FreeCalypso > hg > fc-magnetite
view src/cs/layer1/audio_include/l1audio_msgty.h @ 636:57e67ca2e1cb
pcmdata.c: default +CGMI to "FreeCalypso" and +CGMM to model
The present change has no effect whatsoever on Falconia-made and Openmoko-made
devices on which /pcm/CGMI and /pcm/CGMM files have been programmed in FFS
with sensible ID strings by the respective factories, but what should AT+CGMI
and AT+CGMM queries return when the device is a Huawei GTM900 or Tango modem
that has been converted to FreeCalypso with a firmware change? Before the
present change they would return compiled-in defaults of "<manufacturer>" and
"<model>", respectively; with the present change the firmware will self-identify
as "FreeCalypso GTM900-FC" or "FreeCalypso Tango" on the two respective targets.
This firmware identification will become important if someone incorporates an
FC-converted GTM900 or Tango modem into a ZeroPhone-style smartphone where some
high-level software like ofono will be talking to the modem and will need to
properly identify this modem as FreeCalypso, as opposed to some other AT command
modem flavor with different quirks.
In technical terms, the compiled-in default for the AT+CGMI query (which will
always be overridden by the /pcm/CGMI file in FFS if one is present) is now
"FreeCalypso" in all configs on all targets; the compiled-in default for the
AT+CGMM query (likewise always overridden by /pcm/CGMM if present) is
"GTM900-FC" if CONFIG_TARGET_GTM900 or "Tango" if CONFIG_TARGET_TANGO or the
original default of "<model>" otherwise.
| author | Mychaela Falconia <falcon@freecalypso.org> |
|---|---|
| date | Sun, 19 Jan 2020 20:14:58 +0000 |
| parents | 945cf7f506b2 |
| children |
line wrap: on
line source
/************* Revision Controle System Header ************* * GSM Layer 1 software * L1AUDIO_MSGTY.H * * Filename l1audio_msgty.h * Copyright 2003 (C) Texas Instruments * ************* Revision Controle System Header *************/ #if (AUDIO_TASK == 1) #if (OP_RIV_AUDIO == 1) #include "rv_general.h" #endif #if (KEYBEEP) typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD16 d_k_x1_kt0; UWORD16 d_k_x1_kt1; UWORD16 d_dur_kb; } T_MMI_KEYBEEP_REQ; #endif #if (TONE) typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD16 d_k_x1_t0; UWORD16 d_k_x1_t1; UWORD16 d_k_x1_t2; UWORD16 d_pe_rep; UWORD16 d_pe_off; UWORD16 d_se_off; UWORD16 d_bu_off; UWORD16 d_t0_on; UWORD16 d_t0_off; UWORD16 d_t1_on; UWORD16 d_t1_off; UWORD16 d_t2_on; UWORD16 d_t2_off; } T_MMI_TONE_REQ; #endif #if (MELODY_E1) typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 session_id; BOOL loopback; UWORD16 oscillator_used_bitmap; } T_MMI_MELODY_REQ; #endif #if (VOICE_MEMO) typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 session_id; } T_MMI_VM_PLAY_REQ; typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 session_id; UWORD32 maximum_size; BOOL dtx_used; UWORD16 record_coeff_dl; UWORD16 record_coeff_ul; UWORD16 d_k_x1_t0; UWORD16 d_k_x1_t1; UWORD16 d_k_x1_t2; UWORD16 d_pe_rep; UWORD16 d_pe_off; UWORD16 d_se_off; UWORD16 d_bu_off; UWORD16 d_t0_on; UWORD16 d_t0_off; UWORD16 d_t1_on; UWORD16 d_t1_off; UWORD16 d_t2_on; UWORD16 d_t2_off; } T_MMI_VM_RECORD_REQ; typedef struct { UWORD32 recorded_size; } T_L1_VM_RECORD_CON; #if (OP_RIV_AUDIO == 1) typedef struct { T_RV_HDR header; UWORD32 recorded_size; } T_MMI_VM_RECORD_CON; #else typedef T_L1_VM_RECORD_CON T_MMI_VM_RECORD_CON; #endif #endif #if (L1_VOICE_MEMO_AMR) typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 session_id; } T_MMI_VM_AMR_PLAY_REQ; typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 session_id; UWORD32 maximum_size; BOOL dtx_used; UWORD16 record_coeff_ul; UWORD8 amr_vocoder; } T_MMI_VM_AMR_RECORD_REQ; typedef struct { UWORD32 recorded_size; } T_L1_VM_AMR_RECORD_CON; #if (OP_RIV_AUDIO == 1) typedef struct { T_RV_HDR header; UWORD32 recorded_size; } T_MMI_VM_AMR_RECORD_CON; #else typedef T_L1_VM_AMR_RECORD_CON T_MMI_VM_AMR_RECORD_CON; #endif #endif #if (OP_RIV_AUDIO == 1) #if (L1_AUDIO_DRIVER == 1) typedef struct { UWORD8 channel_id; UWORD16 *p_buffer; } T_L1_AUDIO_DRIVER_IND; #endif #endif #if (SPEECH_RECO) typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 database_id; UWORD8 word_index; BOOL speech; UWORD16 *speech_address; } T_MMI_SR_ENROLL_REQ; typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif UWORD8 error_id; } T_MMI_SR_ENROLL_STOP_CON; #if (OP_RIV_AUDIO == 1) typedef struct { UWORD8 error_id; } T_L1_SR_ENROLL_STOP_CON; #else typedef T_MMI_SR_ENROLL_STOP_CON T_L1_SR_ENROLL_STOP_CON; #endif typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 database_id; UWORD8 word_index; BOOL speech; UWORD16 *speech_address; } T_MMI_SR_UPDATE_REQ; typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif UWORD8 error_id; } T_MMI_SR_UPDATE_STOP_CON; #if (OP_RIV_AUDIO == 1) typedef struct { UWORD8 error_id; } T_L1_SR_UPDATE_STOP_CON; #else typedef T_MMI_SR_UPDATE_STOP_CON T_L1_SR_UPDATE_STOP_CON; #endif typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 database_id; UWORD8 vocabulary_size; } T_MMI_SR_RECO_REQ; typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif UWORD8 error_id; UWORD16 best_word_index; UWORD32 best_word_score; UWORD16 second_best_word_index; UWORD32 second_best_word_score; UWORD16 third_best_word_index; UWORD32 third_best_word_score; UWORD16 fourth_best_word_index; UWORD32 fourth_best_word_score; UWORD16 d_sr_db_level; UWORD16 d_sr_db_noise; UWORD16 d_sr_model_size; } T_MMI_SR_RECO_STOP_CON; typedef struct { UWORD8 error_id; } T_L1_SR_RECO_STOP_CON; #if (OP_RIV_AUDIO == 1) typedef struct { UWORD8 error_id; UWORD16 best_word_index; UWORD32 best_word_score; UWORD16 second_best_word_index; UWORD32 second_best_word_score; UWORD16 third_best_word_index; UWORD32 third_best_word_score; UWORD16 fourth_best_word_index; UWORD32 fourth_best_word_score; UWORD16 d_sr_db_level; UWORD16 d_sr_db_noise; UWORD16 d_sr_model_size; } T_L1_SR_RECO_STOP_IND; #else typedef T_MMI_SR_RECO_STOP_CON T_L1_SR_RECO_STOP_IND; #endif typedef T_L1_SR_RECO_STOP_CON T_L1_SR_PROCESSING_STOP_CON; typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 database_id; UWORD8 word_index; UWORD16 *model_address; BOOL speech; UWORD16 *speech_address; UWORD8 vocabulary_size; } T_MMI_SR_UPDATE_CHECK_REQ; typedef T_MMI_SR_RECO_STOP_CON T_MMI_SR_UPDATE_CHECK_STOP_CON; // Background message type typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif UWORD8 database_id; UWORD8 model_index; API *model_RAM_address; BOOL speech; UWORD16 *start_buffer; UWORD16 *stop_buffer; UWORD16 *start_address; UWORD16 *stop_address; } T_L1_SRBACK_SAVE_DATA_REQ; typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif UWORD8 database_id; UWORD8 model_index; API *model_RAM_address; BOOL CTO_enable; } T_L1_SRBACK_LOAD_MODEL_REQ; typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif API *model_RAM_address_input; UWORD16 *model_RAM_address_output; } T_L1_SRBACK_TEMP_SAVE_DATA_REQ; #endif #if (AEC) typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD16 aec_control; #if (L1_NEW_AEC) UWORD16 cont_filter; UWORD16 granularity_att; UWORD16 coef_smooth; UWORD16 es_level_max; UWORD16 fact_vad; UWORD16 thrs_abs; UWORD16 fact_asd_fil; UWORD16 fact_asd_mut; #endif } T_MMI_AEC_REQ; #if (L1_NEW_AEC) typedef struct { UWORD16 es_level; UWORD32 far_end_pow; UWORD32 far_end_noise; } T_L1_AEC_IND; #endif #endif #if (FIR) typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif BOOL fir_loop; UWORD8 update_fir; UWORD16 *fir_ul_coefficient; UWORD16 *fir_dl_coefficient; } T_MMI_AUDIO_FIR_REQ; #endif #if (AUDIO_MODE) typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif #if (OP_RIV_AUDIO == 1) UWORD8 audio_mode; #else UWORD16 audio_mode; #endif } T_MMI_AUDIO_MODE; #endif #if (MELODY_E2) typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif UWORD8 melody_id; UWORD8 number_of_instrument; UWORD8 waves_table_id[SC_AUDIO_MELODY_E2_MAX_NUMBER_OF_INSTRUMENT]; } T_L1_BACK_MELODY_E2_LOAD_INSTRUMENT_REQ; typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif UWORD8 melody_id; } T_L1_BACK_MELODY_E2_LOAD_INSTRUMENT_CON; typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif UWORD8 melody_id; UWORD8 number_of_instrument; } T_L1_BACK_MELODY_E2_UNLOAD_INSTRUMENT_REQ; typedef struct { #if (OP_RIV_AUDIO == 1) T_RV_HDR header; #endif UWORD8 melody_id; } T_L1_BACK_MELODY_E2_UNLOAD_INSTRUMENT_CON; typedef struct { #if (defined _WINDOWS && (OP_RIV_AUDIO == 1)) T_RV_HDR header; #endif UWORD8 session_id; BOOL loopback; } T_MMI_MELODY_E2_REQ; #endif #if (L1_CPORT == 1) typedef struct { UWORD16 configuration; UWORD16 ctrl; UWORD8 cpcfr1; UWORD8 cpcfr2; UWORD8 cpcfr3; UWORD8 cpcfr4; UWORD8 cptctl; UWORD8 cpttaddr; UWORD16 cptdat; UWORD16 cptvs; } T_MMI_CPORT_CONFIGURE_REQ; typedef struct { UWORD16 register_id; UWORD16 register_value; } T_L1_CPORT_CONFIGURE_CON; #if (OP_RIV_AUDIO == 1) typedef struct { T_RV_HDR header; UWORD8 register_id; UWORD16 register_value; } T_MMI_CPORT_CONFIGURE_CON; #else typedef T_L1_CPORT_CONFIGURE_CON T_MMI_CPORT_CONFIGURE_CON; #endif #endif #endif // AUDIO_TASK
