 | |
| 935 #if (CODE_VERSION == SIMULATION) | |
| 936 UWORD16 Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) | |
| 937 #else | |
| 938 UWORD16 inline Cust_get_agc_band(UWORD16 arfcn, UWORD8 gsm_band) | |
| 939 #endif | |
| 940 { | |
| 941 // WORD32 i =0 ; //omaps00090550 | |
| 942 UWORD8 band_number; | |
| 943 | |
| 944 for (band_number=0;band_number<RF_RX_CAL_CHAN_SIZE;band_number++) | |
| 945 { | |
| 946 if (arfcn <= rf_band[gsm_band].rx.agc_bands[band_number].upper_bound) | |
| 947 return(band_number); | |
| 948 } | |
| 949 // Should never happen! | |
| 950 return(0); | |
| 951 } | |
| 952 | |
| 953 #if (L1_FF_MULTIBAND == 0) | |
| 954 /*-------------------------------------------------------*/ | |
| 955 /* Cust_is_band_high */ | |
| 956 /*-------------------------------------------------------*/ | |
| 957 /* Parameters : arfcn */ | |
| 958 /* Return : 0 if low band */ | |
| 959 /* 1 if high band */ | |
| 960 /* Functionality : Generic function which return 1 if */ | |
| 961 /* arfcn is in the high band */ | |
| 962 /*-------------------------------------------------------*/ | |
| 963 | |
| 964 UWORD8 Cust_is_band_high(UWORD16 radio_freq) | |
| 965 { | |
| 966 UWORD16 max_carrier; | |
| 967 UWORD8 std = l1_config.std.id; | |
| 968 | |
| 969 max_carrier = band_config[std_config[std].band[0]].max_carrier; | |
| 970 | |
| 971 return(((radio_freq >= l1_config.std.first_radio_freq) && | |
| 972 (radio_freq < (l1_config.std.first_radio_freq + max_carrier))) ? MULTI_BAND1 : MULTI_BAND2); | |
| 973 } | |
| 974 #endif | |
| 975 | |
| 976 /*-------------------------------------------------------*/ | |
| 977 /* l1ctl_encode_delta2() */ | |
| 978 /*-------------------------------------------------------*/ | |
| 979 /* Parameters : */ | |
| 980 /* Return : */ | |
| 981 /* Functionality : */ | |
| 982 /*-------------------------------------------------------*/ | |
| 983 WORD8 l1ctl_encode_delta2(UWORD16 radio_freq) | |
| 984 { | |
| 985 WORD8 delta2_freq; | |
| 986 UWORD16 i; | |
| 987 UWORD16 arfcn; | |
| 988 #if (L1_FF_MULTIBAND == 0) | |
| 989 UWORD8 band; | |
| 990 | |
| 991 band = Cust_is_band_high(radio_freq); | |
| 992 arfcn = Convert_l1_radio_freq(radio_freq); | |
| 993 #else | |
| 994 WORD8 band; | |
| 995 // Corrected for input being rf_freq and not l1_freq | |
| 996 arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); | |
| 997 #endif | |
| 998 | |
| 999 i = Cust_get_agc_band(arfcn,band); // | |
| 1000 delta2_freq = rf_band[band].rx.agc_bands[i].agc_calib; | |
| 1001 | |
| 1002 //temperature compensation | |
| 1003 for (i=0;i<RF_RX_CAL_TEMP_SIZE;i++) | |
| 1004 { | |
| 1005 if ((WORD16)adc.converted[ADC_RFTEMP] <= rf_band[band].rx.temp[i].temperature) | |
| 1006 { | |
| 1007 delta2_freq += rf_band[band].rx.temp[i].agc_calib; | |
| 1008 break; | |
| 1009 } | |
| 1010 } | |
| 1011 | |
| 1012 return(delta2_freq); | |
| 1013 } | |
| 1014 | |
| 1015 #if (L1_FF_MULTIBAND == 0) | |
| 1016 #else | |
| 1017 /*-------------------------------------------------------*/ | |
| 1018 /* l1ctl_get_g_magic() */ | |
| 1019 /*-------------------------------------------------------*/ | |
| 1020 /* Parameters : */ | |
| 1021 /* Return : */ | |
| 1022 /* Functionality : */ | |
| 1023 /*-------------------------------------------------------*/ | |
| 1024 UWORD16 l1ctl_get_g_magic(UWORD16 radio_freq) | |
| 1025 { | |
| 1026 // Corrected for input being rf_freq and not l1_freq | |
| 1027 return (rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.g_magic); | |
| 1028 } | |
| 1029 | |
| 1030 | |
| 1031 /*-------------------------------------------------------*/ | |
| 1032 /* l1ctl_get_lna_att() */ | |
| 1033 /*-------------------------------------------------------*/ | |
| 1034 /* Parameters : */ | |
| 1035 /* Return : */ | |
| 1036 /* Functionality : */ | |
| 1037 /*-------------------------------------------------------*/ | |
| 1038 UWORD16 l1ctl_get_lna_att(UWORD16 radio_freq) | |
| 1039 { | |
| 1040 // The function is provided with rf_freq as input so | |
| 1041 // convert rf_freq to l1_subband then convert l1_subband to rf_band and index into rf_band | |
| 1042 return( rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]].rx.rx_cal_params.lna_att); | |
| 1043 // return (rf_band[rf_convert_l1freq_to_rf_band_idx(radio_freq)].rx.rx_cal_params.lna_att); | |
| 1044 } | |
| 1045 /*-------------------------------------------------------*/ | |
| 1046 /* l1ctl_encode_delta1() */ | |
| 1047 /*-------------------------------------------------------*/ | |
| 1048 /* Parameters : */ | |
| 1049 /* Return : */ | |
| 1050 /* Functionality : */ | |
| 1051 /*-------------------------------------------------------*/ | |
| 1052 WORD8 l1ctl_encode_delta1(UWORD16 radio_freq) | |
| 1053 { | |
| 1054 return 0; | |
| 1055 } | |
| 1056 /*-------------------------------------------------------*/ | |
| 1057 /* l1ctl_encode_lna() */ | |
| 1058 /*-------------------------------------------------------*/ | |
| 1059 /* Parameters : */ | |
| 1060 /* Return : */ | |
| 1061 /* Functionality : */ | |
| 1062 /*-------------------------------------------------------*/ | |
| 1063 void l1ctl_encode_lna( UWORD8 input_level, | |
| 1064 UWORD8 *lna_state, | |
| 1065 UWORD16 radio_freq) | |
| 1066 { | |
| 1067 | |
| 1068 /*** LNA Hysteresis is implemented as following : | |
| 1069 | |
| 1070 | | |
| 1071 On|---<>----+-------+ | |
| 1072 | | | | |
| 1073 LNA | | | | |
| 1074 | ^ v | |
| 1075 | | | | |
| 1076 | | | | |
| 1077 Off| +-------+----<>----- | |
| 1078 +-------------------------------- | |
| 1079 50 40 30 20 input_level /-dBm | |
| 1080 THR_HIGH THR_LOW ***/ | |
| 1081 WORD8 band; | |
| 1082 // Corrected for input to be rf_freq and not l1_freq | |
| 1083 band = rf_subband2band[rf_convert_rffreq_to_l1subband(radio_freq)]; | |
| 1084 if ( input_level > rf_band[band].rx.rx_cal_params.lna_switch_thr_high) // < -44dBm ? | |
| 1085 { | |
| 1086 *lna_state = LNA_ON; // lna_off = FALSE | |
| 1087 } | |
| 1088 else if ( input_level < rf_band[band].rx.rx_cal_params.lna_switch_thr_low) // > -40dBm ? | |
| 1089 { | |
| 1090 *lna_state = LNA_OFF; // lna off = TRUE | |
| 1091 } | |
| 1092 } | |
| 1093 | |
| 1094 UWORD8 l1ctl_get_iqswap(UWORD16 rf_freq) | |
| 1095 { | |
| 1096 return(rf_band[rf_subband2band[rf_convert_rffreq_to_l1subband(rf_freq)]].swap_iq); | |
| 1097 } | |
| 1098 | |
| 1099 #endif //if L1_FF_MULTIBAND == 0) | |
| 1100 | |
| 1101 /************************************/ | |
| 1102 /* TX Management */ | |
| 1103 /************************************/ | |
| 1104 /*-------------------------------------------------------*/ | |
| 1105 /* Cust_get_ramp_tab */ | |
| 1106 /*-------------------------------------------------------*/ | |
| 1107 /* Parameters : */ | |
| 1108 /* Return : */ | |
| 1109 /* Functionality : | |
| 1110 Notes: | |
| 1111 Cal+ | |
| 1112 APCRAM : Dwn(15:11)Up(10:6)Forced(0) | |
| 1113 Locosto: | |
| 1114 APCRAM: Dwn(15:8)Up(7:0) | |
| 1115 | |
| 1116 */ | |
| 1117 /*-------------------------------------------------------*/ | |
| 1118 | |
| 1119 void Cust_get_ramp_tab(API *a_ramp, UWORD8 txpwr_ramp_up, UWORD8 txpwr_ramp_down, UWORD16 radio_freq) | |
| 1120 { | |
| 1121 UWORD16 index_up, index_down,j, arfcn; | |
| 1122 #if (L1_FF_MULTIBAND == 0) | |
| 1123 UWORD8 band; | |
| 1124 | |
| 1125 band = Cust_is_band_high(radio_freq); | |
| 1126 arfcn = Convert_l1_radio_freq(radio_freq); | |
| 1127 #else | |
| 1128 WORD8 band; | |
| 1129 // Corrected for input being rf_freq and not l1_freq | |
| 1130 arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); | |
| 1131 #endif //if( L1_FF_MULTIBAND == 0) | |
| 1132 | |
| 1133 index_up = rf_band[band].tx.levels[txpwr_ramp_up].ramp_index; | |
| 1134 index_down = rf_band[band].tx.levels[txpwr_ramp_down].ramp_index; | |
| 1135 | |
| 1136 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3)) | |
| 1137 for (j=0; j<16; j++) | |
| 1138 { | |
| 1139 a_ramp[j]=((rf_band[band].tx.ramp_tables[index_down].ramp_down[j])<<11) | | |
| 1140 ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j]) << 6) | | |
| 1141 0x14; | |
| 1142 } | |
| 1143 #endif | |
| 1144 | |
| 1145 #if (RF_FAM == 61) | |
| 1146 // 20 Coeff each 8 (RampDown) + 8 (RampUp) | |
| 1147 for (j=0; j<20; j++) | |
| 1148 { | |
| 1149 a_ramp[j]=( (255 - (rf_band[band].tx.ramp_tables[index_down].ramp_down[j]) ) <<8) | | |
| 1150 ((rf_band[band].tx.ramp_tables[index_up].ramp_up[j])) ; | |
| 1151 } | |
| 1152 #endif | |
| 1153 } | |
| 1154 | |
| 1155 /*-------------------------------------------------------*/ | |
| 1156 /* get_pwr_data */ | |
| 1157 /*-------------------------------------------------------*/ | |
| 1158 /* Parameters : */ | |
| 1159 /* Return : */ | |
| 1160 /* Functionality : */ | |
| 1161 /*-------------------------------------------------------*/ | |
| 1162 | |
| 1163 #if ((ANALOG == 1) || (ANALOG == 2) || (ANALOG == 3) || (RF_FAM == 61)) | |
| 1164 UWORD16 Cust_get_pwr_data(UWORD8 txpwr, UWORD16 radio_freq | |
| 1165 #if (REL99 && FF_PRF) | |
| 1166 , UWORD8 number_uplink_timeslot | |
| 1167 #endif | |
| 1168 ) | |
| 1169 { | |
| 1170 | |
| 1171 UWORD16 i,j; | |
| 1172 UWORD16 arfcn; | |
| 1173 | |
| 1174 T_TX_LEVEL *a_tx_levels; | |
| 1175 | |
| 1176 #if (APC_VBAT_COMP == 1) | |
| 1177 static UWORD16 apc_max_value = APC_MAX_VALUE; | |
| 1178 #endif | |
| 1179 | |
| 1180 #if(ORDER2_TX_TEMP_CAL==1) | |
| 1181 WORD16 pwr_data; | |
| 1182 #else | |
| 1183 UWORD16 pwr_data; | |
| 1184 #endif | |
| 1185 | |
| 1186 #if (L1_FF_MULTIBAND == 0) | |
| 1187 UWORD8 band; | |
| 1188 band = Cust_is_band_high(radio_freq); | |
| 1189 arfcn = Convert_l1_radio_freq(radio_freq); | |
| 1190 #else | |
| 1191 WORD8 band; | |
| 1192 // Corrected for input being rf_freq and not l1_freq | |
| 1193 arfcn = rf_convert_l1freq_to_arfcn_rfband(rf_convert_rffreq_to_l1freq(radio_freq), &band); | |
| 1194 #endif //if( L1_FF_MULTIBAND == 0) | |
| 1195 | |
| 1196 // band = Cust_is_band_high(radio_freq); | |
| 1197 // arfcn = Convert_l1_radio_freq(radio_freq); | |
| 1198 | |
| 1199 a_tx_levels = &(rf_band[band].tx.levels[txpwr]); // get pointer to rf tx structure | |
| 1200 | |
| 1201 #if REL99 | |
| 1202 #if FF_PRF | |
| 1203 // uplink power reduction feature which decrease power level in case of uplink multislot | |
| 1204 a_tx_levels = Cust_get_uplink_apc_power_reduction(band, number_uplink_timeslot, a_tx_levels); | |
| 1205 #endif | |
| 1206 #endif | |
| 1207 | |
| 1208 // get uncalibrated apc | |
| 1209 pwr_data = a_tx_levels->apc; | |
| 1210 | |
| 1211 i = a_tx_levels->chan_cal_index; // get index for channel compensation | |
| 1212 j=0; | |
| 1213 | |
| 1214 while (arfcn > rf_band[band].tx.chan_cal_table[i][j].arfcn_limit) | |
| 1215 j++; | |
| 1216 | |
| 1217 // channel calibrate apc | |
| 1218 pwr_data = ((UWORD32) (pwr_data * rf_band[band].tx.chan_cal_table[i][j].chan_cal))/128; | |
| 1219 | |
| 1220 // temperature compensate apc | |
| 1221 { | |
| 1222 T_TX_TEMP_CAL *pt; | |
| 1223 | |
| 1224 pt = rf_band[band].tx.temp; | |
| 1225 while (((WORD16)adc.converted[ADC_RFTEMP] > pt->temperature) && ((pt-rf_band[band].tx.temp) < (RF_TX_CAL_TEMP_SIZE-1))) | |
| 1226 pt++; | |
| 1227 #if(ORDER2_TX_TEMP_CAL==1) | |
| 1228 pwr_data += (txpwr*(pt->a*txpwr + pt->b) + pt->c) / 64; //delta apc = ax^2+bx+c | |
| 1229 if(pwr_data < 0) pwr_data = 0; | |
| 1230 #else | |
| 1231 pwr_data += pt->apc_calib; | |
| 1232 #endif | |
| 1233 } | |
| 1234 | |
| 1235 // Vbat compensate apc | |
| 1236 #if (APC_VBAT_COMP == 1) | |
| 1237 | |
| 1238 if (adc.converted[ADC_VBAT] < VBAT_LOW_THRESHOLD) | |
| 1239 apc_max_value = APC_MAX_VALUE_LOW_BAT; | |
| 1240 | |
| 1241 else if (adc.converted[ADC_VBAT] > VBAT_HIGH_THRESHOLD) | |
| 1242 apc_max_value = APC_MAX_VALUE; | |
| 1243 | |
| 1244 // else do nothing as Vbat is staying between VBAT_LOW_THRESHOLD and | |
| 1245 // VBAT_HIGH_THRESHOLD -> max APC value is still the same than previous one | |
| 1246 | |
| 1247 if (pwr_data > apc_max_value) | |
| 1248 pwr_data = apc_max_value; | |
| 1249 #endif // APC_VBAT_COMP == 1 | |
| 1250 | |
| 1251 return(pwr_data); | |
| 1252 } | |
| 1253 #endif | |
| 1254 | |
| 1255 | |
| 1256 #if(REL99 && FF_PRF) | |
| 1257 | |
| 1258 /*-------------------------------------------------------*/ | |
| 1259 /* Cust_get_uplink_apc_power_reduction */ | |
| 1260 /*-------------------------------------------------------*/ | |
| 1261 /* Parameters : */ | |
| 1262 /* - frenquency band */ | |
| 1263 /* - modulation type */ | |
| 1264 /* - number of uplink timeslot */ | |
| 1265 /* - pointer to radio power control structure */ | |
| 1266 /* Return : */ | |
| 1267 /* - pointer to radio power control structure */ | |
| 1268 /* */ | |
| 1269 /* Functionality : This function returns a pointer to */ | |
| 1270 /* the radio power control structure after power */ | |
| 1271 /* reduction processing. */ | |
| 1272 /* Depending of the number of uplink timeslot, the */ | |
| 1273 /* analogue power control (apc) value can be reduced */ | |
| 1274 /* in order to limit effect of terminal heat */ | |
| 1275 /* dissipation due to power amplifier. */ | |
| 1276 /*-------------------------------------------------------*/ | |
| 1277 | |
| 1278 T_TX_LEVEL *Cust_get_uplink_apc_power_reduction(UWORD8 band, | |
| 1279 UWORD8 number_uplink_timeslot, | |
| 1280 T_TX_LEVEL *p_tx_level) | |
| 1281 { | |
| 1282 T_TX_LEVEL *p_power_reduction_tx_level; | |
| 1283 | |
| 1284 #if TESTMODE | |
| 1285 if ((l1_config.TestMode == TRUE) && (l1_config.tmode.tx_params.power_reduction_enable == FALSE)) | |
| 1286 return p_tx_level ; // return without any power reduction | |
| 1287 #endif | |
| 1288 | |
| 1289 if ((number_uplink_timeslot >= 1) && (number_uplink_timeslot <= MAX_UPLINK_TIME_SLOT)) | |
| 1290 { | |
| 1291 number_uplink_timeslot--; // index start from 0 | |
| 1292 } | |
| 1293 else | |
| 1294 { | |
| 1295 return p_tx_level; // abnormal case we do not apply any power reduction | |
| 1296 } | |
| 1297 | |
| 1298 p_power_reduction_tx_level = &(rf_band[band].tx.levels_power_reduction[number_uplink_timeslot]); | |
| 1299 | |
| 1300 // We select the lowest power level in order to apply power reduction | |
| 1301 #if (CODE_VERSION != SIMULATION) | |
| 1302 if (p_tx_level->apc > p_power_reduction_tx_level->apc) // higher apc value means higher transmit power | |
| 1303 #else | |
| 1304 if (p_tx_level->apc < p_power_reduction_tx_level->apc) // ! for simulation rf apc tables are inverted so comparaison is the reverse | |
| 1305 #endif | |
| 1306 return p_power_reduction_tx_level; | |
| 1307 else | |
| 1308 return p_tx_level; | |
| 1309 } | |
| 1310 | |
| 1311 #endif | |
| 1312 #endif /* !RUN_FLASH */ | |
| 1313 | |
| 1314 #ifndef RUN_INT_RAM | |
| 1315 /*-------------------------------------------------------*/ | |
| 1316 /* Cust_Init_Layer1 */ | |
| 1317 /*-------------------------------------------------------*/ | |
| 1318 /* Parameters : */ | |
| 1319 /* Return : */ | |
| 1320 /* Functionality : Load and boot the DSP */ | |
| 1321 /* Initialize shared memory and L1 data structures */ | |
| 1322 /*-------------------------------------------------------*/ | |
| 1323 | |
| 1324 void Cust_Init_Layer1(void) | |
| 1325 { | |
| 1326 T_MMI_L1_CONFIG cfg; | |
| 1327 | |
| 1328 // Get the current band configuration from the flash | |
| 1329 #if (OP_WCP==1) && (OP_L1_STANDALONE!=1) | |
| 1330 extern unsigned char ffs_GetBand(); | |
| 1331 cfg.std = ffs_GetBand(); | |
| 1332 #else // NO OP_WCP | |
| 1333 // cfg.std = std; | |
| 1334 cfg.std = STD; | |
| 1335 #endif // OP_WCP | |
| 1336 | |
| 1337 cfg.tx_pwr_code = 1; | |
| 1338 | |
| 1339 // sleep management configuration | |
| 1340 | |
| 1341 #if(L1_POWER_MGT == 0) | |
| 1342 cfg.pwr_mngt = 0; | |
| 1343 cfg.pwr_mngt_mode_authorized = NO_SLEEP; //Sleep mode | |
| 1344 cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep | |
| 1345 #endif | |
| 1346 #if(L1_POWER_MGT == 1) | |
| 1347 cfg.pwr_mngt = 1; | |
| 1348 cfg.pwr_mngt_mode_authorized = ALL_SLEEP; //Sleep mode | |
| 1349 cfg.pwr_mngt_clocks = 0x5ff; // list of clocks cut in Big Sleep | |
| 1350 #endif | |
| 1351 | |
| 1352 #if (CODE_VERSION != SIMULATION) | |
| 1353 cfg.dwnld = DWNLD; //external define from makefile | |
| 1354 #endif | |
| 1355 | |
| 1356 l1_initialize(&cfg); | |
| 1357 | |
| 1358 /* | |
| 1359 * The following conditioned-out line appears in the LoCosto version, | |
| 1360 * but not in the Leonardo binary object. Investigation has revealed | |
| 1361 * that the change is malicious: it disables ALL useful L1 traces. | |
| 1362 */ | |
| 1363 #if 0 | |
| 1364 //add below line for CSR 174476 | |
| 1365 trace_info.current_config->l1_dyn_trace = 0; //disable L1 trace after L1 init | |
| 1366 #endif | |
| 1367 | |
| 1368 get_cal_from_nvmem((UWORD8 *)&rf, sizeof(rf), RF_ID); | |
| 1369 get_cal_from_nvmem((UWORD8 *)&adc_cal, sizeof(adc_cal), ADC_ID); | |
| 1370 | |
| 1371 } | |
| 1372 #endif /* !RUN_INT_RAM */ | |
| 1373 | |
| 1374 /*****************************************************************************************/ | |
| 1375 /*************************** TESTMODE functions **********************************/ | |
| 1376 /*****************************************************************************************/ | |
| 1377 | |
| 1378 | |
| 1379 #ifndef RUN_FLASH | |
| 1380 /*------------------------------------------------------*/ | |
| 1381 /* madc_hex_2_physical */ | |
| 1382 /*------------------------------------------------------*/ | |
| 1383 /* Parameters : */ | |
| 1384 /* Return : */ | |
| 1385 /* Functionality : Function to convert MAD hexadecimal */ | |
| 1386 /* values into physical values */ | |
| 1387 /*------------------------------------------------------*/ | |
| 1388 | |
| 1389 void madc_hex_2_physical (UWORD16 *adc_hex, T_ADC *adc_phy) | |
| 1390 { | |
| 1391 WORD16 i; | |
| 1392 UWORD16 y; | |
| 1393 WORD16 Smin = 0, Smax = TEMP_TABLE_SIZE-1; | |
| 1394 WORD16 index = (TEMP_TABLE_SIZE-1)/2; /* y is the adc code after compensation of ADC slope error introduced by VREF error */ | |
| 1395 | |
| 1396 //store raw ADC values | |
| 1397 memcpy(&adc.raw[0], adc_hex, sizeof(adc.raw)); | |
| 1398 | |
| 1399 // Convert Vbat [mV] : direct equation with slope and offset compensation | |
| 1400 for (i = ADC_VBAT; i<ADC_RFTEMP; i++) | |
| 1401 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; | |
| 1402 | |
| 1403 /*Convert RF Temperature [Celsius]: binsearch into a table*/ | |
| 1404 y = ((UWORD32)(adc_cal.a[ADC_RFTEMP] * adc.raw[ADC_RFTEMP]))>>8; /* rf.tempcal is the calibration of VREF*/ | |
| 1405 while((Smax-Smin) > 1 ) | |
| 1406 { | |
| 1407 if(y < temperature[index].adc) | |
| 1408 Smax=index; | |
| 1409 else | |
| 1410 Smin=index; | |
| 1411 | |
| 1412 index = (Smax+Smin)/2; | |
| 1413 } | |
| 1414 adc.converted[ADC_RFTEMP] = temperature[index].temp; | |
| 1415 | |
| 1416 for (i = ADC_RFTEMP+1; i<ADC_INDEX_END; i++) | |
| 1417 adc.converted[i] = (((UWORD32)(adc_cal.a[i] * adc.raw[i])) >>10) + adc_cal.b[i]; | |
| 1418 | |
| 1419 //store converted ADC values | |
| 1420 memcpy(adc_phy, &adc.converted[0], sizeof(adc.raw)); | |
| 1421 } | |
| 1422 #endif /* !RUN_FLASH */ | |
| 1423 | |
| 1424 #ifndef RUN_INT_RAM | |
| 1425 /*------------------------------------------------------*/ | |
| 1426 /* get_cal_from_nvmem */ | |
| 1427 /*------------------------------------------------------*/ | |
| 1428 /* Parameters : */ | |
| 1429 /* Return : */ | |
| 1430 /* Functionality : Copy calibrated parameter to */ | |
| 1431 /* calibration structure in RAM */ | |
| 1432 /*------------------------------------------------------*/ | |
| 1433 | |
| 1434 void get_cal_from_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) | |
| 1435 { | |
| 1436 | |
| 1437 } | |
| 1438 | |
| 1439 /*------------------------------------------------------*/ | |
| 1440 /* save_cal_from_nvmem */ | |
| 1441 /*------------------------------------------------------*/ | |
| 1442 /* Parameters : */ | |
| 1443 /* Return : */ | |
| 1444 /* Functionality : Copy calibrated structure from RAM */ | |
| 1445 /* into NV memory */ | |
| 1446 /*------------------------------------------------------*/ | |
| 1447 | |
| 1448 UWORD8 save_cal_in_nvmem (UWORD8 *ptr, UWORD16 len, UWORD8 id) | |
| 1449 { | |
| 1450 return (0); | |
| 1451 } | |
| 1452 #endif /* !RUN_INT_RAM */ | |
| 1453 | |
| 1454 #if (TRACE_TYPE == 4) && !defined(RUN_FLASH) | |
| 1455 | |
| 1456 /*------------------------------------------------------*/ | |
| 1457 /* l1_cst_l1_parameters */ | |
| 1458 /*------------------------------------------------------*/ | |
| 1459 /* Parameters : s: pointer on configuration string */ | |
| 1460 /* Return : nothing: global var are set */ | |
| 1461 /* Functionality : Set global L1 vars for dynamic trace */ | |
| 1462 /* and configuration */ | |
| 1463 /* */ | |
| 1464 /* This function is called when a CST message is sent */ | |
| 1465 /* from the Condat Panel. */ | |
| 1466 /*------------------------------------------------------*/ | |
| 1467 void l1_cst_l1_parameters(char *s) | |
| 1468 { | |
| 1469 /* | |
| 1470 a sample command string can be: | |
| 1471 L1_PARAMS=<1,2,3,4,5> or | |
| 1472 L1_PARAMS=<1,23,3E32,4,5> | |
| 1473 with n parameters (here: 5 params); n>=1 | |
| 1474 parameters are decoded as hexadecimal unsigned integers (UWORD16) | |
| 1475 */ | |
| 1476 | |
| 1477 UWORD8 uNParams = 0; /* Number of parameters */ | |
| 1478 UWORD32 aParam[10]; /* Parameters array */ | |
| 1479 UWORD8 uIndex = 0; | |
| 1480 | |
| 1481 /* *** retrieve all parameters *** */ | |
| 1482 while (s[uIndex] != '<') uIndex++; | |
| 1483 uIndex++; | |
| 1484 aParam[0] = 0; | |
| 1485 | |
| 1486 /* uIndex points on 1st parameter */ | |
| 1487 | |
| 1488 while (s[uIndex] != '>') | |
| 1489 { | |
| 1490 if (s[uIndex] == ',') | |
| 1491 { | |
| 1492 uNParams++; | |
| 1493 aParam[uNParams] = 0; | |
| 1494 } | |
| 1495 else | |
| 1496 { | |
| 1497 /* uIndex points on a parameter char */ | |
| 1498 UWORD8 uChar = s[uIndex]; | |
| 1499 aParam[uNParams] = aParam[uNParams] << 4; /* shift 4 bits left */ | |
| 1500 if ((uChar>='0') && (uChar<='9')) | |
| 1501 aParam[uNParams] += (uChar - '0'); /* retrieve value */ | |
| 1502 else if ((uChar>='A') && (uChar<='F')) | |
| 1503 aParam[uNParams] += (10 + uChar - 'A'); /* retrieve value */ | |
| 1504 else if ((uChar>='a') && (uChar<='f')) | |
| 1505 aParam[uNParams] += (10 + uChar - 'a'); /* retrieve value */ | |
| 1506 } | |
| 1507 | |
| 1508 uIndex++; /* go to next char */ | |
| 1509 } | |
| 1510 | |
| 1511 /* increment number of params */ | |
| 1512 uNParams++; | |
| 1513 | |
| 1514 /* *** handle parameters *** */ | |
| 1515 /* | |
| 1516 1st param: command type | |
| 1517 2nd param: argument for command type | |
| 1518 */ | |
| 1519 switch (aParam[0]) | |
| 1520 { | |
| 1521 case 0: /* Trace setting */ | |
| 1522 /* The 2nd parameter contains the trace bitmap*/ | |
| 1523 if (uNParams >=2) | |
| 1524 trace_info.current_config->l1_dyn_trace = aParam[1]; | |
| 1525 else | |
| 1526 trace_info.current_config->l1_dyn_trace = 0; /* error case: disable all trace */ | |
| 1527 Trace_dyn_trace_change(); | |
| 1528 break; | |
| 1529 default: /* ignore it */ | |
| 1530 break; | |
| 1531 } // switch | |
| 1532 } | |
| 1533 | |
| 1534 #endif | |
| 1535 | |
| 1536 #if ((CHIPSET == 2) || (CHIPSET == 3) || (CHIPSET == 4) || \ | |
| 1537 (CHIPSET == 5) || (CHIPSET == 6) || (CHIPSET == 7) || \ | |
| 1538 (CHIPSET == 8) || (CHIPSET == 9) || (CHIPSET == 10) || \ | |
| 1539 (CHIPSET == 11) || (CHIPSET == 12)) | |
| 1540 #ifndef RUN_FLASH | |
| 1541 /*-------------------------------------------------------*/ | |
| 1542 /* power_down_config() : temporary implementation !!! */ | |
| 1543 /*-------------------------------------------------------*/ | |
| 1544 /* Parameters : sleep_mode (NO, SMALL, BIG, DEEP or ALL) */ | |
| 1545 /* clocks to be cut in BIG sleep */ | |
| 1546 /* Return : */ | |
| 1547 /* Functionality : set the l1s variables */ | |
| 1548 /* l1s.pw_mgr.mode_authorized and l1s.pw_mgr.clocks */ | |
| 1549 /* according to the desired mode. */ | |
| 1550 /*-------------------------------------------------------*/ | |
| 1551 void power_down_config(UWORD8 sleep_mode, UWORD16 clocks) | |
| 1552 { | |
| 1553 #if (OP_L1_STANDALONE == 1) | |
| 1554 if(sleep_mode != NO_SLEEP) | |
| 1555 #endif | |
| 1556 { | |
| 1557 l1_config.pwr_mngt = PWR_MNGT; | |
| 1558 l1s.pw_mgr.mode_authorized = sleep_mode; | |
| 1559 l1s.pw_mgr.clocks = clocks; | |
| 1560 } | |
| 1561 | |
| 1562 #if (OP_L1_STANDALONE == 0) | |
| 1563 l1s.pw_mgr.enough_gaug = FALSE; | |
| 1564 #endif | |
| 1565 } | |
| 1566 #endif | |
| 1567 #endif | 
