FreeCalypso > hg > fc-selenite
comparison src/cs/layer1/p_cfile/l1p_sync.c @ 0:b6a5e36de839
src/cs: initial import from Magnetite
| author | Mychaela Falconia <falcon@freecalypso.org> |
|---|---|
| date | Sun, 15 Jul 2018 04:39:26 +0000 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| -1:000000000000 | 0:b6a5e36de839 |
|---|---|
| 1 /************* Revision Controle System Header ************* | |
| 2 * GSM Layer 1 software | |
| 3 * L1P_SYNC.C | |
| 4 * | |
| 5 * Filename l1p_sync.c | |
| 6 * Copyright 2003 (C) Texas Instruments | |
| 7 * | |
| 8 ************* Revision Controle System Header *************/ | |
| 9 | |
| 10 #define L1P_SYNC_C | |
| 11 | |
| 12 //#pragma DUPLICATE_FOR_INTERNAL_RAM_START | |
| 13 | |
| 14 #include "l1_macro.h" | |
| 15 #include "l1_confg.h" | |
| 16 | |
| 17 #if L1_GPRS | |
| 18 | |
| 19 #if (CODE_VERSION == SIMULATION) | |
| 20 #include <string.h> | |
| 21 #include "l1_types.h" | |
| 22 #include "sys_types.h" | |
| 23 #include "l1_const.h" | |
| 24 #include "l1_time.h" | |
| 25 #include <l1_trace.h> | |
| 26 #if TESTMODE | |
| 27 #include "l1tm_defty.h" | |
| 28 #endif | |
| 29 #if (AUDIO_TASK == 1) | |
| 30 #include "l1audio_const.h" | |
| 31 #include "l1audio_cust.h" | |
| 32 #include "l1audio_defty.h" | |
| 33 #endif | |
| 34 #if (L1_GTT == 1) | |
| 35 #include "l1gtt_const.h" | |
| 36 #include "l1gtt_defty.h" | |
| 37 #endif | |
| 38 #if (L1_MP3 == 1) | |
| 39 #include "l1mp3_defty.h" | |
| 40 #endif | |
| 41 #if (L1_MIDI == 1) | |
| 42 #include "l1midi_defty.h" | |
| 43 #endif | |
| 44 #include "l1_defty.h" | |
| 45 #include "cust_os.h" | |
| 46 #include "l1_msgty.h" | |
| 47 #include "l1_varex.h" | |
| 48 #include "l1_signa.h" | |
| 49 #include "l1_proto.h" | |
| 50 | |
| 51 #if L2_L3_SIMUL | |
| 52 #include "hw_debug.h" | |
| 53 #endif | |
| 54 | |
| 55 #include "l1p_cons.h" | |
| 56 #include "l1p_msgt.h" | |
| 57 #include "l1p_deft.h" | |
| 58 #include "l1p_vare.h" | |
| 59 #include "l1p_prot.h" | |
| 60 #include "l1p_mfta.h" | |
| 61 #include "l1p_sign.h" | |
| 62 #include "l1p_macr.h" | |
| 63 #include "l1p_proto.h" | |
| 64 #else | |
| 65 #include <string.h> | |
| 66 #include "l1_types.h" | |
| 67 #include "sys_types.h" | |
| 68 #include "l1_const.h" | |
| 69 #include "l1_time.h" | |
| 70 | |
| 71 #if TESTMODE | |
| 72 #include "l1tm_defty.h" | |
| 73 #endif | |
| 74 #if (AUDIO_TASK == 1) | |
| 75 #include "l1audio_const.h" | |
| 76 #include "l1audio_cust.h" | |
| 77 #include "l1audio_defty.h" | |
| 78 #endif | |
| 79 #if (L1_GTT == 1) | |
| 80 #include "l1gtt_const.h" | |
| 81 #include "l1gtt_defty.h" | |
| 82 #endif | |
| 83 #if (L1_MP3 == 1) | |
| 84 #include "l1mp3_defty.h" | |
| 85 #endif | |
| 86 #if (L1_MIDI == 1) | |
| 87 #include "l1midi_defty.h" | |
| 88 #endif | |
| 89 #include "l1_defty.h" | |
| 90 #include "cust_os.h" | |
| 91 #include "l1_msgty.h" | |
| 92 #include "l1_varex.h" | |
| 93 #include "l1_signa.h" | |
| 94 #include "l1_proto.h" | |
| 95 #include "l1_trace.h" | |
| 96 | |
| 97 #if L2_L3_SIMUL | |
| 98 #include "hw_debug.h" | |
| 99 #endif | |
| 100 | |
| 101 #include "l1p_cons.h" | |
| 102 #include "l1p_msgt.h" | |
| 103 #include "l1p_deft.h" | |
| 104 #include "l1p_vare.h" | |
| 105 #include "l1p_prot.h" | |
| 106 #include "l1p_mfta.h" | |
| 107 #include "l1p_sign.h" | |
| 108 #include "l1p_macr.h" | |
| 109 #endif | |
| 110 | |
| 111 #if(RF_FAM == 61) | |
| 112 #include "l1_rf61.h" | |
| 113 #include "tpudrv61.h" | |
| 114 #endif | |
| 115 | |
| 116 #if (GSM_IDLE_RAM !=0) | |
| 117 #if (OP_L1_STANDALONE == 0) | |
| 118 #include "csmi/sleep.h" | |
| 119 #else | |
| 120 #include "csmi_simul.h" | |
| 121 #endif | |
| 122 #endif | |
| 123 | |
| 124 /*-------------------------------------------------------*/ | |
| 125 /* Prototypes of external functions used in this file. */ | |
| 126 /*-------------------------------------------------------*/ | |
| 127 void l1ps_tcr_ctrl (UWORD8 pm_position); | |
| 128 void l1pddsp_meas_ctrl (UWORD8 nbmeas, UWORD8 pm_pos); | |
| 129 void l1pddsp_meas_read (UWORD8 nbmeas, UWORD8 *pm_read); | |
| 130 void l1pctl_transfer_agc_init(); | |
| 131 UWORD8 l1pctl_pgc (UWORD8 pm, UWORD8 last_known_il, UWORD8 lna_off, UWORD16 radio_freq); | |
| 132 void l1ps_bcch_meas_ctrl (UWORD8 ts); | |
| 133 | |
| 134 //#pragma DUPLICATE_FOR_INTERNAL_RAM_END | |
| 135 | |
| 136 | |
| 137 #if (MOVE_IN_INTERNAL_RAM == 0) // Must be followed by the pragma used to duplicate the funtion in internal RAM | |
| 138 //#pragma DUPLICATE_FOR_INTERNAL_RAM_START | |
| 139 | |
| 140 /*-------------------------------------------------------*/ | |
| 141 /* l1ps_transfer_mode_manager() */ | |
| 142 /*-------------------------------------------------------*/ | |
| 143 /* Parameters : */ | |
| 144 /* Return : */ | |
| 145 /* Functionality : */ | |
| 146 /*-------------------------------------------------------*/ | |
| 147 void l1ps_transfer_mode_manager() | |
| 148 { | |
| 149 BOOL block_boundary = TRUE; | |
| 150 UWORD8 current_assignment_command = NO_TBF; | |
| 151 #if FF_TBF | |
| 152 BOOL tbf_update_synchro_forced = FALSE; | |
| 153 #endif | |
| 154 | |
| 155 //==================================== | |
| 156 // NEW configuration management | |
| 157 //==================================== | |
| 158 | |
| 159 if(!l1pa_l1ps_com.transfer.semaphore) | |
| 160 // IF Transfer parameter structure protected, | |
| 161 // No action within L1S. | |
| 162 { | |
| 163 WORD8 i; | |
| 164 UWORD8 min_synchro_ts = 7; | |
| 165 BOOL new_tbf_installed = FALSE; | |
| 166 T_PACKET_TA *current_ta_config; | |
| 167 | |
| 168 // In packet transfer mode, we only detect STI at block boundaries in order to udpate the | |
| 169 // ASET structure after the last Control of the previous TBF | |
| 170 if (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED) | |
| 171 { | |
| 172 if ((l1s.next_time.fn_mod13 != 0)&&(l1s.next_time.fn_mod13 != 4)&& | |
| 173 (l1s.next_time.fn_mod13 != 8)) | |
| 174 { | |
| 175 block_boundary = FALSE; | |
| 176 } | |
| 177 } | |
| 178 // Delay STI detection when a poll response hasn't already been answered | |
| 179 // for transition to Packet transfer mode | |
| 180 else if (l1a_l1s_com.l1s_en_task[POLL] == TASK_ENABLED) | |
| 181 { | |
| 182 block_boundary = FALSE; | |
| 183 } | |
| 184 | |
| 185 // LOOK FOR NEW ASSIGNMENT... | |
| 186 //=========================== | |
| 187 | |
| 188 // Consider both FREE SET... | |
| 189 for(i=0;i<2;i++) | |
| 190 { | |
| 191 // Is there a new transfer channel provided in "fset[i]"? | |
| 192 if(((l1pa_l1ps_com.transfer.fset[i]->SignalCode == MPHP_ASSIGNMENT_REQ) && (block_boundary == TRUE)) || | |
| 193 (l1pa_l1ps_com.transfer.fset[i]->SignalCode == MPHP_SINGLE_BLOCK_REQ)) | |
| 194 { | |
| 195 if(l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present) | |
| 196 // Starting time present. | |
| 197 // Rem: starting time detected 1 frame in advance, this frame is used by | |
| 198 // SYNCHRO task. | |
| 199 { | |
| 200 WORD32 time_diff; | |
| 201 WORD8 frame_shift=0; | |
| 202 WORD8 tn_diff; | |
| 203 | |
| 204 | |
| 205 // In packet idle mode, L1 must detect if the synchronization change will happen | |
| 206 // from a timeslot N to a timeslot M < N because in this case, a frame is skipped | |
| 207 // and the MS is ready two frames after the synchronization change... a radio | |
| 208 // block can be missed... | |
| 209 // In packet transfer, the SYNCHRO task will always been executed on BURST 1, that let | |
| 210 // 2 frames before the new TBF starts | |
| 211 if (l1a_l1s_com.l1s_en_task[PDTCH] != TASK_ENABLED) | |
| 212 { | |
| 213 frame_shift -= 1; | |
| 214 | |
| 215 tn_diff = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot - | |
| 216 l1a_l1s_com.dl_tn; | |
| 217 | |
| 218 if(tn_diff < 0) | |
| 219 frame_shift -= 1; | |
| 220 } | |
| 221 //TBF_changes | |
| 222 | |
| 223 #if FF_TBF | |
| 224 // PDTCH task is enabled | |
| 225 else | |
| 226 { | |
| 227 // Pseudo TBF for Two phase access, new TBF configuration has to | |
| 228 // be installed for Starting Time taking into account that a | |
| 229 // SYNCHRO task has to be scheduled before. | |
| 230 if ((l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) && | |
| 231 (l1pa_l1ps_com.transfer.aset->pseudo_tbf_two_phase_acc)) | |
| 232 { | |
| 233 // Note: We are at block boundary. | |
| 234 if ((l1s.next_time.fn_mod13 == 0) || (l1s.next_time.fn_mod13 == 4)) | |
| 235 frame_shift -= 4; | |
| 236 else // i.e. (l1s.next_time.fn_mod13 == 8) | |
| 237 frame_shift -= 5; | |
| 238 } | |
| 239 | |
| 240 // Two phase access establishment on PACCH (therefore there is an | |
| 241 // ongoing uplink TBF). | |
| 242 if ((l1pa_l1ps_com.transfer.fset[i]->allocated_tbf == UL_TBF) && | |
| 243 (l1pa_l1ps_com.transfer.fset[i]->pseudo_tbf_two_phase_acc)) | |
| 244 { | |
| 245 // Make sure single/multi block allocation | |
| 246 // if a synchro task has to be inserted i.e. : | |
| 247 // -> we are currently in EGPRS mode | |
| 248 // -> and/or we change synchronization timeslot | |
| 249 if ( (l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot != l1a_l1s_com.dl_tn) | |
| 250 #if L1_EGPRS | |
| 251 || (l1pa_l1ps_com.transfer.aset->egprs_param.tbf_mode == TBF_MODE_EGPRS) | |
| 252 #endif | |
| 253 ) | |
| 254 { | |
| 255 // Note: We are at block boundary. | |
| 256 if ((l1s.next_time.fn_mod13 == 0) || (l1s.next_time.fn_mod13 == 4)) | |
| 257 frame_shift -= 4; | |
| 258 else // i.e. (l1s.next_time.fn_mod13 == 8) | |
| 259 frame_shift -= 5; | |
| 260 } | |
| 261 } | |
| 262 } | |
| 263 #endif | |
| 264 | |
| 265 | |
| 266 time_diff = ( (l1pa_l1ps_com.transfer.fset[i]->tbf_sti.absolute_fn) + | |
| 267 frame_shift - (l1s.next_time.fn % 42432) + 2*42432) % 42432; | |
| 268 | |
| 269 if((time_diff >= (32024)) && (time_diff <= (42431))) | |
| 270 // Starting time has been passed... | |
| 271 //--------------------------------- | |
| 272 { | |
| 273 // For SINGLE BLOCK case, an error must be reported to L3. | |
| 274 if(l1pa_l1ps_com.transfer.fset[i]->SignalCode == MPHP_SINGLE_BLOCK_REQ) | |
| 275 { | |
| 276 xSignalHeaderRec *msg; | |
| 277 | |
| 278 // Send confirmation msg to L3/MACA. | |
| 279 msg = os_alloc_sig(sizeof(T_MPHP_SINGLE_BLOCK_CON)); | |
| 280 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 281 | |
| 282 ((T_MPHP_SINGLE_BLOCK_CON *)(msg->SigP))->purpose = | |
| 283 l1pa_l1ps_com.transfer.fset[i]->assignment_command; | |
| 284 ((T_MPHP_SINGLE_BLOCK_CON *)(msg->SigP))->assignment_id = | |
| 285 l1pa_l1ps_com.transfer.fset[i]->assignment_id; | |
| 286 | |
| 287 ((T_MPHP_SINGLE_BLOCK_CON *)(msg->SigP))->status = SINGLE_STI_PASSED; | |
| 288 | |
| 289 msg->SignalCode = L1P_SINGLE_BLOCK_CON; | |
| 290 | |
| 291 // send message... | |
| 292 os_send_sig(msg, L1C1_QUEUE); | |
| 293 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
| 294 | |
| 295 // Do not reset "tbf_sti.present". | |
| 296 | |
| 297 // Ignore the SINGLE BLOCK requested. | |
| 298 l1pa_l1ps_com.transfer.fset[i]->SignalCode = NULL; | |
| 299 } | |
| 300 else | |
| 301 { | |
| 302 // Reset "tbf_sti.present" flag to take into account the new | |
| 303 // configuration. | |
| 304 l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present = FALSE; | |
| 305 } | |
| 306 } | |
| 307 else | |
| 308 if(time_diff == 0) | |
| 309 // Starting time corresponds to current frame... | |
| 310 //---------------------------------------------- | |
| 311 { | |
| 312 // Reset "tbf_sti.present" flag to take into account the new | |
| 313 // configuration. | |
| 314 l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present = FALSE; | |
| 315 } | |
| 316 else | |
| 317 // Starting time hasn't already been reached... | |
| 318 //--------------------------------------------- | |
| 319 { | |
| 320 // time_to_next_l1s_task updated with time to sti | |
| 321 Select_min_time(time_diff, l1a_l1s_com.time_to_next_l1s_task); | |
| 322 } | |
| 323 } | |
| 324 | |
| 325 // Do we switch to a new transfer configuration? | |
| 326 // We have to switch if, new set STI is passed. | |
| 327 if(!l1pa_l1ps_com.transfer.fset[i]->tbf_sti.present) | |
| 328 { | |
| 329 // Install new configuration immediately. | |
| 330 // Rem: the new channel will start at a block boundary because by construction | |
| 331 // PDTCH task is started every block boundary. | |
| 332 T_TRANSFER_SET *transfer_set; | |
| 333 | |
| 334 // STI has been passed, we must switch to the new config. | |
| 335 | |
| 336 #if (TRACE_TYPE!=0) | |
| 337 // Trace "starting time" on log file and screen. | |
| 338 trace_fct(CST_STI_PASSED, l1a_l1s_com.Scell_info.radio_freq); | |
| 339 #endif | |
| 340 | |
| 341 #if FF_TBF | |
| 342 // Forces a SYNCHRO task prior to new TBF configuration if | |
| 343 // -> Coming from 2 phases access TBF | |
| 344 // -> Coming from (Packet) Idle | |
| 345 if (((l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) && | |
| 346 (l1pa_l1ps_com.transfer.aset->pseudo_tbf_two_phase_acc)) | |
| 347 || (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_DISABLED) | |
| 348 ) | |
| 349 { | |
| 350 // Can not be merged with test above evaluated only when a | |
| 351 // starting time is present in the message. | |
| 352 tbf_update_synchro_forced = TRUE; | |
| 353 } | |
| 354 #endif | |
| 355 if (current_assignment_command == NO_TBF) | |
| 356 current_assignment_command = l1pa_l1ps_com.transfer.fset[i]->assignment_command; | |
| 357 else if ((current_assignment_command == UL_TBF) || | |
| 358 (current_assignment_command == DL_TBF)) | |
| 359 current_assignment_command = BOTH_TBF; | |
| 360 | |
| 361 // Check if anything to keep from previous configuration. | |
| 362 // Select the best timeslot for timebase synchro. | |
| 363 | |
| 364 if(l1pa_l1ps_com.transfer.aset->allocated_tbf != NO_TBF) | |
| 365 { | |
| 366 UWORD8 synchro_ts; | |
| 367 | |
| 368 // Check if required to take TA from previous packet assignment | |
| 369 // if TA not valid in new assignment command | |
| 370 if ( l1pa_l1ps_com.transfer.fset[i]->packet_ta.ta == 255) | |
| 371 { | |
| 372 // new TA value to be taken from previous packet TA | |
| 373 l1pa_l1ps_com.transfer.fset[i]->packet_ta.ta = l1pa_l1ps_com.transfer.aset->packet_ta.ta; | |
| 374 } | |
| 375 | |
| 376 switch(l1pa_l1ps_com.transfer.fset[i]->assignment_command) | |
| 377 { | |
| 378 case DL_TBF: | |
| 379 { | |
| 380 // If any, keep the UL allocation from previous set. | |
| 381 if((l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) || | |
| 382 (l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF)) | |
| 383 { | |
| 384 T_UL_RESSOURCE_ALLOC *ul_ptr; | |
| 385 | |
| 386 // Swap the pointers on UL parameter structures | |
| 387 ul_ptr = l1pa_l1ps_com.transfer.fset[i]->ul_tbf_alloc; | |
| 388 l1pa_l1ps_com.transfer.fset[i]->ul_tbf_alloc = | |
| 389 l1pa_l1ps_com.transfer.aset->ul_tbf_alloc; | |
| 390 l1pa_l1ps_com.transfer.aset->ul_tbf_alloc = ul_ptr; | |
| 391 | |
| 392 l1pa_l1ps_com.transfer.fset[i]->allocated_tbf = BOTH_TBF; | |
| 393 l1pa_l1ps_com.transfer.fset[i]->ul_tbf_synchro_timeslot = | |
| 394 l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
| 395 | |
| 396 // Chose min synchro timeslot from UL and DL TBFs. | |
| 397 if(l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot < | |
| 398 l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot) | |
| 399 { | |
| 400 synchro_ts = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
| 401 } | |
| 402 else | |
| 403 { | |
| 404 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
| 405 } | |
| 406 } | |
| 407 | |
| 408 // No UL TBF running, select the new DL TBF synchro timeslot. | |
| 409 else | |
| 410 { | |
| 411 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
| 412 } | |
| 413 } | |
| 414 break; | |
| 415 | |
| 416 case UL_TBF: | |
| 417 { | |
| 418 // If any, keep the DL allocation from previous set. | |
| 419 | |
| 420 if((l1pa_l1ps_com.transfer.aset->allocated_tbf == DL_TBF) || | |
| 421 (l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF)) | |
| 422 { | |
| 423 l1pa_l1ps_com.transfer.fset[i]->dl_tbf_alloc = | |
| 424 l1pa_l1ps_com.transfer.aset->dl_tbf_alloc; | |
| 425 l1pa_l1ps_com.transfer.fset[i]->allocated_tbf = BOTH_TBF; | |
| 426 l1pa_l1ps_com.transfer.fset[i]->dl_tbf_synchro_timeslot = | |
| 427 l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
| 428 | |
| 429 // Chose min synchro timeslot from UL and DL TBFs. | |
| 430 if(l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot < | |
| 431 l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot) | |
| 432 { | |
| 433 synchro_ts = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
| 434 } | |
| 435 else | |
| 436 { | |
| 437 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
| 438 } | |
| 439 } | |
| 440 | |
| 441 // No DL TBF running, select the new UL TBF synchro timeslot. | |
| 442 else | |
| 443 { | |
| 444 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
| 445 } | |
| 446 | |
| 447 // Reset Repeat allocation starting time checking | |
| 448 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
| 449 // Reset Allocation Exhaustion detection flag | |
| 450 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
| 451 } | |
| 452 break; | |
| 453 | |
| 454 case BOTH_TBF: | |
| 455 case NO_TBF: | |
| 456 default: | |
| 457 { | |
| 458 // Nothing to keep, everything (UL & DL) is replaced. | |
| 459 synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
| 460 | |
| 461 // Reset Repeat allocation starting time checking | |
| 462 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
| 463 // Reset Allocation Exhaustion detection flag | |
| 464 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
| 465 } | |
| 466 break; | |
| 467 | |
| 468 } // end of switch(...assignment_command) | |
| 469 | |
| 470 if(synchro_ts < min_synchro_ts) | |
| 471 min_synchro_ts = synchro_ts; | |
| 472 | |
| 473 } // end of if(...allocated_tbf != NO_TBF) | |
| 474 | |
| 475 else | |
| 476 { | |
| 477 min_synchro_ts = l1pa_l1ps_com.transfer.fset[i]->transfer_synchro_timeslot; | |
| 478 } | |
| 479 | |
| 480 // New set becomes active and old becomes free. | |
| 481 | |
| 482 // Save a pointer on currently used PTCCH parameters | |
| 483 current_ta_config = &l1pa_l1ps_com.transfer.aset->packet_ta; | |
| 484 | |
| 485 transfer_set = l1pa_l1ps_com.transfer.aset; | |
| 486 l1pa_l1ps_com.transfer.aset = l1pa_l1ps_com.transfer.fset[i]; | |
| 487 l1pa_l1ps_com.transfer.fset[i] = transfer_set; | |
| 488 l1pa_l1ps_com.transfer.fset[i]->allocated_tbf = NO_TBF; | |
| 489 | |
| 490 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = min_synchro_ts; | |
| 491 | |
| 492 // Set local flag. | |
| 493 new_tbf_installed = TRUE; | |
| 494 | |
| 495 if(l1pa_l1ps_com.transfer.aset->SignalCode == MPHP_ASSIGNMENT_REQ) | |
| 496 // Assignement confirmation message is sent | |
| 497 { | |
| 498 xSignalHeaderRec *msg; | |
| 499 | |
| 500 // Send confirmation msg to L3/MACA. | |
| 501 msg = os_alloc_sig(sizeof(T_L1P_TRANSFER_DONE)); | |
| 502 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 503 | |
| 504 msg->SignalCode = L1P_TRANSFER_DONE; | |
| 505 | |
| 506 ((T_L1P_TRANSFER_DONE *) (msg->SigP))->assignment_id = | |
| 507 l1pa_l1ps_com.transfer.aset->assignment_id; | |
| 508 | |
| 509 // Insert "t_difference" information in L1P_TRANSFER_DONE msg | |
| 510 // will be used in Ncell Dedic6 state machine to request a reset | |
| 511 // or not of the state machine | |
| 512 ((T_L1P_TRANSFER_DONE *) (msg->SigP))->tn_difference = | |
| 513 min_synchro_ts - l1a_l1s_com.dl_tn; | |
| 514 | |
| 515 | |
| 516 // detect the Transition IDLE -> Transfer | |
| 517 if (l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED) | |
| 518 ((T_L1P_TRANSFER_DONE *) (msg->SigP))->Transfer_update = TRUE; | |
| 519 else | |
| 520 ((T_L1P_TRANSFER_DONE *) (msg->SigP))->Transfer_update = FALSE; | |
| 521 | |
| 522 | |
| 523 os_send_sig(msg, L1C1_QUEUE); | |
| 524 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
| 525 } | |
| 526 | |
| 527 // New config has been acknowledeged, clear SignalCode... | |
| 528 l1pa_l1ps_com.transfer.fset[i]->SignalCode = NULL; | |
| 529 l1pa_l1ps_com.transfer.aset->SignalCode = NULL; | |
| 530 | |
| 531 } // end if(...tbf_sti.present) | |
| 532 } // end of if(...SignalCode == MPHP_ASSIGNMENT_REQ) | |
| 533 } | |
| 534 | |
| 535 if(new_tbf_installed == TRUE) | |
| 536 { | |
| 537 // Start the new configuration | |
| 538 //---------------------------- | |
| 539 | |
| 540 // Enable PACKET tasks. | |
| 541 { | |
| 542 // Set assignment_command to the last enabled TBF type. | |
| 543 // This permits MAC-S to correctly manage TBF boundary conditions. | |
| 544 l1pa_l1ps_com.transfer.aset->assignment_command = current_assignment_command; | |
| 545 | |
| 546 // Flag the new configuration to MACS. | |
| 547 l1ps_macs_com.new_set = TRUE; | |
| 548 | |
| 549 // Flag the new configuration in order to update the Read set parameters | |
| 550 // in the first Read phase of the new TBF | |
| 551 // This permits to start using the new aset parameters for the first Control of | |
| 552 // the first block of the new TBF and to keep the parameters needed for the | |
| 553 // last read phase of the last block of the previous TBF. | |
| 554 l1ps.read_param.new_set = TRUE; | |
| 555 | |
| 556 // TBF_changes | |
| 557 #if !FF_TBF | |
| 558 // We need to detect that we just leaving CS/P Idle mode to enter | |
| 559 // in Packet Transfer mode. Then we have to enable SYNCHRO task on dectection | |
| 560 // of a mode change (Idle or Packet idle -> Packet transfer). | |
| 561 // Note: This check can't be gathered with the one done a little bit later | |
| 562 // on tn_difference and SINGLE task from the fact that the allocated_tbf | |
| 563 // is checked and PDTCH enabled. | |
| 564 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
| 565 { | |
| 566 if(l1a_l1s_com.l1s_en_task[PDTCH] == TASK_DISABLED) | |
| 567 { | |
| 568 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
| 569 l1a_l1s_com.dsp_scheduler_mode = GPRS_SCHEDULER; | |
| 570 } | |
| 571 } | |
| 572 #endif | |
| 573 | |
| 574 // Disable interference measurements | |
| 575 l1a_l1s_com.l1s_en_task[ITMEAS] = TASK_DISABLED; | |
| 576 | |
| 577 // Check for Continuous Timing advance procedure. | |
| 578 // Enable PTCCH task if required. | |
| 579 if((l1pa_l1ps_com.transfer.aset->packet_ta.ta_index != 255) && | |
| 580 (l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn != 255)) | |
| 581 { | |
| 582 // No action when the configuration is the same as the current one. | |
| 583 if((l1pa_l1ps_com.transfer.aset->packet_ta.ta_index != current_ta_config->ta_index) || | |
| 584 (l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn != current_ta_config->ta_tn) || | |
| 585 (l1a_l1s_com.l1s_en_task[PTCCH] == TASK_DISABLED)) | |
| 586 // The configuration is different than the current one or no PTCCH is currently running | |
| 587 // (for example in packet idle) | |
| 588 { | |
| 589 // Reset PTCCH execution variables. | |
| 590 l1pa_l1ps_com.transfer.ptcch.activity = 0; | |
| 591 l1pa_l1ps_com.transfer.ptcch.request_dl = FALSE; | |
| 592 | |
| 593 // Enable PTCCH task. | |
| 594 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_ENABLED; | |
| 595 } | |
| 596 } | |
| 597 else | |
| 598 // PTCCH is not configured. | |
| 599 { | |
| 600 // Disable PTCCH task. | |
| 601 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
| 602 } | |
| 603 | |
| 604 // Transfer AGC initialization | |
| 605 l1pctl_transfer_agc_init(); | |
| 606 | |
| 607 switch(l1pa_l1ps_com.transfer.aset->allocated_tbf) | |
| 608 { | |
| 609 case SINGLE_BLOCK_UL: | |
| 610 { | |
| 611 // Set SINGLE execution variables. | |
| 612 l1pa_l1ps_com.transfer.single_block.activity = SINGLE_UL; // UL enabled | |
| 613 | |
| 614 // Enable SINGLE task. | |
| 615 l1a_l1s_com.l1s_en_task[SINGLE] = TASK_ENABLED; | |
| 616 } | |
| 617 break; | |
| 618 | |
| 619 case SINGLE_BLOCK_DL: | |
| 620 { | |
| 621 // Set SINGLE execution variables. | |
| 622 l1pa_l1ps_com.transfer.single_block.activity = SINGLE_DL; // DL enabled | |
| 623 | |
| 624 // Enable SINGLE task. | |
| 625 l1a_l1s_com.l1s_en_task[SINGLE] = TASK_ENABLED; | |
| 626 } | |
| 627 break; | |
| 628 | |
| 629 case TWO_PHASE_ACCESS: | |
| 630 { | |
| 631 // Set SINGLE execution variables. | |
| 632 l1pa_l1ps_com.transfer.single_block.activity |= SINGLE_DL; // DL enabled | |
| 633 l1pa_l1ps_com.transfer.single_block.activity |= SINGLE_UL; // UL enabled | |
| 634 | |
| 635 // Enable SINGLE task. | |
| 636 l1a_l1s_com.l1s_en_task[SINGLE] = TASK_ENABLED; | |
| 637 } | |
| 638 break; | |
| 639 | |
| 640 default: | |
| 641 { | |
| 642 /* | |
| 643 * FreeCalypso: removal of the following line is | |
| 644 * TCS211 reconstruction | |
| 645 */ | |
| 646 //if(l1a_l1s_com.l1s_en_task[PDTCH] == TASK_ENABLED) | |
| 647 //In case of transition idle to transfer the Packet transfer mode is set when synchro is executed | |
| 648 // Layer 1 internal mode is set to PACKET TRANSFER MODE. | |
| 649 l1a_l1s_com.mode = PACKET_TRANSFER_MODE; | |
| 650 | |
| 651 // Enable PDTCH task. | |
| 652 l1a_l1s_com.l1s_en_task[PDTCH] = TASK_ENABLED; | |
| 653 | |
| 654 // Need to disable SINGLE task for two phase access case | |
| 655 l1a_l1s_com.l1s_en_task[SINGLE] = TASK_DISABLED; | |
| 656 } | |
| 657 break; | |
| 658 } // End switch() | |
| 659 | |
| 660 // SYNCHRO task is not schedule if we are in the specific case: | |
| 661 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
| 662 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
| 663 // Note: tn_difference has to be accumulated in order to cope with the | |
| 664 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
| 665 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
| 666 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
| 667 { | |
| 668 // Save the "timeslot difference" between new and old configuration | |
| 669 // in "tn_difference". | |
| 670 // tn_difference -> loaded with the number of timeslot to shift. | |
| 671 // dl_tn -> loaded with the new timeslot. | |
| 672 l1a_l1s_com.tn_difference += min_synchro_ts - l1a_l1s_com.dl_tn; | |
| 673 l1a_l1s_com.dl_tn = min_synchro_ts; | |
| 674 | |
| 675 #if !FF_TBF | |
| 676 // Enable SYNCHRO task only if lowest allocated timeslot changed | |
| 677 // or if each time the SINGLE task is enabled | |
| 678 // In the specific case of the SINGLE task, the GPRS_SCHEDULER | |
| 679 // has to be selected. | |
| 680 if((l1a_l1s_com.tn_difference != 0) || | |
| 681 (l1a_l1s_com.l1s_en_task[SINGLE] == TASK_ENABLED)) | |
| 682 { | |
| 683 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
| 684 l1a_l1s_com.dsp_scheduler_mode = GPRS_SCHEDULER; | |
| 685 } | |
| 686 #else | |
| 687 // Enable SYNCHRO task if at least one of these conditions fulfilled: | |
| 688 // -> Change in the timeslot synhronization | |
| 689 // -> Change of the ongoing TBF mode (synchro_forced) | |
| 690 // -> Exit of two phase access (synchro_forced) | |
| 691 // -> Coming from (Packet) Idle (synchro forced) | |
| 692 // -> SINGLE task enabled | |
| 693 if((l1a_l1s_com.tn_difference != 0) || | |
| 694 (tbf_update_synchro_forced) || | |
| 695 (l1a_l1s_com.l1s_en_task[SINGLE] == TASK_ENABLED)) | |
| 696 { | |
| 697 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
| 698 | |
| 699 l1a_l1s_com.dsp_scheduler_mode = GPRS_SCHEDULER; | |
| 700 } | |
| 701 #endif | |
| 702 } | |
| 703 else | |
| 704 {}// L1A is touching dl_tn, tn_difference and dsp_scheduler_mode parameters... | |
| 705 } | |
| 706 } | |
| 707 | |
| 708 // LOOK FOR TIMING AVANCE UPDATE | |
| 709 //=============================== | |
| 710 | |
| 711 if(l1pa_l1ps_com.transfer.ptcch.ta_update_cmd == TRUE) | |
| 712 { | |
| 713 #define CURRENT_TA_CONFIG l1pa_l1ps_com.transfer.aset->packet_ta | |
| 714 #define NEW_TA_CONFIG l1pa_l1ps_com.transfer.ptcch.packet_ta | |
| 715 | |
| 716 // Only update if the assignment_id of the running TBF matches with the assignment_id | |
| 717 // given in the MPHP_TIMING_ADVANCE_REQ message | |
| 718 if (l1pa_l1ps_com.transfer.ptcch.assignment_id == l1pa_l1ps_com.transfer.aset->assignment_id) | |
| 719 { | |
| 720 xSignalHeaderRec *msg; | |
| 721 | |
| 722 // Immediate Update of PACKET TA structure. | |
| 723 //----------------------------------------- | |
| 724 | |
| 725 // Update TA value only if a new value is provided. | |
| 726 if(NEW_TA_CONFIG.ta != 255) | |
| 727 CURRENT_TA_CONFIG.ta = NEW_TA_CONFIG.ta; | |
| 728 | |
| 729 if((NEW_TA_CONFIG.ta_index != 255) && | |
| 730 (NEW_TA_CONFIG.ta_tn != 255)) | |
| 731 // There is a New PTCCH configuration. | |
| 732 { | |
| 733 // No action when the configuration is the same as the current one. | |
| 734 | |
| 735 if((NEW_TA_CONFIG.ta_index != CURRENT_TA_CONFIG.ta_index) || | |
| 736 (NEW_TA_CONFIG.ta_tn != CURRENT_TA_CONFIG.ta_tn)) | |
| 737 // The configuration is different than the current one. | |
| 738 { | |
| 739 // Download the new configuration. | |
| 740 CURRENT_TA_CONFIG.ta_index = NEW_TA_CONFIG.ta_index; | |
| 741 CURRENT_TA_CONFIG.ta_tn = NEW_TA_CONFIG.ta_tn; | |
| 742 | |
| 743 // Reset PTCCH execution variables. | |
| 744 l1pa_l1ps_com.transfer.ptcch.activity = 0; | |
| 745 l1pa_l1ps_com.transfer.ptcch.request_dl = FALSE; | |
| 746 | |
| 747 // Enable PTCCH task. | |
| 748 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_ENABLED; | |
| 749 } | |
| 750 } | |
| 751 else | |
| 752 // PTCCH is not configured. | |
| 753 { | |
| 754 // Diable PTCCH task. | |
| 755 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
| 756 } | |
| 757 | |
| 758 // Send confirmation message to L3. | |
| 759 msg = os_alloc_sig(sizeof(T_MPHP_TIMING_ADVANCE_CON)); | |
| 760 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 761 | |
| 762 msg->SignalCode = L1P_TA_CONFIG_DONE; | |
| 763 ((T_MPHP_TIMING_ADVANCE_CON *) msg->SigP)->assignment_id = | |
| 764 l1pa_l1ps_com.transfer.aset->assignment_id; | |
| 765 | |
| 766 os_send_sig(msg, L1C1_QUEUE); | |
| 767 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
| 768 | |
| 769 } // End if "assignment_id of the running TBF matches" | |
| 770 | |
| 771 // Reset Control code. | |
| 772 l1pa_l1ps_com.transfer.ptcch.ta_update_cmd = FALSE; | |
| 773 | |
| 774 } // End if(...ta_update_cmd == TRUE) | |
| 775 | |
| 776 // LOOK FOR PSI PARAMETERS UPDATE | |
| 777 //=============================== | |
| 778 | |
| 779 if(l1pa_l1ps_com.transfer.psi_param.psi_param_update_cmd == TRUE) | |
| 780 { | |
| 781 // Update parameters | |
| 782 l1a_l1s_com.Scell_info.pb = l1pa_l1ps_com.transfer.psi_param.Scell_pb; | |
| 783 l1pa_l1ps_com.access_burst_type = l1pa_l1ps_com.transfer.psi_param.access_burst_type; | |
| 784 | |
| 785 // Reset Control code. | |
| 786 l1pa_l1ps_com.transfer.psi_param.psi_param_update_cmd = FALSE; | |
| 787 } | |
| 788 | |
| 789 /***********************************************************/ | |
| 790 /* TBF release, PDCH release, Repeat allocation, Fixed */ | |
| 791 /* allocation exhaustion */ | |
| 792 /***********************************************************/ | |
| 793 | |
| 794 // These events are only taken into account on block boundaries | |
| 795 // in order to keep the "aset" structure unchanged for all the control phases | |
| 796 // of the last block before modification | |
| 797 | |
| 798 if(block_boundary) | |
| 799 { | |
| 800 // LOOK FOR TBF TO BE RELEASED... | |
| 801 //=============================== | |
| 802 | |
| 803 if(l1pa_l1ps_com.transfer.tbf_release_param.tbf_release_cmd == TRUE) | |
| 804 { | |
| 805 xSignalHeaderRec *msg; | |
| 806 | |
| 807 //TBF_changes | |
| 808 #if !FF_TBF | |
| 809 switch(l1pa_l1ps_com.transfer.tbf_release_param.released_tbf) | |
| 810 #else | |
| 811 UWORD8 released_tbf; | |
| 812 | |
| 813 // Special case if we got a request to release a two phase access TBF: | |
| 814 // It is registered within ASET structure as an uplink TBF. If we are | |
| 815 // currently in pseudo TBF for two phase access, we process the request | |
| 816 // like an uplink release, otherwise we skip it and just send the | |
| 817 // L1P_TBF_RELEASED to L1A. | |
| 818 | |
| 819 released_tbf = l1pa_l1ps_com.transfer.tbf_release_param.released_tbf; | |
| 820 | |
| 821 if (released_tbf == TWO_PHASE_ACCESS) | |
| 822 { | |
| 823 if (l1pa_l1ps_com.transfer.aset->pseudo_tbf_two_phase_acc) | |
| 824 released_tbf = UL_TBF; | |
| 825 else | |
| 826 released_tbf = NO_TBF; | |
| 827 } | |
| 828 | |
| 829 switch(released_tbf) | |
| 830 #endif | |
| 831 { | |
| 832 case UL_TBF: | |
| 833 { | |
| 834 if(l1pa_l1ps_com.transfer.aset->allocated_tbf == UL_TBF) | |
| 835 { | |
| 836 // Disable PDTCH task. | |
| 837 l1a_l1s_com.l1s_en_task[PDTCH] = TASK_DISABLED; | |
| 838 // Disable PTCCH task. | |
| 839 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
| 840 | |
| 841 // Free the active set. | |
| 842 l1pa_l1ps_com.transfer.aset->allocated_tbf = NO_TBF; | |
| 843 } | |
| 844 else | |
| 845 if(l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF) | |
| 846 { | |
| 847 // Still DL_TBF running. | |
| 848 // We must synchro to the 1st timeslot of DL_TBF. | |
| 849 | |
| 850 // REM: the new configuration is not flagged to MACS via "l1ps_macs_com.new_set" | |
| 851 // since MACS will detect the alloc change. | |
| 852 | |
| 853 // Active set becomes DL TBF. | |
| 854 l1pa_l1ps_com.transfer.aset->allocated_tbf = DL_TBF; | |
| 855 | |
| 856 // SYNCHRO task is not schedule if we are in the specific case: | |
| 857 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
| 858 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
| 859 // Note: tn_difference has to be accumulated in order to cope with the | |
| 860 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
| 861 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
| 862 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
| 863 { | |
| 864 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot - l1a_l1s_com.dl_tn; | |
| 865 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
| 866 | |
| 867 // Enable SYNCHRO task only when camp timeslot is changed. | |
| 868 if(l1a_l1s_com.tn_difference != 0) | |
| 869 { | |
| 870 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
| 871 } | |
| 872 } | |
| 873 | |
| 874 // Diable PTCCH if timeslot doesn't match with the remaining DL TBF allocation | |
| 875 if (!((0x80 >> l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn) & | |
| 876 l1pa_l1ps_com.transfer.aset->dl_tbf_alloc.timeslot_alloc)) | |
| 877 { | |
| 878 // Disable PTCCH task. | |
| 879 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
| 880 | |
| 881 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
| 882 l1_trace_ptcch_disable(); | |
| 883 #endif | |
| 884 } | |
| 885 | |
| 886 } | |
| 887 | |
| 888 // Reset Repeat allocation starting time checking | |
| 889 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
| 890 // Reset Allocation Exhaustion detection flag | |
| 891 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
| 892 #if L1_EDA | |
| 893 // Disable FB/SB task detection mechanism for MS class 12 | |
| 894 l1ps_macs_com.fb_sb_task_detect = FALSE; | |
| 895 #endif | |
| 896 } | |
| 897 break; | |
| 898 | |
| 899 case DL_TBF: | |
| 900 { | |
| 901 if(l1pa_l1ps_com.transfer.aset->allocated_tbf == DL_TBF) | |
| 902 { | |
| 903 // Disable PDTCH task. | |
| 904 l1a_l1s_com.l1s_en_task[PDTCH] = TASK_DISABLED; | |
| 905 // Disable PTCCH task. | |
| 906 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
| 907 | |
| 908 // Free the active set. | |
| 909 l1pa_l1ps_com.transfer.aset->allocated_tbf = NO_TBF; | |
| 910 } | |
| 911 else | |
| 912 if(l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF) | |
| 913 { | |
| 914 // Still UL_TBF running. | |
| 915 // We must synchro to the 1st timeslot of UL_TBF. | |
| 916 | |
| 917 // REM: the new configuration is not flagged to MACS via "l1ps_macs_com.new_set" | |
| 918 // since MACS will detect the alloc change. | |
| 919 | |
| 920 // Active set becomes UL TBF. | |
| 921 l1pa_l1ps_com.transfer.aset->allocated_tbf = UL_TBF; | |
| 922 | |
| 923 // SYNCHRO task is not schedule if we are in the specific case: | |
| 924 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
| 925 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
| 926 // Note: tn_difference has to be accumulated in order to cope with the | |
| 927 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
| 928 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
| 929 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
| 930 { | |
| 931 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot - l1a_l1s_com.dl_tn; | |
| 932 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
| 933 | |
| 934 // Enable SYNCHRO task only when camp timeslot is changed. | |
| 935 if(l1a_l1s_com.tn_difference != 0) | |
| 936 { | |
| 937 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
| 938 } | |
| 939 } | |
| 940 | |
| 941 // Diable PTCCH if timeslot doesn't match with the remaining UL TBF allocation | |
| 942 if (!((0x80 >> l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn) & | |
| 943 l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc)) | |
| 944 { | |
| 945 // Disable PTCCH task. | |
| 946 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
| 947 | |
| 948 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
| 949 l1_trace_ptcch_disable(); | |
| 950 #endif | |
| 951 } | |
| 952 | |
| 953 } | |
| 954 } | |
| 955 break; | |
| 956 | |
| 957 case BOTH_TBF: | |
| 958 { | |
| 959 // No more TBF... | |
| 960 // Disable PDTCH task. | |
| 961 l1a_l1s_com.l1s_en_task[PDTCH] = TASK_DISABLED; | |
| 962 // Disable PTCCH task. | |
| 963 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
| 964 | |
| 965 // Free the active set. | |
| 966 l1pa_l1ps_com.transfer.aset->allocated_tbf = NO_TBF; | |
| 967 | |
| 968 // Reset Repeat allocation starting time checking | |
| 969 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
| 970 // Reset Allocation Exhaustion detection flag | |
| 971 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
| 972 #if L1_EDA | |
| 973 // Disable FB/SB task detection mechanism for MS class 12 | |
| 974 l1ps_macs_com.fb_sb_task_detect = FALSE; | |
| 975 #endif | |
| 976 } | |
| 977 break; | |
| 978 | |
| 979 } | |
| 980 | |
| 981 // Send confirmation msg to L3/MACA. | |
| 982 msg = os_alloc_sig(sizeof(T_L1P_TBF_RELEASED)); | |
| 983 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 984 | |
| 985 msg->SignalCode = L1P_TBF_RELEASED; | |
| 986 | |
| 987 // initialize the TBF type for the confirmation msg | |
| 988 ((T_L1P_TBF_RELEASED *) msg->SigP)->tbf_type = l1pa_l1ps_com.transfer.tbf_release_param.released_tbf; | |
| 989 | |
| 990 if (l1pa_l1ps_com.transfer.aset->allocated_tbf == NO_TBF) | |
| 991 { | |
| 992 /* | |
| 993 * FreeCalypso: removal of the following line is | |
| 994 * TCS211 reconstruction | |
| 995 */ | |
| 996 //l1ps.read_param.assignment_id = 0x01; /* default non initialised value for next tbf */ | |
| 997 | |
| 998 ((T_L1P_TBF_RELEASED *) msg->SigP)->released_all = TRUE; | |
| 999 | |
| 1000 #if (DSP == 33) || (DSP == 34) || (DSP == 35) || (DSP == 36) || (DSP == 37) | |
| 1001 // Correction of BUG1041: reset of multislot bit in d_bbctrl_gprs | |
| 1002 // when leaving patcket transfer. | |
| 1003 l1ps_dsp_com.pdsp_ndb_ptr->d_bbctrl_gprs = l1_config.params.bbctrl; | |
| 1004 #endif | |
| 1005 } | |
| 1006 else | |
| 1007 { | |
| 1008 ((T_L1P_TBF_RELEASED *) msg->SigP)->released_all = FALSE; | |
| 1009 } | |
| 1010 | |
| 1011 // Insert "tn_difference" information in L1P_TBF_RELEASED msg | |
| 1012 // will be used in Ncell Dedic6 state machine to request a reset | |
| 1013 // or not of the state machine. | |
| 1014 ((T_L1P_TBF_RELEASED *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; | |
| 1015 | |
| 1016 os_send_sig(msg, L1C1_QUEUE); | |
| 1017 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
| 1018 | |
| 1019 // Flag the new configuration in order to update the Read set parameters | |
| 1020 // with the "aset" structure modifications in the first PDTCH Read phase | |
| 1021 // after configuration change | |
| 1022 l1ps.read_param.new_set = TRUE; | |
| 1023 | |
| 1024 // Reset Control code. | |
| 1025 l1pa_l1ps_com.transfer.tbf_release_param.tbf_release_cmd = FALSE; | |
| 1026 } | |
| 1027 | |
| 1028 // LOOK FOR PDCH TO BE RELEASED... | |
| 1029 //================================ | |
| 1030 | |
| 1031 if(l1pa_l1ps_com.transfer.pdch_release_param.pdch_release_cmd == TRUE) | |
| 1032 { | |
| 1033 xSignalHeaderRec *msg; | |
| 1034 UWORD8 timeslot,timeslot_alloc; | |
| 1035 | |
| 1036 // PDCH Release only apply if the assignement_id of the running TBF matches | |
| 1037 // with the assignment_id included in the MPHP_PDCH_RELEASE_REQ message | |
| 1038 if (l1pa_l1ps_com.transfer.pdch_release_param.assignment_id == l1pa_l1ps_com.transfer.aset->assignment_id) | |
| 1039 { | |
| 1040 | |
| 1041 // Update timeslot allocation bitmaps | |
| 1042 l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc &= l1pa_l1ps_com.transfer.pdch_release_param.timeslot_available; | |
| 1043 l1pa_l1ps_com.transfer.aset->dl_tbf_alloc.timeslot_alloc &= l1pa_l1ps_com.transfer.pdch_release_param.timeslot_available; | |
| 1044 | |
| 1045 // Process the downlink TBF first allocated timeslot | |
| 1046 timeslot_alloc = l1pa_l1ps_com.transfer.aset->dl_tbf_alloc.timeslot_alloc; | |
| 1047 timeslot = 0; | |
| 1048 | |
| 1049 while((timeslot<7) && !(timeslot_alloc & (0x80>>timeslot))) | |
| 1050 { | |
| 1051 timeslot++; | |
| 1052 } | |
| 1053 | |
| 1054 l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot = timeslot; | |
| 1055 | |
| 1056 // Process the uplink TBF first allocated timeslot | |
| 1057 timeslot_alloc = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc; | |
| 1058 timeslot = 0; | |
| 1059 #if L1_EDA | |
| 1060 // Dynamic allocation mode or Extended Dynamic allocation mode | |
| 1061 if((l1pa_l1ps_com.transfer.aset->mac_mode == DYN_ALLOC) || (l1pa_l1ps_com.transfer.aset->mac_mode == EXT_DYN_ALLOC)) | |
| 1062 #else | |
| 1063 // Dynamic allocation mode | |
| 1064 if(l1pa_l1ps_com.transfer.aset->mac_mode == DYN_ALLOC) | |
| 1065 #endif | |
| 1066 { | |
| 1067 while((timeslot<7) && !(timeslot_alloc & (0x80>>timeslot))) | |
| 1068 { | |
| 1069 timeslot++; | |
| 1070 } | |
| 1071 } | |
| 1072 else | |
| 1073 // Fixed allocation mode | |
| 1074 if(l1pa_l1ps_com.transfer.aset->mac_mode == FIX_ALLOC_NO_HALF) | |
| 1075 { | |
| 1076 // If the control timeslot hasn't been released | |
| 1077 if (l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc & | |
| 1078 (0x80 >> l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot)) | |
| 1079 { | |
| 1080 // The first allocated timeslot is the control timeslot | |
| 1081 timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot; | |
| 1082 } | |
| 1083 else | |
| 1084 { | |
| 1085 // The first allocated timeslot is found in the allocation bitmap | |
| 1086 while((timeslot<7) && !(timeslot_alloc & (0x80>>timeslot))) | |
| 1087 { | |
| 1088 timeslot++; | |
| 1089 } | |
| 1090 } | |
| 1091 } | |
| 1092 | |
| 1093 l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot = timeslot; | |
| 1094 | |
| 1095 // Fill "synchro_timeslot" which will be the frame synchro slot. | |
| 1096 switch(l1pa_l1ps_com.transfer.aset->allocated_tbf) | |
| 1097 { | |
| 1098 case(DL_TBF): | |
| 1099 { | |
| 1100 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
| 1101 } | |
| 1102 break; | |
| 1103 | |
| 1104 case(UL_TBF): | |
| 1105 { | |
| 1106 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
| 1107 } | |
| 1108 break; | |
| 1109 | |
| 1110 case(BOTH_TBF): | |
| 1111 { | |
| 1112 if (l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot > l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot) | |
| 1113 { | |
| 1114 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
| 1115 } | |
| 1116 else | |
| 1117 { | |
| 1118 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
| 1119 } | |
| 1120 } | |
| 1121 break; | |
| 1122 } | |
| 1123 | |
| 1124 // SYNCHRO task is not schedule if we are in the specific case: | |
| 1125 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
| 1126 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
| 1127 // Note: tn_difference has to be accumulated in order to cope with the | |
| 1128 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
| 1129 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
| 1130 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
| 1131 { | |
| 1132 // New synchronization | |
| 1133 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; | |
| 1134 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot; | |
| 1135 | |
| 1136 // REM: the new configuration is not flagged to MACS via "l1ps_macs_com.new_set" | |
| 1137 // since MACS will detect the alloc change. | |
| 1138 | |
| 1139 // Enable SYNCHRO task only when camp timeslot is changed. | |
| 1140 if(l1a_l1s_com.tn_difference != 0) | |
| 1141 { | |
| 1142 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
| 1143 } | |
| 1144 } | |
| 1145 | |
| 1146 // Disable PTCCH if timeslot doesn't match with the remaining PDCH allocation | |
| 1147 if (!((0x80 >> l1pa_l1ps_com.transfer.aset->packet_ta.ta_tn) & | |
| 1148 l1pa_l1ps_com.transfer.pdch_release_param.timeslot_available)) | |
| 1149 { | |
| 1150 // Disable PTCCH task. | |
| 1151 l1a_l1s_com.l1s_en_task[PTCCH] = TASK_DISABLED; | |
| 1152 | |
| 1153 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
| 1154 l1_trace_ptcch_disable(); | |
| 1155 #endif | |
| 1156 } | |
| 1157 | |
| 1158 // Send confirmation msg to L3/MACA. | |
| 1159 msg = os_alloc_sig(sizeof(T_L1P_PDCH_RELEASE_CON)); | |
| 1160 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 1161 | |
| 1162 msg->SignalCode = L1P_PDCH_RELEASED; | |
| 1163 | |
| 1164 ((T_L1P_PDCH_RELEASE_CON *) msg->SigP)->assignment_id = l1pa_l1ps_com.transfer.pdch_release_param.assignment_id; | |
| 1165 | |
| 1166 // Insert "tn_difference" information in T_L1P_PDCH_RELEASE_CON msg | |
| 1167 // will be used in Ncell Dedic6 state machine to request a reset | |
| 1168 // or not of the state machine | |
| 1169 ((T_L1P_PDCH_RELEASE_CON *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; | |
| 1170 | |
| 1171 os_send_sig(msg, L1C1_QUEUE); | |
| 1172 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
| 1173 | |
| 1174 // Flag the new configuration in order to update the Read set parameters | |
| 1175 // with the "aset" structure modifications in the first PDTCH Read phase | |
| 1176 // after configuration change | |
| 1177 l1ps.read_param.new_set = TRUE; | |
| 1178 | |
| 1179 } // End if "assignment_id matches with the running TBF" | |
| 1180 | |
| 1181 // Reset Control code. | |
| 1182 l1pa_l1ps_com.transfer.pdch_release_param.pdch_release_cmd = FALSE; | |
| 1183 } | |
| 1184 | |
| 1185 // LOOK FOR REPEAT ALLOCATION ... | |
| 1186 //================================ | |
| 1187 | |
| 1188 if(l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation) | |
| 1189 { | |
| 1190 UWORD8 timeslot,timeslot_alloc; | |
| 1191 | |
| 1192 // Starting time checking... | |
| 1193 //-------------------------- | |
| 1194 | |
| 1195 if(l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.present) | |
| 1196 // Starting time present. | |
| 1197 // Rem: starting time detected 1 frame in advance, this frame is used by | |
| 1198 // SYNCHRO task. | |
| 1199 { | |
| 1200 WORD32 time_diff; | |
| 1201 | |
| 1202 // If synchro change occurs, it's always from a timeslot N to N + 1 | |
| 1203 time_diff = ( (l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.absolute_fn - 1) | |
| 1204 - (l1s.next_time.fn % 42432) + 2*42432) % 42432; | |
| 1205 | |
| 1206 // Starting time has been passed... | |
| 1207 if(((time_diff >= (32024)) && (time_diff <= (42431))) || (time_diff == 0)) | |
| 1208 { | |
| 1209 l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.present = FALSE; | |
| 1210 } | |
| 1211 } // End if "starting time present" | |
| 1212 | |
| 1213 // Starting time passed... | |
| 1214 //------------------------ | |
| 1215 | |
| 1216 // If the repeat allocation starts on this frame... | |
| 1217 if (!l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.present) | |
| 1218 { | |
| 1219 #if (TRACE_TYPE!=0) | |
| 1220 // Trace "starting time" on log file and screen. | |
| 1221 trace_fct(CST_STI_PASSED, l1a_l1s_com.Scell_info.radio_freq); | |
| 1222 #endif | |
| 1223 | |
| 1224 // Update ts_override and starting time | |
| 1225 l1pa_l1ps_com.transfer.aset->ts_override = l1pa_l1ps_com.transfer.repeat_alloc.ts_override; | |
| 1226 l1pa_l1ps_com.transfer.aset->tbf_sti.absolute_fn = l1pa_l1ps_com.transfer.repeat_alloc.tbf_sti.absolute_fn; | |
| 1227 | |
| 1228 // Lowest allocated timeslot for the UL TBF | |
| 1229 | |
| 1230 // If the downlink control timeslot hasn't been released: it's the downlink control timeslot | |
| 1231 // Else no change | |
| 1232 if ( l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc | |
| 1233 & (0x80 >> l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot)) | |
| 1234 { | |
| 1235 // Synchronization on the downlink control timeslot | |
| 1236 l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->fixed_alloc.ctrl_timeslot; | |
| 1237 } | |
| 1238 | |
| 1239 // Synchronization | |
| 1240 | |
| 1241 // If a downlink TBF is enabled | |
| 1242 if ( l1pa_l1ps_com.transfer.aset->allocated_tbf == BOTH_TBF) | |
| 1243 { | |
| 1244 // Synchronization on the downlink TBF lowest allocated timeslot ? | |
| 1245 if (l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot > l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot) | |
| 1246 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->dl_tbf_synchro_timeslot; | |
| 1247 else | |
| 1248 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
| 1249 } | |
| 1250 // Else: synchronization on the uplink TBF lowest allocated timeslot | |
| 1251 else | |
| 1252 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
| 1253 | |
| 1254 // SYNCHRO task is not schedule if we are in the specific case: | |
| 1255 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
| 1256 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
| 1257 // Note: tn_difference has to be accumulated in order to cope with the | |
| 1258 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
| 1259 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
| 1260 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
| 1261 { | |
| 1262 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; | |
| 1263 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot; | |
| 1264 | |
| 1265 // Enable SYNCHRO task only when camp timeslot is changed. | |
| 1266 if(l1a_l1s_com.tn_difference != 0) | |
| 1267 { | |
| 1268 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
| 1269 } | |
| 1270 } | |
| 1271 | |
| 1272 // Set assignment_command to the last enabled TBF type. | |
| 1273 // This permits MAC-S to correctly manage TBF boundary conditions. | |
| 1274 if ((current_assignment_command == NO_TBF) || (current_assignment_command == UL_TBF)) | |
| 1275 l1pa_l1ps_com.transfer.aset->assignment_command = UL_TBF; | |
| 1276 else | |
| 1277 l1pa_l1ps_com.transfer.aset->assignment_command = BOTH_TBF; | |
| 1278 | |
| 1279 // Flag the new configuration to MACS. | |
| 1280 l1ps_macs_com.new_set = TRUE; | |
| 1281 | |
| 1282 // Flag the new configuration in order to update the Read set parameters | |
| 1283 // with the "aset" structure modifications in the first PDTCH Read phase | |
| 1284 // after configuration change | |
| 1285 l1ps.read_param.new_set = TRUE; | |
| 1286 | |
| 1287 // Reset Repeat allocation starting time checking | |
| 1288 l1pa_l1ps_com.transfer.repeat_alloc.repeat_allocation = FALSE; | |
| 1289 // Reset Allocation Exhaustion detection flag | |
| 1290 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
| 1291 | |
| 1292 // Send confirmation | |
| 1293 { | |
| 1294 xSignalHeaderRec *msg; | |
| 1295 | |
| 1296 // Send confirmation msg to L3/MACA. | |
| 1297 msg = os_alloc_sig(sizeof(T_L1P_REPEAT_ALLOC_DONE)); | |
| 1298 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 1299 | |
| 1300 msg->SignalCode = L1P_REPEAT_ALLOC_DONE; | |
| 1301 | |
| 1302 // Insert "tn_difference" information in T_L1P_REPEAT_ALLOC_DONE msg | |
| 1303 // will be used in Ncell Dedic6 state machine to request a reset | |
| 1304 // or not of the state machine | |
| 1305 ((T_L1P_REPEAT_ALLOC_DONE *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; | |
| 1306 | |
| 1307 os_send_sig(msg, L1C1_QUEUE); | |
| 1308 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
| 1309 } | |
| 1310 | |
| 1311 } // End if "Repeat allocation starts this frame..." | |
| 1312 } // End of "Repeat allocation starting time checking" | |
| 1313 | |
| 1314 // LOOK FOR FIXED MODE ALLOCATION BITMAP EXHAUSTION ... | |
| 1315 //================================================== | |
| 1316 | |
| 1317 if(l1ps_macs_com.fix_alloc_exhaust_flag) | |
| 1318 { | |
| 1319 #if (TRACE_TYPE!=0) | |
| 1320 // Trace "starting time" on log file and screen. | |
| 1321 trace_fct(CST_ALLOC_EXHAUSTION, l1a_l1s_com.Scell_info.radio_freq); | |
| 1322 #endif | |
| 1323 | |
| 1324 // Update uplink TBF synchronization timeslot | |
| 1325 { | |
| 1326 UWORD8 timeslot = 0; | |
| 1327 UWORD8 bitmap = 0x80; | |
| 1328 | |
| 1329 while (!(l1pa_l1ps_com.transfer.aset->ul_tbf_alloc->timeslot_alloc & bitmap)) | |
| 1330 { | |
| 1331 timeslot ++; | |
| 1332 bitmap >>= 1; | |
| 1333 } | |
| 1334 | |
| 1335 // Synchronization on the lowest allocated timeslot for uplink tranfer | |
| 1336 l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot = timeslot; | |
| 1337 } | |
| 1338 | |
| 1339 // New synchronization only done on a timeslot inferior to current synchronization | |
| 1340 // - if a DL TBF is present: the DL TBF synchronization is taken into account | |
| 1341 // - an UL TBF is present: synchronization can only be done on a timeslot number inferior or | |
| 1342 // equal to the current synchronization | |
| 1343 if (l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot < | |
| 1344 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot) | |
| 1345 { | |
| 1346 l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot = l1pa_l1ps_com.transfer.aset->ul_tbf_synchro_timeslot; | |
| 1347 } | |
| 1348 | |
| 1349 // SYNCHRO task is not schedule if we are in the specific case: | |
| 1350 // L1A is touching SYNCHRO parameters (tn_difference, dl_tn and dsp_scheduler_mode) | |
| 1351 // and leave L1A to go in HISR (L1S) in middle of the update (cf. BUG1339) | |
| 1352 // Note: tn_difference has to be accumulated in order to cope with the | |
| 1353 // specific case: L1A has just updated tn_difference, dl_tn and dsp_scheduler_mode | |
| 1354 // parameters and we enter in the HISR after the reset of the SYNCHRO Semaphore. | |
| 1355 if(l1a_l1s_com.task_param[SYNCHRO] == SEMAPHORE_RESET) | |
| 1356 { | |
| 1357 l1a_l1s_com.tn_difference += l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot - l1a_l1s_com.dl_tn; | |
| 1358 l1a_l1s_com.dl_tn = l1pa_l1ps_com.transfer.aset->transfer_synchro_timeslot; | |
| 1359 | |
| 1360 // Enable SYNCHRO task only when camp timeslot is changed. | |
| 1361 if(l1a_l1s_com.tn_difference != 0) | |
| 1362 { | |
| 1363 l1a_l1s_com.l1s_en_task[SYNCHRO] = TASK_ENABLED; | |
| 1364 } | |
| 1365 } | |
| 1366 | |
| 1367 // Send signal to L1A | |
| 1368 { | |
| 1369 xSignalHeaderRec *msg; | |
| 1370 | |
| 1371 // Send confirmation msg to L3/MACA. | |
| 1372 msg = os_alloc_sig(sizeof(T_L1P_ALLOC_EXHAUST_DONE)); | |
| 1373 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 1374 | |
| 1375 msg->SignalCode = L1P_ALLOC_EXHAUST_DONE; | |
| 1376 | |
| 1377 // Insert "tn_difference" information in T_L1P_ALLOC_EXHAUST_DONE msg | |
| 1378 // will be used in Ncell Dedic6 state machine to request a reset | |
| 1379 // or not of the state machine | |
| 1380 ((T_L1P_ALLOC_EXHAUST_DONE *) (msg->SigP))->tn_difference = l1a_l1s_com.tn_difference; | |
| 1381 | |
| 1382 os_send_sig(msg, L1C1_QUEUE); | |
| 1383 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
| 1384 } | |
| 1385 | |
| 1386 // Flag the new configuration in order to update the Read set parameters | |
| 1387 // with the "aset" structure modifications in the first PDTCH Read phase | |
| 1388 // after configuration change | |
| 1389 l1ps.read_param.new_set = TRUE; | |
| 1390 | |
| 1391 // Reset flag | |
| 1392 l1ps_macs_com.fix_alloc_exhaust_flag = FALSE; | |
| 1393 | |
| 1394 } // End if "fixed mode allocation bitmap has exhausted" | |
| 1395 } // End of "block_boundary" | |
| 1396 } // end of if(!l1pa_l1ps_com.transfer.semaphore) | |
| 1397 } | |
| 1398 //#pragma DUPLICATE_FOR_INTERNAL_RAM_END | |
| 1399 #endif // MOVE_IN_INTERNAL_RAM | |
| 1400 | |
| 1401 #if !((MOVE_IN_INTERNAL_RAM == 1) && (GSM_IDLE_RAM !=0)) // MOVE TO INTERNAL MEM IN CASE GSM_IDLE_RAM enabled | |
| 1402 //#pragma GSM_IDLE_DUPLICATE_FOR_INTERNAL_RAM_START // KEEP IN EXTERNAL MEM otherwise | |
| 1403 | |
| 1404 /*-------------------------------------------------------*/ | |
| 1405 /* l1ps_meas_manager() */ | |
| 1406 /*-------------------------------------------------------*/ | |
| 1407 /* */ | |
| 1408 /* Description: */ | |
| 1409 /* ------------ */ | |
| 1410 /* This function is the tasks manager for Packet Cell */ | |
| 1411 /* Reselection. */ | |
| 1412 /* The followings tasks are handled: */ | |
| 1413 /* */ | |
| 1414 /* FSMS_MEAS: */ | |
| 1415 /* */ | |
| 1416 /* P_CRMS_MEAS: Packet Cell Reselection measurement */ | |
| 1417 /* in Idle mode. The task includes: */ | |
| 1418 /* o BA(GPRS) measurement */ | |
| 1419 /* o Network controlled meas. */ | |
| 1420 /* o Extended measurement */ | |
| 1421 /* Occurrences are performed in order to satisfy the */ | |
| 1422 /* following ETSI constraints: */ | |
| 1423 /* 1. At least one measure of each BA BCCH carrier shall */ | |
| 1424 /* be taken for each paging block, */ | |
| 1425 /* 2. A minimum of one measure for each BA BCCH carrier */ | |
| 1426 /* for every 4 second must be performed, */ | |
| 1427 /* 3. MS is not required to take more than one sample */ | |
| 1428 /* per second for each BCCH carrier, */ | |
| 1429 /* 4. At least 5 measures per BA BCCH carrier are */ | |
| 1430 /* required for a valid received level average value */ | |
| 1431 /* (RLA_P), */ | |
| 1432 /* 5. RLA_P shall be based on samples collected over a */ | |
| 1433 /* period of 5s to Max{5s, five consecutive PPCH */ | |
| 1434 /* blocks dedicated to the MS}, */ | |
| 1435 /* 6. Samples allocated to each carrier shall as far */ | |
| 1436 /* as possible be uniformly distributed over the */ | |
| 1437 /* evaluation period. */ | |
| 1438 /* */ | |
| 1439 /* A TI condition is include: */ | |
| 1440 /* 7. In order to save power consumption, it will be */ | |
| 1441 /* necessary to use as far as possible the PPCH */ | |
| 1442 /* blocks to perform a maximum of measurements during */ | |
| 1443 /* these frames. */ | |
| 1444 /* */ | |
| 1445 /* From the previous constraints, it appears that */ | |
| 1446 /* Paging block period needs to be considered to fit */ | |
| 1447 /* ETSI consideration. */ | |
| 1448 /* Tow case are considered: */ | |
| 1449 /* o PPCH period >= 1s */ | |
| 1450 /* o PPCH period < 1s */ | |
| 1451 /* */ | |
| 1452 /* Once all carriers of the frequency list have been */ | |
| 1453 /* measured, a reporting message L1P_CR_MEAS_DONE is */ | |
| 1454 /* built and sent to L1A. */ | |
| 1455 /*-------------------------------------------------------*/ | |
| 1456 void l1ps_meas_manager() | |
| 1457 { | |
| 1458 enum states | |
| 1459 { | |
| 1460 NULL_MEAS = 0, | |
| 1461 PCHTOTAL = 1, | |
| 1462 TOTAL = 2, | |
| 1463 MEAS = 3, | |
| 1464 MEASTOTAL = 4 | |
| 1465 }; | |
| 1466 | |
| 1467 UWORD8 IL_for_rxlev; | |
| 1468 BOOL init_meas = FALSE; | |
| 1469 #if (RF_FAM == 61) | |
| 1470 UWORD16 dco_algo_ctl_pw = 0; | |
| 1471 UWORD16 dco_algo_ctl_pw_temp = 0; | |
| 1472 UWORD8 if_ctl = 0; | |
| 1473 UWORD8 if_threshold = C_IF_ZERO_LOW_THRESHOLD_GSM; | |
| 1474 #endif | |
| 1475 #define cr_list_size l1pa_l1ps_com.cres_freq_list.alist->nb_carrier | |
| 1476 | |
| 1477 static WORD8 remain_carrier; | |
| 1478 static UWORD8 nbr_meas; | |
| 1479 static BOOL schedule_trigger; | |
| 1480 static xSignalHeaderRec *cr_msg = NULL; | |
| 1481 static WORD16 time_to_wake_up; | |
| 1482 static WORD16 time_to_4s; | |
| 1483 static WORD16 time_to_1s; | |
| 1484 static UWORD32 fn_update; | |
| 1485 static UWORD16 session_done; // Did a session of measures performed in the 4s period | |
| 1486 static UWORD16 session_done_1s; // Did a session of measures performed in the 1s period | |
| 1487 static UWORD8 state; | |
| 1488 static UWORD32 reporting_period; // Parameter used in "reporting_period" computation | |
| 1489 | |
| 1490 #if (FF_L1_FAST_DECODING == 1) | |
| 1491 if (l1a_apihisr_com.fast_decoding.deferred_control_req == TRUE) | |
| 1492 { | |
| 1493 /* Do not execute l1s_meas_manager if a fast decoding IT is scheduled */ | |
| 1494 return; | |
| 1495 } | |
| 1496 #endif /*#if (FF_L1_FAST_DECODING == 1)*/ | |
| 1497 | |
| 1498 #if FF_L1_IT_DSP_USF | |
| 1499 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 1500 { | |
| 1501 #endif | |
| 1502 | |
| 1503 | |
| 1504 //==================================================== | |
| 1505 // RESET MEASUREMENT MACHINES WHEN ABORT EXECUTED. | |
| 1506 //==================================================== | |
| 1507 if(l1s.dsp_ctrl_reg & CTRL_ABORT) | |
| 1508 // ABORT task has been controlled, which reset the MCU/DSP communication. | |
| 1509 // We must rewind any measurement activity. | |
| 1510 { | |
| 1511 // Aborted measurements have to be rescheduled | |
| 1512 nbr_meas += l1pa_l1ps_com.cr_freq_list.ms_ctrl_d + l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd; | |
| 1513 | |
| 1514 // Rewind "next_to_ctrl" counter to come back to the next carrier to | |
| 1515 // measure. | |
| 1516 l1pa_l1ps_com.cr_freq_list.next_to_ctrl = l1pa_l1ps_com.cr_freq_list.next_to_read; | |
| 1517 | |
| 1518 // Reset flags. | |
| 1519 l1pa_l1ps_com.cr_freq_list.ms_ctrl = 0; | |
| 1520 l1pa_l1ps_com.cr_freq_list.ms_ctrl_d = 0; | |
| 1521 l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd = 0; | |
| 1522 } | |
| 1523 | |
| 1524 #if (GSM_IDLE_RAM != 1) | |
| 1525 // Test if task is disabled and cr_msg != NULL, then de-allocate memory | |
| 1526 if (!(l1pa_l1ps_com.l1ps_en_meas & P_CRMS_MEAS) && !(l1pa_l1ps_com.meas_param & P_CRMS_MEAS)) | |
| 1527 { | |
| 1528 if(cr_msg != NULL) | |
| 1529 { | |
| 1530 // Cell reselection measurement process has been stopped by L3 | |
| 1531 // Deallocate memory for the received message if msg not forwarded to L3. | |
| 1532 // ---------------------------------------------------------------------- | |
| 1533 os_free_sig(cr_msg); | |
| 1534 DEBUGMSG(status,NU_DEALLOC_ERR) | |
| 1535 | |
| 1536 cr_msg = NULL; | |
| 1537 } | |
| 1538 } | |
| 1539 #endif | |
| 1540 | |
| 1541 if((l1pa_l1ps_com.l1ps_en_meas & P_CRMS_MEAS) && (l1pa_l1ps_com.meas_param & P_CRMS_MEAS)) | |
| 1542 // Some changes occured on the Frequency list or the PAGING PARAMETERS have | |
| 1543 // changed. | |
| 1544 { | |
| 1545 // Reset Packet Cell Reselection semaphore. | |
| 1546 l1pa_l1ps_com.meas_param &= P_CRMS_MEAS_MASK; | |
| 1547 | |
| 1548 // Paging process has been interrupted by a L3 message | |
| 1549 // Deallocate memory for the received message if msg not forwarded to L3. | |
| 1550 // ---------------------------------------------------------------------- | |
| 1551 | |
| 1552 //Update Frequency list pointer | |
| 1553 l1pa_l1ps_com.cres_freq_list.alist = l1pa_l1ps_com.cres_freq_list.flist; | |
| 1554 | |
| 1555 // Rewind frequency list counters to come back to the first carrier of this | |
| 1556 // aborted session. | |
| 1557 l1pa_l1ps_com.cr_freq_list.next_to_read = 0; | |
| 1558 l1pa_l1ps_com.cr_freq_list.next_to_ctrl = 0; | |
| 1559 | |
| 1560 // Reset flags. | |
| 1561 l1pa_l1ps_com.cr_freq_list.ms_ctrl = 0; | |
| 1562 l1pa_l1ps_com.cr_freq_list.ms_ctrl_d = 0; | |
| 1563 l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd = 0; | |
| 1564 | |
| 1565 // Initialize timer | |
| 1566 time_to_wake_up = 0; | |
| 1567 time_to_4s = 866; | |
| 1568 time_to_1s = 216; | |
| 1569 fn_update = l1s.actual_time.fn; | |
| 1570 | |
| 1571 // Initialize Reporting Period | |
| 1572 reporting_period = l1s.actual_time.fn; | |
| 1573 | |
| 1574 // Initialize Cell reselection state machine and parameters | |
| 1575 state = NULL_MEAS; | |
| 1576 session_done = 0; | |
| 1577 session_done_1s = 0; | |
| 1578 schedule_trigger = TRUE; | |
| 1579 nbr_meas = 0; | |
| 1580 init_meas = TRUE; | |
| 1581 } | |
| 1582 #if FF_L1_IT_DSP_USF | |
| 1583 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 1584 #endif | |
| 1585 | |
| 1586 // Packet Idle Cell Relselection Power Measurements fonction if P_CRMS_MEAS task still enabled. | |
| 1587 // In case L1S has switched in GPRS packet transfer mode and L1S_TRANSFER_DONE message hasn't been processed yet | |
| 1588 // by L1A, no control or read task shall be done. | |
| 1589 | |
| 1590 if ((l1pa_l1ps_com.l1ps_en_meas & P_CRMS_MEAS) && !(l1pa_l1ps_com.meas_param & P_CRMS_MEAS) | |
| 1591 && (l1a_l1s_com.l1s_en_task[PDTCH] != TASK_ENABLED)) | |
| 1592 { | |
| 1593 #if FF_L1_IT_DSP_USF | |
| 1594 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 1595 { | |
| 1596 #endif | |
| 1597 // Update P_CRMS_MEAS timers | |
| 1598 { | |
| 1599 UWORD16 fn_diff; | |
| 1600 #define current_fn l1s.actual_time.fn | |
| 1601 | |
| 1602 // Compute Frame Number increment since last L1S activity | |
| 1603 if(current_fn >= fn_update) | |
| 1604 fn_diff = current_fn - fn_update; | |
| 1605 else | |
| 1606 fn_diff = (current_fn + MAX_FN) - fn_update; | |
| 1607 | |
| 1608 // Update timer | |
| 1609 time_to_4s -= fn_diff; | |
| 1610 | |
| 1611 if(time_to_4s <= 0) | |
| 1612 { | |
| 1613 time_to_4s += 866; | |
| 1614 session_done = 0; | |
| 1615 } | |
| 1616 | |
| 1617 time_to_1s -= fn_diff; | |
| 1618 | |
| 1619 if(time_to_1s <= 0) | |
| 1620 { | |
| 1621 time_to_1s += 216; | |
| 1622 session_done_1s = 0; | |
| 1623 } | |
| 1624 | |
| 1625 // Note: time to next meas position is negative during the meas. | |
| 1626 // session period | |
| 1627 time_to_wake_up -= fn_diff; | |
| 1628 | |
| 1629 fn_update = current_fn; | |
| 1630 } | |
| 1631 | |
| 1632 if(time_to_wake_up == 0) | |
| 1633 { | |
| 1634 // Schedule CR meas position for "PNP period >= 1s" case | |
| 1635 if(l1pa_l1ps_com.pccch.pnp_period >= 216) | |
| 1636 { | |
| 1637 switch (state) | |
| 1638 { | |
| 1639 case PCHTOTAL: | |
| 1640 case TOTAL: | |
| 1641 { | |
| 1642 nbr_meas = cr_list_size; | |
| 1643 | |
| 1644 // Measures is going to start, set "session_done" flag. | |
| 1645 // "session_done" flag must be set at the begining of a meas. session | |
| 1646 // in order to be able to detect crossing of the 4s boundary | |
| 1647 session_done = 1; | |
| 1648 } | |
| 1649 break; | |
| 1650 | |
| 1651 case NULL_MEAS: | |
| 1652 { | |
| 1653 nbr_meas = 0; | |
| 1654 } | |
| 1655 break; | |
| 1656 } | |
| 1657 } | |
| 1658 // Schedule CR meas position for "PNP period < 1s" case | |
| 1659 else | |
| 1660 { | |
| 1661 switch (state) | |
| 1662 { | |
| 1663 case NULL_MEAS: | |
| 1664 { | |
| 1665 nbr_meas = 0; | |
| 1666 } | |
| 1667 break; | |
| 1668 | |
| 1669 case MEAS: | |
| 1670 { | |
| 1671 UWORD8 max_nbmeas; | |
| 1672 WORD16 tpu_win_rest; | |
| 1673 UWORD16 power_meas_split; | |
| 1674 | |
| 1675 // Compute how many BP_SPLIT remains for cr list meas | |
| 1676 // Rem: we take into account the SYNTH load for 1st RX in next frame. | |
| 1677 // WARNING: only one RX activity is considered in next paging block !!! | |
| 1678 tpu_win_rest = FRAME_SPLIT - (RX_LOAD + l1_config.params.rx_synth_load_split); | |
| 1679 | |
| 1680 power_meas_split = (l1_config.params.rx_synth_load_split + PWR_LOAD); | |
| 1681 max_nbmeas = 0; | |
| 1682 | |
| 1683 while(tpu_win_rest >= power_meas_split) | |
| 1684 { | |
| 1685 max_nbmeas ++; | |
| 1686 tpu_win_rest -= power_meas_split; | |
| 1687 } | |
| 1688 | |
| 1689 if (max_nbmeas > NB_MEAS_MAX_GPRS) max_nbmeas = NB_MEAS_MAX_GPRS; | |
| 1690 | |
| 1691 // There is no more PPCH block before end of 1s period. | |
| 1692 // End remaining carriers. | |
| 1693 nbr_meas = Min(remain_carrier, 4*max_nbmeas); | |
| 1694 | |
| 1695 // Measures is going to start, set "session_done" flag. | |
| 1696 // "session_done_1s" flag must be set at the begining of a meas. session | |
| 1697 // in order to be able to detect crossing of the 1s boundary | |
| 1698 session_done_1s = 1; | |
| 1699 | |
| 1700 } | |
| 1701 break; | |
| 1702 | |
| 1703 case MEASTOTAL: | |
| 1704 { | |
| 1705 nbr_meas = remain_carrier; | |
| 1706 | |
| 1707 // Measures is going to start, set "session_done" flag. | |
| 1708 // "session_done_1s" flag must be set at the begining of a meas. session | |
| 1709 // in order to be able to detect crossing of the 1s boundary | |
| 1710 session_done_1s = 1; | |
| 1711 | |
| 1712 } | |
| 1713 break; | |
| 1714 } | |
| 1715 } // End of else ("PNP period < 1s" case) | |
| 1716 } | |
| 1717 | |
| 1718 /* --------------------------------------------------------------------*/ | |
| 1719 /* CTRL and READ phase carrying out. "nbr_meas" measures are performed */ | |
| 1720 /* --------------------------------------------------------------------*/ | |
| 1721 | |
| 1722 // ******************** | |
| 1723 // READ task if needed | |
| 1724 // ******************** | |
| 1725 if(l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd) | |
| 1726 // Background measurements.... | |
| 1727 // A measure CTRL was performed 2 tdma earlier, read result now. | |
| 1728 { | |
| 1729 UWORD16 radio_freq_read; | |
| 1730 UWORD8 pm_read[NB_MEAS_MAX_GPRS]; | |
| 1731 UWORD8 i; | |
| 1732 | |
| 1733 #define next_to_read l1pa_l1ps_com.cr_freq_list.next_to_read | |
| 1734 | |
| 1735 // When a READ is performed we set dsp_r_page_used flag to | |
| 1736 // switch the read page. | |
| 1737 l1s_dsp_com.dsp_r_page_used = TRUE; | |
| 1738 | |
| 1739 l1_check_com_mismatch(CR_MEAS_ID); | |
| 1740 | |
| 1741 // Read power measurement result from DSP/MCU GPRS interface | |
| 1742 l1pddsp_meas_read(l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd, pm_read); | |
| 1743 | |
| 1744 for(i=0; i<l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd; i++) | |
| 1745 { | |
| 1746 radio_freq_read = l1pa_l1ps_com.cres_freq_list.alist->freq_list[next_to_read]; | |
| 1747 | |
| 1748 // Traces and debug. | |
| 1749 // ****************** | |
| 1750 | |
| 1751 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
| 1752 trace_fct(CST_READ_CR_MEAS, radio_freq_read); | |
| 1753 #endif | |
| 1754 | |
| 1755 l1_check_pm_error(pm_read[i], CR_MEAS_ID); | |
| 1756 | |
| 1757 // Get Input level corresponding to the used IL and pm result. | |
| 1758 IL_for_rxlev = l1pctl_pgc(((UWORD8)(pm_read[i])), | |
| 1759 l1pa_l1ps_com.cr_freq_list.used_il_lna_dd[i].il, | |
| 1760 l1pa_l1ps_com.cr_freq_list.used_il_lna_dd[i].lna, | |
| 1761 radio_freq_read); | |
| 1762 | |
| 1763 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
| 1764 RTTL1_FILL_MON_MEAS(pm_read[i], IL_for_rxlev, CR_MEAS_ID, radio_freq_read) | |
| 1765 #endif | |
| 1766 | |
| 1767 // Check that cr_msg hasn't been erased. | |
| 1768 if (cr_msg == NULL) | |
| 1769 { | |
| 1770 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
| 1771 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 1772 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
| 1773 } | |
| 1774 | |
| 1775 #if (GSM_IDLE_RAM != 1) | |
| 1776 // Fill reporting message. | |
| 1777 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))-> | |
| 1778 ncell_meas[next_to_read].rxlev = l1s_encode_rxlev(IL_for_rxlev); | |
| 1779 #else | |
| 1780 // Fill reporting message. | |
| 1781 l1ps.ncell_meas_rxlev[next_to_read] = (WORD8) l1s_encode_rxlev(IL_for_rxlev); | |
| 1782 #endif | |
| 1783 // Increment "next_to_read" field for next measurement... | |
| 1784 if(++next_to_read >= cr_list_size) | |
| 1785 next_to_read = 0; | |
| 1786 }//end for | |
| 1787 | |
| 1788 // ********** | |
| 1789 // Reporting | |
| 1790 // ********** | |
| 1791 if(next_to_read == 0) | |
| 1792 { | |
| 1793 #if (GSM_IDLE_RAM == 1) | |
| 1794 // Check if memory for L1P_CR_MEAS_DONE msg is allocated | |
| 1795 if (cr_msg == NULL) | |
| 1796 { | |
| 1797 if (!READ_TRAFFIC_CONT_STATE) | |
| 1798 CSMI_TrafficControllerOn(); | |
| 1799 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
| 1800 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 1801 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
| 1802 } | |
| 1803 | |
| 1804 for(i=0; i<cr_list_size; i++) | |
| 1805 { | |
| 1806 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->ncell_meas[i].rxlev = l1ps.ncell_meas_rxlev[i]; | |
| 1807 // Fill reporting message. | |
| 1808 } | |
| 1809 #endif | |
| 1810 | |
| 1811 // Fill BA identifier field. | |
| 1812 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->list_id = l1pa_l1ps_com.cres_freq_list.alist->list_id; | |
| 1813 | |
| 1814 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->nmeas = cr_list_size; | |
| 1815 | |
| 1816 // Compute and Fill reporting period value | |
| 1817 if(l1s.actual_time.fn > reporting_period) | |
| 1818 reporting_period = l1s.actual_time.fn - reporting_period; | |
| 1819 else | |
| 1820 reporting_period = l1s.actual_time.fn - reporting_period + MAX_FN; | |
| 1821 | |
| 1822 ((T_L1P_CR_MEAS_DONE*)(cr_msg->SigP))->reporting_period = (UWORD16)reporting_period; | |
| 1823 | |
| 1824 reporting_period = l1s.actual_time.fn; | |
| 1825 | |
| 1826 // send L1P_CR_MEAS_DONE message... | |
| 1827 os_send_sig(cr_msg, L1C1_QUEUE); | |
| 1828 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
| 1829 | |
| 1830 // Reset pointer for debugg. | |
| 1831 cr_msg = NULL; | |
| 1832 } | |
| 1833 | |
| 1834 // Trigger measurement scheduler when meas. session is completed. | |
| 1835 // Note: A meas. session includes all carriers of the list "PNP period >= 1s case" | |
| 1836 // or only a sub-set of the CR freq list "PNP period < 1s case" | |
| 1837 if(!(l1pa_l1ps_com.cr_freq_list.ms_ctrl) && !(l1pa_l1ps_com.cr_freq_list.ms_ctrl_d)) | |
| 1838 schedule_trigger = TRUE; | |
| 1839 }// end of READ | |
| 1840 | |
| 1841 #if FF_L1_IT_DSP_USF | |
| 1842 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 1843 #endif | |
| 1844 | |
| 1845 // ********** | |
| 1846 // CTRL task | |
| 1847 // ********** | |
| 1848 | |
| 1849 #if FF_L1_IT_DSP_USF | |
| 1850 if (l1ps_macs_com.usf_status != USF_AWAITED) | |
| 1851 { | |
| 1852 #endif | |
| 1853 | |
| 1854 if (nbr_meas > 0) | |
| 1855 { | |
| 1856 if(l1s.forbid_meas < 2) | |
| 1857 { | |
| 1858 UWORD8 max_nbmeas; | |
| 1859 UWORD8 nb_meas_to_perform; | |
| 1860 UWORD16 radio_freq_ctrl; | |
| 1861 UWORD8 i; | |
| 1862 UWORD8 pw_position = 0; // indicates first time slot in frame available for PM | |
| 1863 WORD16 tpu_win_rest; | |
| 1864 UWORD16 power_meas_split; | |
| 1865 | |
| 1866 #define next_to_ctrl l1pa_l1ps_com.cr_freq_list.next_to_ctrl | |
| 1867 | |
| 1868 // Compute how many BP_SPLIT remains for cr list meas | |
| 1869 // Rem: we take into account the SYNTH load for 1st RX in next frame. | |
| 1870 tpu_win_rest = FRAME_SPLIT - l1s.tpu_win; | |
| 1871 power_meas_split = (l1_config.params.rx_synth_load_split + PWR_LOAD); | |
| 1872 max_nbmeas = 0; | |
| 1873 | |
| 1874 while(tpu_win_rest >= power_meas_split) | |
| 1875 { | |
| 1876 max_nbmeas ++; | |
| 1877 tpu_win_rest -= power_meas_split; | |
| 1878 } | |
| 1879 | |
| 1880 // Compute number of PM allowed in the Frame | |
| 1881 // Test if we are on a Paging frame | |
| 1882 if(l1pa_l1ps_com.cr_freq_list.pnp_ctrl > 0) pw_position = 1; | |
| 1883 | |
| 1884 // Test if PRACH controlled in the same frame | |
| 1885 if(l1s.tpu_win >= ((3 * BP_SPLIT) + l1_config.params.tx_ra_load_split | |
| 1886 + l1_config.params.rx_synth_load_split)) | |
| 1887 { | |
| 1888 pw_position = 4; | |
| 1889 } | |
| 1890 | |
| 1891 // Compute Number of measures to perform | |
| 1892 nb_meas_to_perform = cr_list_size - next_to_ctrl; | |
| 1893 | |
| 1894 if(nb_meas_to_perform > max_nbmeas) | |
| 1895 nb_meas_to_perform = max_nbmeas; | |
| 1896 | |
| 1897 if(nb_meas_to_perform > NB_MEAS_MAX_GPRS) | |
| 1898 nb_meas_to_perform = NB_MEAS_MAX_GPRS; | |
| 1899 | |
| 1900 if (nb_meas_to_perform > nbr_meas) | |
| 1901 nb_meas_to_perform = nbr_meas; | |
| 1902 | |
| 1903 for(i=0; i<nb_meas_to_perform; i++) | |
| 1904 { | |
| 1905 UWORD8 lna_off; | |
| 1906 WORD8 agc; | |
| 1907 UWORD8 input_level; | |
| 1908 #if (L1_FF_MULTIBAND == 1) | |
| 1909 UWORD16 operative_radio_freq; | |
| 1910 #endif | |
| 1911 | |
| 1912 radio_freq_ctrl = l1pa_l1ps_com.cres_freq_list.alist->freq_list[next_to_ctrl]; | |
| 1913 | |
| 1914 #if (L1_FF_MULTIBAND == 0) | |
| 1915 | |
| 1916 // Get AGC according to the last known IL. | |
| 1917 input_level = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].input_level; | |
| 1918 agc = Cust_get_agc_from_IL(radio_freq_ctrl,input_level >> 1, PWR_ID); | |
| 1919 lna_off = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].lna_off; | |
| 1920 | |
| 1921 | |
| 1922 // Memorize the IL and LNA used for AGC setting. | |
| 1923 //l1pa_l1ps_com.cr_freq_list.used_il_lna[i] = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset]; | |
| 1924 l1pa_l1ps_com.cr_freq_list.used_il_lna[i].il = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].input_level; | |
| 1925 l1pa_l1ps_com.cr_freq_list.used_il_lna[i].lna = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset].lna_off; | |
| 1926 | |
| 1927 #else // L1_FF_MULTIBAND = 1 below | |
| 1928 | |
| 1929 operative_radio_freq = | |
| 1930 l1_multiband_radio_freq_convert_into_operative_radio_freq(radio_freq_ctrl); | |
| 1931 | |
| 1932 input_level = | |
| 1933 l1a_l1s_com.last_input_level[operative_radio_freq].input_level; | |
| 1934 lna_off = | |
| 1935 l1a_l1s_com.last_input_level[operative_radio_freq].lna_off; | |
| 1936 agc = | |
| 1937 Cust_get_agc_from_IL(radio_freq_ctrl,input_level >> 1, PWR_ID); | |
| 1938 | |
| 1939 // Memorize the IL and LNA used for AGC setting. | |
| 1940 //l1pa_l1ps_com.cr_freq_list.used_il_lna[i] = l1a_l1s_com.last_input_level[radio_freq_ctrl - l1_config.std.radio_freq_index_offset]; | |
| 1941 l1pa_l1ps_com.cr_freq_list.used_il_lna[i].il = | |
| 1942 l1a_l1s_com.last_input_level[operative_radio_freq].input_level; | |
| 1943 l1pa_l1ps_com.cr_freq_list.used_il_lna[i].lna = | |
| 1944 l1a_l1s_com.last_input_level[operative_radio_freq].lna_off; | |
| 1945 | |
| 1946 #endif // #if (L1_FF_MULTIBAND == 0) else | |
| 1947 | |
| 1948 | |
| 1949 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
| 1950 trace_fct(CST_CTRL_CR_MEAS, -1); | |
| 1951 #endif | |
| 1952 | |
| 1953 #if(RF_FAM == 61) // Locosto DCO | |
| 1954 #if (PWMEAS_IF_MODE_FORCE == 0) | |
| 1955 cust_get_if_dco_ctl_algo(&dco_algo_ctl_pw_temp, &if_ctl, (UWORD8) L1_IL_VALID , | |
| 1956 input_level, | |
| 1957 radio_freq_ctrl, if_threshold); | |
| 1958 #else | |
| 1959 if_ctl = IF_120KHZ_DSP; | |
| 1960 dco_algo_ctl_pw_temp = DCO_IF_0KHZ; | |
| 1961 #endif | |
| 1962 | |
| 1963 dco_algo_ctl_pw |= ( (dco_algo_ctl_pw_temp & 0x03)<< (i*2)); | |
| 1964 #endif | |
| 1965 | |
| 1966 | |
| 1967 // tpu pgm: 1 measurement only. | |
| 1968 l1dtpu_meas(radio_freq_ctrl, | |
| 1969 agc, | |
| 1970 lna_off, | |
| 1971 l1s.tpu_win, | |
| 1972 l1s.tpu_offset,INACTIVE | |
| 1973 #if(RF_FAM == 61) | |
| 1974 ,L1_AFC_SCRIPT_MODE | |
| 1975 ,if_ctl | |
| 1976 #endif | |
| 1977 ); | |
| 1978 | |
| 1979 // increment carrier counter for next measurement... | |
| 1980 if(++next_to_ctrl >= cr_list_size) | |
| 1981 next_to_ctrl = 0; | |
| 1982 | |
| 1983 #if L2_L3_SIMUL | |
| 1984 #if (DEBUG_TRACE == BUFFER_TRACE_OFFSET_NEIGH) | |
| 1985 buffer_trace(4, l1s.actual_time.fn, radio_freq_ctrl, | |
| 1986 l1s.tpu_win, 0); | |
| 1987 #endif | |
| 1988 #endif | |
| 1989 | |
| 1990 // Increment tpu window identifier. | |
| 1991 l1s.tpu_win += (l1_config.params.rx_synth_load_split + PWR_LOAD); | |
| 1992 | |
| 1993 } // End for(...nb_meas_to_perform) | |
| 1994 | |
| 1995 #if(RF_FAM == 61) | |
| 1996 l1ddsp_load_dco_ctl_algo_pw(dco_algo_ctl_pw); | |
| 1997 #endif | |
| 1998 | |
| 1999 | |
| 2000 // Program DSP, in order to performed nb_meas_to_perform measures | |
| 2001 // Second argument specifies if a Rx burst will be received in this frame | |
| 2002 l1pddsp_meas_ctrl(nb_meas_to_perform, pw_position); | |
| 2003 | |
| 2004 // Update d_debug timer | |
| 2005 l1s_dsp_com.dsp_db_w_ptr->d_debug = (l1s.debug_time + 2) ; | |
| 2006 | |
| 2007 | |
| 2008 // Flag measurement control. | |
| 2009 // ************************** | |
| 2010 | |
| 2011 // Set flag "ms_ctrl" to nb_meas_to_perform. | |
| 2012 // It will be used as 2 tdma delayed to trigger Read phase. | |
| 2013 l1pa_l1ps_com.cr_freq_list.ms_ctrl = nb_meas_to_perform; | |
| 2014 | |
| 2015 // Flag DSP and TPU programmation. | |
| 2016 // ******************************** | |
| 2017 | |
| 2018 // Set "CTRL_MS" flag in the controle flag register. | |
| 2019 l1s.tpu_ctrl_reg |= CTRL_MS; | |
| 2020 l1s.dsp_ctrl_reg |= CTRL_MS; | |
| 2021 | |
| 2022 // Update nbr_meas | |
| 2023 nbr_meas -= nb_meas_to_perform; | |
| 2024 | |
| 2025 // Update remainig measurements to performed according meas done | |
| 2026 //remain_carrier -= nb_meas_to_perform; | |
| 2027 | |
| 2028 } // End of test on is PBCCHS, FB/SB or BCCHN task active | |
| 2029 } //end ctrl | |
| 2030 | |
| 2031 #if FF_L1_IT_DSP_USF | |
| 2032 } // if (l1ps_macs_com.usf_status != USF_AWAITED) | |
| 2033 | |
| 2034 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 2035 { | |
| 2036 #endif | |
| 2037 | |
| 2038 // If it's time, update time to next measures position and state | |
| 2039 // Two cases are considered: "pnp_period >= 1s" and "pnp_period < 1s" | |
| 2040 | |
| 2041 if(schedule_trigger) | |
| 2042 { | |
| 2043 BOOL condition = FALSE; | |
| 2044 | |
| 2045 schedule_trigger = FALSE; | |
| 2046 | |
| 2047 // Compute time to next session of measures for "PNP period >= 1s" case | |
| 2048 if(l1pa_l1ps_com.pccch.pnp_period >= 216) | |
| 2049 { | |
| 2050 while(!condition) | |
| 2051 { | |
| 2052 switch(state) | |
| 2053 { | |
| 2054 case NULL_MEAS: | |
| 2055 { | |
| 2056 #if (GSM_IDLE_RAM != 1) | |
| 2057 // Check if memory for L1P_CR_MEAS_DONE msg is allocated | |
| 2058 if (cr_msg == NULL) | |
| 2059 { | |
| 2060 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
| 2061 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 2062 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
| 2063 } | |
| 2064 #endif | |
| 2065 | |
| 2066 if((l1pa_l1ps_com.pccch.time_to_pnp > ((866 * session_done) + time_to_4s)) && | |
| 2067 (l1pa_l1ps_com.pccch.pnp_period >= 866)) | |
| 2068 { | |
| 2069 state = TOTAL; | |
| 2070 time_to_wake_up = (433 + time_to_4s * session_done); | |
| 2071 condition = TRUE; | |
| 2072 } | |
| 2073 else | |
| 2074 { | |
| 2075 state = PCHTOTAL; | |
| 2076 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
| 2077 condition = TRUE; | |
| 2078 } | |
| 2079 } | |
| 2080 break; | |
| 2081 | |
| 2082 case TOTAL: | |
| 2083 case PCHTOTAL: | |
| 2084 state = NULL_MEAS; | |
| 2085 break; | |
| 2086 } | |
| 2087 } | |
| 2088 } // End of "PNP period >= 1s" case | |
| 2089 else | |
| 2090 // Compute time to next session of measures for "PNP period < 1s" case | |
| 2091 { | |
| 2092 while(!condition) | |
| 2093 { | |
| 2094 switch(state) | |
| 2095 { | |
| 2096 case NULL_MEAS: | |
| 2097 { | |
| 2098 // Let's assume a small frequency list size | |
| 2099 // and a PNP period such that PM are performed | |
| 2100 // on first PPCH block and then stopped. PM activity | |
| 2101 // must be re-scheduled at the end of PPCH block. | |
| 2102 if((l1pa_l1ps_com.pccch.time_to_pnp < time_to_1s) && !(init_meas)) | |
| 2103 { | |
| 2104 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
| 2105 schedule_trigger = TRUE; | |
| 2106 condition = TRUE; | |
| 2107 } | |
| 2108 else | |
| 2109 { | |
| 2110 #if (GSM_IDLE_RAM == 0) | |
| 2111 // Check if memory for L1P_CR_MEAS_DONE msg is allocated | |
| 2112 if (cr_msg == NULL) | |
| 2113 { | |
| 2114 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
| 2115 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 2116 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
| 2117 } | |
| 2118 #endif | |
| 2119 | |
| 2120 state = MEAS; | |
| 2121 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
| 2122 remain_carrier = (WORD8)cr_list_size; | |
| 2123 condition = TRUE; | |
| 2124 } | |
| 2125 } | |
| 2126 break; | |
| 2127 | |
| 2128 case MEAS: | |
| 2129 { | |
| 2130 UWORD8 max_nbmeas; | |
| 2131 WORD16 tpu_win_rest; | |
| 2132 UWORD16 power_meas_split; | |
| 2133 | |
| 2134 // Compute how many BP_SPLIT remains for cr list meas | |
| 2135 // Rem: we take into account the SYNTH load for 1st RX in next frame. | |
| 2136 // WARNING: only one RX activity is considered in next paging block !!! | |
| 2137 tpu_win_rest = FRAME_SPLIT - (RX_LOAD + l1_config.params.rx_synth_load_split); | |
| 2138 | |
| 2139 power_meas_split = (l1_config.params.rx_synth_load_split + PWR_LOAD); | |
| 2140 max_nbmeas = 0; | |
| 2141 | |
| 2142 while(tpu_win_rest >= power_meas_split) | |
| 2143 { | |
| 2144 max_nbmeas ++; | |
| 2145 tpu_win_rest -= power_meas_split; | |
| 2146 } | |
| 2147 | |
| 2148 if (max_nbmeas > NB_MEAS_MAX_GPRS) max_nbmeas = NB_MEAS_MAX_GPRS; | |
| 2149 | |
| 2150 // Update number of remaining carrier to measure. | |
| 2151 // Note: std.nbmeas provides max nbr of PM / TDMA | |
| 2152 remain_carrier -= 4 * max_nbmeas; | |
| 2153 | |
| 2154 if(remain_carrier <= 0) | |
| 2155 state = NULL_MEAS; | |
| 2156 else | |
| 2157 { | |
| 2158 if((l1pa_l1ps_com.pccch.time_to_pnp >= time_to_1s) || !(session_done_1s)) | |
| 2159 { | |
| 2160 state = MEASTOTAL; | |
| 2161 time_to_wake_up = 1; | |
| 2162 condition = TRUE; | |
| 2163 } | |
| 2164 else | |
| 2165 { | |
| 2166 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
| 2167 condition = TRUE; | |
| 2168 } | |
| 2169 } | |
| 2170 } | |
| 2171 break; | |
| 2172 | |
| 2173 case MEASTOTAL: | |
| 2174 { | |
| 2175 #if (GSM_IDLE_RAM != 1) | |
| 2176 // Check if memory for L1P_CR_MEAS_DONE msg is allocated | |
| 2177 if (cr_msg == NULL) | |
| 2178 { | |
| 2179 cr_msg = os_alloc_sig(sizeof(T_L1P_CR_MEAS_DONE)); | |
| 2180 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 2181 cr_msg->SignalCode = L1P_CR_MEAS_DONE; | |
| 2182 } | |
| 2183 #endif | |
| 2184 | |
| 2185 state = MEAS; | |
| 2186 time_to_wake_up = l1pa_l1ps_com.pccch.time_to_pnp; | |
| 2187 remain_carrier = (WORD8)cr_list_size; | |
| 2188 condition = TRUE; | |
| 2189 } | |
| 2190 break; | |
| 2191 } | |
| 2192 } // End of while | |
| 2193 } // End of else ("PNP period < 1s" case) | |
| 2194 } // End of if(schedule_trigger) | |
| 2195 | |
| 2196 #if FF_L1_IT_DSP_USF | |
| 2197 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 2198 | |
| 2199 if (l1ps_macs_com.usf_status != USF_AWAITED) | |
| 2200 { | |
| 2201 #endif | |
| 2202 | |
| 2203 // Update time to next L1S task | |
| 2204 if((l1pa_l1ps_com.cr_freq_list.ms_ctrl) || | |
| 2205 (l1pa_l1ps_com.cr_freq_list.ms_ctrl_d)) | |
| 2206 { | |
| 2207 // Still some measurement results to get from DSP | |
| 2208 l1a_l1s_com.time_to_next_l1s_task = 0; | |
| 2209 } | |
| 2210 else | |
| 2211 { | |
| 2212 // No more measurements to read, next session of meas must | |
| 2213 // be at time_to_wake_up | |
| 2214 Select_min_time(time_to_wake_up, l1a_l1s_com.time_to_next_l1s_task); | |
| 2215 } | |
| 2216 | |
| 2217 // Clear controlled flag pnp_ctrl. | |
| 2218 //------------------------------- | |
| 2219 l1pa_l1ps_com.cr_freq_list.pnp_ctrl = 0; | |
| 2220 | |
| 2221 // C W R pipeline management. | |
| 2222 //--------------------------- | |
| 2223 l1pa_l1ps_com.cr_freq_list.ms_ctrl_dd = l1pa_l1ps_com.cr_freq_list.ms_ctrl_d; | |
| 2224 l1pa_l1ps_com.cr_freq_list.ms_ctrl_d = l1pa_l1ps_com.cr_freq_list.ms_ctrl; | |
| 2225 l1pa_l1ps_com.cr_freq_list.ms_ctrl = 0; | |
| 2226 | |
| 2227 // C W R pipeline management. | |
| 2228 //--------------------------- | |
| 2229 { | |
| 2230 UWORD8 i; | |
| 2231 | |
| 2232 for(i=0; i<NB_MEAS_MAX_GPRS; i++) | |
| 2233 { | |
| 2234 l1pa_l1ps_com.cr_freq_list.used_il_lna_dd[i] = l1pa_l1ps_com.cr_freq_list.used_il_lna_d[i]; | |
| 2235 l1pa_l1ps_com.cr_freq_list.used_il_lna_d [i] = l1pa_l1ps_com.cr_freq_list.used_il_lna [i]; | |
| 2236 } | |
| 2237 } | |
| 2238 | |
| 2239 #if FF_L1_IT_DSP_USF | |
| 2240 } // if (l1ps_macs_com.usf_status != USF_AWAITED) | |
| 2241 #endif | |
| 2242 } // End of if: P_CRMS_MEAS enable and associated semaphore = 0. | |
| 2243 | |
| 2244 } | |
| 2245 | |
| 2246 //#pragma GSM_IDLE_DUPLICATE_FOR_INTERNAL_RAM_END | |
| 2247 #endif | |
| 2248 | |
| 2249 | |
| 2250 #if (MOVE_IN_INTERNAL_RAM == 0) // Must be followed by the pragma used to duplicate the funtion in internal RAM | |
| 2251 //#pragma DUPLICATE_FOR_INTERNAL_RAM_START | |
| 2252 | |
| 2253 /*-------------------------------------------------------*/ | |
| 2254 /* l1ps_transfer_meas_manager() */ | |
| 2255 /*-------------------------------------------------------*/ | |
| 2256 /* */ | |
| 2257 /* Description: */ | |
| 2258 /* ------------ */ | |
| 2259 /* Whilst in Packet Transfer mode, MS shall continuously */ | |
| 2260 /* monitor all the BCCH carriers as indicated by a */ | |
| 2261 /* frequency list (BA(GPRS), Network Control frequency */ | |
| 2262 /* list and Extended list) and the BCCH carrier of the */ | |
| 2263 /* serving cell. Received signal level is used to monitor*/ | |
| 2264 /* the specified neighbour BCCH carriers. */ | |
| 2265 /* */ | |
| 2266 /* Receive signal level measurement samples shall be */ | |
| 2267 /* performed according to the following conditions: */ | |
| 2268 /* */ | |
| 2269 /* 1) At least 1 measure shall be done every TDMA, */ | |
| 2270 /* 2) Up to 2 TDMA frames per PDCH multiframe may be */ | |
| 2271 /* omitted if required for BSIC decoding, */ | |
| 2272 /* 3) Running average value (RLA_P) is based on a 5s */ | |
| 2273 /* period and includes at least 5 measure samples, */ | |
| 2274 /* 4) The same number of measures shall be taken for all */ | |
| 2275 /* BCCH carriers except: */ | |
| 2276 /* i) For the Serving Cell, where at least 6 measures */ | |
| 2277 /* shall be taken per MF52, */ | |
| 2278 /* ii) if PC_MEAS_CHAN indicates that power control */ | |
| 2279 /* measures shall be made on BCCH. */ | |
| 2280 /* 5) Measures used to compute RLA_P shall as far as */ | |
| 2281 /* possible be uniformly distributed, */ | |
| 2282 /*-------------------------------------------------------*/ | |
| 2283 void l1ps_transfer_meas_manager() | |
| 2284 { | |
| 2285 UWORD8 IL_for_rxlev; | |
| 2286 | |
| 2287 static xSignalHeaderRec *tcr_msg = NULL; | |
| 2288 | |
| 2289 static BOOL tcr_meas_removed = FALSE; | |
| 2290 | |
| 2291 #define tcr_next_to_read l1pa_l1ps_com.tcr_freq_list.tcr_next_to_read | |
| 2292 #define tcr_next_to_ctrl l1pa_l1ps_com.tcr_freq_list.tcr_next_to_ctrl | |
| 2293 #define last_stored_tcr_to_read l1pa_l1ps_com.tcr_freq_list.last_stored_tcr_to_read | |
| 2294 | |
| 2295 | |
| 2296 #if FF_L1_IT_DSP_USF | |
| 2297 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 2298 { | |
| 2299 #endif | |
| 2300 | |
| 2301 // Test if task is disabled and cr_msg != NULL, then de-allocate memory | |
| 2302 if(tcr_msg != NULL) | |
| 2303 { | |
| 2304 if(!(l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) && | |
| 2305 !(l1pa_l1ps_com.meas_param & P_TCRMS_MEAS)) | |
| 2306 { | |
| 2307 // Neighbour measurement process has been stopped by L3 | |
| 2308 // Deallocate memory for the received message if msg not forwarded to L3. | |
| 2309 // ---------------------------------------------------------------------- | |
| 2310 os_free_sig(tcr_msg); | |
| 2311 DEBUGMSG(status,NU_DEALLOC_ERR) | |
| 2312 | |
| 2313 tcr_msg = NULL; | |
| 2314 } | |
| 2315 } | |
| 2316 | |
| 2317 #if FF_L1_IT_DSP_USF | |
| 2318 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 2319 #endif | |
| 2320 | |
| 2321 if(l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) | |
| 2322 { | |
| 2323 | |
| 2324 #if FF_L1_IT_DSP_USF | |
| 2325 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 2326 { | |
| 2327 #endif | |
| 2328 | |
| 2329 // Increment l1pa_l1ps_com.tcr_freq_list.cres_meas_report | |
| 2330 if(++l1pa_l1ps_com.tcr_freq_list.cres_meas_report > 103) | |
| 2331 l1pa_l1ps_com.tcr_freq_list.cres_meas_report = 0; | |
| 2332 | |
| 2333 // Check if it's first time, Neighbour Measurement process is launched. | |
| 2334 // Then initialize fn_report counter and reset semaphore. | |
| 2335 if(l1pa_l1ps_com.meas_param & P_TCRMS_MEAS) | |
| 2336 { | |
| 2337 // Initialize counter used to report measurements | |
| 2338 l1pa_l1ps_com.tcr_freq_list.cres_meas_report = 0; | |
| 2339 | |
| 2340 // Reset Neighbour Measurements semaphore | |
| 2341 l1pa_l1ps_com.meas_param &= P_TCRMS_MEAS_MASK; | |
| 2342 } | |
| 2343 | |
| 2344 //==================================================== | |
| 2345 // RESET MEASUREMENT MACHINES WHEN SYNCHRO EXECUTED. | |
| 2346 //==================================================== | |
| 2347 if(l1s.tpu_ctrl_reg & CTRL_SYNC) | |
| 2348 // SYNCHRO task has been executed. | |
| 2349 // -> Reset measures made on serving cell, | |
| 2350 // -> Rewind pointer used in Neighbour Cell measurement, | |
| 2351 // -> return. | |
| 2352 { | |
| 2353 | |
| 2354 // Reset Neighbour Cell measurement machine. | |
| 2355 // Rewind "next_to_ctrl" counter to come back to the next carrier to | |
| 2356 // measure. | |
| 2357 tcr_next_to_ctrl = tcr_next_to_read; | |
| 2358 | |
| 2359 // Reset flags. | |
| 2360 l1pa_l1ps_com.tcr_freq_list.ms_ctrl = 0; | |
| 2361 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d = 0; | |
| 2362 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd = 0; | |
| 2363 | |
| 2364 // Reset measures made on beacon frequency. | |
| 2365 l1pa_l1ps_com.tcr_freq_list.beacon_meas = 0; | |
| 2366 } | |
| 2367 | |
| 2368 // ******************* | |
| 2369 // Message Allocation | |
| 2370 // ******************* | |
| 2371 // The reporting message must be allocated before READ phase. | |
| 2372 | |
| 2373 if(l1pa_l1ps_com.tcr_freq_list.cres_meas_report == 2) | |
| 2374 { | |
| 2375 // Memory allocation | |
| 2376 if (tcr_msg == NULL) | |
| 2377 { | |
| 2378 // alloc L1P_TCR_MEAS_DONE message... | |
| 2379 tcr_msg = os_alloc_sig(sizeof(T_MPHP_TCR_MEAS_IND)); | |
| 2380 DEBUGMSG(status,NU_ALLOC_ERR) | |
| 2381 tcr_msg->SignalCode = L1P_TCR_MEAS_DONE; | |
| 2382 } | |
| 2383 | |
| 2384 l1pa_l1ps_com.tcr_freq_list.first_pass_flag = TRUE; | |
| 2385 } | |
| 2386 | |
| 2387 //------------------------------------------------------ | |
| 2388 // READ and CTRL phase of the Neighbour Measurement task | |
| 2389 //------------------------------------------------------ | |
| 2390 | |
| 2391 //----------- | |
| 2392 // READ phase | |
| 2393 //----------- | |
| 2394 | |
| 2395 // Test if Measurment has been removed (ms_ctrl_d forced to 0) during | |
| 2396 // previous frame, then switch DSP read page. | |
| 2397 if (tcr_meas_removed) | |
| 2398 { | |
| 2399 l1s_dsp_com.dsp_r_page_used = TRUE; | |
| 2400 tcr_meas_removed = FALSE; | |
| 2401 } | |
| 2402 | |
| 2403 // Background measurements.... | |
| 2404 // A measurement controle was performed 2 tdma earlier, read result now!! | |
| 2405 if(l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd != 0) | |
| 2406 { | |
| 2407 UWORD16 radio_freq_read; | |
| 2408 UWORD8 pm_read; | |
| 2409 | |
| 2410 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
| 2411 trace_fct(CST_READ_TCR_MEAS, (UWORD32)(-1)); | |
| 2412 #endif | |
| 2413 | |
| 2414 l1_check_com_mismatch(TCR_MEAS_ID); | |
| 2415 | |
| 2416 // When a read is performed, we set dsp_r_page_used flag to | |
| 2417 // switch the read page | |
| 2418 l1s_dsp_com.dsp_r_page_used = TRUE; | |
| 2419 | |
| 2420 // Read power measurement result from DSP/MCU GPRS interface | |
| 2421 l1pddsp_meas_read(l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd, &pm_read); | |
| 2422 | |
| 2423 l1_check_pm_error(pm_read, TCR_MEAS_ID); | |
| 2424 | |
| 2425 radio_freq_read = l1pa_l1ps_com.cres_freq_list.alist->freq_list[tcr_next_to_read]; | |
| 2426 | |
| 2427 // Get Input level corresponding to the used IL and pm result. | |
| 2428 IL_for_rxlev = l1pctl_pgc(((UWORD8) (pm_read)), | |
| 2429 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.il, | |
| 2430 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.lna, | |
| 2431 radio_freq_read); | |
| 2432 | |
| 2433 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
| 2434 RTTL1_FILL_MON_MEAS(pm_read, IL_for_rxlev, TCR_MEAS_ID, radio_freq_read) | |
| 2435 #endif | |
| 2436 | |
| 2437 | |
| 2438 if(l1pa_l1ps_com.tcr_freq_list.first_pass_flag) | |
| 2439 { | |
| 2440 // Fill reporting message: Store RXLEV | |
| 2441 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_level[tcr_next_to_read] = | |
| 2442 l1s_encode_rxlev(IL_for_rxlev); | |
| 2443 | |
| 2444 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_nbmeas[tcr_next_to_read] = 1; | |
| 2445 } | |
| 2446 else | |
| 2447 { | |
| 2448 // Fill reporting message: Accumulate RXLEV | |
| 2449 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_level[tcr_next_to_read] += | |
| 2450 l1s_encode_rxlev(IL_for_rxlev); | |
| 2451 | |
| 2452 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->acc_nbmeas[tcr_next_to_read] += 1; | |
| 2453 | |
| 2454 } | |
| 2455 | |
| 2456 // Increment "next_to_read" field for next measurement... | |
| 2457 if(++tcr_next_to_read >= l1pa_l1ps_com.cres_freq_list.alist->nb_carrier) | |
| 2458 { | |
| 2459 tcr_next_to_read = 0; | |
| 2460 } | |
| 2461 | |
| 2462 // First pass has been completed on all BA list, reset "first_pass_flag" | |
| 2463 if(tcr_next_to_read == last_stored_tcr_to_read) | |
| 2464 l1pa_l1ps_com.tcr_freq_list.first_pass_flag = FALSE; | |
| 2465 | |
| 2466 } // End of READ phase | |
| 2467 | |
| 2468 | |
| 2469 // ************************ | |
| 2470 // Reporting & List Update | |
| 2471 // ************************ | |
| 2472 if(l1pa_l1ps_com.tcr_freq_list.cres_meas_report == 1) | |
| 2473 { | |
| 2474 if(tcr_msg != NULL) | |
| 2475 { | |
| 2476 // Fill TCR list identifier field. | |
| 2477 ((T_L1P_TCR_MEAS_DONE*)(tcr_msg->SigP))->list_id = l1pa_l1ps_com.cres_freq_list.alist->list_id; | |
| 2478 | |
| 2479 // send L1P_TCR_MEAS_DONE message... | |
| 2480 os_send_sig(tcr_msg, L1C1_QUEUE); | |
| 2481 DEBUGMSG(status,NU_SEND_QUEUE_ERR) | |
| 2482 | |
| 2483 // Reset pointer for debugg. | |
| 2484 tcr_msg = NULL; | |
| 2485 } | |
| 2486 | |
| 2487 // Update Frequency list pointer and reset new list flag | |
| 2488 if(l1pa_l1ps_com.tcr_freq_list.new_list_present) | |
| 2489 { | |
| 2490 //Update Frequency list pointer | |
| 2491 l1pa_l1ps_com.cres_freq_list.alist = l1pa_l1ps_com.cres_freq_list.flist; | |
| 2492 | |
| 2493 // Test if a Meas has been controlled in previous frame | |
| 2494 // Then set tcr_meas_removed flag in order to switch DSP read page in next frame | |
| 2495 if(l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d != 0) | |
| 2496 { | |
| 2497 tcr_meas_removed = TRUE; | |
| 2498 } | |
| 2499 | |
| 2500 // Reset pointer | |
| 2501 tcr_next_to_ctrl = 0; | |
| 2502 tcr_next_to_read = 0; | |
| 2503 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d = 0; | |
| 2504 | |
| 2505 // Reset New list flag | |
| 2506 l1pa_l1ps_com.tcr_freq_list.new_list_present = FALSE; | |
| 2507 } | |
| 2508 | |
| 2509 // While reporting, save Last "tcr_next_to_read" value to know when reset "first_pass_flag" | |
| 2510 last_stored_tcr_to_read = tcr_next_to_read; | |
| 2511 } | |
| 2512 | |
| 2513 //----------- | |
| 2514 // CTRL phase | |
| 2515 //----------- | |
| 2516 | |
| 2517 // CTRL phase is divided in two parts according measures allocated by MACS. | |
| 2518 // CTRL phase must then be exported in CTRL PDTCH function except for the Idle | |
| 2519 // frame where no PDTCH are programmed. | |
| 2520 // A measure can be performed during the idle frame, only if FB/SB/PTCCH | |
| 2521 // and Interference Measurement task is not active. | |
| 2522 if(!(l1pa_l1ps_com.meas_param & P_TCRMS_MEAS)) | |
| 2523 { | |
| 2524 if((l1s.actual_time.t2 == 24) || (l1s.actual_time.t2 == 11)) | |
| 2525 { | |
| 2526 if(l1s.forbid_meas == 0) | |
| 2527 { | |
| 2528 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
| 2529 trace_fct(CST_CTRL_TCR_MEAS_2,(UWORD32)(-1)); | |
| 2530 #endif | |
| 2531 | |
| 2532 l1ps_tcr_ctrl(0); | |
| 2533 } | |
| 2534 } | |
| 2535 } | |
| 2536 | |
| 2537 #if FF_L1_IT_DSP_USF | |
| 2538 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 2539 #endif | |
| 2540 | |
| 2541 #if FF_L1_IT_DSP_USF | |
| 2542 if (l1ps_macs_com.usf_status != USF_AWAITED) | |
| 2543 { | |
| 2544 #endif | |
| 2545 | |
| 2546 // Pipe Manager | |
| 2547 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_dd = l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d; | |
| 2548 l1pa_l1ps_com.tcr_freq_list.ms_ctrl_d = l1pa_l1ps_com.tcr_freq_list.ms_ctrl; | |
| 2549 l1pa_l1ps_com.tcr_freq_list.ms_ctrl = 0; | |
| 2550 | |
| 2551 #if FF_L1_IT_DSP_USF | |
| 2552 } // if (l1ps_macs_com.usf_status != USF_AWAITED) | |
| 2553 #endif | |
| 2554 | |
| 2555 } // End of if(l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) | |
| 2556 | |
| 2557 /*****************************/ | |
| 2558 /* PC_MEAS_CHAN measurements */ | |
| 2559 /*****************************/ | |
| 2560 | |
| 2561 // If PC_MEAS_CHAN = 1, then BCCH serving cell carrier must be | |
| 2562 // measured at least 6 times per MF52. | |
| 2563 // CTRL of Serving Cell Carrier is performed two TDMA earlier. | |
| 2564 if(l1pa_l1ps_com.transfer.aset->pc_meas_chan == FALSE) | |
| 2565 { | |
| 2566 | |
| 2567 #if FF_L1_IT_DSP_USF | |
| 2568 if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 2569 { | |
| 2570 #endif | |
| 2571 | |
| 2572 if(l1s.tpu_ctrl_reg & CTRL_SYNC) | |
| 2573 // SYNCHRO task has been executed. | |
| 2574 { | |
| 2575 l1ps.pc_meas_chan_ctrl = FALSE; | |
| 2576 } | |
| 2577 | |
| 2578 //----------- | |
| 2579 // READ phase | |
| 2580 //----------- | |
| 2581 | |
| 2582 if ((l1ps.pc_meas_chan_ctrl == TRUE) && | |
| 2583 ((l1s.actual_time.t2 == 3) || (l1s.actual_time.t2 == 11) | |
| 2584 || (l1s.actual_time.t2 == 20))) | |
| 2585 { | |
| 2586 UWORD8 pm_read; | |
| 2587 | |
| 2588 l1_check_com_mismatch(PC_MEAS_CHAN_ID); | |
| 2589 | |
| 2590 // When a read is performed, we set dsp_r_page_used flag to | |
| 2591 // switch the read page | |
| 2592 l1s_dsp_com.dsp_r_page_used = TRUE; | |
| 2593 | |
| 2594 // Read power measurement result from DSP/MCU GPRS interface | |
| 2595 l1pddsp_meas_read(1, &pm_read); | |
| 2596 | |
| 2597 | |
| 2598 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
| 2599 trace_fct(CST_READ_PC_MEAS_CHAN,(UWORD32)(-1)); | |
| 2600 #endif | |
| 2601 | |
| 2602 l1_check_pm_error(pm_read, PC_MEAS_CHAN_ID); | |
| 2603 | |
| 2604 l1ps.pc_meas_chan_ctrl = FALSE; | |
| 2605 | |
| 2606 // Get Input level corresponding to the used IL and pm result. | |
| 2607 IL_for_rxlev = l1pctl_pgc(((UWORD8 )(pm_read)), | |
| 2608 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.il, | |
| 2609 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd.lna, | |
| 2610 l1a_l1s_com.Scell_info.radio_freq); | |
| 2611 | |
| 2612 #if (TRACE_TYPE == 1) || (TRACE_TYPE == 4) | |
| 2613 RTTL1_FILL_MON_MEAS(pm_read, IL_for_rxlev, PC_MEAS_CHAN_ID, l1a_l1s_com.Scell_info.radio_freq) | |
| 2614 #endif | |
| 2615 | |
| 2616 if (l1a_l1s_com.mode == PACKET_TRANSFER_MODE) | |
| 2617 // Store RXLEV, before to pass it to maca_power_control() function.. | |
| 2618 l1pa_l1ps_com.tcr_freq_list.beacon_meas = l1s_encode_rxlev(IL_for_rxlev); | |
| 2619 } | |
| 2620 | |
| 2621 //----------- | |
| 2622 // CTRL phase | |
| 2623 //----------- | |
| 2624 | |
| 2625 // In two phase access, PC_MEAS_CHAN measurements can be done... | |
| 2626 if((l1a_l1s_com.l1s_en_task[SINGLE] == TASK_ENABLED) && | |
| 2627 (l1pa_l1ps_com.transfer.aset->allocated_tbf == TWO_PHASE_ACCESS)) | |
| 2628 if (l1s.task_status[NP].current_status != ACTIVE) // avoid conflict with Normal Paging | |
| 2629 if (l1s.task_status[EP].current_status != ACTIVE) // avoid conflict with Extended Paging | |
| 2630 { | |
| 2631 // Measurement on the beacon | |
| 2632 if((l1s.actual_time.t2 == 1) || (l1s.actual_time.t2 == 9) || | |
| 2633 (l1s.actual_time.t2 == 18)) | |
| 2634 { | |
| 2635 // Measurement programming | |
| 2636 // ts 4 is specified for DSP interface ONLY because the power activity | |
| 2637 // must be programmed after RX and/or TX activity (no multislot) | |
| 2638 #if (TRACE_TYPE!=0) && (TRACE_TYPE!=5) | |
| 2639 trace_fct(CST_CTRL_PC_MEAS_CHAN, (UWORD32)(-1)); | |
| 2640 #endif | |
| 2641 | |
| 2642 l1ps_bcch_meas_ctrl(4); | |
| 2643 } | |
| 2644 } | |
| 2645 | |
| 2646 #if FF_L1_IT_DSP_USF | |
| 2647 } // if (l1ps_macs_com.usf_status != USF_IT_DSP) | |
| 2648 #endif | |
| 2649 | |
| 2650 } // End of Meas made on BCCH serving cell | |
| 2651 | |
| 2652 #if FF_L1_IT_DSP_USF | |
| 2653 if (l1ps_macs_com.usf_status != USF_AWAITED) | |
| 2654 { | |
| 2655 #endif | |
| 2656 | |
| 2657 if((l1pa_l1ps_com.l1ps_en_meas & P_TCRMS_MEAS) || (l1ps.pc_meas_chan_ctrl == TRUE)) | |
| 2658 { | |
| 2659 // C W R pipeline management. | |
| 2660 //--------------------------- | |
| 2661 l1pa_l1ps_com.tcr_freq_list.used_il_lna_dd = l1pa_l1ps_com.tcr_freq_list.used_il_lna_d; | |
| 2662 l1pa_l1ps_com.tcr_freq_list.used_il_lna_d = l1pa_l1ps_com.tcr_freq_list.used_il_lna; | |
| 2663 } | |
| 2664 | |
| 2665 #if FF_L1_IT_DSP_USF | |
| 2666 } // if (l1ps_macs_com.usf_status != USF_AWAITED) | |
| 2667 #endif | |
| 2668 | |
| 2669 } | |
| 2670 //#pragma DUPLICATE_FOR_INTERNAL_RAM_END | |
| 2671 #endif // MOVE_IN_INTERNAL_RAM | |
| 2672 | |
| 2673 //#pragma DUPLICATE_FOR_INTERNAL_RAM_START | |
| 2674 #endif | |
| 2675 //#pragma DUPLICATE_FOR_INTERNAL_RAM_END |
