view src/gpf/ccd/hl_flag.c @ 78:c632896652ba

mfw/ti1_key.c: properly initialize notified_keys array The code in this ti1_key.c layer needs to call kpd_subscribe() and kpd_define_key_notification() functions in order to register with the KPD driver. The original code passed KPD_NB_PHYSICAL_KEYS in nb_notified_keys - this constant is defined to 24 in kpd_cfg.h on all platforms of interest to us - but it only filled the first 23 slots in the notified_keys array, resulting in stack garbage being passed to KPD API functions. The fix consists of initializing the last missed array slot to KPD_KEY_RECORD, the key ID for the right side button on the D-Sample handset. On our current hw targets this "Record" button exists as the EXTRA button on our Luna keypad board and as the camera button on the Pirelli DP-L10. There is no support whatsoever for this button in current BMI+MFW, we have no plans of doing anything with Pirelli's camera button even if we do get our UI fw running on that phone, and the Mother's dream of building our own FreeCalypso handset with the same button arrangement as D-Sample (including the right side button) is currently very nebulous - but let us nonetheless handle the full set of buttons on the KPD to MFW interface, and let upper layers weed out unsupported buttons.
author Mychaela Falconia <falcon@freecalypso.org>
date Sun, 25 Oct 2020 23:41:01 +0000
parents 4e78acac3d88
children
line wrap: on
line source

/* 
+----------------------------------------------------------------------------- 
|  Project :  
|  Modul   : hl_flag.c
+----------------------------------------------------------------------------- 
|  Copyright 2002 Texas Instruments Inc. 
|                 All rights reserved. 
| 
|                 This file is confidential and a trade secret of Texas 
|                 Instruments Berlin, AG 
|                 The receipt of or possession of this file does not convey 
|                 any rights to reproduce or disclose its contents or to 
|                 manufacture, use, or sell anything it may describe, in 
|                 whole, or in part, without the specific written consent of 
|                 Texas Instruments Berlin, AG. 
+----------------------------------------------------------------------------- 
|  Purpose :  Definition of encoding and decoding functions for HL_FLAG elements 
+----------------------------------------------------------------------------- 
*/ 


/*
 * standard definitions like GLOBAL, UCHAR, ERROR etc.
 */
#include "typedefs.h"
#include "header.h"

/*
 * Prototypes of ccd (USE_DRIVER EQ undef) for prototypes only
 * look at ccdapi.h
 */
#undef USE_DRIVER
#include "ccdapi.h"

/*
 * Types and functions for bit access and manipulation
 */
#include "ccd_globs.h"
#include "bitfun.h"

/*
 * Prototypes of ccd internal functions
 */
#include "ccd.h"

/*
 * Declaration of coder/decoder tables
 */
#include "ccdtable.h"
#include "ccddata.h"


#ifndef RUN_INT_RAM
/*
+--------------------------------------------------------------------+
| PROJECT : CCD (6144)               MODULE  : CDC_GSM               |
| STATE   : code                     ROUTINE : cdc_hl_flag_decode    |
+--------------------------------------------------------------------+

  PURPOSE : Decoding of the GSM Type HL_FLAG element. This element
            consists of a single bit only. The decoded value will be 0
            if the encoded value is L respectively 1 if the encoded
            value is H.
            
*/

SHORT cdc_hl_flag_decode (const ULONG c_ref, const ULONG e_ref, T_CCD_Globs *globs)
{
  ULONG repeat, max_rep;
  BOOL  is_variable = FALSE;
  ULONG cix_ref, num_prolog_steps, prolog_step_ref;

#ifdef DEBUG_CCD
  #ifndef CCD_SYMBOLS
  TRACE_CCD (globs, "cdc_hl_flag_decode()");
  #else
  TRACE_CCD (globs, "cdc_hl_flag_decode() %s", ccddata_get_alias((USHORT) e_ref, 1));
  #endif
#endif

  globs->SeekTLVExt = FALSE;
  cix_ref = melem[e_ref].calcIdxRef;
  num_prolog_steps = calcidx[cix_ref].numPrologSteps;
  prolog_step_ref  = calcidx[cix_ref].prologStepRef;
  repeat     = 1;
  
  if (cix_ref != 0)
  {
    /*
     * if this element is conditional, check the condition
     */
    if (calcidx[cix_ref].numCondCalcs NEQ 0
    AND ! ccd_conditionOK (e_ref, globs))
      return 1;

    /*
     * if this element have a defined Prolog
     * we have to process it before decoding the bitstream
     */
    if (num_prolog_steps)
    {
      ccd_performOperations (num_prolog_steps, prolog_step_ref, globs);
    }
    if (melem[e_ref].repType NEQ ' ')
    {
      is_variable = ccd_calculateRep (e_ref, &repeat, &max_rep, globs);
    }
  }
    /*
     * Element is not a SPARE. Setup the struct pointer
     */
    globs->pstructOffs = melem[e_ref].structOffs;

      
      if (melem[e_ref].optional)
      {
        /*
         * for optional elements we must set the valid-flag
         * ??.
         * Therefore we store the address of the valid flag.
         */
        *(globs->pstruct + globs->pstructOffs++) = TRUE;

      }

  globs->pstruct[globs->pstructOffs++] = (UBYTE) (bf_readBit(globs) == GET_HL_PREV(1));
#ifdef DEBUG_CCD
#ifdef CCD_SYMBOLS
  TRACE_CCD (globs, "decoding var %s",ccddata_get_alias((USHORT) e_ref, 1));
#else
  TRACE_CCD (globs, "decoding var %d", melem[e_ref].elemRef);
#endif
#endif

  return 1;
}
#endif /* !RUN_INT_RAM */

#ifndef RUN_INT_RAM
/*
+--------------------------------------------------------------------+
| PROJECT : CCD (6144)              MODULE  : CDC_GSM                |
| STATE   : code                    ROUTINE : cdc_hl_flag_encode     |
+--------------------------------------------------------------------+

  PURPOSE : Encoding of the GSM Type HL_FLAG element. This element
            consists of a single bit only. If the element is set to 1
            a H bit will be coded. Otherwise a L bit will be coded if 
            the element value to encode is set to 0.

*/

SHORT cdc_hl_flag_encode (const ULONG c_ref, const ULONG e_ref, T_CCD_Globs *globs)
{
  ULONG  repeat=1, amount=1;
  USHORT cSize = 0, startOffset;
  ULONG  i;
  ULONG  cix_ref, num_prolog_steps, prolog_step_ref;

#ifdef DEBUG_CCD
  #ifndef CCD_SYMBOLS
  TRACE_CCD (globs, "cdc_hl_flag_encode()");
  #else
  TRACE_CCD (globs, "cdc_hl_flag_encode() %s", ccddata_get_alias((USHORT) e_ref, 1));
  #endif
#endif

  cix_ref = melem[e_ref].calcIdxRef;
  num_prolog_steps = calcidx[cix_ref].numPrologSteps;
  prolog_step_ref  = calcidx[cix_ref].prologStepRef;

  if (cix_ref != 0)
  {
    /*
     * if this element is conditional, check the condition
     */
    if (calcidx[cix_ref].numCondCalcs NEQ 0
    AND ! ccd_conditionOK (e_ref, globs))
      return 1;

    /*
     * if this element have a defined Prolog
     * we have to process it before decoding the bitstream
     */
    if (num_prolog_steps)
    {
      ccd_performOperations (num_prolog_steps, prolog_step_ref, globs);
    }
  }

  if (melem[e_ref].elemType NEQ 'S')
  {
    /*
     * Element is not a SPARE.
     * Setup the offset into the C-structure for this element
     */
    globs->pstructOffs = melem[e_ref].structOffs;

    if (melem[e_ref].optional)
    {
      /*
       * for optional elements check the valid-flag in the C-struct.
       * Spare elements does not have a corresponding valid flag.
       */
      if (globs->pstruct[globs->pstructOffs++] == FALSE)
      {
        /*
         * element is invalid so we must code a 0 bit
         */
        bf_writeBit (GET_HL(0), globs);

        return 1;
      }
      
      else
      {
#ifdef DEBUG_CCD
        if (globs->pstruct [melem[e_ref].structOffs] != TRUE)
        {
          TRACE_CCD (globs, "Ambiguous value for valid flag!\n...assumed 1 for ccdID=%d",
                     e_ref);
        }
#endif
        /*
         * element is valid so we must code a 1 bit
         */
        bf_writeBit (GET_HL(1), globs);
      }
    }

    if (melem[e_ref].repType NEQ ' ')
    {
      /* As a default amount =1 due to initialization. */
      if (melem[e_ref].repType EQ 'i')
      {
        /*
         * for variable repeatable elements read the amount
         * of repeats out of the C-Structure (c_xxx).
         * If the number of repeats given by the C-Structure 
         * exceeds the allowed value CCD gives a warning!
         */
        if (melem[e_ref].maxRepeat > 255)
        {
          ULONG count = (ULONG) (* (USHORT *)(globs->pstruct + globs->pstructOffs++));
          repeat = MINIMUM (count, (ULONG) melem[e_ref].maxRepeat);
          if (repeat < count) 
            ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, 
                             (USHORT) e_ref, globs->pstruct + globs->pstructOffs);
        }
        else
        {
          repeat = (ULONG) MINIMUM (globs->pstruct[globs->pstructOffs], 
                                    melem[e_ref].maxRepeat);
          if ( repeat < (ULONG)(globs->pstruct[globs->pstructOffs]) ) 
            ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, 
                             (USHORT) e_ref, globs->pstruct + globs->pstructOffs);
        }
        globs->pstructOffs++;
      }
      else
      if (melem[e_ref].repType EQ 'v')
      {
        /*
         * for variable repeatable elements read the amount
         * of repeats out of the C-Structure (c_xxx).
         * If the number of repetitions given by the C-Structure 
         * exceeds the allowed value (maxRepeat) CCD gives a warning!
         */
        if (melem[e_ref].maxRepeat > 255)
        {
          ULONG count = (ULONG) (* (USHORT *)(globs->pstruct + globs->pstructOffs++));
          amount = MINIMUM (count, (ULONG) melem[e_ref].maxRepeat);
          if (amount < count) 
            ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, 
                             (USHORT) e_ref, globs->pstruct + globs->pstructOffs);
        }
        else
        {
          amount = (ULONG) MINIMUM (globs->pstruct[globs->pstructOffs], 
                                    melem[e_ref].maxRepeat);
          if ( amount < (ULONG) (globs->pstruct[globs->pstructOffs]) )
            ccd_recordFault (globs, ERR_MAX_REPEAT, CONTINUE, 
                             (USHORT) e_ref, globs->pstruct + globs->pstructOffs);
        }
        globs->pstructOffs++;
      }
      else
      if (melem[e_ref].repType EQ 'c')
      {
        amount = (ULONG) melem[e_ref].maxRepeat;
      }

      if (melem[e_ref].repType EQ 'v' OR melem[e_ref].repType EQ 'i')
      {
        cSize = (USHORT)(((melem[e_ref].elemType EQ 'V')
                         ? mvar[melem[e_ref].elemRef].cSize
                         : mcomp[melem[e_ref].elemRef].cSize
                        ));
        startOffset = (USHORT) globs->pstructOffs;
      }
    }
  
    for (i=0; i < repeat; i++)
    {
      if (cSize)
      {
        /*
         * calculate the offset if it is an array
         */
        globs->pstructOffs = (USHORT)(startOffset + (i * cSize));
      }
      /*
       * encode the value
       */
      if (globs->pstruct[globs->pstructOffs++] EQ FALSE)
      {
        /*
         * element is 0 so we must signalize L
         */
        bf_writeBit (GET_HL(0), globs);
      }
      else
      {
        /*
         * element is 1 so we must signalize H
         */
        bf_writeBit (GET_HL(1), globs);
      }
      
      globs->pstructOffs += mvar[melem[e_ref].elemRef].cSize;
    }

    if (melem[e_ref].repType EQ 'i')
    {
      /*
       * for variable CNS1 fields we code a 0 flag to mark the end of the
       * arrays
       */
      bf_writeBit (GET_HL(0), globs);
    }
  }

  return 1;
}
#endif /* !RUN_INT_RAM */